Araki, S. and Yosimura, Z.
Osaka J. Math.
9 (1972), 351-365

A SPECTRAL SEQUENCE ASSOCIATED WITH
A COHOMOLOGY THEORY OF INFINITE
CW-COMPLEXES

Suoro ARAKI anp Zen-icar YOSIMURA

(Received November 4, 1971)
(Revised March 3, 1972)

Introduction. Let % be an additive cohomology theory and X a CW-
complex given with a filtration

XOCXIC b CX"C A UX":X,
by subcomplexes.  Milnor [5] established a short exact sequence

0 — lim' k*}(X,) — h*(X) — lim h"(X;) — 0

for cach degree n. In the present paper the authors will give a version of the
above exact sequence for the more general situation, 7.e., X is given with a
direct system of subcomplexes X, such that X= UX,. The result will be
given in a form of a spectral sequence (Theorem 2).

In §1 we construct classifying spaces of direct systems of CWW-complexes
which behave as a generalization of Milnor’s telescope constructions (Theorem 1).
In §2 we summarize some basic facts needed in the sequel. In §3 we discuss
some convergence conditions of certain spectral sequences. In §4 we construct
the spectral sequences mentioned above (Theorem 2) and discuss their con-
vergences under some assumptions on 4. As a corollary we obtain Anderson’s
version of Milnor’s short exact sequence [2].

All categories in the present work are small categories.

1. Classifying spaces

1.1. LetCbe a category. As is customary we associate with C a semi-
simplicial complex Cx= {C,, C,,*+, C,,++-} as follows: an n-simplex is a sequence

a={Xoa "ty Xn;fn ""fn}

of n+1 objects X;, 0<i<n, and #» morphisms f;, 1 <j<n, such that f;: X;_,
—X;; i-th faces F,o, 0<i<n, of the n-simplex o are (n— 1)-simplexes defined
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by

FOO“ = {Xn Tty Xn;fzy ) fn}’
Fio' = {Xm ) Xi—u Xi+n Tty Xn;fD "'>fi—1:fi+1fi’ﬂ+z’ ) fn}’ 0<i<nr
F,,a' = {Xm ) Xn—l;fI’ "';fn—l};

i-th degeneracies D,s, 0<i<mn, of the n-simplex o are (n+ 1)-simplexes defined
by

Dio- = {Xo) ) Xi) Xia ) Xn;fv ) fi) 1 f;‘+1) "'afn}; 0=izn.
C, is the set of all #n-simplexes of C. Thus C,=obj C and C,=morphC.

1.2. Asusual we regard a category as a functor defined on an index
category. An index category J is said to be ordered when Hom («, B) consists
at most of a single element for any {a, 8} Cobj J and a=/5 whenever Hom
(a, B)=*¢ and Hom (8, a)=+¢; then the set obj J is ordered as usual: a<B
if and only if Hom («, B)#+¢ and Hom (8, a)=¢. A category C is an ordered
system when its index category is ordered.

The classifying spaces of categories were discussed by Segal [9]. When a
category C is ordered all faces of a non-degenerate simplex of C are non-
degenerate. Hence, to construct the classifying space BC of ( it is sufficient to
use non-degenerate simplexes and identifications with respect to face operations
only.

Let Cbe an ordered system of based topological spaces. For each #n-
simplex o of C we associate a space X, by

X, = X,, the leading vertex of o.

Let C/ denote the set of all non-degenerate n-simplexes of C and put
BC, = V (X,AA™)

e}

where A™™ is the standard ordered z-simplex (closed) added with a point at
infinity (base point). Form one-point union

BC = BC,VBC,\ -\ BC,\/ ---.
Define continuous maps
Pire : Xo = Xpyo
0=i<mn, for each n-simplex o by |
Por =f, and @; , = 1 for 0<i<n
(f, : X,—X,); define relations
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(%, Fau) ~ (@, & %, 1) for x€ X, and uc A™,

where F;: A*'—A”" 0<i<n, is the standard i~th face map; extend ‘these
relations and trivial relations to an equivalence relation ~ in BC. We define
BC as the quotient space

BC = BC|~.

