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1. Introduction

The general nonlinear filtering or estimation problem may be described
as follows. xty (0<t<T)y called the signal or system process is a stochastic
process direct observation is not possible. The data concerning xt is provided
by observation on another process zt which is related to xt by the model (2.1).
(See Sections 2 and 4 for notation and precise definitions). In general it is
assumed that xt takes values in a complete separable metric space while zt is
an /z-dimensional process. The least squares estimate of f(xt) (where / is a
suitable real valued function) based on the observations (zτ, 0<τ<t) is given by
the conditional expectation E[f(xt)\zτ, 0<τ<t]. In the general case this
estimate depends non-linearly on the observations and is known as the non
linear filter. A "Bayes" formula for the conditional expecation has been given in
[9] but is useful in applications only when t is fixed. If the data is coming in
continuously and we require an estimate which can be continuously revised
to take into account the new data, this formula, while valid, is not practical
since the estimate at a future time t-\-A must be computed using all the past
data. The formula computed for time t is of no help in computing the estimate
at ί + Δ . A practical as well as mathematically more interesting way of doing
this is by obtaining a stochastic differential equation for the filter.

This problem has acquired a growing literature in recent years. The
papers having a direct bearing on our results are the ones by Kallianpur and
Striebel ([10], [11]), Shiryaev [18] and Liptzer and Shiryaev [13]. In [18] xt is
assumed to be a Markovian jump process and in [13] the system and observa-
tion processes are components of a diffusion process governed by a stochastic
differential equation. The results closest in spirit to the present paper are
those in [11] where xt is a Markov process in Rn and independent of the
"noise" process wt. In that paper the Bayes formula for the filter given in
[9] is used in deriving the corresponding stochastic differential equation.

Our paper differs from the above mentioned work in two essential res-
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pects. First, we develop the innovation process approach first considered by
T. Kailath [7]. The method we use relies on a basic result due to I.V. Girsanov
[5] and on the representation of square integrable martingales. The second
difference consists in replacing the assumption of complete independence of
(xt) and (wt) by a more natural assumption which immediately enlarges the
scope of the applications. We are thus able not only to unify and extend the
results of [11] and present simpler proofs but also to treat the filtering problem
for controlled system processes.

Section 2 introduces the basic model (2.1) connecting the observation and
system process and also the innovation Wiener process. In Section 3 is derived
the stochastic integral representation for a square integrable martingale
(Yty ΞFty P) where ΞFt is the σ-field σ{#τ, 0 < τ < ί } . The main result is proved
in Section 4. In Section 5 we study the filtering problem in a more general
setting though still within the framework of the main theorem. As a corollary
we obtain the stochastic differential equation for E[f(xt) \ zτ> 0<τ<£] when (xt)
is a controlled process, or more precisely, when (xt) and (zt) are given by func-
tional stochastic differential equations of the type considered by K. Ito-M.
Nisio [6] and by W. Fleming-M. Nisio [3]. The Markov process case is
discussed in detail in the last section.

We thank Professors Thomas Kailath and Charlotte Striebel for their
valuable comments and suggestions.

2. Observation process and the associated innovation process

The system or signal process ht(ω) and the observation process zt(ω)(t^[0, T])
are assumed given on some probability space (Ω, Jl> P) and further related as
follows.

(2. 1) zt = Γ hudu+wt,
Jo

where

(2. 2) wt is an iV-vector standard Wiener process

and

EI ht 12 dt < co.

0

Here | | denotes the norm of the N~vector.

In order to take into account applications involving stochastic control we aban-
don as unrealistic the condition of complete independence of (ht) and (wt) and
substitute the more natural condition.

(2. 4) For each s, the cr-fields
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σ{hu, wu; 0<u<s}y σ{wv-wu; s<u<v<T}

are independent.
Let

(2. 5) % = σ{z,;Q<s<t}.

The monotone family (£?,) represents all the data available concerning the process
(ht). We observe before proceeding further that if {3it) is a monotone family
of sub σ-fields of <Jl, then in view of condition (2.3) it can be shown that there
exists a mondification of E(ht \ 3ίt)=(E(h) \ 3ίt\ , E(h?\Jlίt)) which is jointly
measurable and adapted to {3lt). In other words there exists an iV-vector
function H(t, ω) with the latter properties such that for a.e. t in [0, Γ],
E(ht\ί5Ht)(ω)=H(ty ω) a.s. P. In what follows we shall always work with such
modifications. The same remark will apply to conditional expectations of other
processes to be encountered later. (Sections 4 and 5). Writing ht=E(ht\ΞFt)
let us define the so-called "innovation" process

(2. 6) vt = zt-[' hsds.

