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Introduction

Let C” be the complex Euclidean space with complex coordinates z=
(2 -+*» 2,) and K a compact subset of C*. For any complex valued C~-func-
tions f,, ---, f, defined on an open subset U of C” containing K, we shall consider
the uniform algebra 4 consisting of uniform limits of polynomials of 2, --+, 2,
Jfo - foon K.

Hoérmander-Wermer [1] proved that, if s=n and if each f; is ‘close’ to Z;
in some sense, then A4 coincides with C(K), the algebra of all complex valued
continuous functions on K. In this paper, we shall deal with the case where
0<s<n and each f; is holomorphic in 2., -+, 2, near K. In Section 3, an ap-
proximation theorem on the graph of f,, -, f; will be proved. In Section 4, we
shall give a sufficient condition on f; and K assuring that every function holomor-
phic in 2, ***, 2, near K belongs to 4.

1. The graph of f,, -, f,

Let f, -+, f; be C~-functions defined on an open subset U of C*. The
graph Offn "')fs

M= {(2‘1, "t szl(z)’ ,,,,fs(z))ecn+s; R = (2’1, T 2’,,)6 U}

is a real 2n-dimensional submanifold of C**°. If g is a C=-function on M, then
the function g, defined by

(11) go(zl’ ) 2‘,,) = g(zu *t szl(zl’ % z,.), "'yfs(zn Ty 2’,,))

is a C~-function on U.

We denote by H,(U), r=n—s, the class of functions of C=(U) which are
holomorphic in 2.y, *++, 2,

We shall now consider the following assumptions on f,, -+, fs:

(1.2) fis ***» [, belong to H,(U), and



34 A. Sakar

(1.3) det (6_{‘,) has no zeros on U.

0 Zpl i k=105

These conditions imply that, for every point p of M, the dimension of
maximal complex submanifold of C*** through p contained in M is just r. It
follows from the following lemma, which is easily proved by linear algebra.

Lemma 1. The complex tangent space of M at every point is of r-dimension
if and only if

rank (%) =n—r
0 Rp/ =15 k=1,""n

holds at every point of U.

A C=-function on M which is holomorphic in complex coordinates of M
is called a CR-function. (1.1) gives an isomorphism of H,(U) and the algebra of
CR-functions on M.

2. Holomorphic convexity of M

By a region of holomorphy we mean a disjoint sum of domains of holomorphy.

We define

¢(z) = ]Z:A |fj(zv ) zn)’_zn+j|27 zeUxC? ’

and
G(V) = {zeV; ¢(2)<£},
for any open subset V' of U X C* and for any positive-number €.

Lemma 2. Suppose that f; satisfy (1.2) and (1.3). Let V be a region of
holomorphy in C*** such that VC UXC®. Then there exists a positive number &,
such that G(V) is a region of holomorphy in C*** for any &, 0<E<E,.

Proof. We consider the complex Hessian form

a(e B = 3 T8 @5, seUxC

Let 2=(2,,**, 2,+s) be any point of M and z,=(z,, ", 2,) the corresponding
point in U. Then we have

HE B = 21852 s+ 2 2 B 1)

The right member can vanish only if
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s af] - . n af] .
Eﬁ(zo)gy—o and En+j—§é—z—;(zo)§” j=1, 5.
By (1.3), H(&, &), can vanish only when £ is a complex tangent vector of M at 2:

E= (0; "ty O, §s+1’ o Em 2'1 %(zo)gw “.’vgl E?’é;(zo)fv> .

V=5+

Therefore the matrix Hz=( 82¢_ (z)) has n+s—r non-zero eigenvalues
02,02,

for every point z of M. Let V, be an open set such that VcV,cV,cUxC".
By continuity of H,, there exists a positive number &, such that H, has at least
n-}-s—r non zero eigen values for every z in G, (V).

Let S, be the hypersurface {zV,; ¢(2)=¢€}. Fix an arbitrary point
a=(aty, ***, Aus+s) o0 S,. We define a non-singular holomorphic map z=®(¢)
of Ula)={teC"; (ay -, s &1y 5 £,)E U } into C**° by

a, j=1,-s,
:j—s ]: S+1, e, n,
fi—n(au *ty Oy Cn Tty §r)_fi—n(a1$ ) aﬂ)+ai ’

j=n+1, -, nts.

