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0. Introduction

Let (X, A) be a topological pair, and 7 : (X, 4)—(X, A4) be an involution.
For a triple (X, 4, 7), R.E. Stong [7] defined the notions of the unoriented
equivariant bordism groups Ny (X, 4, 7) and Efé*(X, A4, 1), and studied their
properties.

In this paper, we consider oriented analogues of (X, 4, 7) and ifé*(X,
A, 7). For a fixed involution (X, 4, 7), let (M, p, f) be a triple with M a
compact oriented differentiable manifold with boundary, px:M—M an
orientation-preserving [resp., -reversing] differentiable involution, and f: (M,
dM)—(X, A4) a continuous equivariant map. We define for two such triples
to be equivalent, or bordant in the same way as [7] but we consider oriented
manifolds and orientation-preserving [resp., -reversing] involutions as bordism.
We let Qi(X, A4, 7) [resp., Qx(X, 4, 7)] be the set of equivalence classes by this
relation. These become graded Q-modules in the standard way, where Q is
the oriented cobordism ring. As in [7], considering only fixed-point free
differentiable involutions, we define also graded Q-modules ﬁ;(X, A4, 7) and
Oz(X, 4, 7).

If A is empty, we write Qz(X, 7) for Qi(X, 4, 7), and so on.

The main results of this paper are as follows.

In section 2, we obtain

Proposition 1. Qi( ), (Al;,:( ), Qx( )and fl;( ) are equivariant
generalized homology theories on the category of pairs with involution and
equivariant maps.

In section 3, we introduce ‘“‘equivariant cobordism groups” Q¥(X, 4, 7)
and Q*(X, 4, 7) by using of suitable equivariant Thom spectra, and we prove
the following dualities of Poincaré type.

Proposition 2. Let (X, 4, 7) be an involution on a compact pair (X, A)
such that X—A is an n-dimensional oriented manifold without boundary, and
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7| X—A : X—A—->X—A is a fixed-point free differentiable involution. Then, if

7| X— A preserves orientation,

Q4(X, 4, 7) = O (X—4, 7) (= Qi (X—4, 7))
QN(X, A, 7) = O (X—A4, 7) (= Or_(X—A4, 7))

and if 7| X— A reverses orientation,

Q4(X, 4, 7) = Qi X—A4, ) (= Qi (X—4, 7))
QH(X, 4, 7) = Qi _(X—A, 7) (= O}_(X—A4, 7)).

In section 4, we explore nature of the fixed-point set of involutions. For
this purpose, we introduce the graded Q-modules (X, 4) and AL(X, 4)
for any pair (X, 4), which are defined to be the set of equivalence classes of
triples (§—M, O, f) wherein {—M is a vector bundle over a compact manifold
M with boundary, © is an orientation of the Whitney sum {7y, 7o the
tangent bundle of M, and f : (M, 0M)—(X, A) is a continuous map. We have

Proposition 3. The triangles

k
QX 4, 1) 5> Qy(X, 4, 7), Qx(X, 4, 7) s 05(X, 4, 7)
AN JF S\ /F
QI;(FT’ F"' n A) %[;(F'r’ F"rm A)

are exact, where F_ is the fixed-point set of T, ky forgets freeness, F is obtained by
taking the normal bundle of the fixed-point set, and S is obtained from a sphere
bundle construction. '

In section 5, we define the Smith homomorphisms A :ﬂ;(X, 4, )
— Q;(X, A, 7)and A: ﬂ;(X, 4,7)— ﬂ; (X, 4, 7), which are of degree —1,
and prove

Proposition 4. The triangles

A A A A
QY(X, 4, 7) > (X, 4, ), Ox(X, 4, ) —> Qy(X, 4,7)
1474 \ /—f* 1—"*\ /—E*
Q«(X, A) Qu(X, 4)

are exact, where Ly forgets equivariance, 1+-7y sends [M, f] into [M UM, ¢, f UTf],
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¢ the involution changing components, and 1—7y sends [M, f] into [M U(—M), ¢,
fUTf], —M the manifold with reversed orientation of M.

In section 6, we study connection between our oriented equivariant bordism
groups ﬂ;(X, 4, 1), Q;(X, A, ) and Stong’s unoriented equivariant bordism
group ifé*(X , 4, 7), and we obtain the exact triangles of the type of Dold [5].

Proposition 8. The triangles

BiX, 4, n@fx, 4,1 B by x, 4,4

and

A ) 2,0) A
Qx(X, 4, T)PR(X, 4, 7) (—)> Qx(X, 4, 7)

@ d)"™\ JF
f(X, 4, 7)

are exact, where 2 is the multiplication by the integer 2, 0 is the zero homomorphism,
F forgets orientedness, and 0 and d are of degree —1 and —2, respectively.

The author wishes to express his thanks to Professors M. Nakaoka and
F. Uchida, and Mr. K. Shibata for their useful suggestions and criticisms for
writing this paper.