The starting point of our work is the fact that (vt, ΞFt, P) is a Wiener process.
Proofs of this result under varying hypotheses have appeared in earlier works
([7], [8], [13]) and the importance of the innovation approach to filtering pro-
blems has been particularly stressed by Kailath ([7]). Let us state Doob's
theorem concering the standard Wiener process in a slightly sharper form, since
our proof of the innovation process is based on this.

Lemma 2.1. (Doob [2], Chapter 7, Theorem 11.9, Kunita-Watanabe [12],
Theorem 2.3). Let βt=[β), ••• βf) be an N-vector process with continuous sample

paths such that (βl, JHt> P) is a square integrable martingale. If

= (t-s)8iJ

 vt>vs>0

is satisfied, then βt is a standard Wiener process. Moreover, σ{βυ — βu\

s<u<v<T} is independent of 31 s

Proof. The result except the last assertion is found in the above cited
reference. Also, the independence of βt — βs and JMS is found in [12]. Now
let s = tγ < t2 < < tn < tn+1 = T and {ak} ΐ= i be a sequence of constant iV-vectors.

Then E[eKat» βtk+1 ~βtk) \ 3ltk] = E(eK°tkt βt^~βtk)) holds. Hence

= E[E{eKaι"
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This proves that o {βtk+1 — βtk; k=ί, •••, n} is independent of <JAS. The proof
is complete.

Lemma 2.2. Under assumptions (2.1)~(2.4), (vt, £?„ P) is an N-vector
standard Wiener process. Furthermore EFS and σ{vv — vu; s<u<v<T} are inde-
pendent.

Proof. From (2.6) we have for s<t,

(2. 7) E[vt 12y = vs+E[ Vhudu+tvt-ws13S]
Js

where Tιu=hu — hu. The second term on the right hand side of (2.7) is clearly 0

since E[hu\Su]=0 and E[wt — ws] = 0. The last statement is true because

wt — ws is indepent of ΞES. Hence (vt9 £?Y, P) is a martingale, that is {v^ 3:ty P)

is a martingale for each /, \<i<N. Now let Π«={^} be a finite partition of

[s, t] and let σ ί J = Σ ( Λ Ϊ ^ - ^ Ϊ ) ( ^ # Ϊ + 1 - ^ Ϊ ) -

Then making use of (2.3) it is easy to see

tends to zero as ft -^°o and max (β+i—β)->0. A direct calculation shows

(2. 8) ^[IΣ^^^-^K^^-^j)-^-^-!2] - 0.

It follows that

(2. 9) lim E\σV-(t-s)SiJ\ =0.

Finally since

for every Π« and since

(2.10) E[\E(σiJ-(t-s)8iJ\EFs)\]<E\σiJ-(t-s)8iJ\^0

from (2.9) we obtain

(2.11) E[(p\-pi) K - i ^ l f f J = (ί-*)δ ( y

The conclusion of the lemma follows from the previous lemma.
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REMARK 2.1. It is worth pointing out that Lemma 2.2 can be established

under weaker conditions on (ht). First of all, in proving that (vt, £?*) is a

martingale we need the existence of a jointly measurable modification of

E\hu\du to validate the

0

steps which show that the second term on the right hand side of (2.7) vanishes.

Given this, one sees that for (vty EFt) to be an L2-martingale it is necessary and

sufficient that for each s<t,

(2.12) E\\ hju\2<oo .
J S

Assuming these conditions the proof of the lemma is modified as follows; Defin-

ing σιj as before we have

axΓ"+1 \hu\du] [ Γ \hu\du]
k J/« Jo

|AJ^+maxΓ+ 1 \hu\du] [Γ
tn

k J

which tends to 0 a.s. as max(^+ 1— £*)->0. Secondly (2.8) holds. Hence it

follows that there is a sequence Π« of partitions such that σ£J->(£— s)δ, y a.s.

Now the sequence σV of random variables is known to be uniformly integrable

(see [16], Appendix), so that (2.10) holds. The rest of the proof is unchanged.

