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1. Introduction

Let X and V be two Hubert spaces such that V is a dense subspace of X

with continuous imbedding V-*X. Identifying X with its antidual (= the set

of continuous antilinear forms on.X) we may consider VdXdV* algebraically

and topologically where F* is the antidual of V. As is easily seen V is a dense

subspace of V*. The inner product and norm in X are denoted by (f>g) and

I / 1 , and those in V are by ((u, v)) and \\u\\. Forf^X and u^ V, (/, u) is equal to

the value at u of /considered as an element of F*, so we denote the F*— V duality

by (/, u) without causing any confusion. Sometimes we write also (u,f) instead

of (/, u). The norm in F* is denoted by \\f\\*.

Let a(t;u,v), O^Z^Γ, be a family of sesquilinear forms defined on Fx V

satisfying the following assumptions:

there exist positive constants M, δ, K and 0<p^l such that

\a(t\u,v)\^M\\u\\\\o\\, (1.1)

Reα(f;ιι,ι0^δ||ιι|r, (1.2)

\a(f,u,v)-a(s 9u,υ)\£K\t-s\'\\u\\ \\v\\ (1.3)

for any uy v^ V and ί, je [0, T\.
We define the operator A(t) in the following manner;

the element u^ V belongs to D(A(t))y the domain of A(t), and
A(t)u=f^X if and only if a(t\ uy v)=(f, v) for any v^V.

It is well-known that —A(t) generates an anlytic semigroup of bounded operators

in X. We consider the initial value problem of the evolution equation in X

du(t)ldt+A(t)u(t)=f(t), (1.4)

*) Part of the contents of this paper was talked by the second author at the Conference on
Evolution Equations and Functional Analysis held at the University of Kansas, Lawrence,
Kansas in June-July, 1970.
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«(0) = φ. (1.5)

To solve this equation we extend the operator A(t) to an operator on V into V*,

and first solve (1.4)—(1.5) in the larger space V*. This extension of A(t) which

is again denoted by A(t) is defined by a(t\ u, v)=(A(t)u, v) for u, v^V. The
operator —A(t) thus extended generates an analytic semigroup in V* and further-
more it has the constant domain V, and hence we may apply the result of [7] to
construct the evolution operator U(t, s) of (1.4) considered as an equation in V*.
The restriction of U(t, s) to X is uniformly bounded in the space of bounded
operators from X to itself. If p>l/2, one can show that it is the desired evolu-
tion operator of the problem (1.4)—(1.5) in X. This result is closely related
to the results of T. Kato [2] and P.E. Sobolevskii [5], [6] since under our hypo-
theses A(t)θ has a constant domain for any 0<l/2 (T. Kato [1]) and the assump-

tion p>l/2 is considered reasonable compared with the results of [2], [5], [6].

Next we show the existence and uniqueness of a mild solution of the semi-
linear equation

du(t)/dt+A(t)u(t) =/(ί, u(t)), (1.6)

«(0) = φ, (1.7)

namely the solution of the integral equation

β(ί) = U(t, 0 )φ+ \*U(t, *)/(*, u(s))ds .
Jo

Here/(ί, u) is a mapping from [0, T] X X into F* satisfying the monotonicity con-
dition with respect to u as well as some continuity condition in (£, u), This kind

of theorem was first established by T. Kato [3] where —A(t) was assumed to be
the infinitesimal generator of a contraction semigroup but not of an anlaytic semi-
group. However in [3] A(t)~l must be continuously diίferentiable in t and / is
a mapping from [0, T] X X to X. In the proof of our result we approximate the
equation (1.6) by a sequence of equations to which the result of T. Kato [3] can
be applied and then go to the limit. In this result we do not assume p>l/2.

Finally we describe another proof of Theoreme 1.1 of Chap. IV of J.L.

Lions [4] which asserts the existence of the solution of (1.4)-(1.5) in the sense
that

= \\f(t),
Jo

for any ψ such that ^eL2(0, Γ; V), ^eL2(0, T\ X) and ψ(T) = Q. As in
the theorem of Lions we assume in this result that a(t\u, v) is a measurable
function of t for each fixed u, v& V instead of (1.3).
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2. Some lemmas

In this section we consider sesquilinear forms and operators associated with
them and prove some lemmas which will be used in the subsequent sections.

