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Introduction. In their book, Differentίable Periodic Maps [2], P.E. Conner
and E.E. Floyd initiated the study of cobordism groups of periodic maps and
succeeded in determining the additive structure of the cobordism groups of free
orientation-preserving ^-actions on manifolds for odd primes p and of free i n -
actions preserving a stably almost-complex structure for arbitrary primes by
calculating MSO*{BZP) and MU*(BZP) respectively. Kamata [5] obtained the
same results for MU*(BZP) using slightly different methods. We extend these
results to a determination of MU*(BG) where G is an arbitrary cyclic group.
The main result is Proposition 16:

ΣI
P 1 2Cn-bλ

where Γ*(pa)~MU*/ζCP(p— \)pa~ιy and the square brackets indicate the
greatest integer function. We show this by constructing an explicit set of
generators coming from the i£-theory of the generalized lens spaces Ln(ps) and
computing the order of the group they generate.

I would like to thank the referee for catching several embarrassing errors
and suggesting ways of correcting them.

Results. We will have need of several homology and cohomology theories.
Following J.F. Adams, let H be the Eilenberg-MacLane spectrum for the
integers, K the BU spectrum, and MU the Thorn spectrum for the unitary group.
The resulting homology theories are denoted by H*( ), K*( ), and MU*( ),
and similarly in the case of cohomology theories. When we have need of un-
reduced theories, we write X+ for the disjoint union of X and a basepoint, so that
H*(X+), for example, is ordinary, unreduced, integral homology. In dealing with
^-theory, we will be exclusively concerned with K°(X) which we agree to write
as K(X), remembering that this is the reduced group, i.e., what is usually written

1) This wQrk was partially supported by an NSF Graduate Fellowship,
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as K(X).

The following description of MU*(X) will be very convenient. Consider

the set of all continuous maps / : Mm-+X where M is a stably almost-complex

manifold. Two such maps/^ and/2 are said to be equivalent if there is a stably

almost-complex (w+l)-manifold Wm+1 and a map / : Wm+1-+X such that the

boundary of PFis the disjoint union of M1 and M2 and / restricted to the boundary

of W is the disjoint union of —fx and/2. Impose an addition on the set of result-

ing equivalence classes by the disjoint union of maps. It is a standard result

that the resulting graded group is isomorphic to MU*(X+).

Recall that the ring of coefficients MU* is a polynomial ring over the integers

on countably many generators, one in each positive, even dimension. There are

many ways of choosing such generators, but it is convenient to have a standard set

to work with. Following M. Hazewinkel [4] we proceed as follows:

Suppose S is a natural number. An ordered factorization of S is an ordered

set (qiy "'yqt)d) of natural numbers where each q. is a positive power of a prime

and ί/is not a power of a prime and S=qx ••• qtd. For example, the ordered

factorizations of 12 are: (12), (2, 6), (4, 3, 1), (3, 4, 1), (2, 2, 3, 1), (2, 3, 2, 1), and

(3,2,2,1).

Associate to each ordered factorization (qlt ••-, qt, d) a positive integer

b(qu •••, qt, d) as follows:

!) % i > "•> Vt> d) = b(qu —, qt)

2) If q{ = pϊ, then b(qu ••-, qt) = b(pu -,pt)

3) b(p) = 1 and b{d) = 1

4) If S = (p1, -,ρt), then

(1 if p =
where c(ρ,q)= \

W> \qp-i iί

This suffices to give an inductive definition of b(qί9 •••, qt9 d). For example:

b(2, 3, 2, l ) = i ( 2 , 3, 2)=12.

Proposition 1 (Hazewinkel): There exist elements v{^MU2j such that

1) MU* = Z[vu v» •••]

2) If we set F, = v^, then, in MU*®Q,

1)] _ ^ b(g17 -,qt) v v'κ.τ/,-iV',
2 ^ * q d

where q{ is a power of pίy ri=q1"-qi, and the sum is taken over all ordered

factorizations of s.
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Notation. For a fixed prime p, let

DEFINITION. By Γ*(ps) we mean MU^Iζtή,^^''1^. This definition bears
a few words of explanation. T*(ps) as defined is a graded ring. We are in-
terested, however, only in its structure as a graded abelian group. With this in
mind, we will often write Γ ^ j c Γ ^ j c - . ^ M U * even though the inclusion
is not true for the rings in question, only the groups. Each T*(ps) is, of course,
a graded, free abelian group with a rather complicated number of generators in
each dimension.

