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Introduction. In their book, Differentiable Periodic Maps [2], P.E. Conner
and E.E. Floyd initiated the study of cobordism groups of periodic maps and
succeeded in determining the additive structure of the cobordism groups of free
orientation-preserving Z,-actions on manifolds for odd primes p and of free Z,-
actions preserving a stably almost-complex structure for arbitrary primes by
calculating MSOy(BZ,) and MU(BZ,) respectively. Kamata [5] obtained the
same results for MU4(BZ,) using slightly different methods. We extend these
results to a determination of MU4(BG) where G is an arbitrary cyclic group.
The main result is Proposition 16:

s n Fz(u—b)(pa)
MU, (BZp)= >3 2] I:b—b“_1+1]+s—a+1

8=1 p_p3-1_4 —_—
P p—-1)
P

| YO

where Ty(p*)=MU:[{CP(p—1)?*"*> and the square brackets indicate the
greatest integer function. We show this by constructing an explicit set of
generators coming from the K-theory of the generalized lens spaces L"(p°) and
computing the order of the group they generate.

I would like to thank the referee for catching several embarrassing errors
and suggesting ways of correcting them.

Results. We will have need of several homology and cohomology theories.
Following J.F. Adams, let H be the Eilenberg-MacLane spectrum for the
integers, K the BU spectrum, and MU the Thom spectrum for the unitary group.
The resulting homology theories are denoted by Hy( ), Ki«( ), and MUx( ),
and similarly in the case of cohomology theories. When we have need of un-
reduced theories, we write X* for the disjoint union of X and a basepoint, so that
H,(X*), for example, is ordinary, unreduced, integral homology. In dealing with
K-theory, we will be exclusively concerned with K°X) which we agree to write
as K(X), remembering that this is the reduced group, i.e., what is usually written

1) This work was partially supported by an NSF Graduate Fellowship,
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as K(X).

The following description of MU,(X) will be very convenient. Consider
the set of all continuous maps f: M™—>X where M is a stably almost-complex
manifold. Two such maps f, and f, are said to be equivalent if there is a stably
almost-complex (m+1)-manifold W”+* and a map f: W™+'—X such that the
boundary of Wis the disjoint union of M, and M, and f restricted to the boundary
of W is the disjoint union of —f, and f,. Impose an addition on the set of result-
ing equivalence classes by the disjoint union of maps. It is a standard result
that the resulting graded group is isomorphic to MU4(X™).

Recall that the ring of coefficients MUy is a polynomial ring over the integers
on countably many generators, one in each positive, even dimension. There are
many ways of choosing such generators, but it is convenient to have a standard set
to work with. Following M. Hazewinkel [4] we proceed as follows:

Suppose S is a natural number. An ordered factorization of S is an ordered
set (g, ***, gy, d) of natural numbers where each g¢; is a positive power of a prime
and d is not a power of a prime and S=g¢, --- ¢,d. For example, the ordered
factorizations of 12 are: (12), (2, 6), (4,3, 1), (3,4, 1), (2,2, 3, 1), (2, 3,2, 1), and
3,2,2,1).

Associate to each ordered factorization (g, ---, g;, d) a positive integer
b(q, -+, ¢y d) as follows:

1) b(qu Gy d) = b(Qn R QI)

2) If q; =p:i’ then b(Qv Tt Qt) = b(Pv R Pt)
3) b(p)=1and b(d) =1

4) If S=(py -, p;), then

b(Pn ) Pt) = {plgsc(?’ pt)}b(Pv ) Pt—1)

1if p=
where (g | 21
g*™t if pkgq.

This suffices to give an inductive definition of &(g,, -+, g;, d). For example:
b(2, 3, 2, 1)=b(2, 3, 2)=12.

Proposition 1 (Hazewinkel): There exist elements v, MU,; such that

1) MUy = Z[v, v, *-*]

2) Ifweset V,=v,_,, then, in MU;RQOQ,

[CP(s—1)] _ 5@y 5 9y yr.
§ {Cay,-4194,4D) Pl"'Pt

where g, is a power of p,, r,=q,---q;, and the sum is taken over all ordered
factorizations of s.
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Notation. For a fixed prime p, let
d(s)=p*'+--41.