It has been shown that with the measurability condition mentioned and the

assumption

(2.13) Γ E\hu\du<
Jo

(vty EFt> P) is a martingale which is square integrable if and only if it is a Wiener

process

REMARK 2.2. It should be noted that the innovation process vt can be

calculated from the observation data zs, s<t. In fact, since vt is an (£?„ P)-

martingale, we have

Hm-ί E[zs+h - zs I ffj = lim ^ + h E(hu \ ΞFs)du = hs a.s. (s, ω).

This shows that the two processes \ hsds and vt are determined directly by the
Jo

observation data zsy s<t.

By the definition of the innovation process, vt is (S^-measurable. It is

conjectured that the converse would be also true, that is 2 Γ

ί =σ{^ s ; s<t}. It



24 M. FUJISAKI, G. KALLIANPUR AND H. KUNITA

seems to us that no satisfactory result is known to this problem. We shall prove
in the next section a slightly weaker assertion: Every separable ΞF^-martingale is
represented as a stochastic integral by the innovation process. This will play a
fundamental role in deriving stochastic differential equation for the filtering
process. (Sections 4 and 5).

3. Stochastic integral representation of a separable martingale on

(Λ, 3» P)

Theorem 3.1. Under conditions (2.1), (2.2), (2.3) and (2.4) every separable
square integrable martingale (Yty £?„ P) is sample continuous and has the
representation

(3. 1) Yt~E[Y0] = Γ (Φ., dp.) s Σ Γ Φί dv\
Jo ί = i Jo

where

(3. 2) (T£|Φj2ώ<+oo
Jo

and Φ s = (Φj, •••, Φ^) is jointly measurable and adapted to (Ss).

Since our proof is based on a theorem of Girsanov [5], we shall state it here
in a modified form for convenience of later reference.

Lemma 3.1. Let (βt) (0<t<T)be an N-vector standard Wiener process on
(Ω, JMU P) and <p(t, ω), a jointly measurable N-vector process adapted to (<3ίt)
and further satisfies

(3. 3) [TE\φt\
2dt<™.

Jo

Define

(3. 4) a'.(φ) = exp [ (' (φu, dβu) - M* \ Ψu \ *du\,

(3. 5) Tn = inf{v,Q<t<T, aί{φ)>n or\!\φs\
2ds>n)

Jo

= T if the above set {•••} is empty.

Then for each n the measure

(3. 6) Pn = aϊ»dP

is a probability measure and the process

(3. 7) β» = βt
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is an N-vector standard Wiener process in (^Mt, Pn).

Proof. Set £>?=<?>* ̂ [0,7\,](0> where / is the indicator function of the set

[0, ΓJ . Then ac

0

AT^)=a^n) and βn

t=βt- Γ φn

sds holds. We shall drop
Jo

the index n for notational convenience in the following discussion. Ito's formula
[14] implies

(3.8) a'0=

The last member is a square-integrable martingale because

E((a'oγIφ.

Therefore we have E(aS)=\ by (3.8), proving that P is a probability measure.
We shall next prove that βt is a square-integrable {3ίt, P)-martingale. The

square integrability is clear since άξ is dominated by n. By the definition of
the conditional expectation,

E{βt\3ls) = E{alβt\3ts){asoY\ t>s

so that βt is an (JMt, P)-martingale if and only if aoβt is an (^/Ht, P)-martingale.
Now Ito's formula implies

(3. 9) Γ (alφs, dβs) xβi = P-martingale + Γ a*0φ\ ds
Jo Jo

and

(3.10) ( £ (α5 φs> dβsή X Jo 9>Jώ = P-martingale+

= P-martingale+1 as

0 φ\ ds — \ 9>* ώ ,
Jo Jo

the last equality following from (3.8). Thus we get

ac

0 βt = (l + j ' {al φs, dβs]^(β\- j # φ\ ds^j = P-martingale

by (3.9) and (3.10), proving that (βt, JHt, P) is a square integrable martingale
with continuous sample paths. Now the argument in the proof of Lemma
2.2 can be applied to the present case, replacing (vty ht, wty ΞFt, P) by
(βty -<P» βt> <%ίt> P) t h e r e . We then have

= (t-s)8ij.