Proposition 2. MU2n(BZps)=0 and MU2n+1{BZp*) is a finite abelian group

of order pSQn\ where $(#)=.£•] π(j) and π(n) is the number of partitions of n.

Proof. Consider the Atiyah-Hirzebruch spectral sequence, henceforth de-
noted AHSS.

El f = Hr{BZpS; MUq) = ί ° i f ^ ίS ° d d ° r T " e

V ; \(Zp,)*C9/2> otherwise.

For purely dimensional reasons there can be no non-zero differentials, so the
spectral sequence collapses and E2=E°°. There is a filtration MUt(BZps)=
F ί 3 . . . 3 F 0 3 F _ 1 = 0 such that F^F^^EZ,^. If t is even, then £-, f_Q=0
Vq. Therefore MUt(BZps)=0. If t is odd, E~_QtCI is zero for q odd and has
order ps*«& for q even. Q.E.D.

In order to get the precise structure of the odd dimensional groups, we
need some information from ^-theory.

There is a natural inclusion Zps^ S1 given by 11—> exp {2πίjps) so that the
standard free action of S1 on S2n+1 induces a free action of Zps on *S2M+1. Denote
the resulting (2rc+l)-dimensional quotient manifold by Ln(ps), the (2n-\-l)-
dimensional lens space. We then have the tower of fibrations. ,

s1 = sηzps — • L\ps)

CP(n)

Let ξn be the canonical line bundle over CP(n), Vn=π*(ξn) and (vn— [1])=

Proposition 3: K(Ln(ps)) =
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For the proof, see Atiyah [1], p. 105.
Γ_J_Ί + 1

DEFINITION. For a given prime p, let m(j, s)=p*-P (P υ J , where the
square brackets indicate the greatest integer function.

Proposition 4. Consider K(Ln(ps)). For every j>ps~\ there is a sequence
of integers {b£} such that

m(n—j, s)xJ = pm(n—j,

Proof. The proof is by induction on n and j for a fixed s.
The theorem is trivial for n<ps~λ, since in this case xJ=0. Assume the

theorem is true for n— l>ps~x— 1 and write

K(L-W)) =

Mapping yi\-^xi+1 induces a group homomorphism g: K(Ln~1(ps)) ->
K(Ln(ps)). By induction, m(n—l~j, s)yJ=pm(n—l—j\ s) Σ &&» j>ps~^

Applying g to this equality, we obtain m(n—(j+1), s)xJ+1=pm(n—(/+1), )̂
Σ b{x

i+l. Thus the theorem is true for n as long as j<ips~λ-

Suppose then that j=ps~\ We know that Σ (^ )Λ ' = 0 . For l<j<ps—l,

( ) is divisible by >̂ and for p<j<ps~1, ( ) is divisible by jf>2. Therefore

m(n—p\ s)(p. \=km(n—ps~x, s)=k m(n—i, s), for i>ps~\ Multiply the above

sum by m(n—ps, s). Then

0 = pm(n—ps 1, s) Σ kix*-\-ktn{n—ps \ s)xp -\~ Σ k/myn—i, s)x*
*=1 .-4.S—1 , i

where
ps

Now Σ k/mfo—i, s)x{ =

= /> Σ k m{n—ps-\ s)xi+pkm(n~ps~\ s)xps~1+p
iKP5-1 i=ps-l+ί

Therefore

0 =pm(n-ps-\ s) Σ hiXi+ίk+pfymίn-p3-1, s)x*s~1+

— h Σ Af M
Λ " " ̂  ί)Λ ; '

Repeating this process as long as there are terms xi for which ί>ps~λ, we obtain

m(n~ps-\ s)(k+pb)xps~1 = pm(n—p*-\ s) Σ ^ ,

Since (k-\-pb) is a unit mod >̂, this implies that
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m(n—ps~\ s)xps'' = pm(n—ps-\ s) Σ bp* as claimed. Q.E.D.