DEerFINITION. By T'4«(p°) we mean MU, [<{v:¥17*“~V>. This definition bears
a few words of explanation. T'x(p®) as defined is a graded ring. We are in-
terested, however, only in its structure as a graded abelian group. With this in
mind, we will often write T'x(p) CTx(p*) S+ MUy even though the inclusion
is not true for the rings in question, only the groups. Each I'y(p°) is, of course,
a graded, free abelian group with a rather complicated number of generators in
each dimension.

Proposition 2. MU,,(BZ,)=0 and MU,,,,(BZ,) is a finite abelian group
of order p°™®, where s(n):sZ”] 7(j) and 7(n) is the number of partitions of n.
=0

Proof. Consider the Atiyah-Hirzebruch spectral sequence, henceforth de-
noted AHSS.

0 if g is odd or 7 is even

Ejz‘ — Hr BZ s; MU - 1
. (BZ, 7) (Z ps)"@/»  otherwise.

For purely dimensional reasons there can be no non-zero differentials, so the
spectral sequence collapses and E*=E~. There is a filtration MUYBZ ;)=
F,2.-2F,0F_,=0 such that F,F, ,=E;,_,. If tis even, then Ey,_,=0
Vgq. Therefore MU,(BZy)=0. If ¢t is odd, E7_,, is zero for ¢ odd and has
order p°*“/® for ¢ even. Q.E.D.

In order to get the precise structure of the odd dimensional groups, we
need some information from K-theory.

There is a natural inclusion Z,— S* given by 1 exp (27i/p®) so that the
standard free action of S* on S***'induces a free action of Z,s on S****. Denote
the resulting (2n+1)-dimensional quotient manifold by L*(p°), the (2n-+1)-
dimensional lens space. We then have the tower of fibrations.

Zy—> S

S' = 8 Zp —> L'(p")
s
CP(n)
~ Let £, be the canonical line bundle over CP(n), n,=z*(&,) and (,—[1])=
xe K(L*(p%)).
Z[x]
((A4x)pr—1, #™) -

Proposition 3: K(L*(p%)) =
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For the proof, see Atiyah [1], p. 105.

S T+
. . . S=lp-1)
DrriNITION.  For a given prime p, let m(j, s)=p ’ l-l , where the

square brackets indicate the greatest integer function.

Proposition 4. Consider K(L"(p®)). For every j>p°~", there is a sequence
of integers {b,} such that

m(n—j, $)x’ = pm(n—j, s){;] bxi}
Proof. The proof is by induction on # and j for a fixed s.

The theorem is trivial for n<<p°~', since in this case ¥’=0. Assume the
theorem is true for n—1>p°*~*—1 and write

n—1f 1 S\\ ___ if[y]
KD = (51,59

Mapping yi+—xi*' induces a group homomorphism g: K(L"}(p°))—
K(L*p%)). By induction, m(n—1—j, s)y’=pmn—1—j, s) >3b,y;,j=p°""
i<j

Applying g to this equality, we obtain m(n—(j+1), s)x’*'=pm(n—(j-+1), s)
Sybxit'. Thus the theorem is true for # as long as j<<p°~'.

Suppose then that j=p°~'. We know that ﬁ: <1;s)x"=0. For 1<j<p°—1,
(€S> is divisible by p and for p<<j<p°7?, (*l;s) is divisible by p°>. Therefore
m(n—p°, s)(§s>=km(n—ps“, s)=Fk m(n—i, s), for i>p*~*. Multiply the above
sum by m(n—p°, s). Then

0= pmln—p=, f 33 hwr-tomn—p' =, 22 "+ 51 kann—i, 9
where k%0 (mod p). ‘ =141
Now pES km(n—i, s)xi =

i=p5=141

=p 3 Emn—p™, et plmn—p™, " p 3T Ema—i,
Thereforieqs_ =T

0 = pmn—p*"', ) 3 hax'+(k+-plym(n—p"~', )u? "o

i<pS—

251
et DY hm(n—i, s)x?
i=ps—141

Repeating this process as long as there are terms «x¢ for which ¢>p°~?, we obtain

m(n—p°, s)(k+pb)x?’ " = pm(n—p*7, ) 3 k' .

i<ps—1

Since (k-+pb) is a unit mod p, this implies that
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mn—p°~Y, $)x?" " = pm(n—p°*~', 5) 3} bxi as claimed. Q.E.D.

i<ps—1

Corollary. In K(L*(p*)) the order of the element x*°~'—p S\ b is less
i<ps—1
than or equal to m(n—p°~, s). !