Let a(u, v) be a sesquilinear form defined on VxV. We assume

\a(u,v)\<^M\\u\\ \\v\\, (2.1)

Rea(u,u)^S\\u\\\ δ>0 , (2.2)

for any u, v^ V. We define an operator A on V to V* by

a(u, v) = (Auy v) , u,

Lemma 2.1. If Re λ^O, then the operator A — \ has an inverse defined in
the whole of V* which satisfies the following estimates :

(2.3)

, (2.4)

(2.5)

(2.6)
(2.7)

for anyfGX or V*, where M^l+M/S, M2={(1+M/S)/S}"2.

Proof. The first part of the assertion follows from the Lax-Milgram
theorem. lff=(A — \)u, Re λ^O, then

(f,v) = a(u,v)-\(u,v) (2.8)

for any we V. Hence taking v=u and using (2.2) we get

Re(/,M)^δ| |M||2-Reλ|M|2^δ| |M||2, (2.9)

from which (2.6) follows. (2.4) is an immediate consequence of

1

Noting δ| |«| |2 ̂  Re (/, a) ̂  J /1 I u \ we find

|λ| |« | I^|/| | ιιH-M||«| | i^|/| |«

which implies (2.3). Moreover in view of (2.3) and (2.9)
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which implies (2.5). From (2.8) and (2.6) it follows that

|X||(W,^)|^||/IUIHI+MINII

and hence (2.7) is proved.

In view of Lemma 2.1 —A generates an analytic semigroup both in X and
K* which is defined by

exp (-tA) = -- -. ( e-»(\-A)-ld\
2πi Jr

where Γ is a smooth contour running in the resolvent set of A from ooe~iθ to °°eiθ

for some 0e(0, π/2). It is known that

\f\ , (2.10)

\\Aexp (-tAtfl^Ct-m*. (2.11)

Here and in what follows we use the notation C to denote constants which depend
only on the assumptions we are making at each occasion.

Lemma 2.2. For any

Proof is easy and omitted.

Lemma 2.3. For t>0

(2.12)

, (2.13)

(2.14)

(2.15)

\\Aexp (-tA)f\\^CΓ*'*\f\, (2.16)

\\Aexp (-At)f\\*^Ct~^\f . (2.17)

Proof. (2.12) and (2.13) are easily shown with the aid of (2.4). (2.15)
is a direct consequence of (2.11) and Lemma 2.2. The remaining ones can be
easily established using (2.5) and Lemma 2.2.

3. Construction of evolution operator

In virtue of the results of the preceding section —A(t) generates an analytic
semigroup also in V* and moreover it has the constant domain V. It immedia-
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tely follows from (1.3) that

\\A(t)u--A(s)u\\*£K\t-s\>\\u\\ (3.1)

which together with Lemma 2.2 implies that the bounded operator valued
function ^(^(O)"1 in V* is Holder continuous. Thus we can apply the result
of [7] to construct the evolution operator U(t, s) of the equation u'+A(t)u=Q
in V* in the following manner:

U(t, s) = exp (-(t-s)A(s))+ W(t, s) , (3.2)

W(t, s) = ('exp (-(t-τ)A(τ))R(τ, s}dr , (3.3)
Js

*(ί,*) = Σ=-A.(*.*), (3.4)

Rfr *) = -(A(t)-A(s)) exp (-(t-s)A(s)) , (3.5)

RJ[t, ή = ('R^, τ)Rm_ί(τ, s)dτ . (3.6)
Js

Lemma 3.1. ||Λ(ί,,)/||1|1^C(ί-*Γl|l/ll*, (3.7)

, (3.8)

(3.9)

Proof. (3.7) is known from [7]. (3.8) follows from (3.1) and (2.14). For
proof of (3.9) it suffices to show

which can be shown by induction, where C0 and C1 are constants independent of
the m and/.

Lemma 3.2. !!/?,(*, *)/-*I(T, *)/!!*

^C{(ί-τ)>(ί-<)-'+(ί-τ)(f-sΠτ-/r1} 11/11*.