1. Definitions

Let an involution (X, 4, 7) be fixed. We consider a triple (M, u, f) with M
a compact oriented differentiable manifold with boundary, u:M—M an
orientation-preserving [resp., -reversing] differentiable involution, and f: (M,
OM)—(X, A) a continuous equivariant map. We identify (M, p, f) with
(M', ', f') if and only if there exists an orientation-preserving diffeomorphism
@ : M~M' such that p'p=pu and f=f'p. (M, u, f) is called bordant to (M’,
w’y ') if and only if there exists a 4-tuple (W, V, v, g) such that W and V" are
compact oriented manifolds with boundary, 0V =0M U —0M’ (disjoint union) and
OW=MUV U—M' (glueing the boundaries), v : (W, V)—(W, V) is an orienta-
tion-preserving [resp., -reversing] differentiable involution which restricts to u
on M, and ' on M’, and g : (W, V)—(X, A4) is a continuous equivariant map
which restricts to f on M, and f* on M’. We denote the bordism class of
(M, u, f) by [M, u, f].
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Let Qi(X, 4, 7) [resp., Qx(X, 4, 7)] be the set of bordism classes by this
bordism relation. Then Q3(X, 4, 7) [resp., Qx(X, 4, 7)] is made an abelian
group by the disjoint union of triples, and a graded group by the gradation
given by the dimension of the manifold M. For any class [M, y, f] in Q% (X,
A, 7) [resp., Qx(X, 4, 7)], and [N] in the oriented cobordism ring Q, we define

[Ma My f] [N] = [MXNr #Xlafn'l]

where 7z, : M X N—M is the projection to the first factor. This makes Qi(X,
A, 7) [resp., Qx(X, 4, 7)] a graded Q-module.

Considering only fixed-point free orientation-preserving [resp., -reversing]
differentiable involutions as u, u’, v,-++, we may also define a graded Q-module

QYX, A, 7)resp., Qx(X, 4, 7)].

2. Equivariant homology theories

Let (X, 4, ) denote one of Q(X, 4, 7), Q% (X, 4, 7), QH(X, 4, )
and ﬂ;(X, A, 7). Given an equivariant map g : (X, 4, 7)—(X', 4, 7), we
define a homomorphism 4,(g): H.(X, 4, )= 9, (X', A’, 7) by sending
[M, u, f] into [M, u, gf]. We also define a homomorphism 8, : (X, 4, 7)—
Hn_(A, 7) by sending [M, p, f] into [0M, u, f]. We then have

Proposition 1. (1) Ifg, g’ are equivariantly homotopic maps, then H,(g)
=<ﬂn(g ')'

(2) If U is an invariant open set with UclInt 4, A closed, then the inclusion
i :(X—U, A—U)—~(X, A) induces an isomorphism 9.,(i) : 4 (X—U, A—U, 7)
- (X, 4, 7).

(3) The sequence

j{n ) (_4"] ]
o= (4, T) —9—)9 Ha(X, T) —~~(—])> HAX, A4, 7)
(M
s Hy (A, T)—e
with (4, ¢, 7) L (X, ¢, 7) J, (X, A4, T) the inclusions, is exact.

The proof is an obvious repetition of the proof given by Stong [7], taking
care of orientability and orientedness.

RemMARK. This makes {4, 0,} an equivariant generalized homology
theory on the category of pairs with involution and equivariant maps, as defined
by Bredon [2].

3. Dualities of Poincaré type

In this section, we define the “equivariant cobordism groups” Q¥(X, 4, 7)
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and Q*(X, 4, 7) by using of suitable equivariant Thom spectra, and prove that
there are dualities of Poincaré type between these cobordism groups and the
bordism groups in the previous sections.

Let ESO(n)—BSO(n) be the n-dimensional universal oriented vector
bundle, and MSO(n) be its Thom space. We may consider BSO(n) as the set
of all n-dimensional oriented subspaces in the infinite dimensional euclidean
space R, and ESO(n) as the set of pairs (v, H) with » a vector in an n-
dimensional oriented subspace H in R*. Then we define involutions as bundle
map ¢, t; : ESO(n)—ESO(n) by ¢} (v, H)=(v, H), t; (v, H)=(v, —H), —H the
subspace with the reversed orientation of H.

ReEMARK. ESO(#n)/c; —BSO(n)/e; is the n-dimensional universal unoriented
vector bundle, where ; is the involution on BSO (n) covered by ¢,.

Lemma 1. Let E—B an n-dimensional oriented vector bundle with a fixed-
point free involution (o, &) as bundle map such that B is paracompact or B[a is
paracompact and Hausdorff®. Then, if ot is orientation-preserving, there exists an
equivariant bundle map ¢ : (E, a)—(ESO(n), ), and if o is orientation-reversing,
there exists an equivariant bundle map @ : (E, a)—(ESO(n), ¢z). In the both cases,
moreover, @ uniquely exists up to equivariant bundle homotopy.