Suppose D is any complex, n-plane bundle over a space X. The map cf;:
K(X)—>MU?*(X) which associates to [D]-n the first cobordism chern class of
is clearly an homomorphism and was shown by Conner and Floyd [3] to be the
injection of a direct summand.

If the space X is an n-dimensional manifold which is MU-orientable and,
in particular, if X is a U-manifold such as L"(p®), then there is a Poincar¢ duality
isomorphism

D: MU*(X) — MU,_4(X) .

DerintTION. By X(%, $)e MU, (BZ <) we mean the bordism element re-
presented by the inclusion i: L#(p°)—BZ s of the (2k-+1)-skeleton. When the
context is clear, we will write X(k) for X(&, s).

Proposition 5. 7.(D(cf,(x)¥)=X(n—k).
Proof. This is Proposition 1.3 of [5].

In order to use the above information, it is necessary to understand some
elementary results from the theory of formal groups which we now review.

DEFINITION. Suppose R is a commutative ring with unit. By a formal
group over R, we mean a formal power series F(X,, X,)= > a,;X{X{, a;;ER
ij20

which satisfies
1) F(X, 0) =X, and F(0, X)) = X,
2) F(Xn F<X2s Xa)) = F(F(Xv Xz)’ Xa)

We are interested in the following formal group over MU*. Recall that
MU*(BSY)=MU*[[X]] and MU*(BS*xBS")=MU*[[X,, X,]], the rings of
formal power series in one and two variables respectively. The multiplication
m: S*X8'—>S* in the group S* induces a map Bm: BS'X BS'—BS* which
classifies the tensor product of line bundles. That is, if 7,, z,: BS*XBS'—>BS"
are the projections and £, and £,, the respective pullbacks of the universal line
bundle £ over BS*, then Bm*(§)=§ ,®E&,. The standard result is that Bm*(X)
is a formal group over MU¥*, being, in fact, a universal object for formal groups
over an arbitrary (commutative) ring. We define elements a,,= MU* by setting
Bm*(X)=X,+X,+>) a,;X{X{=F(X,, X,).

If £ is a line bundle, write $* for the tensor product of $ with itself. then
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9 is classified by the map Bm-.A: BS'—>BS'x BS'>BS*, where A is the
diagonal map. Since X=cf,(£), ¢f,(£8*)=F(X, X) by naturality.

DEerFINITION. Let [R]X € MU*(BS") be defined inductively as follows:

) X=X
2) [KX = F(X, [k—1]X).

This definition is rigged, of course, to give us the result we really want,

namely, cf,(€¥)=[k]X.
Notation. We will write
[F]X = a(0, ki) X+a(1, k) X*+--- + a(m, R) X"+ -+

with a(m, k)e MU*=MU_.

In general, it is somewhat difficult to give an explicit description of the a(m,k)
as bordism classes of familiar manifolds. There is, however, the following
result.

Proposition 6. Given a prime p, the ideal in MU generated by {a(m, p)} is
the ideal of all manifolds whose chern numbers are all divisible by p. This ideal is
in fact generated by {a(pi—1, p)} =0, 1, ---

Proof. See [2], Proposition 41.1.

Proposition 7. a(p*—1, p°)=cv?+py where ¢=0 (mod p) and ye MU..
If j<p°—1, a(j, p°) is divisible by p.

Proof. The proof is by induction on s. The case s=1 is the above men-
tioned result of Conner and Floyd.
Assume by induction that a(p°'—1, p* )=c, 03 +py, and that for
Jj<p°*—1, a(j, p°7) is divisible by p. Now,
71X = [p)([p°71X) = 2 alk, p){[p" ] X}

Therefore

A —1p) =5 3 alk palis p')wali 1)
where gt =p—1—k.

Suppose k<<p—1. Then a(k, p) is divisible by p. Similarly, if ;<<p°~'—1,
then a(z;, p°7') is divisible by p.

If k2>p—1 and i;>p*'—1 for all j, then, since k4, - +i=p"—1,
k=p—1and {;=p°'—1 for all j. Buta(p—1, p)a(p°'—1, p°")?=
=(CoVp-1PY0) (V58T Py, )P =coc, 055+ py and ¢,c,=0(mod p). Q.E.D.
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Proposition 8. For each integer n> p°~'—1, there is an element Y(n, s)=
MU,,.(BZ s) which satisfies

1) Y(n,s) =3¢V X(n—p° '+ 1)+ 2w, X(n—k)
where w, & MU [<0257P) = Ny
2) mn—p*'+1, 5)Y(n,s)=0.