1.3. Let 7 be a non-degenerate m-simplex of C and o a face of 7 (dim o=
n). Remark that the way to embed o as a face of 7 is unique; hence we have
a unique face map

F,,.: A" — A"
and its corresponding map
fro: X;—> X,
defined by
Jra=fifiei o fi

when 7={X,, -, X,.; f1, -, fm} and X,=X,.
Let

= : BC — BC
be the projection. For each o €C}, put
X; = X,— {base point}.
Then we have a decomposition

(1.1) BC=¢{base point} U{U U =(X; XIntA™)}

20 6Ch
into a disjoint union, and z|X; X Int A" is one-one.

Lemma 1. BC is a Hausdorff space if all objects X, of C are Hausdorff.

Proof. For each point uA” we define its &-neighborhood in A" by
making use of barycentric coordinates as

U,(u) = {v = (v, =+, v,) EA™; |u;—v;| <&, 0<i<n},

where u=(u,, -+, u,) and €>0. &-neighborhoods of subsets of A" are similarly

defined.
We construct certain neighborhoods of points of BC. Suppose p=n(x, u),
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(x, u)e X7 X Int A*; choose an open neighborhood V' of x and €>0 so small
that U,(#)c Int A” when n>>0; then the set

U fre VX UyFqu)

T
(where the union U runs over all non-degenerate simplexes containing o as a
T

face) is a saturated open set of BC, hence its z-image is a neighborhood of p.
As to neighborhoods of the base point of BC, choose an open neighborhood V,
of the base point of each objects X, of C, and for each simplex o={X,;, -,
Xa,s oe+} we put

Vo= 10 flw VaiCXo.
Choose £€>0; for each non-degenerate simplex o the set
Wio; &) = VS V.AU(Im F. ;)"
(where the union U runs over all faces 7 of &) is an open neighborhood of the
base point of X,. TNow the union
vV W(o; &)

taken over all non-degenerate simplexes o is a saturated open set as is easily
seen, and its z-image is a neighborhood of the base point of BC.

By suitable choices of neighborhoods of the above types it is now easy to
see that BC is Hausdorff under the assumption of the lemma.

By a k-space we mean a Hausdorff space with compactly generated
topology (cf., [10]).

Proposition 2. Let C be an ordered system of based k-spaces, then BC is a
k-space.

Obviously BC is a k-space and BC is Hausdorff by the above lemma.
Thus the proposition follows from [10], 2.6.

Corollary 3. ' Let C be an ordered system of based CW-complexes and
cellular maps, then BC is a CW-complex.

1.4. Suppose C is an ordered system of based k-spaces and put
BC, = =(BC,V -~ BC,)

for each n=0. As is easily seen #~* BC, is closed in BC, hence BC, is a k-space
and we have a filtration

(1.2) BC,cBC,c--cBC,C -, UBC,=BC,
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of BC by closed subspaces. The topology of BC is the same as the weak topology
with respect to this sequence. When Cis a system of based CW-complexes
and cellular maps, (1.2) is a filtration by subcomplexes.

Let C’ be a subsystem of C. The inclusion ('’ C induces a one-one map

BC' — BC

and z-inverse images of closed sets of BC’ are closed in BC as is easily seen.
Hence B(’ is a closed subspace of BC.

1.5. Let C be a direct system of based k-spaces, i.e., its index category is
directed. Let {Cy, YET} be the set of all finite sub direct systems of C. Then

it is directed by inclusions and every simplex of C is a simplex of a suitable (.
Thus

YET

and {BC,, yETY} is a direct system (by inclusions) of closed subspaces of BC.
Remark that each B(, contains only finitely many distinct subsets of type
BC,N By, 8€T. Thus, by a standard argument we see that every compact set
of B( is contained in a suitable B(, and that

(1.3) [K, BC], = lim [K, BC],

for any compact based space K, where [ , ], denotes the set of based homotopy
classes of maps.

Lemma 4. Let C' be a finite direct system of based k-spaces and X, the
final object of C'. Then X, is a deformation retract of BC'.

Proof. Remark that every finite direct system contains a unique final
object X, and X, is a closed subset of BC’ by the inclusion

XoCBCjcBC'.