Corollary. In K(Ln(ps)) the order of the element xps~1—p Σ M1' w less

than or equal to m(n—ps~\ s).

Suppose ξ> is any complex, w-plane bundle over a space X. The map cjx:

ϋΓ(X) ->M?72(X) which associates to [ξ>]-n the first cobordism chern class of ξ>

is clearly an homomorphism and was shown by Conner and Floyd [3] to be the

injection of a direct summand.

If the space X is an ^-dimensional manifold which is M[/-orientable and,

in particular, if X is a ί7-manifold such as Ln(ps), then there is a Poincarέ duality

isomorphism

D: MUk(X) -> MUn.k(X).

DEFINITION. By X(k, s)^MU2k+1(BZps) we mean the bordism element re-

presented by the inclusion i: Lk{ps)->BZP* of the (2&+l)-skeleton. When the

context is clear, we will write X(k) for X(k, s).

Proposition 5. i^(D(cf1(x)k))=X(n—k).

Proof. This is Proposition 1.3 of [5].

In order to use the above information, it is necessary to understand some

elementary results from the theory of formal groups which we now review.

DEFINITION. Suppose R is a commutative ring with unit. By a formal

group over i?, we mean a formal power series F(X19 X2)= Σ aijX\XL <*ij^R

which satisfies

1) F(Xly 0) == Xλ and F(0, X2) = X2

2) FiX,, F(X2y X3)) = F(F(Xiy X2), X9)

We are interested in the following formal group over MU*. Recall that

MU^BS^MU^X]] and MU^BS'xBS^MU^X,, XJ], the rings of

formal power series in one and two variables respectively. The multiplication

m: S'xS'-^S1 in the group S1 induces a map Bm: BS^BS'-^BS1 which

classifies the tensor product of line bundles. That is, if πiy π2: BS1xBS1^BS1

are the projections and ξx and ξ2J the respective pullbacks of the universal line

bundle ξ over BS\ then Bm^(ξ)=ξ1®ξ2. The standard result is that Bnι*(X)

is a formal group over MU*> being, in fact, a universal object for formal groups

over an arbitrary (commutative) ring. We define elements aik^MU* by setting

X1+X2+Σla£jXiXi=F(X19 X2).

If φ is a line bundle, write §>2 for the tensor product of § with itself, then
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ξ>2 is classified by the map Bm-A: BS1->BS1xBS1->BS\ where Δ is the
diagonal map. Since X=cfx(ξ), cfλ{ζ2)=F{X, X) by naturality.

DEFINITION. Let [k]X^MU^(BS1) be defined inductively as follows:

1) [ΐ\X = X

2) [k]X=F(X>[k-ί]X).

This definition is rigged, of course, to give us the result we really want,
namely, cf{ξk)=[k]X.

Notation. We will write

[k]X=a(0, k)X+a(l, k)X2+- + a(my k)Xm+1+-

with a(nι, k)<=MU*=MU_*.
In general, it is somewhat difficult to give an explicit description of the a(myk)

as bordism classes of familiar manifolds. There is, however, the following
result.

Proposition 6. Given a prime p, the ideal in MU* generated by {a(m,p)} is
the ideal of all manifolds whose chern numbers are all divisible by p. This ideal is
in fact generated by {a(pi— 1, p)} /=0, 1, •••

Proof. See [2], Proposition 41.1.

Proposition 7. a{p3—l, ρs)=cvf_ϊl+py where Ξ̂JΞO (mod p) andy<=MU*.
Ifj<ps—1, a(j,ps) is divisible by p.

Proof. The proof is by induction on s. The case s= 1 is the above men-
tioned result of Conner and Floyd.

Assume by induction that a(ps~1— 1, ps~1)=c1v
a

p[ϊr1)+pyi and that for
j<ps~λ—\, a(j, p3'1) is divisible by p. Now,

Therefore

Έ Σ a
k>o <ίo, .ίjp

where io-\ \-i.= ρs—\ —k .