Proof. Induction onn. We showed that in K(L*(p°)),
mn—p*?, )x?" T = pm(n—p°l, 5) 3 bxs .

j<ps—1

Recall that x=»,—1 and xkzzk} (—1)"(’?)17,‘. .
7

i=0
Apply the map ¢f,, yielding

s—1

mn—p, 9 3 ()27 @)
— pmin—p", 9 32 {32 ()] (@)

j<ps—1 L=
Equivalently, applying i,0D,
min—p, ) 2 (V{27 ) atk, px—2—1))
i=1 1

— pm(n—p~, s)j<§_lbj{ilzj=‘,l(—1)"(1:/){:2:011(#, )Xok —1)}}.

Note that for *<<2(p°"'—1) MU4x=Ny and we see that

mn—p= 9 5 (PN S ak 9x@—k-1)

=1 B2ps1g
—pmin—p, ) S ()] S e, Xk 1)
j<ps—1 W=t V7 byzps—1,
has the form m(n—p°~*, 5) 2} w, X(n—k), w, ;& Ny.

Now suppose that k= p*~'. If we expand the a(k, ) in terms of our chosen
basis, we will get sums of monomials in the v;. If a monomial contains no factor
5470, then the product of th~t monomial and X(n—k—1) has the required
form. Suppose that the monomial has the form B 2%V X(n—k—1). Since
k=p?, the degree of X(iz—k—1) is strictly less than that of X(n—p°™).
Therefore, by induction,

m(n—p°~*, §)Bvi P X(n—k—1) = m(n—p°~, 5)B ; w;, X(n—k)

with wk.sEN*.
Repeating the induction if necessary, we have that
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min—p=, ) 5 (127 a1, 9]
—pmln—p", ) 31 bA (-1 (7, Jato 1, ) Xn—p )

has the form m(n—p

°7Y 8) 23wy X(n—k), w, ;& Ny.
since for i<p°7, (‘f s—l) is divisible by p, we have that
m(n—p° 7', $){(c+pd)vir P +w}X(n—p° )
—pm(n—p*, ) 2 Bia(p*'—1, j)X(n—p*), ¢=0 mod p

j<ps—1

Utilizing Proposition 7,

has the same form. Expanding the b;a(p*~'—1, j) in terms of our chosen basis
as b,a(p°'—1, j)=—c; 05+ .-, we see that
mn—p*7", s)(c+pd+p 2 )tV X(n—p)

j<ps—1

has the same form. But ¢+p(d+ > ¢,) is a unit mod p, so
i<ps—1
m(n—p°*, eV X(n—

wk’sEN* .

s—l)zm(n‘ps—l’ S) ; wk»SX(n_k) ’

Set Y(n—1, s)=viT  X(n—p°*)— X w, X(n—k). This clearly satisfies 1) and
2). ‘

Q.E.D.
Proposition 9. For each integer a<s and each integer n>p*®'—1, there is
an element Y(n, a)= MU, (BZ,) which satisfies:
1) Y(n, a) = iV X(n—p® '+ 1)+ 2w, X(n—k) with
W, & MU [{E%P> . k

p—1
2) pm(n—p°'+1,a)Y(n,a)=0.
Proof. Induction on s.

The case s=1 follows immediately from Proposi-
tion 8. Suppose we have defined such elements for s—1

For each a<s, let
Y(n, a) = o0 X(n—p® 1, 5)+ 23w, X(n—k, s) .
k

According to [2], page 101, if i: BZ ,s-1—BZ ,s, then

Pix(X(n, s—1)) = p°X(n, s). Therefore, since p°~* m(n—p®~'+1,a) is
divisible by p*, p°**m(n—p®'+1, a) {3 P X(n—p® ' +1, 5)+
+ D w, X(n—k, )} = ix(p* ' m(n—p® 41, a){vi TV X(n—p

141, s—1)+
+ Dlw, X(n—k, s—1)} = 0.

Clearly the elements Y(#, a) have the form prescribed by 1).

The case a=s is precisely the substance of Proposition 8 Q.E.D.
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Proposition 10. In MU, +1_,(BZs), the element v54)X(0) is divisible by p.