Proof. If « is orientation-preserving, the Lemma is clear, since E/a—B/@
is also an oriented bundle. If o is orientation-reversing, we obtain a diagram
of bundle maps

/i

E > ESO(n)
E/a/ J’ £ > ESO(n)[uy
J / B Iy l—> BSO(n)
Bla g > BSO(n)/i;

in which f, is a classifying map of E—B, f, is that of E/a—B|a, f, and f, are
bundle maps covering f, and f,, respectively, and the each slant arrow is the
natural projection to the orbit space. The upper and lower squares are
homotopy commutative by universality. We may deform these homotopy com-
mutative squares to be strictly commutative, since the slant arrows are double
coverings, i.e., fibrations. The Lemma thus follows.

D If B is paracompact, then B/@ is so. Conversely, if B/@ is paracompact and Hausdorff,
then B is paracompact.
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Let TE denote the Thom space of a vector bundle E—>B. Let a be an
involution on E as bundle map. We also denote the involution on 7TE induced
from o by a. This will cause no confusion. We then have the following
Corollary.

Corollary 1. Under the same assumption as Lemma 1, if a is orientation-
preserving, there exists an equivariant map \r : (TE, a)—(MSO(n), ¢i), and if
o s an orientation-reversing, there exists an equivariant map \r : (TE, a)—(MSO
(n), ¢z). In the both cases, moreover, as a map induced from a bundle map, r is
unique up to equivariant homotopy.

Let X be a space with base point #, and 7 : X—X be an involution with
base point preserving. We then define the suspension > X=X X [0, 1]/* X [0,1]
UX X {0, 1} of X, and the involution>)7 : 31 X— 31X induced by 7x 1.

We obtain equivaniant maps

hy : CIMSO(n), 2) — (MSO(n+-1), ¢41)
and hy : 2IMSO(n), 37) = (MSO(n+1), tyy1)
as follows. £, is obtained from a bundle map ESO(n)x R'—ESO(n+1), and
hs is obtained by applying Corollary 1 to the involution (ESO(n)X R', ¢7 X 1).
We can now define the equivariant spectra
MSO* = {(MSO(n), ¢), hy}
and MSO™ = {(MSO(n), ¢3), by} .

For any (X, 4, 7), we define

QUX, 4, 7) = limy, [(X3H(X[A), 237), (MSO(n+k), i:4)]
QUX, 4, 7) = limy, . [(X4(X/4), 22#7), (MSO(n+k), tzi4)]

where [ , ] denotes the equivariant homotopy set. Then Q¥( )and Q*( )
are equivariant generalized cohomology theories on the category of CW-pair
(X, A4) with cellular involution 7 whose fixed-point set is a subcomplex of X,
and equivariant maps (see Bredon[2]).

REMARK. By the definition, we can easily see Q¥(X, 4, 1)=Q*(X, 4), and
Q*(X, 4, 1)=0, where Q*(X, 4) is the cobordism group of a pair (X, 4)
defined by Atiyah [1].

Proposition 2. If (X, A, ) is an involution on a compact pair (X, A) such
that X—A is an n-dimensional oriented manifold without boundary, and 7| X—A4 :
X—A—-X—A is a fixed-point free differentiable involution, then if 7| X—A
preserves orientation,
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QUX, 4, 7) = QF_(X—4, 7)(= O} (X—4, 7))
QHX, 4, 7) = Q_(X—A4, 7)(= Or_(X—A4, 7)),

and if 7| X— A reverses orientation,

QY(X, 4, 7) = Qi (X—A4, 7)(= Q7 (X—A4, 7))
QHX, 4, 7) = QF_(X—A4, 7)(= Qi_(X—A4, 7).

Remark. For any involution (Y, B, o) with o fixed-point free, we can
easily see Q3(Y, B, o) = Q4(Y, B, o) and Qy(Y, B, 0)=0%(Y, B, o). In
more general, if the fixed-point set F, of o is contained in B, the above
isomorphisms also exist by Proposition 3.

We prepare the following Lemma for the proof of Proposition 2.

Lemma 2. Let D" be an r-dimensional disc. For any involution (X, 4, 7),
there is an equivariant homeomorphism

SV (X/A4), 3¥7) ~ (Xx D’|Xx0D" UAX D", x1).

Outline of the proof of Proposition 2. The proofs of isomorphicness in
four cases are similar, so we suppose 7| X—4 preserves orientation and [M, u,

fleQi (X—A4, 7). We consider if : (M, u) —i» (X—4)x0, Tx1) LN
(X—4)xD",7x1). For large r, there exists a differentiable imbedding
g (M, u)—>((X—A)x D", 7x1) which is equivariantly homotopic to #f and
satisfies g(M)N(X—A)X0D"=¢. Let N be the the normal bundle of g, and
TN be its Thom space. Then we have an equivariant map v : (TN, d(7x 1))
— (MSO(n+r—R), ta.,—s) by Corollary 1. Let a be the composition

(SY(X]A), S¥7) ~ (Xx D" Xx0D" UAX D", 7x 1)
S (TN, dirx 1))~ (MSO(n-tr—F), i),
where, identifying a disc bundle of N with a tubular neighborhood T of g(M), ¢

is the collapsing outside T, and the identity on 7. Sending [M, u, f] into the
class of a, we have the desired isomorphism.