The proof is complete.
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Proof of Theorem 3.1: Set βt=vt> Ψv=~ht a n d <5Ut=Sίt and apply the
preceding lemma. Then we see that

!

tΛTn Λ

hsds
o

is an (£F,, PM)-standard Wiener process. Set 3 7 = σ { * ; s<t\. It is well
known that every separable square integrable (£??, Pw)-martingale Ϋt is sample

continuous and is represented as Yt=\ (Φ*> dz")1:>. Note that zs=zn

s holds for
Jo

s<Tn and apply Doob's optional sampling theorem. Then we see that

ΫtΛτn — \ (ΦSJ dzs) holds and it is an (3??ATM> PM)-martingale, where
Jo

(3.12) 3*tATu = {ΰG5?; BΠ {Tn<s}^3n

s for all 0<s<T} .

On the other hand, it is easily seen that

Tu; 0<s<t} = σ{zsATn; 0<s<t} = ff,^ ,where the σ-field 3ftΛτH i s defined by (3.12) replacing £F? by 3"̂ . We have thus
seen that if Ϋt is a separable square-integrable (EFtATn, P»)-martingale, it is
represented as

(3.13) Ϋt = YtATn = J ' Λ T " (φ;, ώr.).

Suppose now that Yt is a separable square-integrable (£?„ P)-martingale
and let Ϋt=(ae

0)~1Yt. ThenF / Λ T w is a separable square-integrable (£FM 7 W, Pn)-
martingale as we have noted in the proof of the preceding lemma so that it has
the representation (3.13). Consequently,

_ (tΛTn CtATn Λ

(3.14) γtATu = (Φ;, dp.)+\ (Φ;, hs)ds.
Jo Jo

Ito's formula applied to YtΛτn=<XoATnΫtΛτn enables us to write

(Φn,,dvs)+\ Ψ«ds.

o Jo

The second term of the right hand vanishes a.s. since it is an (3ϊtATn, P)-mart-
ingale with bounded variation ([12], Corollary to Theorem 1.3). We have thus
obtained

(3.15) YtΛτn=\ (Φn*,dps),
Jo

where 1 E\Φ™\2ds<E[Yτ]<com The uniqueness of the representation (3.15)

Jo

1) We may and do assume that Yo=O. The same remark is applied to other martingales.
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yields Φ™=Φ™ if s< Tn and n<m, i.e., there exists Φs adapted to (£?,) such that

ΓT

φ s = φ £ for s<Tn and 1 E \ Φs \ 2ds< oo. The proof is complete.
Jo

Corollary to Theorem 3.1. Every separable martingale (Yty3ϊtyP) is

S T
\Φs\

zds<oo and Φs
0

is jointly measurable and adapted to (3S).

The proof is based on Theorem 3.1 and follows, almost without change,
the arguments in Theorem 3 of J.M.C. Clark's recent paper ([1], p. 1291). To
avoid misunderstanding it should be pointed out that Clark has proved the
theorem in case ΞFt=σ{vs; s<t}. We are not sure in the present context if
the above two σ-fields coincide or not.

In many applications, it may happen that the signal and the observation
processes are related in more complicated forms. We shall introduce in the
next two sections two types of observation processes and derive stochastic
differential equations satisfied by the filtering processes.

4. A stochastic differential equation for the non-linear filtering
problem

The signal process that we consider in this section is denoted by
xt(ω), t^[0y T] and is assumed to take values in a complete metric space S.
We assume as in Section 2 that

(4 .1) For each sy the σ-fields

σ{xuywu;u<s}y σ{wv—wu;s<u<v<T}

are independent. The observation process is again denoted by zt and is defined
by (2.1), where ht(ω) is an ΛΓ-vector process satisfying (2.3) and

(4. 2) For each s<Ty hs(ω) is σ{xu, wu; u<s}-measurable.

Then conditions (4.1) and (4.2) imply that the new observation process zt satisfies
(2.4). Thus the three processes (wt, ht, zt) satisfies conditions (2.1)^(2.4) of
Section 2.

Let us introduce the following notation for the family of σ-fields.

(4. 3) S, = σfe; s<t} , Qt = σ{xs, ws; s<t} .

Let / be a real measurable function on S such that

(4. 4) £ | / (* , ) | 2 <oo forallO<ί<Γ.