Every simplex of (’ is a face of a simplex with X, as its last vertex; hence,

denoting by (' the set of all non-degenerate simplexes of C’ containing X, as
the last vertex, we see that

BC' = U BC(o),

sl

where (’(c) denotes the subsystem of C’ consisting of all vertexes and edges of
o. Define a deformation retraction D, of X,x A*dimo=n) into X, X {(0,

-, 0, 1)} by
D ((x, a), t)=(x, (a(1—1),>*, ay_(1—1), t+a,(1—1))), a=(a, -, a,)EA",
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for each c(’. VD, is visibly compatible with the equivalence relations in

B(’ and induces the desired deformation retraction of BC’ to X,

C is again an arbitrary direct system of based k-spaces. The inclusions

X,cBC,cBC
of each object X, of C induces a morphism
(1.4) lim [K, X,], — [K, BC],

of sets (or of groups when K is a suspension) for any compact based space K in
virtue of the structure of BC,. As a corollary of (1.3) and Lemma 4 we obtain

Theorem 1. Let C={X,, f.s} be a direct system of based k-spaces and K
a compact based space. Then the morphism (1.4) is an isomorphism

lim [K, X.], = [K, BC],

1.6. Let X be a (connected) based CW-complex and C={X,, a€J} a
direct system of based subcomplexes (by inclusions) such that UX,=X. Asis
well known

(1.5) lim [K, X,], = [K, X],
for any compact based space K. The projections
XNA" - X, cX

for simplexes o of C are visibly compatible with the equivalence relations in BC
and induce the canonical projection

w :BC— X.

Now the isomorphisms, Theorem 1 and (1.5), are compatible with the
projection w and w induces an isomoirphism

wy : [K, BC), = [K, X],

for any compact based space K. Hence w is a weak homotopy equivalence.
Since BC is a CW-complex by Corollary 3 we obtain

Proposition 5. @ : BC—X is a homotopy equivalence.
2. Inverse limit functor

2.1. Let A be aring and A=1{4,, g8} an inverse system of A-modules
and A-homomorphisms, 7.e., a cofunctor defined on an index category which is
directed. For each n-simplex o= {4, -*, 4,; g1y, go} 0of A we associate a
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A-module 4¥ by
A¥ = A,, the terminal vertex of o,
and define A-homomorphisms
Pf o Afie — A%, 0=<i=<n,
by
o¥ ., =1for 0<i<nm and @} , = g,.

Following Nébeling [6] and Roos [7] we define n-cochain groups IT* .4 of
the inverse system 4 by

" A = e, A¥ (the direct product)

where 4, denotes the set of all non-degenerate z-simplexes of /4, and
coboundary homomorphisms

8”—1 . HM—IJ — Hnt_)q
by
@1 28" = 2 (= 1)t s Priv

for each n-simplex o where p, is the projection of II” 4 onto the 7-factor A¥
for each T 4},. Then we obtain a cochain complex of A-modules

0 1

) )
0——>H°L)q_——) HIJ I HZJ —> e,
The inverse limit functor lim and its #-th derived functor lim®, 1 <#, are defined
« «—

respectively by

(2.2) llEJ = li_II_IA,, = H°(IT*A; &%)
and
(2.3) Liﬂ“ A = li_@“ A, = H(II* A; 8*), n=1.

In [8] Roos proved the following theorem on the vanishing of lim®.

Theorem (Roos). Let A be a commutative Noetherian ring of finite global
dimension and {A,} an inverse system of finitely generated A-modules. Then

lim* 4, =0 for all p>dim A.

2.2. Here we shall restrict index sets to the direct set of non-negative
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integers. Let A={4,, gn*'},.>, be an inverse system of A-modules. Then it
is well known that

(24) lim® 4, =0 forallp>1

(see [7], and also [6]).
An inverse system {4,} is said to satisfy the Mittag-Leffler condition (ML)
[4] if for each 7 there exists n,=n,(n)=n such that

(2.5) Im{4,, > 4,} = lim Im{4,,,;, > 4,}.
We say that an element x,= 4,, is distinguished if

x,Elim Im{4,,; = 4,}.