D,(8) =

The ®-image of U(x) is an r-dimensional complex submanifold of C*** con-
taining . Since 23| fia,, ***y dw)—Qus ;| *=E€, it is contained in S,. Hence
=1

the complex Hessian H, evaluated at « has at least r zero eigenvalues with
complex eigenvectors tangent to .S, (see Wells [2], Lemma 2.5). Thus, H(E, &),
is non-negative for any tangent vector £ to S,. Since V is a region of holomor-
phy in C"*°, s0 is G(V). The lemma is proved.

A compact set F of C* (or of C***) is called an H-convex set in C* (or in C"*+*
resp.), if F is the intersection of regions of holomorphy containing F in C* (or
in C"* resp.). If U, is a region of holomorphy in U, then U,XxC° is a region
of holomorphy in C***. 'Therefore, we have

Corollary. If K is an H-convex compact seubset of U, then K*={(2,, ***, Zy+s)
eM; (2, -+, 2,) K} is H-convex in C**°.

3. Holomorphic approximation on M
In this section, we suppose that f,, ---, f; satisfy (1.2) and (1.3).
Lemma 3. Suppose g is a CR-function on M. Then for every positive

integer N and for every relatively compact open subset U, of U, there exist a func-
tion §= C=(U X C°) and a positive constant v such that
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(i) &lm=g, and
(ii) :—g(z) <yed(z, MY¥, 2€U,xC°, v=l, -, nts,
v

where d(z, M) is the Euclidean distance in C™** between z and M.

Proof. We consider the system of linear equations at every point of U

0f; _ 0g
3.1 2} i
( ) j=1 ]6 z, 65‘,,

where g, is the function defined by (1.1). By (1.3), there exist the uniquely
determined solutions %,(z,, -+, 2,), j=1, ---,s. Since f; and g, are of H,(U),
so are k;. We shall define the function %; inductively for every multi-index
J=Uy -+, J&), 1<i;<s. Suppose k; is given in H,(U). Then hy;, j=1, -+, 5,
will be defined as the solutions of the equations

3.2) Svh,, 00 M

—, v=1, 5.
=1 ’az,, 0%,

The condition (1.3) guarantees the existence of the solutions %, ; in H,(U).
We shall prove that ; are symmetric with respect to J. By differentiating
each equation of (3.1) by 2., we have

2010k Og 5y By,
=102, 02, 02z,0%Z, i-10%,0%,

i

Since the right member is symmetric in » and z, we have

df, oh, < 0f, 0,
3.3 5 SV TRy p=1, s
(3-3) gaz 3%, gaa az,’ ¥ !

Substituting (3.2) for k=1 to (3.3), we obtain

i (E hjtaf af] = 1:1 <-:1 6]_‘}>6{] y Uy p = 1) ey 8,

= 0z, '0%,/0%,

or equivalently

of; 0
g(hj,- ,]) f 6—{—0 vy u=1, s
By using (1.3), we can find that &;,=h,; for every 7 and j.

General cases will be proved by 1nduct1on For simplicity, we write J=
(jn '"»jk)’ I=(j11 "'1ji—11ji+u ""jk)) z:]‘ and Jl=(jls ) ji—njy ji+1) '")jk)-
Since hj=h;; and h;=h;; by assumption of induction, we have
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hlajfi = 6%, and ‘jhﬂa'{" = 6‘}_;, .
=1 "0Z, Z, =1 702, 02,

By differentiating the first identity by Z. and the second by Z,, we obtain

(3.4) 1ty 0Fs _ 5300y 01,

- b
=10z, 02, :—16zy 0z,

v, u=1, s

Substituting the equalities

S 8f 6hj af, 6h],
hyst= 2 and Ryhyott =
2 18%, 0% Z} "5z, 0z,
to (3.4), we have
af, o f,
hy—hy)di%i 0y p =1, -,
2 =)y 5%, n b :

By (1,3), we find that k&, ;=h;,;, which implies the symmetry of 4, for all J.
Now we define g by

g(zly "ty n+s) = go(zn “tty 2’,,)
+2 2 th -jk(zn B zn) (zn+i1’fj1(zv ) zn))"'(zn+jk_’fjk(zv ) zn))

kxk'(’

If v=s+1, -+, n-+s, we have :g =0. For v=1, .-+, 5, we have
%y

0g _ 1 oh;

55 ﬁvz}m 6]; f”(z,.+,~1—f,-1(zu v, zn))...(z,,+jﬂ—fjﬂ(zl, oy 2) s
v o Gigeeed v

which proves the lemma.