4. Nature of the fixed-point set

In this section, we obtain an oriented analogue of Proposition 2 in [7].
Let a pair (X, 4) be fixed. We consider a triple (§—M, O, f), wherein {—>M is
a vector bundle over a compact manifold M with boundary, © is an orientation
of the Whitney sum § @7y, Ta the tangent bundle of M, and f: (M, 0M)— (X, 4)
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is a continuous map. We identify ({— M, O, f) with (¢'—M’, @, f) if and
only if there is a bundle isomorphism

@
¢ >T
M it > M

such that 1) @ is a diffeomorphism, 2) fo'=f, and 3) ®Pdep : L DTy~ Py
preserves the orientation. Let —(¢(—M, O, f)=(—M, —0O, f).
A boundary operator 9 is defined by

aE—M, O, f) = (£|10M—0M, 90, f|aM).

The orientation 80 of (§|0M)@P Ty is defined as follows. If » is the normal
bundle of 0M c M, then (§ PTar)| 0OM=( |0M)PTy0Pv inherits an orientation
from ©. 30 is the orientation which is compatible with those of (§@7,)|0M
and v, v being oriented by the inner unit normal vector.

If £5—M7 (=1, 2) are k-dimensional vector bundles over n-dimensional
compact manifolds, then (({—M7, O, f,) is bordant to ({5—Ms3, O,, f,) if and
only if there is a 4-tuple (§*—W"*', V*, O, f) such that 0V=0M,UdM,
(disjoint union), oW=M,UV UM, (glueing the boundaries), f: (W, V)
—(X, A)’ ot—=w, o, f)|M,=(,—M,, O, fi), and 8(—W, @’f)le—_‘—“(gz
—M,, O,, f,). Denote a bordism class by [(¥*—=M", O, f], and the set of such
bordism classes by A(k, n; (X, A)). This is an abelian group by the disjoint
union. We can now define the graded Q-modules

(X, A)=B,=Uqn(X, A), where Wi (X, A)=P,x n-A(2k, n; (X, 4)), and
As(X, 4)=Pnzdn(X, 4), where (X, A)=Pors11n-mACk+1, n; (X, 4)).

Ai(pt, 1)=U in the notation of [3].

The fixed-point set F, of a differentiable involution p:M—>M is a
manifold with boundary 0F,=F,N0M. Let F be the union of the m-dimen-
sional components of F, and v,, be the normal bundle of F? c M. Then
Fi»=¢, if p is orientation-preserving and m is odd, or p is orientation-reversing
and m is even. Therefore we can define homomorphisms F : Qi(X, 4, 7)—
Ai(F., F.NA), and F:Qx(X, 4, 7)—>Ux(F,, F,N4), by sending [M?", u, f]
into Pm-o[vy=F, O,y fIFii], where O,, is the orientation restricted by that
of M.

We also obtain homomorphisms S : A% (F,, F,NA)—Q4(X, 4, 7), and
S : Ax(F,, F, N A)—O5(X, A, 7), of degree —1, by sending [¢— M, O, f]
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into [S(}), a, fr], where S(§) is the associated sphere bundle to ¢, this is
canonically oriented by O, a is the antipodal bundle involution on S(¢), and

friSE)ct M-t F cx.

Letting by : O4(X, 4, 1)~Q3(X, 4, 7), and by : O5(X, 4, 7)— O5(X, 4, 7)
be the homomorphisms induced by forgetting freeness, we then have

Proposition 3. The triangles

\ k
QX, 4, 7) '—LQQZ(X, 4, 1), é;(X, A, T) —E'; Qx(X, 4, 1)
s\ JF S\ /F
QI;(F_” FTnA) QI;(F'H F-rnA)

are exact.

This is proved by the same technic as [7], so we omit the proof.

5. The Smith homomorphisms

Let (S*, a) be the antipodal involution on the k-dimensional sphere. The
Smith homomorphisms in the oriented case are defined as follows. For a triple
(M, u, f) with u free, and large k, there is an equivariant map A : (M, p)—
(S*, a) which is transverse regular on S*'. We set N=1"(S*¥7"), then N has
the orientation induced from M. The involution x|N : N—N is orientation-
preserving if p is reversing, or reversing if x is preserving. Sending [M, p, f]
into [N, u|N, f|N], we obtain the Smith homomorphisms A :(AZ;,:(X, A, 1)
—>ﬂ;(X, A,7), and A :ﬁ;(X, 4, T)—>Q;(X, A4, 7), of degree —1.

REMARK. We easily check that any element in the image of A is of order 2.