Suppose k<p—l. Then a(k> p) is divisible by p. Similarly, if ij<ps~l—\y

then a(tjy p3'1) is divisible by p.
If k>p—l and i^p5'1— 1 for all j , then, since k+io-\ \-ik=ps—l,

k=p-l and i.=ps-'-\ for all;. But α ( p - l , p)a{ps~1-\, ps-y=
and V l $ 0 ( m o d p ) . Q.E.D.
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Proposition 8. For each integer n^p3'1— 1, there is an element Y(ny s)e
MU2n+1(BZps) which satisfies

1) Y(ny s) = ϋpr1>X(n-p-1+ 1)+Σ »*...*(»-*)

where tDktS<=MU*l<τ$!r1>> = N*

2) tn{n-ps-1+lys)Y(n,s) = 0.

Proof. Induction on n. We showed that in K(Ln(ps))y

m{n—ps~\ s)xps~1 = pm(n—ps'\ s) 2 6^ y .

Recall that A ^ ^ - 1 and * * = Σ ( -

Apply the map cfly yielding

m{n-f-\ s) gVl) !(f

= pm(n-f-\ s) Σ A,

Equivalently, applying i*°Dy

m{n~f-\ s) g 1 (-

Note that for ̂ <2(ps-1— 1) MU*=N* and we see that

Σ a(ft,

has the form m(n—ps~1

y s) ][] wksX(n—k)y w

Now suppose that k^p*"1. If we expand the a(ky i) in terms of our chosen

basis, we will get sums of monomials in the v£. If a monomial contains no factor

^$-Γ1)> then the product of tl r.t monomial and X{n—k~ί) has the required

form. Suppose that the monomial has the form β tfjfJΐλ)X(n—k— 1). Since

k^pq~\ the degree of X(n—k— 1) is strictly less than that of X(n— p3'1).

Therefore, by induction,

m(n-ps'\ s)βvfl^X{n-k-\) = m{n-ps~\ s)β Σ
k

with wktSEΞN*.

Repeating the induction if necessary, we have that



510 B.T. FLYNN

m(n-f-\ s) g1 (-l)'(f "1){«(P'"1-1»

—pm(n—ps~\ s) Σ ^

has the form m(n—ps-\ s) Σ wksX(n—k)> wk>s^N*. Utilizing Proposition 7,

( t>s~ι \
\ j is divisible by p, we have that

m(n-ps-\ s){{

-pm(n-ps-\s)

has the same form. Expanding the bsa{ps~λ—\yj) in terms of our chosen basis

as bja(ps-1—lJ)=—CjVa

p^Γ1)+-', we see that

m(n-f-\ s)(c+pd+p Σ φfJΓ^in-f-1)

has the same form. But c+p(d+ Σ cϊ) is a u11^ m°d >̂ s o

M n - ί - 1 , jKLr1)^(n-ί-1)=iff(if~^-1, s

Set Y(«-l, ί ) = ^ 5

1 - 1 ) ^ ( w - / > ^ 1 ) - Σ wft,sX(w-A). This clearly satisfies 1) and
2). έ ' Q.E.D.

Proposition 9. For each integer a<s and each integer n>pa~1—\, there is
an element Y(n, α)eMU2n+1(BZps) which satisfies:

1) Y(n, a) = v™rlyX(n-pa-1+ ί)+ Σ wkX{n-k) with

2) ps-am(n-pa-1+l, a)Y(n, a) = 0 .

Proof. Induction on s. The case s= 1 follows immediately from Proposi-
tion 8. Suppose we have defined such elements for j — 1 . For each α<ί, let

Y(n, a) = ^ - ^ ( n - p - ' + l , *)+ Σ wk>aX(n-k, s).

According to [2], page 101, if ί": BZps-i->BZps, then

pi*{X{n, s— 1)) = p2X{n, s). Therefore, sinceps~a m(n—pa-1+l,a) is

divisible by p\ps-am(n-p"-1+l, a){v«p?Γ1)X(n-ρ"-1+l, s)+

Clearly the elements Y(n, a) have the form prescribed by 1).