This is proved in [7].

Lemma 3.3. \\R(t, s)f-R(τ, ί)/||*

^C(ί-τ)"(ί-ί)-v»| / 1 +C(t-r)(t-s)-ί(τ-sγ-ί'2 1 / 1

(3.10)

Proof. In view of (2.16) we have
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||{exp (-(t-s)A(s))-exp (-(r-s)A(s))}f\\

= \\-\Ά(s)exp(-(r-s)A(s))fdr\\
J τ

Hence noting (3.1) we get

||(Λ(τ)-Λ(j)){exp (-(f-*μ(*))-exp (-(τ-ήA(S))}f\\*

^C(ί-τ)(ί-ί)-'(τ-ί)p-1/2|/l . (3.11)

On the other hand by (3.1) and (2.14) we obtain

\\(A(t)-A(τ)) exp (-(t-s)A(s))f\\^C(t-rγ(t-s)-^ f\ . (3.12)

It follows from (3.11) and (3.12) that H/ϊ^f, s)f— /2t(τ, s)f\\* is bounded by the
sum of the first two terms of the right hand side of (3.10). Therefore we can
show (3.10) without any difficulty taking into consideration the identity

R(t, s)—R(τ, s) = Rψ, s)— Rfa s)+R1(t, σ)R(σy s)dσ

as well as Lemmas 3.1 and 3.2

Lemma 3.4. | W(t, s)f \ £C(t-s)f \ f \ , (3.13)

||ΪΓ(ί,*)/||^C(<-ίΓ^/|. (3.14)

Proof. (3.13) follows from Lemmas 2.3 and 3.1. Set

M(t, T) = exp (-(ί-τμ(τ))

Then noting

we can easily show

with the aid of Lemma 2.1 and (3.1). This inequality together with Lemmas
3.1, 3.3, 2.2 and (2.15) enables us to rewrite

W(t, s) = \*M(t, r)R(r, ίJrfT+f'exp (-(t-τ)A(t))(R(τ, s)-R(t, s))d
Js Js

-'{/-exp (-(t-s)A(t))}R(t, s)
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and to derive (3.14).

Lemma 3.5. | U(t, s)f\ ^C(ί-ί)-1/2||/||* , (3.15)

\\U(t,s)f\\^C(t-sΓlt\f\ (3.16)

Proof. (3.15) immediately follows from Lemmas 2.3 and 3.1, while (3.16)

from Lemmas 2.3 and 3.4.

If we set

S(t, s) = A(t) exp (-(t-s)A(t))-A(s) exp (-(t-s)A(s)) ,

then we get the following

Lemma 3.6. S(t, *)/ 1 ^C^-s)"'1 \ f \ , (3.17)

S(t,s)f\£C(t-s)'-*\\f\\*. (3.18)

Proof. Since

we may establish (3.17) with the aid of

I {(\-A(t)Γ-(\-A(s)Γ}f I ̂  C(ί-ί)' I λ I -1 1 / 1

which follows from Lemma 2.1 and (3.1). (3.18) is proved analogously.

Henceforth in this section we suppose

P>l/2. (3.19)

Lemma 3.7. | (Q/dt) W(t, s)f \ ̂ C(ί-ί)"-1 1 / 1 .

Proof. Since we can write

(dldt)W(ί,s)=\tS(t,τ)R(τ,s)dτ
Js

- \Ά(t) exp (-(t-r)A(t))(R(r, s)-R(t, s))dr
Js

+QXp(-(t-s)A(t))R(t,s)y

we get the desired estimate with the aid of Lemmas 2.3, 3.1, 3.3 and 3.6.

Theorem 3.1 Suppose the assumptions (1.1), (1.2), (1.3), (3.19) are satisfied.