We also define homomorphisms _Ly: fl:,;(X, A, 7)—>Qx(X, A) and
Ly ﬂ;(X, 4,7 —Qu(X, A) sending [M, u, f] into [M,f], 1474 : Qu(X, A)
—03(X, A,7) sending [M, f]into [MUM, ¢, f U7f], ¢ the involution changing
components, and 1—74 : Qu(X, 4)—Q5(X, 4, 7) sending [M,f] into
[MU(—M), ¢, fUTf], —M the manifold with reversed orientation of M.

Proposition 4. The triangles

A A A
ﬁ;‘(Xi A’ T) —i ﬁ;(X’ A’ T)) Q;(X9 A’ T) — Q;(Xy A’ T)

1+T*\ /I* 1—7,,\ ﬁ*

(X, 4) (X, A)
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are exact.

The proof is entirely parallel to the proof in the unoriented case [7],
taking care of orientability and orientedness, so we omit the proof.

6. Connection between Q;(X, A4, 7), (AZ;(X, 4, ) and fl\k*(X, A4, 7)

Wall [8] defined the subring M of the unoriented cobordism ring N, and
the homomorphism 9 : M—Q of degree —1, and he obtained the exact triangle

where 2 is the multiplication by the integer 2, and F is the homomorphism
forgetting orientation. Dold [5] generalized this exact triangle and obtained the
exact triangle

(2, 0)
QPN —5 O
®, d) \ / F
€N

In this section, we obtain exact triangles of the type of Wall and Dold in
our equivariant case.

If 7 is an n-dimensional vector bundle, the determinant bundle, det 7, is
the line bundle A*(%) giving by the n-fold exterior power of the bundle . We
easily see the followings: det (nP7’)=det »Q det 7/, if p is a line bundle then
det p=p, and if #" is a trivial line bundle then det (7P 6")==det 7.

Considering the determinant bundle of the tangent bundle 7, of a manifold
M, det Ty is oriented if and only if M is oriented. Therefore, if M is oriented

and we give a Riemannian metric on M, we canonically have the trivialization
det Tyy=M X R'. Then we obtain

Lemma 3. If u : M—M is an involution on an oriented manifold M, then
u 15 orientation-preserving or -reversing if and only if detduy=yp X1 or det du=
wu X (—1), respctively.

Let £—>RP(c0) be the universal line bundle, and « : M—RP(c<) be a
classifying map of det 7. If M is compact, then a(M)C RP(r) for some 7=0.
Such « is called an RP(r)-structure of M.,
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Let an involution (X, 4, 7) be fixed. We consider a 4-tuple (M, n, f, @),
wherein (M, p, f) is a triple with u free in the previous sections but M is
unoriented, and « is an equivariant RP(1)-structure of M satisfying @odet dp
=a or &o(—det du)=a for some bundle map & covering «, where —det du
=(—1)odet du. We identify (M, p, f, &) with (M’, u’, f’, «’) if and only if
there is a diffeomorphism M~M’ which is equivariant under p and p’, f and
f>and @ and a’. We identify det 75, with det 74|0M by the inner unit
normal vector. Then we define that (M, u, f, ) is bordant to (M’, v/, f’, &)
if and only if (M, p, f) is bordant to (M, u/, f’) with bordism (W, V, », g) in
the sense of Stong [7], and W has an equivariant RP(1)-structure 3 satisfying
BIM=a and B|M'=a’, where &, @’, and 3 are bundle maps covering «a, a’
and 3, respectively. We may define the graded M-modules SLATE;(X, A, 7) and
‘J?Z;(X, 4, 7) by dividing the sets {(M, u, f, a)|@odet du=a} and {(M, p, f,
a)|@o(—det du)=a} by this bordism relation, respectively.

There are homomorphisms F : ‘,JAﬁ;(X, A4, T)—»ifé*(X, A,7)and F: ‘.?)?;(X,
4, T)—>ifi*(X , 4, 7) which forget an RP(1)-structure.

Proposition 5. The two homomorphisms F are monic. Moreover, the image
of F is direct summand of 5?2*(X, A, 7).

AProof. It is suﬂiciAent to constru/\ct homomorphisms @ : 5?2* (X, 4, 1)
—MLX, 4, 7) and ® : Ny(X, 4, 7)—>WM5 (X, 4, 7) satisfying & F=id.
Let € denote one of the signs + and —. Given a class [M, p, f]e‘ﬁ*(X,
A, 7), there is an equivariant bundle map % : (det 74, & det du)—(£,, 1), where
£, is the canonical line bundle over RP(r), r large, and 1 is the identity
bundle map of ,. Let & : (M, u)—>(RP(r), 1) be the map covered by £, and
@ : RP(r)xX RP(1)—RP(2r+1) be the usual imbedding given by

¢([x0’ LTI xr], [yo» y1]):[xoym Xo V15 %105 %:Y15 %5 X2 Vo> xryl] .