The case a=s is precisely the substance of Proposition 8. Q.E.D.
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Proposition 10. In MU2Ps^_λ{BZps)y the element vflίX(0) is divisible by p.

Proof. Notice that ηnρ
s=ί. Therefore cf1(ηnp

s)=0 or, equivalently,

By Proposition 7, a(j—ί, ps) is divisible by p for j<ps. Therefore a(ps— 1, ps)
X(0) is divisible by p. But again by Proposition 7, a(p*—l9 ps)=π%ϊ{+pW9

where c is a unit mod ^). Therefore va

p[ϊ{X(ϋ) is divisible by p. Q.E.D.

We are now in a position to set up the result we wish to prove. Fix an integer
n.

DEFINITION. By T(a, b) we mean

p-i+l, a)Y2in_b,{pa)

By T we mean Σ Σ T(a, b).

Construct a map/(<z, b): T(a, b)-+MU2n+1(BZps), f(ay b): wn-b^wn_bY(by a)
for every wn_b^T2ίft-b^(pa). By Proposition 9, this map is a well-difined homo-
morphism. L e t / = Σ/(α> *) : T->MU2n+1(BZps). Our aim is to show that/

is an isomorphism. To accomplish this, we will first show that / is an epimor-
phism and then that the orders of T and MU2n+1(BZps) are equal.

In order to show that / is an epimorphism, we will consider the groups
MUZp*(BZps)f that is, complex bordism with Zp coefficients. For this purpose,
let R be a Zp Moore spectrum and define MUR*(X)=S*(MUΛ RA X+)=MU*
(R /\X+). The result is a generalized homology theory.

Proposition 11. MUR2n+1(BZps)^MU2n+1(BZps)®Zp.

Proof. There is a Kϋnneth short exact sequence in complex bordism.

0 -* MUm(BZps)®Zp -+ MURm(BZpS) ->

- Ύorl(MUm^(BZps)y Zp)->0.

Since MU2n(BZpS)=0y the result follows.

For further calculations, we need the existence of cap products in the
AHSS. The following proposition may be garnered from a paper of R. Kultze
[6].

Proposition 12. Suppose h*®k*->k* is a pairing of coefficient groups of

theories A*( ) and A*( ). The cap product H*(X; h*)®H*(X; k*)^>H*(X; &*)

induces a cap product Π 2 on the E2 terms of the corresponding Atίyah-Hirzebruch

spectral sequences which satisfies:
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1) Γl 2 induces cap products (Ί r' Er®Er->Er

2) Each differential dr is a (graded) derivation with respect to Π r ; i.e.
d\a Π rb)=dr(a) Π rb±a Π rd

r(b).
We will generally write Γl for Γi r

We will apply this proposition to the module pairing arising from MU Λ
MUR-+MUR.

REMARK. The more natural thing to do would be to use a ring spectrum
pairing MUR AMUR->MUR here. Unfortunately, the general perversity of
the universe demands that MUZ2 not be a ring spectrum. Such is life.

The map of spectra MU->MUR induces a map t: MU*(BZps)->MUR*
{BZpβ). Lttt(X(n))=Z(2n+l).

Proposition 13. MUR2n+1(BZps) is additively generated by elements of the
form WjZ(2(n-j)+ϊ) where Wj£ΞMU*l<va

p[ϊl>.

Proof. Consider the AHSS for MUR*(BZpS) in which

(0 q odd

\(Zpγ
cg/2' otherwise.

Let r>2 be the smallest integer such that ErφEr+1. Since E2

pq=Q for q odd
and dr has bidegree (r, r— 1), r must be odd.

Let E be the AHSS for MU*(BZP*). The map t is induced on the E2 level
by the reduction t: H*(BZpS MU*)->H*(BZps MUR*). Since H2n(BZpS Z)
= 0 , the universal coefficient theorem says that t is an epimorphism in odd
dimensions. Therefore MUR2n+1(BZps) is at least generated by the elements
bJZ(2(n—j)+l)) as b} ranges over MU*.