Then the operator valued function U(t,s) constructed above is the evolution operator

for the initial value problem (1.4)-(1.5), i.e., it is continuously differ entiable in t and

sy Q^s<.t^T, in the uniform operator topology of the space of bounded operators on

X to itself, its range is contained in D(A(t)) if t>s, and it satisfies
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(djdt)U(t, s)+A(t)U(t, s) = 0, 0^s<t^T, (3.20)

U(s,s) = I, O^ί^Γ, (3.21)

U(t, s)U(s, r) = U(t, r ) , Q^r^s^t^T, (3.22)

(d/ds)U(t, s)-U(t, s)A(s) = 0, 0^s<t^T. (3.23)

Furthermore the following estimates hold:

I (dldt)U(t, s) I = I A(t)U(t, s) I ̂ C(t-sΓ , (3.24)

I (QIQs)U(t,»)I = I £/(ί, ,V4(*) | ^C(ί-ί)-1. (3.25)

In the above U(t, s)A(s) denotes the unique bounded extension of the operator
U(t, s)A(s) to the whole space X, and the notation \ \ used in (3.24) and (3.25)
stands for the norms of bounded operators on X to itself.

Proof. Now that we have proved the preceding Lemmas, (3.20), (3.21),
(3.22) and (3.24) can be verified without difficulty. It is also easily seen that

the operator A(t)* associated with the adjoint form a*(t\ u, v)=a(t; v, u) is the
adjoint operator of A(t) in either space of X and V*. We notice that the evolu-
tion operator V(t, s) of the adjoint equation

-dv(s)lds+A(s)*v(s) = 0 ,

that is, the operator valued function satisfying

~(9/9j)F(ί, s)+A(s)*V(t, ί) = 0 , 0^s<t^T , (3.26)

V(t,t) = I, OrSίrgΓ, (3.27)

can be constructed similarly to U(t, s). We have

U(t,s)=V(t,s)*. (3.28)

For we find for s<r<t

(d/dr)(U(r,s)f,V(t,r)g)

= -(A(r)U(r, s)f, V(t, r)g)+(U(r, s)f, A(r)*V(t, r)g)

= 0 ,

which implies

In view of (3.26), (3.28) and the inequality

|(8/80F(f,ί)|2SC(f-ί)-'

which can be shown in the same way as (3.24) was established, we can verify
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(3.23) and (3.25).

Theorem 3.2. Let the assumptions of Theorem 3.1 be satisfied. For /e
C([0, T]; X), the problem (1.4)-(1.S) has at most one solution given by

u(ΐ) = U(t, 0)φ+ Γt/(ί, s)f(s)ds . (3.29)
Jo

Iff is Holder continuous in the strong topology of X, then the function defined by
(3.29) is indeed the solution of (1 .4)-(l .5).

Proof. The uniqueness follows from (3.21) and (3.23). We know that the
second term of the right hand side of (3.29) is differentiable in X noting Lemma
3.6 and that

exp (-(t-ήA(t))(f(S)-f(t))ds

Thus the proof is complete.

4. Semilinear equations

In this section it is assumed that X is separable.
Let /=[0, T](Q<T<oo) and /be a mapping of IxX into V* which maps

bounded sets into bounded sets such that its restriction to /X V is demicontinous
from /X V to V* and satisfies

Re (f(t, «)-/(*, v)9 u-v)^0, u} VΪΞ V. (4.1)

Under these assumptions together with those of the preceding sections we
consider a mild solution of the semilinear equation

u'(t)+A(ί)u(t)=f(t,u(t)), (4.2)

«(0) = φ, (4.3)

i.e., the solution of

u(t) = U(t, 0)φ+ ( V(f, *)/(*, u(s))ds . (4.4)
Jo

Theorem 4.1. Under our hypotheses the mild solution of (4.2)-(4.3) exists in
C(I;X)Γ\L2(I; V). The solution is unique and the mapping φ\-^u is continuous

from X to C(7; X) Π £2(/; V).

Lemma 4.1. If we set

u(tj = U(t, 0)φ+ Γt/(ί, *)/(*)& (4.5)
Jo
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for φtΞX andf<=L\I; V*), then «eC(7; X)f}L2(I; V),

1 1 u(t) \ 2+ ('Re a(s 11(5), u(s))ds = 1 | φ 1 2+ ΓRe (/(*), «(*))* , (4.6)
2 Jo 2 Jo

)H'*^ |φ|2+ -Γll/(*)ll** (4 7)

Proof. First assume that/eCX/ F*). ThenM^C((0, 71]; F)Π CX(0, T];