The function / is said to belong to space D{Ά) if there exists a jointly (ty ω)-
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measurable real function Atf(ω) adapted to σ(xsy zs; s<t) such that

(4. 5) [TE\Atf\*dt<oo
Jo

and

(4. 6) M,(/)=/(*,)

is a (βt, P)-martingale. Such a function Atf(ω) is at most unique up to
(ty ω)-measure 0. We assume in the following that D(A) is non-empty. Then
D{A) is a linear space and At is a linear transformation from D(Ά) into L2(Ω)
for a.e. t.

REMARK. Let xt=(xs> 0<s<t) and z*=(zs, 0<s<t). Then in case that
((#', z')> £?„ P) is a Markov process, the above operator At is a stochastic
analogue of the generator defined for the function f(xt) depending only on the
component xt. We shall discuss this problem in Section 6.

Lemma 4.1. Letf^ D(A) and let

(4. 7) Mt(f) = E[f(xt) I % ] - E[f(x0) I £F0] - Γ E[Asf \ <3s}ds
Jo

(Mt(f), 3t, P) is a square integrable martingale.

Proof. The square integrability of (4.7) is obvious from (4.4) and (4.5).
Observe that the σ-fields (£FS) are monotone and Sίs(zβs. Then for s<t,
E[Mt(f)-Ms{f) I £FJ coincides with

E[f(xt) I ffJ - E[f(x

= E[f(xt)-f(xs)- ^

= E[Mt(f)-Ms(f)\ΞFs]

= E[E[Mt(f)-Ms(f)\£s]\%],

the last term being zero since Mt(f) is a (i?,, P)-martingale. The proof is
complete.

In the proof of the principal theorem of this section we shall need a fact
which it seems convenient to separate out as a lemma although it is hardly more
than an observation and follows directly from H. Kunita-S. Watanabe [12] and
Meyer [16].

Lemma 4.2. Let (Mt(f), Qu P) be the square integrable martingale of (4.6).
Then there exist unique sample continuous processes <M(/), wis) (/= 1, ••• , N)
adapted to (Qt) such that almost all sample functions are of bounded variation and
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Mt(f)w\ — ζM(f)y w{yt are <2r martingales. Furthermore each <M(/), «>'>, has
the following properties: It is absolutely continuous with respect to Lebesgue measure
in [0, T], There exists a modification of the Radon-Nikodym derivative which is
(t, ω)-measurable and adapted to (Qt) and which we shall denote by Dtf(ω). Then
using the vector notation Dtf=(D}f, — , B?f),

(4. 8) <M(f)9to>t=\tDsfds a.s,
Jo

where

(4.9) ΓE\Dj\2ds<™ .
Jo

If the process (xt) and (wt) are completely independent then a.s.

(4.10) <M(/), w>, = 0 .

Proof. The first part of the lemma, (4.8) and (4.9) follow from [12, 16]
upon noting that (Mt(f), Qt) and (vt, St) are both square integrable martingales
and that ζw\ wjyt=thij. To show (4.10) it suffices to prove the equivalent
assertion that (Mt(f)wt, Qt) is a martingale. For s<t9 a direct calculation shows

E[(Mt(f)-Ms(f))(wt-ws)\£s] = E[Mt(f)wt\Ss]-Ms(f)ws.

On the other hand, the assumption of the complete idnependence of (xt) and
(wt) processes implies that wt—ws and SSWσ{Mt{f) — Ms(f)} are indpendent.
Hence

E[(Mt(f)-Ms(f))(wt-ws)\S5] = E[Mt{f)-Ms{f)\Qs]E[wt-ws] = 0

a.s., thus proving (4.10).
The lemma just proved indicates the possibility that in the situation where

in place of the independence of (xt) and (wt) we only have (4.1) the stochastic
differential equation we seek might have a more general form the one derived in
[10]. As we shall see below this is indeed the case.

In our next theorem it will be understood that we are always considering
separable versions of the martingales of Mt{f) and Mt{f). We shall also use the
shorter £<( ) for E( \ΞFt).