Proof. Notice that %,p°=1. Therefore cf,(n,p°)=0 or, equivalently,
23 a(j—1, p*)X(n—j)=0.

7
By Proposition 7, a(j—1, p°) is divisible by p for j<<p°. Therefore a(p°—1, p*)
X(0) is divisible by p. But again by Proposition 7, a(p°—1, p°)=cv%5+pW,
where ¢ is a unit mod p. Therefore v2%}X(0) is divisible by p. Q.E.D.

We are now in a position to set up the result we wish to prove. Fix an integer

DeriniTIiON. By T(a, b) we mean

1ﬂz(n—b)(])a)
P m(b—p° -1, @)Tynp(P%)

By Twemeand 3 T(a, b).

a=1 ,  pa—1_, .

Construct a map f(a, b): T(a, b)>MU,,.,(BZ,s), f(a, b): w,_,—w,_,Y(b, a)

for every w,_,ET,—5»(p%). By Proposition 9, this map is a well-difined homo-

morphism. Let f= >1f(a, b): T—-MU,,(BZjs). Our aim is to show that f
a,b ‘

is an isomorphism. To accomplish this, we will first show that f is an epimor-
phism and then that the orders of T"and MU,,,,(BZ,:) are equal.

In order to show that f is an epimorphism, we will consider the groups
MUZ ,+«(BZ ), that is, complex bordism with Z, coefficients. For this purpose,
let R be a Z, Moore spectrum and define MUR(X)=Sx(MU AR X")=MU,
(RAX?"). The result is a generalized homology theory.

Proposition 11. MUR,,.,(BZ 5)=MU,,(BZ ;)R Z ,.
Proof. There is a Kiinneth short exact sequence in complex bordism.

0 — MU (BZy)QZ,—> MUR,(BZ ) —
— ToryMU,,_(BZ ), Z,) — 0.

Since MU,,(BZ ,)=0, the result follows.

For further calculations, we need the existence of cap products in the
AHSS. The following proposition may be garnered from a paper of R. Kultze

[6]-

Proposition 12. Suppose h* Qky—ky is a pairing of coefficient groups of
theories h*( ) and ky( ). The cap product H*(X; h*)QH (X; ky)—H (X Ry)
induces a cap product N, on the E? terms of the corresponding Atiyah-Hirzebruch
spectral sequences which satisfies:
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1) N, induces cap products N,: E"QE,—~E,
2) Each differential d” is a (graded) derivation with respect to N,;z.e.
d’(anb)=d,(a)N ,b+an,d"(b).
We will generally write N forN,.
We will apply this proposition to the module pairing arising from MU A
MUR—MUR.

RemARK. The more natural thing to do would be to use a ring spectrum
pairing MUR \ MUR—MUR here. Unfortunately, the general perversity of
the universe demands that MU Z, not be a ring spectrum. Such is life.

The map of spectra MU—MUR induces a map ¢: MUy (BZ ,)—>MUR
(BZps). Let t(X(n))=Z(2n+1).

Proposition 13. MUR,,.,(BZ ;) is additively generated by elements of the
Sform w;Z(2(n—j)+1) where w; = MU 4 [<255>.

Proof. Consider the AHSS for MUR(BZ,:) in which
0 g odd

E? = H(BZ,; MUR,) =
i,9 {BZ, 2) {( Z ,)"“/® otherwise.

Let r>2 be the smallest integer such that E”=E"*'. Since E2 ,=0 for ¢ odd
and d” has bidegree (r, r—1), r must be odd.

Let E be the AHSS for MU(BZ ). The map ¢ is induced on the E? level

by the reduction f: Hy(BZ ps; MUy)—>Hy(BZ,s; MUR,). Since H,,(BZy; Z)
=0, the universal coefficient theorem says that 7 is an epimorphism in odd
dimensions. Therefore MUR,,,,(BZ ) is at least generated by the elements
b;Z(2(n—j)+1), as b; ranges over MUy.

1) Claim d"(Z(2j+1)®b,)=0 Vj>0 and b,cMU,. In fact we have
already noticed that the spectral sequence E is trivial for dimensional
reasons. Therefore
d"(Z(2j+1)Rby) = d"(F(X(j)®bx)) = H(d"(X(j)®bk) = 0.