Then we have an equivariant bundle map

((det Ty @E,, €det du@1) = (£,y.10 1)

(MxRP(1), pxc 1) 22D (RP(2r-+-1), 1)

in which é) denotes the external tensor product. By means of a homotopy we
may equivariantly deform @o(kx 1) to 8 which is transverse regular on RP(2r).
We set N=0"'(RP(2r)). Let v be the involution on N which is restricted by
the involution X 1 on M X RP(1). Let g: N—X and « : N—RP(1) be the
compositions
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, f
N S MXRP(l)— M— X

and N <—s Mx RP(1) =% RP(1), respectively.

We have an equivariant bundle map & : (det 7, & detdv)—(,, 1) which covers
a. We can see this as follows. The normal bundle of RP(2r)c RP(2r+1)
is £,,. Let vy be the normal bundle of NCMx RP(1). We then have an
equivariant bundle isomorphism (v, d(u X 1))==(det ’rMé\Q £, €det d,uél) on N.
Therefore,

(mxn D(det Ty®E), dv(€ det du@®1))=(rayx @', dux1) on N,

where @' is the trivial line bundle over RP(1). Taking det and tensoring

(det 'rMé)El, det d#&)l) on both sides, we have (det 7y, & det dv)=(M X &,
w X 1) on N, since, in general, if (1, ) is a line bundle over B with involution
g, (mQ®7n, 6Qs)=(BXR', o X 1), o the involution covered by . This implies
that the desired @ exists. By the above, a 4-tuple (N, v, g, a) represents the
class in M(X, 4, 7). We then define ®[M, p, f]=[N, », g, a].

We prepare the following definitions and a Lemma for the proof of ®F=
id. Let x : RP(3)—>RP(3) be the diffeomorphism sending homogeneous
coordinates [x,, x,, %,, X,]ERP(3) into [x,+x,, x,42x,, %, %,, %,+x,]E RP(3).
Then « is homotopic to the identity of RP(3). We set

H= {([xo’ xx]’ [ym yl]) € RP(l)XRP(l)!xoyo"!‘xlyl = O} ’
and RP(2) = {[x,, x,, 0] € RP(3)} .

Lemma 4. Let M be a manifold and o : M—RP(1) be a differentiable

axl1

map. Then the composition 6=ropo(ax1): Mx RP(1) - > RP(1)X RP(1)

2, RP(3) LR RP(3) is transverse regular on RP(2).

Proof. ax1 is transverse regular on H (see Stong [6] p 152). e is also
transverse regular on RP(2), and xp(H)C RP(2). Then 0 is transverse regular
on RP(2).

For a given [M, p, f, a]€ My (X, 4, ), we may construct a representative
(N, v, g, B) of ®[M, p, f] by 0=ropo(ax 1), i.e., N=0"(RP(2)). Let o be
the involution on RP(1) sending [x,, x,] into [—x,, &,]. Then N={(m, ca(m))
€M X RP(1)}, and (N, v, g, B)=(M, p, f, oa) by the diffeomorphism N — M
sending (m, ca(m)) to m. [M, p, f, cal=[M, u, f, a] in “.thf,‘(X, A, 7), since
o is homotopic to the identity of RP(1). This implies ®F=id,
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We define homomorphisms p: ﬁ;;(X, A, -r)—>‘f’l,’,:(X, A4, 1) and p: ﬂ;(X,
A, T)—)‘)ZAR;(X, A4, 7) by p[M, p, f1=[M, u, f, c], where ¢ is the constant map
such that ¢(M)=p< RP(1) (p=RP(0)).

We also define a homomorphism 9 : ﬁ*(X, A, -r)—>f);,:(X, A4, ) of degree
—1 as follows. For a given class [M, p, f] eifé*(X , 4, 7), there is an equivariant
bundle map @: (det 74, det du)—(£,, 1) for large r such that the map « covered
by @ is transverse regular on RP(r—1). We set N=a '(RP(r—1)), then N is
orientable and its orientation is uniquely determined up to sign. The involution
w|N on N preserves orientation by Lemma 3. Let T(V) be a tubular neigh-
borhood of N in M, and W=M —Int T(N). Then (W, u|W, f|W)is a bordism
from 2(N, wu|N, f|N) to zero, if we nicely deform f by means of homotopy.
We may then define the homomorphism 9 by sending [M, u, f] into [N, x|N,
fIN]. We also define a homomorphism 8: ifé* (X, 4, T)—>ﬂ; (X, 4, 7) of
degree —1 in the same way as the above but we replace det dp by —det dpu.

We then obtain the exact triangles of the type of Wall.

Proposition 6. The triangles

A 2 2
Q;(X) A, T) - ﬁ:l:(Xr A) T)9 ‘Q‘;(X9 A’ T) ___)ﬁ;(X’ A’ T)

oFN. b OF N\ /P

My(X, 4, ) Mz(X, 4, 7)
are exact.

Proof. It is easy to see that p2=0 and dF p=0. 20F=0 is already seen.
In the below, let € denote one of the signs + and —.