1) Claim dr(Z(2j+ί)®bk)=0 Vj>0 and bkEΞMU*. In fact we have
already noticed that the spectral sequence E is trivial for dimensional
reasons. Therefore

dr(Z(2j+ί)®bk) = dr{t{X{j)®bk)) = t{d\X{j)®bk)) = 0 .

2) Claim dr: £"ί+lf0-
>£'ϊ,r-i is non-zero. For there is an integer j and a

bk<=MU* such that
0^dr(Z(2j)®bk)=dr(Z(2j))®bk. Then <Γ(Z(2/))Φθ. There is a class
u^H2(BZps\ Z) which gives the periodicity of H*(BZps\ Zp) via cap
products, i.e. Hm(BZps\ ZP)=ZP on a generator wm and wm=uΠ wm+2-
A similar periodicity holds for H*(BZps Z) with respect to the same
u. Denote also by u the corresponding generator in E%'0 of the AHSS
for MU*(BZpS). Then

dr(Z(2j-2)) = dr(u Π Z(2j)) = dr(u) Π Z(2j)±u Π dr(Z(2j)) =
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But, for 2/>H-3, uΓir=uf]2 is an isomorphism. Therefore, in this
range dr(Z(2j-2))Φ0. By induction dr(Z(r+1))Φ 0 as claimed.

3) Claim dr(Z(r+l))=Z(i)®v';s1

1"2^-1\ For, since <Γ(Z(r+l))φθ, there
is a bk<=MU*, £*Φθ, such that έΓ(Z(r+l))=Z(l)®6A. Then, for any
bjtΞMU*, bj*O, dr(Z(r+l)®bJ) = Z(l)®bJbk*O. In Z(l)®bk =

dr(Z(r+l))=dr(uΠ (Z(r+3)))=uΠ <Γ(Z(r+3)). But uΠ (Z(3)® ft,)=
Z(l)®ίΛ and MΠ is an isomorphism. Therefore dr(Z(r+3))=Z(3)®bk.
Arguing inductively dr(Z(r+2j+ί)®bj)=Z(2j+l)®bjbk.

This has two consequences. First, d\5t% is a monomorphism for 2 / > r + l ,
so that JBS^=O andrf^,*=0 for all ι > r + l . Therefore' £ 5 # i , * = £ £ - i . *
Secondly, for ; > 0 , Z(2/+l)®i=0 in ^ ^ if and only if 4 is in the ideal <JΛ>
generated by iA. For suppose b=bka^MΌ*. Then Z(2j+l)®b=dr(Z(2j+r

+ 1)®Λ), SO that Z(2/+l)®4=0 in £ ϊ ^ i f * = ^ + i , * . On the other hand, if
b=^bkay then Z(2/+l)®4 cannot be the image of any dr and we have shown that
ditt*=0 for all i>r+l. Therefore, in this case Z(2/'+l)®6#=0.

Now <L^(0) is divisible by p by Proposition 10. Therefore t(vfl{X(ΰj)
=β{LflZ(l)=0 in MUR2P.-lBZit)=MU%p.-1{BZPβ)®Zp, so that Z( l )®ι£ί ί=0
in £°°. Thus ^L s ίe<^>, i.e. 4̂  is a power of ^ _ i . For dimensional reasons

REMARK. It turns out that r=2ps— 1 and bk=υa

p^l, but this is not necessary

for the proof.

Now, the only non-zero groups appearing in the associated graded of
MUR2π+1(BZps) are of the form £Tj+i,2(n-j). But we have just shown these
groups to be generated by the elements Z(2/+l)®ί with b&MU*—ζbkyc:MU#
-«fί>. Q.E.D.

Proposition 14. The map f: T-+MU2n+1(BZps) is an epimorphism.

Proof. Consider the commutative diagram:

T®ZP

\f®zP

MUR2n+1(BZps),

and suppose that to f were an epimorphism. Then f®Zp would be an epimor-
phism. Since both T and MU2n+1{BZps) are finite abelian ^-groups, / would
also be an epimorphism.