Theorem 4.1. Assume (4.1), (4.2) (and (2.1), (2.3)). // f^D(Ά) satisfies

(4.11) \TE\f(xt)ht\
2dt<oo

Jo

then E*[f(xt)] satisfies the following stochastic differential equation

(4.12) £<[/(*,)] = E[f(xo)]+ Γ E*[Άj]ds
Jo
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Γ
Jo

Proof. The equation (4.12) is equivalent to that Mt(f) equals the last
term in (4.12) involving the stochastic integral, which we shall denote as Mf(f).
The proof is then reduced to proving E[Mt(f)Yt]=E[M*(J)Yt] for all Yt such
that

(4.13) Yt = Γ (Φ,, dvs) (Φs: bounded),
Jo

since such Yt is dense in L2(βt, P) (up to constants) by virtue of Theorem 3.1.
We shall show this calculating E[(Mt(f)-Mt(f))Yt] and E[Mt(f)Yt] separately.
In what follows we write Mt, Mt and Mf suppressing / as it is fixed throug-
hout the argument. Using (4.6) and (4.7) a simple calculation yields

(4.14) E[(Mt-Mt)Yt] = Z?[j\Yt- Y.)A.fds] .

S t ft Λ

(Φ5, dws)+\ (Φs, hs—hs)ds the right hand side of
o Jo

(4.14) is reduced to the form
(4.15) j E^ΆJ£ (ΦM, Λpj jώ+^j^ £./(£ (Φκ) K-hu)

The integrand in the first term of (4.15) is zero because Asf is ^-measurable

and E(V (Φ M , dwu)\Ss\=0. The latter fact follows since Γ (Φs, dws) is a Qr

martingale. The quantity inside the brackets in the second term of (4.15)

becomes (after an integration by parts) \ \ Aufdu \(ΦS, hs — hs)ds. Hence the

right hand side of (4.14) equals

(4.16) E[^ [ £ Άjdu\ (Φ., hs-hs)ds~\ .

On the other hand it is easy to verify that

(4.17) E{MtYt) = E[Mt 5 (Φ,, <to.)]+ E

Άjdu^j (Φs, K -

Consider the right hand side of (4.17). From Lemma 4.2 and the properties of
stochastic integrals the first term is equal to

(4.18) 2?[J' (Φ., />,/)*] = E[\'O (Φ., E(DJ I
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The second term equals

(4.19) 4 fo ( Φ " ^[/(*')(* -* )])Λ] = ^ [^ f o (^[M) (K-k)l dvs)\ .
From (4.14), (4.16), (4.17), (4.18) and (4.19) we immediately obtain E[MtYt]=

E[M* Yt]. The proof is complete.

5. A filtering problem connected with the observation process

determined by a stochastic differential equation

In this section we shall discuss the filtering problem for the case when the

observation process denoted by yt is determined by the following form of a

stochastic differential equation

(5. 1) dyt = a(tyxsys<tyysys<t)dt+b{tyysys<t)dwt.

As we shall see below this type of the filtering problem is reduced to the former

one with a suitable modification.

The sample paths xt of the system process are assumed to take values in

a separable, complete metric space S and to be right continuous with left hand

limits. We donote by C the space of all continuous mappings from [— T, 0] to

RN with the usual uniform topology, and by D the space of all right continuous

mappings with left hand limits from [— Ty 0] to Sy the topology of which is that

of Skorokhod [18]. Let a{tygyf) be an N-vector valued functional in

[0, T] X D X C and b(ty g,f)y an N X M-matrix valued functional in [ 0 , Γ ] x ΰ x C

satisfying the following conditions.

(5. 2) a(ty gyf) and b(ty gyf) are Borel measurable in [0, T] X D X C

There exists a bounded measure Γ on [— Ty 0] and a positive contant K such that

(5. 3) \a{t,g,f)-a{t,gJ)V+\b(t,g,f)-b{t,gJ)V

\f(s)-f(s)\>dΓ(s)

(5. 4) \a(t,g,f)\2+\b(t,g,f)\^K(ί + ̂  τ\f(s)\2dΓ(s)+\L(t,g)\η ,

where L(ty g) is a Borel measurable real valued functional in [0, T] X D such that

[TE\L(t,πtx)\2dt<oo.
Jo

Here πtx^D is defined for (xt) by

πtx(u) = xt+u if — t<u<0

= xn if -T<u<-t.
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(Note that L(t, πtx) is jointly (t> ω)-measurable. The norm of the N X M-matrix

b=(bu) is defined as | δ | = V Σ bh)

Let wt be an M-vector standard Wiener process satisfying (4.1). The

dimention M is assumed to be larger than N. A stochastic process yt with

continuous paths is called a solution of the stochastic differential equation

a(s, πsx, πsy)ds+\ b(s, πsx, πsy)dws

o Jo

if σ{ys; 0<s<t} is independent of σ{wv—wu\ t<u<v<T} and satisfies the
above formula. Here η is a constant.