Ker pcIm 2. If [M, p, f1leQW(X, 4, 7) and p[M, p, f1=[M, u, f, ]=0,
there is a bordism (W, v, g, B) with boundary (M, p, f, ¢). We equivariantly
deform B to be transverse regular on RP(0), keeping on M fixed, and set
N=B7(RP(0)). Then (N, v|N, g|N) represents a class in fli(X, 4,7). A
tubular neighborhood of N in W is of the form Nx[—1,1]. We deform
g so that g|Nx[—1, 1]=(g|N)oz, on a tubular neighborhood Nx[—1, 1]
of N in W. Then 2(N, v|N, g|N) is bordant to (M, u, f) with a bordism
(W—Nx(—1,1), v, ). N

KerdFcImp. If [M,p, f,ale M (X, 4, 7) and OF[M, p, f, a]=
[N, w|N, f | N]=0, there is a bordism (W, », g) with boundary (N, x|N, f|N).
Let f deform so that f|NX[—1, 1]=(f|N)oz, on a tubular neighborhood
Nx[—1, 1] of Nin M. Let V be the manifold formed from Mx[—1, 1] and
Wx[—1, 1] by identifying a tubular neighborhood (Nx1)x[—1, 1] of Nx1
in M x 1 with the submanifold Nx[—1, 1] of Wx[—1, 1]. Define an involu-
tion ¢ on ¥V by o=pX1 on Mx[—1,1]and ¢=»vX1 on Wx[—1, 1], and



178 K. Komiva

an equivariant map h: (V, o) — (X, 7) by h=fr, on M x[—1, 1] and h=gn,
on Wx[—1,1]. Also define L=(Mx1—-(Nx1)x(—1,1))UW x{—1, 1}.
Then (L,o|L,k|L) represents a class in ﬂ;’k(X, A, 7). We then have
plL, o |L, k| L]=[M, u, f].

Ker2cImoF. If [M, ,u,,f]eﬂﬁk(X, A, 1) and 2[M, u, f]=0, there is a
bordism (W, v, g) with boundary 2(M, u, f), i.e., 9W contains two copies M_,
and M, of M. Let [—1,1] be a neighborhood of RP(0) in RP(1) with
RP(0)=0=[—1, 1]. We may obtain an RP(1)-structure a of W such that
a(W)=RP(1)—(—1,1), a(M_))=—1, a(M,)=1, and aoédetdv=2a, a a
bundle map covering a. Let L be the manifold formed from M x[—1, 1] and
W by identifying M x (—1) and M x 1 with M_, and M,, respectively. We may
also obtain a desirable equivariant RP(1)-structure B of L such that B is the
projection to the neighborhood [—1, 1] of RP(0) on M x[—1, 1] and 8=« on
W. Define an involution o on L by o=px1on Mx[—1, 1] and o=v on W,
and an equivariant map k: (L, 0) — (X, 7) by A=fn, on M x[—1, 1] and A=g on
W. Then (L, o, h, G) represents a class in “ﬁt;’k(X, A4, 7), and 8F[L, o, b, B]=
[M, w, f], since B is transverse regular on RP(0). The Proposition thus follows.

ReMARK. In the special case (X, 4, 7)=(pt, ¢, 1), from the exact triangles,
we have the exact sequences Qu(Z,) —> Q«(Z,) —> N«(Z,) in the notation of

F
Conner-Floyd [4], and 0——Qx(Z,) —— N«(Z,) in which Qx(Z,) is the cobor-
dism group of fixed-point free orientation-reversing involutions.

Being given a class [M, u, f ]eﬁfe*(X , A, 7), we have a classifying map
a: M — RP(r) of det 7y for large 7 such that « is transverse regular on RP(r—2)
and ap=a. Then we have a homomorphkism d: Efé*(X, A, T)—»Efé*(X, A, 7) of
degree —2 which sends [M, u, f] into [N, u| N, f|N], where N=a (RP(r—2)).

Proposition 7. The sequences

A F d
0 — ME(X, 4, 7) —> Nu(X, 4, 7) —> Ru(X, 4, 7) — 0,
F d
0 — M5(X, 4, 7) —> Ru(X, 4, 7) —> Pu(X, 4, T) — 0
are exact.

Combining these exact sequences with the exact triangles in Proposition 6,
we obtain the exact triangles of the type of Dold.

Proposition 8, The triangles
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A 2,0) 4,
fl;(X, A» T)@m*(X, A’ T) S——_L Q*(X) A’ T)

@, d)\\ /F

(X, 4, 7)
and
ﬂ;(X» 4, T)@ﬁ*(X, A, 7) -(—Z—LSJL ﬁ;(X, A, 7)
GEN /F
R(X, 4, 7)
are exact.

Proof of Proposition 7. F is monic by Proposition 5. dF=0 is easy, for
if [M, u, f, a]eiﬁE;(X, A4, 7), a representative (N, u|N, f|N) of dF[M, p, f, a]
is constructed by a: M — RP(1), so N is empty.