V*) and tt'(f)+^(f)M(ί)=/W, *>0 Hence \u(t)\2 is differentiable and

For 0<£<£5jT we get by integration

1 I «(ί) 12+ ('Re β(* «(*), u(s))ds = ±- \ u(£) \ 2+ ('Re (f(s), u(s))ds , (4.8)
2 Js 2 Jε2

so that

(4.9)

It follows from Lemmas 3.4 and 3.5 that u(β)^>φ in X as £->0. Hence letting
£->0 in (4.8) and (4.9) we get u^L\I\ V) and (4.6), (4.7). For a general /<=
L2(7; I7*) we take a sequence {/„} cC^/; F*) tending to / in L\I\ V*) and let
un be a function defined by (4.5) with / replaced by /„. Applying (4.7) to un — um

we get

which implies that {ww} is a Cauchy sequence both in C(7; -X") and L2(/; F). It
is easily seen that un(t)—*u(ΐ) in F* for each £, and hence un->u both in C(/; Jί)
and L2(/; F). (4.6) and (4.7) follow from the corresponding relations for un.

Let Λ be the operator defined by (Λw, v)=((u, v)). It is rather well-known
that Λ is a positive definite self-adjoint operator both in X and F*. It is not di-
fficult to show that the domain of Λ1/2 coincides with F(resp. X) when it is con-
sidered as an operator in JΓ(resp. F*). Hence 7Λ=(l+w"1Λ1/2)"1 is a contraction
and converges strongly to the indetity as n-*oo in either space. Furthermore
7rt maps X onto F and F* onto X. We can show without difficulty

(/„/,/) = (/, I n f ) for / e F* and/e* . (4.10)

Put fn(t, u)=Inf(ΐy Inu). Then /„ is demicotinuous form IxX to J? and maps
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bounded sets of Ix X into bounded sets of X. Furthermore in view of (4.1) and
(4.10) we have

Re (/„(*, *)-/#, v), u-iO^O, ii, veX. (4.11)

Take a regularizing f unction ̂  eC~(— oo, oo) with j(t)^Q,j(t)=Q for |ί| ̂

S °°
j(f)dt=\, and letjn(t)=nj(nt). The sesquilinear form defined by

_00

/Λf-ίMί; M, ϋ)Λ (4.12)

satisfies the conditions (!.!)-( 1.3) with the same constants M, δ, K and p.
Let An(t) be the operator associated with (4.12). Then AH(t)~l is a continuously
differentiable function of t with values in the space of bounded operators in X .
Thus we may apply Theorem 4 of T. Kato [3] to the problem (4.2)-(4.3) with
AH(t) and/Λ(ί, u) instead of A(t) and/(ί, u), and the existence of the unique mild
solution follows:

un(t) = UH(t, 0)φ+ [Un(t, s)fn(s, un(s))ds, (4.13)
Jo

where Un(t, s) is the evolution operator of u'-\-An(t)u=Q.

Lemma 4.2. \\(An(t)-A(t))u\\*^Kn-p\\u\\for u^V.

Proof. We have only to notice (3.1) and

S
CO

jn(t—s)(a(s\ u, v)—a(t\ u, v))ds .
-00

Lemma 4.3. | UH(t, s)φ— U(t, s)φ \ ^Cn'p \ φ \ for φ<=X.

Proof. It is obvious that the statement of Lemma 3.5 remain to hold for
Un(ty s) with the same constants. So we obtain the above estimate from Lemmas
3.5, 4.2 and

UJ(t, s)φ- U(t, s)φ = \*Un(t9 r)(A(r)-AH(r))U(r, ήφdr.
Js

In view of Lemma 4.1 and (4.11) we have

l|«M(ί)|2- ~ I φ | 2

2 2

Re
Jo

Re
Jo
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so that

^ IΦΓ+ -
0

This shows that {un} is bounded both in C(I\ X) and L*(/; V), and so is £„(£)
=fn(t> un(f)) m L°°(Im

y V*). Consequently we can select their subsequences which
we again denote by {#„}, {gn} for simplicity such that un-^u in L\I\ V) and gn-^
g in L2(/; F*) where-^denotes the weak convergence in the corresponding spaces.