We consider two uniform algebras on a compact subset K* of M. H(K*)
is the algebra of uniform limits on K* of functions each holomorphic in a neigh-
borhood (in C**°) of K*. CR(K*) is the algebra of uniform limits on K* of
functions each of which is a CR-function on a neighborhood (in M) of K*.

Suppose K* is H-convex in C"*°. Let g be a CR-function on a neigh-
borhood M,(in M) of K*. We can find a region of holomorphy V' such that
K*cV and VN McM, We denote by K and U, the projections of K* and
M=V N M respectively by the map (z,, -+, y+s) = (25, -**, 24). Let d denote
the distance between K and 0 U,. By the way of construction of G,(V) in
Lemma 2, we can find a positive constant » such that, for every point 2° of K*,
the ball B,,(2°)={2=C"**; | 2—2"| <&} is contained in G,(V), whenever £€<d.
Therefore, by using Lemma 2 and Lemma 3 for N=n--1, and applying the
same technique as one developed in [1], we obtain the following
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Theorem 1. If K* is a compact subset of M which is H-convex in C"**,
then we have H(K*)=CR(K*).

4, Polynomial approximation.

We consider the following conditions for a compact subset K of C” and
for functions f; of C=(C");
(@) fy -+, fs are of H,(U) for some open set U containing K,
(b) there exists a constant k, 0<<k<(1, such that

3 A eHD—1@)—-E <k 5 Ig I

holds for any z and £=(§,, ***, £, 0, +++, 0) in C”", and
(c) for any vector a’=(a,, -+, &), K N Ey is polynomially convex in E,, where
E, is the subspace {z€C"; 2,=a;, j=1, .-+, s} of C".

The condition (b) implies (1.3). In fact, we can find a constant k,
0<<k,<1, such that

s s Of. s
313 f’&+§,-|23k,jz=llfs,-v,

=1 =1 6 z

and hence the system of linear equations

26.}‘;‘?”: 0’ ]: 1: ey S

=0z,

has only trivial solution.

We consider two uniform algebras on K. A is the algebra of uniform
limits on K of polynomials of 2, -, 2,, f,(2), -+, f{(2). H,(K) is the algebra
of uniform limits of functions each of which is holomorphic in z,,, -, 2,,
in a neighborhood of K.

Theorem 2. Suppose the conditions (a), (b) and (c) are satisfied. Then we
have A=H (K).

Proof. We shall first prove that K* is polynomially convex in C***. To
do this, it is sufficient to show that the maximal ideal space of P(K*), the
algebra of uniform limits of polynomials in z,, :*, 2,., on K*, ocincides with
K*, or equivalently that every complex homomorphism of A4 is a point evalua-
tion for some point of K. Let @ be any complex homomorphism on 4. Set
a;=9(3;), j=1, -+, n, and a=(a,, **-, ). We consider the function

fz) = 3 () (F(m) =/ (@) -
Then f(z) is in A. By the condition (b), we have



UNIFORM ALGEBRA 39

Re f(z)>0 for 2&EEy, o' =(ay, 5 ) .

Let m be a representing measure for @ of A supported on K. Then we
have

0=Recp(f)=SRefdm.

Therefore, the support of m must be contained in K N E, and, in particular,
KN Ey is not empty.

Let A(z) be any polynomial of z,, -+, 2,, fi(?), ***, fi(2). For simplicity,
we write By(Rstyy ***y Zn)=H(ty, ***y Osy Fsyy *** By). Then we have

o(h) = | h(=) dm(z)
= S hl(zs+1) Tty 2’,,) dm(zsﬂ, Tty 2',,) .

By the condition (a), 4, is holomorphicin U N E,. Since K N E, is polynomially
convex, by Oka-Weil’s theorem, %, is approximated uniformly on KNE, by
polynomials of 2,.,, :++, 2,. Since every polynomial of 2;.,, -+, 2, is considered
as a polynomials of 2,, -+, 2,, @ can be considered as a complex homomorphism
Jr of P(KNE,), the algebra of uniform limits on K N E, of polynomials of
Zst1y ***y &y Polynomial convexity of KN E, implies that » is a point evalua-
tion at . Therefore we have

(p(h) = ‘!"(hl) = hl(ash; Tty an) = h(a) 5
which proves the polynomial convexity of K*.

By Oka-Weil’s theorem, H(K*) coincides with P(K*). Since K* is the
intersection of polynomial polyhedra containing K*, it is H-convex, and
therefore we have H(K*)=CR(K*) by Theorem 1. A is isomorphic to P(K*)
and H,(K) to CR(K*). Since ACH,(K), we obtain A=H ,(K).
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