Lemma 5.1. Under conditions (5.2) ~ (5.4), there exists an unique solution
Vtfor (5.5) such that it is σ{xu, wu\ 0<u<i}-measurable and square integrable.

Since the lemma can be established by the standard method of successive
approximations, we shall state the outline of the proof.
Setyo(t)=η and

S t rt

a{s, πsx, πsy"-1)ds+ \ b(sy πsx, πsy
n~ι)dws, n^\ .

o Jo

Then a direct calculation show that pn(t)=sup E | yn

8 — yT112 satisfies

making use of (5.3) and

p1(t)<2K{(T+ί)(ί+vη\\T\\+ \Έ\L(s,π,x)\*ds}
Jo

making use of (5.4). Here | |Γ| | denotes the total mass of the measure Γ.
Therefore, yn

t converges to a continuous process yt and it satisfies (5.5) by a
standard argument. It is clear that yt is σ{xsf ws; s<t}-measurable. The
uniqueness can be proved similarly.

As before we shall denote the σ-fields σ{ys; 0<s<t} as ΞFt and

Qt=σ{xs^ ws; 0<s<t}. Let us further introduce the following conditions.

(5. 6) b(t,g,f) does not depend o

(5. 7) The determinant of iVxiV-matrix c=bb* is not zero for all t and f,
where b* is the transpose of b.

(5. 8) \TE\h\t, πtx, 7tty)\>dt<c*>, where h' (t,gj)=c-^(t,f) a(t,g,f).
Jo
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Lemma 5.2. Assume (5.2)^(5.8). Set

(5. 9) wi = Γ c-^s, πs y)b(t, πs y)dws,
Jo

(5.10) g't = Γ h\s, πsx, πsy)ds+w't.
Jo

Then w[ is an N-vector standard Wiener process adapted to {Qt) such that
σ{w'v—wύ; s<u<v<T} is independent of Gs. Furthermore three processes
(w'ey h

f

ty z't) satisfies conditions (2.1)^(2.4).

Proof. Since wt—ws is independent of Qs by the assumption, wt is a Qt-
martingale. Since cs~

1/2bs is immeasurable by Lemma 5.1, the process w't is also
a ^-martingale. Now by the definition of the stochastic integral, we have

Hence we have obtained the first assertion. Since {h'u: u<s} is ^-measurable,
condition (2.4) is satisfied for (h'n w't). Condition (2.3) for the process h[ is
obvious from the assumption (5.8), thus proving the latter assertion of the lemma.

Set

(5.11) ϊ{ = σ{*ί;0^ί}

and define

(5.12) v't = zl-['klds where h'β = E[h'β\&ΐ\ -
Jo

Then Lemma 2.1 shows that v[ is a standard Wiener process adapted to (ffQ.
We prove

Lemma 5.3. ΞEt=3f

tfor allO<t<T.

Proof. Since yt and z[ are related by

(5.13) yt = V+\'c*dz'a or *{ = (
Jo Jo

and cs~
1/2 is ^-measurable, it is clear that EFedΞFt. For the proof of the

converse relation, we shall apply Lemma 3.1. Set βt=v'e and φt= — h't. The

S tΛTn ,
h'sds is an (£F£, Pn)-standard Wiener process.

0

Then the solution y" of the stochastic differential equation
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considered in (£?£, Pn) exists uniquely and σ{yn

s\ K ί J c σ ^ J " ; s<t} by Lemma
5.1, since £1/2(t,/) is Lipschitz continuous in the sense of (5.3) and (5.4) at least
locally. On the other hand, since z/

e

n=z'e holds for t<Tm yt=yle holds for
t < Tn by the uniqueness of the stochastic equation. This implies £?£ATn 3

 <3tATn.
Since Tn \ T as n->oo, we get EF/

tZ)EFt. The proof is complete.
We have thus reduced the filtering problem for the observation process yt

to that for the new observation process z't. Theorem 4.1 is then modified as
follows.