We know that U(t, $)* is the evolution operator of the adjoint equation

-v*(ή+A(s)*v(s) = 0 (4.14)

by Theorem 3.1 and has the same properties as those of U(t, s). In particular
U(t, s)* is a bounded operator on F* to V i f t>s.

If we define

(Uf)(t)=\'u(t,s)f(s)ds, (4.15)
Jo

(U*f)(i)=\TU(t,s)*f(t)dt (4.16)
Js

for/sL2(7; F*), then Z7 and C7* are both bounded operators on L\I; V*) into
C(I; X) Π i2(/; F) by Lemma 4.1 and the remark just mentioned. Similarly we
define Un and £7* by (4.15) and (4.16) with U(t,s) and U(t,s)* replaced by
Un(t, s) and Un(t, s)*, respectively.

Lemma 4.4. For each f e L2(7; Γ*), C/Λ/-* C// and U*f^ U*f in C(I: X)
(/;F)βίw^oo.

Proof. L,etvn=Unfandv=Uf. Arguing as in the proof of Lemma 4.1 we
get

The right hand side tends to 0 as n-+oo by Lemma 4.2 and v^L\I\ V).

Lemma 4.5 u(t)= U(t, 0)φ+ f '[/(ί, j)^(ί)&.
Jo

Proof. We write

(U«g»)(t)-(Ug)(t)=\\Un(t, s)-U(t,s))gn(s)ds+\'u(t, s)(gn(s)-g(s))ds .
Jo Jo

The first term on the right tends weakly to 0 in L\I; V) as n-> oo by Lemma 4.2.



SOME PARABOLIC EQUATIONS OF EVOLUTION 127

Since U is a bounded operator on L2(I\ V*) to L\I\ V) the second term also
goes to 0. Moreover by Lemma 4.3 Un(t, 0) φ-> U(t, 0) φ in X. Thus we obtain
the desired identity letting w->oo in (4.13).

Let /€ΞL2(/; V*) and w(t) = U(t, 0)φ+Γt7(f, s)f(ήds .
Jo

Arguing as in the proof of Lemma 4.1 we find

;̂ tιΛ(f)-«>(*)> un(t)~w(t)dt
Z

= -Re (( Λ̂(ί)-^(ί)MO» un(t)-w(t))dt (4.17)
Jo

+ ReΓ(/-('. «Λ*))-/(<)> un(t)-w(t))dt .
Jo

Noting here that

we get from (4.1) and (4.17)

0 <^-ReT((An(t)-A(t))w(t), ua(t)-fv(t))dt

(4-18)
+Rel (f(t,IHun(t})-f(t), w(t)-

Jo

o
-/(*). I«un(ί)-w(ί)}dt .

Since {/(-, /„«„(•))} is bounded in L~(/; V*) a.naf(-,w('))^U(I; V*), we get

by letting w->oo in (4.18).
Let h be an arbitrary element of L\I\ V*) and apply (4.19) tog—n~lh instead

of/. Then in view of Lemma 4.5 we get

(4.20)

where z=Uh. Since z<=C(I\X)^L\I\V\ f(t,u(ϊ)—n-*z(f)} is uniformly
bounded in V* and converges to /(£, u(t)) in the weak topology of V* for almost
every ίe/. Hence letting w->°o in (4.20) we obtain
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ReΓ(Λ(ί), (U*f)(t))dt = RefVw, *
Jo Jo

where f(t)=f(t, u(t))—g(t). In virtue of the arbitrariness of h we get

[7*/=0. (4.21)

That u is the desired solution of (4.4) follows from (4.21), Lemma 4.5 and the
following lemma since the lemma clearly remains valid if U is replaced by C7*.

Lemma 4.6. C//=0,/eL2(7; 7*), implies f=Q.

Proof. Suppose £//"=(), i.e.,

)/(j)Λ = 0. (4.22)

Operating t/(ί', ί) with *<:*', *': rational, to both sides of (4.22), we get

('U(f,s)f(s)ds = 09

from which it follows that U(t' , ί)/(ί)=0'at almost all fe[0, Z']. Hence there
exists a null set N of I such that for every t&I—N and rational number f'>ί, £'

e /,/(*) is an element of F* and E7(f, f)/(f)=0. Letting *'->* we get /(f)=0
almost everywhere in /.