2) Claimd": E7,, o—E7 ._; is non-zero. For there is an integer j and a
b, MU, such that
0+d"(Z(2))Rbr)=d"(Z(25)) ®b,. Then d”(Z(2))%0. There is a class
us H(BZ ,s; Z) which gives the periodicity of Hy(BZ,s; Z,) via cap
products, i.e. H,(BZ,;Z,)=Z, on a generator w,, and w,,—u N\ W, ,,.
A similar periodicity holds for H(BZ,:; Z) with respect to the same
u. Denote also by u the corresponding generator in E3° of the AHSS
for MU*(BZs). Then

d(ZQ2j—2)) = &' WN Z(2))) = d,(u) N Z(2)£u N d"(Z(2)) =
— +und’(Z(2))) .
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But, for 2j>743, uN,=uN, is an isomorphism. Therefore, in this
range d’(Z(2j—2))=0. By induction d"(Z(r+1))=0 as claimed.

3) Claim d"(Z(r+1))=Z4(1)Quy3V**~P, For, since d”(Z(r+1))==0, there

is a b,e MUy, b,=0, such that d"(Z(r+1))=Z(1)®b,. Then, for any
b;e MUy, b;%0, &"(Z(r+1)Rb,)=Z(1)®@ b;b,+0. In Z(1)Qb,=
d"(Z(r+-1))=d"(un (Z(r+3)))=und’(Z(r+3)). But uN(Z(3)Rby)=
Z(1)®b, and uN is an isomorphism. Therefore d”(Z(r-+3))=2Z(3)R8b,.
Arguing inductively d"(Z(r+2j+1)®b;)=2Z(2j+1)Rb;by.

This has two consequences. First, d; 4 is a monomorphism for 2j>7r+1,
so that E7;%=0 and di; +=0 for all i>r+1. Therefore E}}}, «=FE5_1 %-
Secondly, for j>0, Z(2j4-1)®b=0 in E< if and only if b is in the ideal <b,>
generated by &,. For suppose b=bjac MU,. Then Z(2j4+1)Qb=d"(Z(2j+r
+1)Q®a), so that Z(2j+1)Qb=0 in E3}} +=F5;;1.%- On the other hand, if
b=+b,a, then Z(2j+1)®b cannot be the image of any d” and we have shown that
d3; «=0 for all i>r4-1. 'Therefore, in this case Z(2j+1)Qb=+0.

Now 2551.X(0) is divisible by p by Proposition 10. Therefore t('vf,(_*{X(O))

=5 Z(1)=0in MUR,s_,(BZ ps)=MU,ps_(BZ ;)R Z,, so that Z(1)REH3=
in E°. Thus v2%e<{b,), i.e. b, is a power of v,_,. For dimensional reasons

r—1

RemARK. It turns out that »=2p°—1 and b,=2%, but this is not necessary
for the proof.

Now, the only non-zero groups appearing in the associated graded of
MUR,.,..(BZ,) are of the form E%,,;3m-5. But we have just shown these
groups to be generated by the elements Z(2j4-1)®b with be MU, —<b,> MU,
—EED. Q.E.D.

Proposition 14. The map f: T—MU,,,.,(BZ,s) is an epimorphism.

Proof. Consider the commutative diagram:

T —_— TQRZ,

7] |roz,
MU21:+1(BZPS) __t) MUR2M+1(BZPS) ’

and suppose that to f were an epimorphism. Then f® Z, would be an epimor-
phism. Since both T and MU,,,,(BZ,s) are finite abelian p-groups, f would
also be an epimorphism.

We must show, therefore, that fof is an epimorphism This is equivalent
to showing that image f2{b.X(n—k): b, MU,—<v2%)>}. Consider the in-
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creasing sequence of groups MUy —<{v5N> C MU —<vi3> S -+- CMU ¢ —<055
and suppose that ac MU, —<v;%P>, ace MU —<v%%>. Then a=v3%.v_,-b;
where ¢<d(t+1)—d(¢) and b,ET,;(p). In other words ov;_,-b;T(p*"").
Recall that

Y(n—j—c(p—1), ) = 0,5 X(n—j—c(p—1)—p'+-1)+2] @ X(n—j—c(p—1)—k)

where a, & MU /{059,

Since we may assume by induction on the power of v,_, appearing in a
given monomial that v;_;-b;-a,X(n—j—c(p—1)—Fk) is in the image of f, it
follows that aX(n—|al|/2)=v;_,+b;- Y(n—j—c(p—1)) modulo the image of f.
Therefore aX(n— |al|/2) is in the image of f. Q.E.D.