We must show, therefore, that tof is an epimorphism. This is equivalent
to showing that image fΏ.{bkX(n—k): bk^MU*—<y%[ϊϊ)}. Consider the in-
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creasing sequence of groups M ^ - < ^ ί > c M ^ - < < L 2 ί > c . . . c

and suppose that flGM^-«i+1)>, a $Mt/*-<<!'}>. Then a=v%^v%^b5

where c<d(ί+\)—d{i) and bj<=Γ2j(p). In other words ίiJ.i ί;.GΓ*(fl>+1).

Recall that

Y(n-j-c(p-ί), i) = ^ ( « - i - < ί - l ) - ί '

where
Since we may assume by induction on the power of vp_1 appearing in a

given monomial that vc

p_1'bJ akX(n—j—c(p—l)—h) is in the image of/, it

follows that aX(n—\a\β)=vc

χt_1 bj Y(n—j—c{p—\)) modulo the image of/.

Therefore aX(n— \a\\T) is in the image of/. Q.E.D.

DEFINITION. By π(n m, r) we mean the number of partitions of n which

contain no more than m terms equal to r.

EXAMPLE. Let tn=l, r=2. Then (3,2) is an allowable partition of 5, but

(2,2,1) is not. τr(5; 1, 2)=6 and π(5; 2, 1)=5.

Proposition 15. Σ Φ) = Σ (Γ n ~/ ] + ί)π(j; my r)

Proof. First notice that the number of partitions of n containing exactly

m terms equal to r is equal to the number of unrestricted partitions of n—mr.

Furthermore, π(k) is equal to the sum of the number of partitions of k containing

no terms equal to r, those with exactly one r, and so forth. Therefore

π(k) = π(k; 0, r)+π(k-r; 0, r)+π(k-2r; 0, r)+ - .

Similarly,

π(k; my r) = π(k; 0, r)+π(k-r; 0, r)H \-π(k-mr; 0, r).

Therefore

π(k; m, r) = π(k)—π(k—(m-\-ί)r) and

π(k) = π(k; m, r)-\-π(k—(m+l)r; my r)-\-π(k—2{m-\-\)r\ my r)-\ .

Summing over ky

n n

Σ π(k) — Σ Σ π(k—a(m-\-X)γ\ my r)

= Σ (fftax{a: j = k—a(m-\-\)r}-\-\)π{jy my r)

j ; m, r) Q.E.D.
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Proposition 16.

(

2(n-bA

Proof. The proposition states that the map /: T->MU2n+1(BZps) is an
isomorphism. Since we have already shown it to be an epimorphism, it suffices
to verify that the two groups involved have the same order.

According to Proposition 2, the order of MU2n+1(BZps) is pΛ(s:> where
n

A(s)= 2 sπ(k). The order of T on the other hand is clearly pBCs:> where
k 0

We must show A(as)=B(s).
Proceed by induction on s. The case s=l is an example of Proposition 15.

Write π(n; m) for π(n; m, p—l). Now

By Proposition 15,

b = o

Remember from the proof of Proposition 15 that

π(k) = Σ π(k-apa-\p-\); p-*-ΐ) .
a>0

Therefore

b=Pa~1-l b = n-Pa+2

and so

B(s)-B(s-l) =h

Since A(l)=B(l), induction shows that A(s)=B(s) for all s. Q.E.D.

Proposition 17. Suppose r and s are relatively prime.
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Then MU*{BZts)^MU*{BZt)®MUtMU*{BZl).

Proof. This proposition follows almost immediately from a theorem of

Landweber [8] to the effect that if X and Y are CW-complexes such that the

AHSS for MU*(X) is trivial, then there is a natural short exact sequence

0 - MU*(X+)®MU*(Y+) - MU*(X+ Λ

-> Torf U*(MU*(X+), MU*(Y+)) -> 0 .

Since the AHSS for MU*(BZr) collapses for dimensional reasons and the

torsion of MU*(BZr) and MU*(BZS) are of relatively prime order,

)=0. Q.E.D.

Corollary. If r and s are relatively prime, then

MU2n+ι(BZrs) = MU2n+1(BZr)φMU2n+1(BZs).

Taken in conjunction, these last two propositions clearly suffice to give

the complex bordism of any (finite) cyclic group.

ST. MARY'S COLLEGE, MORAGA, CALIFORNIA
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