REMARK. In case when F is separable, the above lemma follows from
Theoreme 1.1. of Chap. IV of J.L. Lions [4] since as we shall show in the next

section Uf is the solution of (1.4)-(1.5) with/=0, φ=0 in a certain weak sense.
End of the proof of Theorem 4.1. Let uτ and u2 be the solutions of (4.4)

with φj and φ2 in place of φ. Then arguing as in the proof of Lemma 4.1 we get

The assertion of the theorem is an immediate consequence of this inequality.

5. Another proof of a theorem of J. L. Lions

In this section we assume (1.1), (1.2) and that a(t\ u,v) is a measurable
function of t for each fixed uy v^ V. Moreover we suppose that V is separable.

We give another proof of the following theorem established by J.L. Lions
([4]: p. 46).

Theorem 5.1. Under the the assumptions indicated above, for any /e
L2(7; V*) and φ^X, there exists a function u^L2(I\ V] satisfying

\Ta(t; u(t), ψ(ί))Λ- \T(u(t), ψ'(ί))Λ = Γ(/W. ^(t))dt+(φ, ψ(0)) (5.1)
J o J o J o
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for any ̂ eΦ, where

Φ = {ψ; ψeC(/; F), ^'eC(/; X), ψ(Γ) = 0} .

Let an(t\ u, v) and An(f) be the sesquilinear form and its associated operator
defined in the previous section. Similarly let Un(ty s) be the evolution operator

of u'(t)+AH(t)u(t)=Q and

for/eL2(/; F*).

Lemma 5.1. 7//eL2(7; F*), ί/zew un=Unf satisfies

\Tan(t un(t), +(t))dt- \T(un(t}, γ(t))dt = Γ(/(ί
Jo Jo Jo

/or α/ry ψ1 6Ξ φ.

Proof. It is easy to show that the assertion of the Lemma is true for
/eC^J; F*). For a general /eL2(7; F*) we can establish the same conclusion

approximating / by a sequence of functions in C\I\

Lemma 5.2. -//"/w « Bochner ίntegrable function in a^t^b with values in

some Banach space, then at almost every t in [a, b]

Proof. If / is a numerical valued function, this is a known theorem of
the theory of Lebesgue integral. From the proof of the theorem it is obvious
that the same result remains valid for functions of the kind stated in the Lemma.

Proof of Theorem 5.1. For each u^V

J
i/n

ll̂ ί-,)̂ - )̂̂ !!,,̂ , (5.3)
-l/n

and hence in virtue of Lemma 5.2 we have An(t)*u— >A(t)*u in F* as n-*oo ex-

cept for some null set Ndl. By the separability of V and ||-4Λ(ί)*iέ||
it is easy to show that we can take N independently of an individual
Therefore by Lebesgue's theorem we get

-0 (ιι->oo) (5.4)

for any i/r^φ. Now setting un(t)=Un(ty 0)φ+ ([/„/)(£), we get by Lemma 4.1
that fineC(/; X) Π L\I\ V) and {un} is bounded in L2(7; V\ and we can find a
subsequence which we write again as {un} converging weakly to some u in

L2(7; V). Hence noting
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an(f, un(t), ψ(t)) = (uH(t), An(t)

and using (5.4) we get

(Tan(t; un(t), ψ(t))dt->\Ta(t; u(t), ψ(t))dt («->oo) , (5.5)
Jo Jo

(«-»oo). (5.6)

Since UH(t, 0)φ is differentiable in X in 0<t^T and (d/dt)Un(t, 0)φ= -An(t)Un

(ty 0)φ, we get integrating by parts

t, 0)φ, ψ '(f))Λ+ fl«(f UΛ(t, 0)φ, ψ(ί))Λ - (φ,
Jo

for any -ψeΦ. In virtue of this equality and Lemma 5.1 we obtain

\Tan(f, un(t\ ψ(ί))Λ- ί V(0ι Ψ'W)*
Jo Jo

(5-7)

(5.1) follows immediately from (5.5), (5.6) and (5.7).
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