Lemma 6. An inverse system {A,, gn*'} >, satisfies (ML) if and only if for
each n there exists ny=mnyn)=n such that

Im{4,, - 4,} = Im{lim 4,,, > 4,}.

Proof. Suppose that {4,} satisfies (ML). Let x,=A4, be distinguished,

i.e, X,=gn""(yny;) for some y,,,€4,,, i=0. By the assumption gpo;*!

(Vmg+n+1) €E Ay, is distinguished for some m,=my(n+1). Thus there exists a
distinguished element

Xy €Ay, with  ghtl(x,,,) = x,.
Repeating this construction we obtain a series of distinguised elements
{%4, X4y --} such that  ghti*l(x,.;.) = %, 1=20.
This series gives an element

xel(iln_A,,H with  7,(x) = x,,
where 7, 41112 A4,.;—~A, is the canonical projection. Thus we have
Im{4,,— 4,} = lim Im{4,., > 4,} = Im {lim 4, > 4,}.
The “if” part is evident.

The following result is well known.
(2.6) If an inverse system {A,, ga*'} .=, satisfies (ML), then

lim' 4, = 0.
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3. Convergence conditions of certain spectral sequences

3.1. Let % be a (reduced general) cohomology theory defined on arbitrary
based CW-complexes and X a based CW-complex given with a filtration

X,cXccX,c, UX, =X

by subcomplexes. We shall observe the spectral sequence of % associated with
the filtration {X} of X.

Following [3] we put

27 = Ker{h** (X | X, ,) > B** (X ,,,_,[X )},
Byt = Im{p** ™%X, /X, ,) > h*"(X,|X, )},
Er? = Z2%B» for each 1<r< o0

and define a decreasing filtration of A*(X) by
F?m? = FPpY(X) = Ker{h"(X) — h"(X,_.)},
where we used the conventions
X.=X and X_, = {*}, the base point of X, 1<p=<oo.
In this case we have
3.1) By = By, == B
hence there exists the canonical inclusion

E2? — lim E2°.
r>p

As is well known we obtain an isomorphism

Fﬁ:q/FpH,q—l = E?9,
Combining this with the above inclusion, there exists a natural homomorphism

(3.2) V2 FP9[FPHa71 s [im 2

r>p

which is a monomorphism.
The projections u, : #*(X)—h"(X)/F?h"(X) induce a natural homomorphism

(3.3) u : h*(X) — lim A"(X)/F?h"(X).

The spectral sequence {E,, d,} is said to be weakly convergent if \ris an
isomorphism, and convergent or strongly convergent if it is weakly convergent
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and # is a monomorphism or an isomorphism. In addition it is said to be
finitely convergent if there exists r,=7,(p, g) <o for each p, ¢ such that EZ'=
E?%for all 7, r,<r <oco.

3.2. We define groups C?* by
C2* =Im {h?*94(X ,s_,) = B?*9(X )}
for each s, 1<s<oo. The groups E?? are closely related with the groups C%.

Lemma 7. Fix an integer n.
1) For each p there exists s,=s,(p ,n) < oo such that

C2™? = C?" 2 for all s, sy=s< o,
if and only if there exists ry=r(p, n) < oo for each p such that
ER"? = E2™* for all 1;, r,<=r<oco,
ii) For each p there exists s,=s,(p, n) < oo such that
Czr = C2-r
if and only if there exists r,=r(p, n) < oo for each p such that
Ez"? = ER",

iii) CZ"*=lim Cy"* for each p if and only if EZ"~*=1lim E;"~" for each p.
s r>p

Proof. We prove only iii). The proofs of the other parts i) and ii) are
more or less parallel to iii) and simpler.
It is sufficient to show that C%"~*=lim C?"” for each p if and only if ZZ"*

=lim Z7"* for each p by (3.1).
We shall use the following commutative diagram.