KerdcImF. If [M, ,u,,f]ei?i*(X, A, 7) and d[M, u, f1=[N, n|N, f|N]
=0, there is a bordism (W, v, g) with boundary (N, x|N, f|N). There is an
equivariant bundle map @: (det 7, € det du)—(&,, 1), for sufficiently large 7,
such that the map « covered by & is transverse regular on RP(r—1) and
RP(r—2). We set L=a (RP(r—1)) and N=a (RP(r—2)), then we obtain
equivariant bundle isomorphisms (v(N C L), dp)=<(det 7y, € det dp) | N=<(det T,
€ det d(u | N)), where v(IN C L) is the normal bundle of N C L. Since 7 is large,
we have an equivariant bundle map B: (det 7y, € det dv)—(&,_,, 1) which is
compatible with & on N through the above bundle isomorphism. The disc
bundle D(g,_,) associated to &,_, may be considered as a tubular neighborhood
of RP(r—2) in RP(r—1). Therefore we may consider B: D det 7, —RP(r—1).
Let (@,1) be the induced bundle @ with the induced involution A over
Ddet Ty from (£,_,, 1) by 8. Then we have (@, \)|(D det 7, € det d(n| N))
=w(LcM), du)|(Dv(NcCL), du).

Let M be the manifold formed from M x [0, 1] and D(g) by identifying the
appropriate part of D(g) with that of the tubular neighborhood of LXx 1in M x 1

P

L =7

iy

I Mx(0.1)
M
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by the above isomorphism. Define an involution & on M by | M x [0, 1]
=px1 and #|D(p)=r, and an equivariant map f: (M, #)—(X, ) by
FIMx[0, 11=fr, and f|D(p)=gnn’, = and =’ the appropriate bundle projec-
tions. We set M'=0M—Int(M x0UOM x [0, 1]UD(p)| V), V=the closure of
OW—N, p/'=pg|M’, and f'=f|M’. Then (M’, i/, f) is bordant to (M, u, f)
with a bordism (M, 7, f) in ife*(X, A4, 7).

Now nothing remains but to see that M’ has a desirable RP(1)-structure.
There exists an equivariant bundle map ¥: (det 75, & det dj#) — (£, 1) such that
the map v covered by ¥ is the composition az, on Mx [0, 1] and B: D(p)—
D(&,_)CRP(r) on D(g), B the bundle map covering B. For this is clear on
M x [0, 1], while on D(p), we have (det Tpu, & det dN\)==z*(p, ) where
7: D(@)— D det 7, is the bundle projection. We then obtain an equivariant
bundle map ¥’: (det T4y, & det du’) — (£,, 1) such that the map v’ covered by ¥’
is the restriction of v to M’. Let identify the associated disc bundle Dy(N c L)
of »(N c L) with a tubular neighborhood of N in L, and let SdetT, be the
associated sphere bundle of det7,,. Let L’ be the submanifold of M’ which is
the union of L—Int (Dv(N c L)) and Sdet 7y, i.e., L’ is the part of the dotted
lines in the above figure. Then L’=v'"Y(RP(r—1)). Since RP(r)—RP(r—1)
is contractible, we may equivariantly homotope 7’ to the composition

/ /
m -5, Tv(L'c M) —TM—» TE,_,=RP(r), where Tv(L’cM’) and TE, _, are
the Thom spaces, ¢ is the collapsing, and T(v’|L’) is induced from a bundle
map covering v’|L’. Since RP(r—1)—RP(r—2) is also contractible, we may
equivariantly homotope ’|L’ to a point map. So T(v’|L’) is homotoped to
Tv(L’cM")—T(&,_,|one pt)=RP(1). This implies M’ has a desirable RP(1)-
structure. -

Finally, d is epic. Let [M, ,u,f]eifé*(X, A,7). Let V,=Pdetty,—>M,

V,=P(det TM€B0‘)—1[1—>M, and V,=P(det TMEBHZ)—”Z—>M be the projective
space bundles associated to det 7, det 7,,P6O' and det 7,,P &, respectively,
where 6" and ¢” are the trivial bundles over M of dimension 1 and 2, respectively.
Then V,cV,CV,is a sequence of submanifolds with involution v,=P det du,
v,=P(detdp®P1) and v,=P(detdul), respectively. Let a,: (V,,v,)—
(RP(r), 1) be the classifying map of det 7y, |V,. Since the normal bundle of
V,cV, is the canonical line bundle over V,, we may extend «, to a map from a
tubular neighborhood of V, in V| to that of RP(r) in RP(r+1). Further, we
may extend it to a classifying map «,: (V,, v,)— (RP(r+1), 1) of detry, |V,
which is transverse regular on RP(r) and a7 (RP(r))=V,, since RP(r+1)—RP(r)
is contractible. (See Wall [9] for detail.) Exactly as before, we may extend «,
to a classifying map a,: (V,, v,) > (RP(r+2), 1) of det 7, which is transverse
regular on RP(r) and a3 '(RP(r))=V,. Then we have d[V,, v,, fz,]=[V,, v,, f7.]
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for [V,, v,, fzz]efl*(X, A, 1), and [V,, v, fr,]=[M, p, f] by z,. The Propo-
sition thus follows.
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