DEFINITION. By =(n; m, r) we mean the number of partitions of #» which
contain no more than m terms equal to 7.

ExampLE. Let m=1, r=2. Then (3,2) is an allowable partition of 5, but
(2,2,1)is not. =(5; 1, 2)=6 and =(5; 2, 1)=>5.

Proposition 15. 31n(k) — 31 [ ]+1)n(],m 7)

(m+1)r

Proof. First notice that the number of partitions of # containing exactly
m terms equal to 7 is equal to the number of unrestricted partitions of n—mr.
Furthermore, 7(k) is equal to the sum of the number of partitions of k containing
no terms equal to 7, those with exactly one 7, and so forth. Therefore

(k) = n(k; 0, r)+n(k—r; O, r)+m(k—2r; 0, )4 - .
Similarly,

n(k; m, r) = n(k; 0, r)+n(k—r; 0, 1)+ - +n(k—mr; 0, 7).
Therefore

n(k; m, r) = n(k)—n(k—(m+1)) and
(k) = n(k; m, r)+n(k—(m+1)r; m, r)+n(k—2(m-+1)r; m, r)+---

Summing over &,
Sy a(k) = 31 S w(k—a(m+1yr; m, 1)
= Z (max{a: j = k—a(m+1)r}+1)z(j; m, r)

— > ([(m+1) ]—]—l)n(j; m, 7) Q.E.D.
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Proposition 16.

MU2n+1(BZp’):_V—‘ .Z i FZ(”'b)(P)

b—p% 141

Py Tan-5(P°)

Proof. The proposition states that the map f: T—>MU,,,,(BZ,s) is an
isomorphism. Since we have already shown it to be an epimorphism, it suffices
to verify that the two groups involved have the same order.

According to Proposition 2, the order of MU,,, (BZ,) is p#* where

A(s)= i} sw(k). 'The order of T on the other hand is clearly p5> where
b—p*'+1 P
B(s) = — £ T 45— —b; —1,p—1).
w=3 2 {52, et e -1

We must show A(as)=B(s).
Proceed by induction on s. The case s=1 is an example of Proposition 15.
Write z(n; m) for n(n; m, p—1). Now

B(s) = B(s—1)+ E 2 n(n—b; P =1+

b=p"1-
---—l—b:g‘__.l_l{[bs?Zpl+11)}+l}n(n b; pi—1).

By Proposition 15,
3 {[” P 4 htn—b; 1) =

b=ﬁ"‘11«1 . I(P )
z‘zz}{[ _ 1([; 1)] l}n(n—b—ps”‘—}—l;ps"—l)
=ﬁ_§1+ln(b) .

Remember from the proof of Proposition 15 that

w(k) = 2 n(k—ap®(p—1); p*7—1) .

Therefore
" n-0%—141
2 wn=b;p* =)= > =(b)
b=p%"1-1 b=n-0%+2
and so
ﬂ_ps—l a—l n
B(s)—B(s—1) = g) 7r(b)—i—2 Z 7z(b) = bz—%ﬂ(b) = A(s)—A(s—1).
B b=n—0%+2 B
Since A(1)=B(1), induction shows that A(s)=2DB(s) for all s. Q.E.D.

Proposition 17. Suppose r and s are relatively prime.
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Then MU(BZ},)=MU«(BZ})QmuMU(BZ7) .

Proof. This proposition follows almost immediately from a theorem of
Landweber [8] to the effect that if X and Y are CW-complexes such that the
AHSS for MU 4(X) is trivial, then there is a natural short exact sequence

0 — MU(XY)QMU(Y*) —> MU(X*AY+) —>
— TorMU(MU(X+), MU(Y*)) = 0.

Since the AHSS for MUy(BZ,) collapses for dimensional reasons and the
torsion of MU(BZ,) and MUy(BZ,) are of relatively prime order, Tor}V*
(MUw(BZ}), MU(BZ7))=0. Q.E.D.

Corollary. If r and s are relatively prime, then
MUzn-f—l(Ber) = MU2n+1(BZr)@MU2n+1(BZs) ¢

Taken in conjunction, these last two propositions clearly suffice to give
the complex bordism of any (finite) cyclic group.
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