S h,"_l(Xp—l)
]

h'i(X/Xp_l) —l,—’ h”(Xp+r—1/Xp—x) _l—r) h”(Xp/XP"l)

j/ ], j

kr k" "
h”(X) _> h”(Xp+r—1) —h (XP)

W(X,-.)-
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We put /=1l and k=k,Ek]. _
The “only if”” part: Take any distinguished element xeh"(X /X ,_,), i.e.,

xXE lﬂ Im{A™(x 4o/ X o) >hN (X X, )} = EEZ?Q~

Then j(x)eh®(X,) is also distinguished. By the assumption there exists
yeh™(X) such that k(y)=i(x). Then #(y)=0, whence y=1(2) for some
zeh"(X[X, ;). Soj(x—{z))=0, thus x=[(2)+8(w) for some weh"(X,_,).
This means that [(z+&'(w))=x. Hence

xeIm N(X|X, ) — W(X,/X,.)} = Zz",

The “if” part: We prove by an induction on p. In case p=0 the proof
is trivial because C7'*=Z7%. Take any distinguished element x&A™(X,), p=1,
then #(x)eh™(X,,) is also distinguished. By the assumption of the induction,
(x)=1"(y) for some yeh”(X). Hence x=~k(y)+ j(z) for some z=h™(X,/X,_,).
Here we show that z is distinguished. We may put x=£k,(x,) for some x,&h”
(X p1r1), 1=7r< oo, because «x is distinguished. Then z,(x,—k/(y))=0, i.e., x,
=kJ(y)+1,(u,) for some u,eh™(X,,,_,[X,,). Now j(z—1,(u,))=0,ie., z=I,
(#,)+8(v,) for some v,eh™ (X ,_,). This yields that 2=1,(u,+3,(v,)) for all
7, 1<r<oco, thus z is distinguished. By the assumption there exists weh”
(X/X,_,) such that (w)=2. Then k(y+1'(w))=x; hence

xeIm{p"(X) - h"(X,)} = Cz "
As an immediate corollary of Lemma 7, i), we have

Corollary 8. The spectral sequence {E,, d,} of h associated with a filtration
{X,} =20 of X is finitely convergent if and only if the inverse system {h"(X,)} =,
satisfies (ML) for all degree n.

3.3. In this subsection we suppose that a cohomology theory % is additive,
i.e., " (for all degree n) satisfies the wedge axiom (cf., [5], and also [1] for the
terminology) for arbitrary collections of CW-complexes.

Milnor [5] established

Theorem (Milnor). Let h be an additive (reduced) cohomology theory and
{X,} p=0 an increasing filtration by subcomplexes of a based CW-complex X. There
is an exact sequence

0 — lim* A*"(X ) — £"(X) — lim A%(X,) — 0
» 4
for all degree n.

Let i, : X,C X be the inclusions. From the exact sequences
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0— F*pY(X) - hY(X) - Im ¥ — 0
and
0 — Imz} — A"(X,)
we obtain the following commutative diagram:
0
0 — lim F*"A*(X) — h"(X) — lim Iin iy — lim' F**R%(X) — 0
0 lim' A(X,) — I(X) > lim I(X,) >0

in which the rows and column are exact. Therefore

(3.4) Ll_rrll F"“h”(X) =0
?
and
(3.5) liﬂF”“h”(X)ng‘ h""l(Xp).
) P

And we have an exact sequence
(3.6) 0 — lim' 2"7(X,) — h*(X) 4 lim h*(X)/F?h"(X) — 0.
14 4

This implies that the convergence of the spectral sequence {E,,d,} of A
associated with a filtration {X,} of X is equivalent to the strong convergence
of it when 4 is additive.

Proposition 9. Suppose that h is additive. If the spectral sequence {E,, d,}
of b associated with a filtration {X,},>, of X is finitely convergent, then it is
strongly convergent.

Proof. By Corollary 8 the inverse system {k*(X,)},», satisfies (ML) for
each degree n. From Milnor’s Theorem and Lemma 6 it follows that there
exists §,=s,(p, 7)< oo such that

Im {A"(X) - K(X,)} = Im {lim h"(X,.,) > K"(X )}
= Im {K(X 1) = F(X,)}.
Thus by Lemma 7, ii),

Y B2 — lim EP" ¢
—

is an isomorphism. On the other hand, by (2.6) and (3.6)
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u : B(X) — lim A*(X)/F?h*(X)
is an isomorphism. Thus the spectral sequence {E,, d,} is strongly convergent.

4. The spectral sequence associated with an inverse system of CW-
complexes

4.1. Let £ be an additive (reduced general) cohomology theory defined on
arbitrary CW-complexes and C={X,, f,s} a direct system of based CW-
complexes and cellular maps. We shall observe the spectral sequence of 4
associated with the filtration (1.2) of BC. Then, by definition

Epe = h**%(BC,, BC,_,)
= h?I(V S?X,) by the decomposition (1.1)
= [ r*(X,) by the wedge axiom,
where o runs over all non-degenerate p-simplexes of C. Thus E?'? is isomorphic
to the p-cochain group of the inverse system {h%(X,), f¥}. Now, by the

standard argument as in Atiyah-Hirzebruch spectral sequences, we see that
d, is transformed to the coboundary homomorphism of these cochain groups.

Thus
Ept ~ lirif’ h{(X,).

E.. is the bigraded module associated with #*(BC) by the filtration induced by
(1.2). Thus we obtain

Proposition 10. Let h be an additive cohomology theory defined on CW-
complexes and C={X,} a direct system of based CW-complexes. There holds a
bigraded spectral sequence assoctated with h*(BC) such that

Ep® = lim” h%(X,).
As a corollary of Propositions 5 and 10 we obtain

Theorem 2. . Let h be an additive (reduced) cohomology theory defined on
arbitrary CW-complexes, X a based CW-complex and C={X ,} a direct system of
based subcomplexes of X such that X= UX,. There holds a bigraded spectral

sequence associated with h*(X) by a suitable filtration such that
Ep® = lim? h*(X,).

4.2. Let A be a commutative Noetherian ring and % a cohomology theory
of A-modules of finite type, i.e., h*(S°) (for all degree ) is a finitely generated
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A-module, then 4"(X)is a finitely generated A-module for any based finite
CW-complex X.

Proposition 11. Let A be a commutative Noetherian ring of finite global
dimension, h an additive cohomology theory of A-modules of finite type, X a based
CW-complex and C={X,} a direct system of finite subcomplexes of X. Then the
spectral sequence of Theorem 2 is strongly convergent.

Proof. By the Theorem of Roos we know that
lim? h%(X,) = 0 for all p>dim A.

Hence d, =0, r>dimA, in the spectral sequence of Theorem 2. The conclusion
follows immediately from Proposition 9.

Since the global dimension of Z is 1, we obtain

Corollary 12. Let h be an additive cohomology theory of finite type (as Z-
modules), X and C={X,} be as in the above proposition. Then there is a short
exact sequence

0 —> lim* B"¥(X,) — K(X) — lim A*(X,) > 0
for each degree n.

The above corollary was also obtained by Anderson [2] by an entirely
different method.

4.3. Let & be an additive (reduced general) homology theory defined on
arbitrary CW-complexes, i.e., satisfying the wedge axiom [5]. Let C={X,}
be a direct system of CW-complexes and cellular maps. Observe the spectral
sequence associated with h4(BC) by the filtration (1.2), then we obtain

E; o = lim, hy(X,),

(cf., Nobeling [6] for the definition of lim,). Since lim, are successive derived
functors of the right exact functor lim on ordered systems of abelian groups [6]

and it is exact whenever the underlying ordering is directed, we see that
lim, hy(X,) =0 for all p>0.

Thus the spectral sequence collapses,

(4.1) Im [A,(BC,) — h(BC)] = Im [h,(BC,) — h,(BC)]

for p>0 and
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(4.2) Im [(BC)) > h(BC)] = lim h(X.,)
for all degree #n. On the other hand, by [5], Lemma 1, we see that
(4.3) lim 1,,(BC,) = h,(BC)
for all degree n. Now the isomorphisms (4.1), (4.2) and (4.3) imply
(4.4) lim £,(X,) = h,(BC).
(4.4) and Proposition 5 imply

Theorem 3. Let h be an additive (reduced) homology theory defined on
arbitrary CW-complexes, X a based CW-complex and C={X,} a direct system of
based subcomplexes of X such that X = UX,. There hold the isomorphisms

lim hy(X,) = h(X)
for all degree n.
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