Theorem 5.1. Assume (4.1) and (5.2)^(5.8). / / / belongs to D(Λ) and

satisfies [Ί E\f{xt)h'e\
2dt<oo, then Et[f(xt)]=E[f(xt)\3t] satisfies the following

Jo

stochastic differential equation

(5.14) E*[f(xt)] = E[f(x0)] + Γ E*[A.f]ds
Jo

where v't is the standard Wiener process determined by (5.12).

Proof. The only difference between (4.12) and (5.14) is in the term
corresponding to Dsf In (5.14), the iV-vector Dsf=(D]fy •••, JDf/) is defined
as the Radon-Nikodym derivative of <M(/), w)>t with respect to t, which is
related to that of <M(/), zt/>t in the following form (See [17, p 458] or [15, p 79])

<M(/), w>t = Γ c.-*b.d<M(f)9 w'>s.
Jo

Therefore DJ in (4.12) corresponds to cs~
1/2bsDsf in (5.14).

EXAMPLE. Let us consider the case when the system and observation
processes are solutions of a stochastic differential equations of the type considered
by Fleming and Nisio [3].

(5.15) dxt = A(t, πtxy πty)dt-\-B(t> πtx> πty)dwt,

(5.16) dyt = a(t, πtx, πty)dt + b(t, πty)dwt.

Here wt is an M-vector standard Wiener process, a and A are iV and (M-N)-
vector functionals (M>N) respectively, and b and B are NxM and (M-N)x
M-matrix functionals respectively. We assume similar Lipschitz conditions as
(5.2) and (5.3) for both of (a, b) and (A> B). For the initial random variables,
we shall assume that yo=O and that
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(5.17) x0 is independent of σ{wsy 0<s< T} .

Then the equation (5.15) and (5.16) has an unique solution (xty yt) which is

measurable with respect to σ{xQ, ws\ s<t). If additional conditions (5.7) and

(5.8) are imposed on a and b, Theorem 5.1 can be applied to this case. We

shall obtain explicit representations of At and D. The results are that if / is a

C2-class function on RM~N, it belongs to D(A) and

(5.18) Άtf(ω) = *Σ At(t, πtxy y ^

and

(5.19) Dif(ω) = "ΈBijit, πtxy πty)fψt).

To prove this, apply Ito's formula to/(#,), we get

f(xt)-f(x0) = Σ j Bφ, πsx, πsy)f'4xs)dzvί+^Asf(ω)ds,

where the integrand in the last term is the right hand side of (5.18). Since the
first term on the right hand side is a ̂ -martingale, we see that

Mt{f)=f{xt)-f{xΰ)-^Asfds
Jo

is a ί?,-martingale. This proves (5.18). The proof of (5.19) is immediate from

w }t = Σ ( BkJ(s, πsx, πsy)ttk(xs)d<™J, w'>.
R> j J

= Σ ) Bki(sy πsxy πsy)f'Xk{xs)ds .

Using the vector notation, cs~
1/2bsDsf=cs~

1/2bBtf'y where B* is the transpose of
B and/ / =(/ί 1 , ••• ,/ ί^) . Therefore, the term involving Dsf disappears if and
only if bB' = 0.

REMARK 6.1. There are many other ways of choosing N xiV-matrices c1/2

and c~1/z in discussions of this section. In fact, in case where the dimmension
M is equal to Ny it is more natural to replace c1/2 and c~1/2 by b and b~x respectively.
More generally, if we choose an N X iV-matrix d with the Lipschitz condition
(5.3) such that c=dd\ then all discussions are valid replacing c1/2 and c~1/2 by d
and d'1 respectively. It should be noted that the condition (5.8) does not
depend on the choice of such d. Although the the innovation process (5.12)
is changed by a such replacement, the the expression (5.14) does not depend
on the replacement. In fact, the last member of (5.14) is equal to
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(5.20) Γ (E'[f(x.)a.]-E'[f(x.)]E'[a.]+b.E [D.f], cT1®.-^[a.]*).
Jo

6. Case of Markov Process

We now specialize the discussion of the previous section to the case where

the pair (xty yt) of the signal process xt and the observation process yt is Markov

with repsect to (Gty P). In this context the stochastic differential equation has

a more definite meaning. We shall show in this section that Atf(ω) is replaced

by Atf(xty yt) where At is the generator of the process (xty yt) and that with

additional conditions D*f(ty ω) is replaced by D*f(ty xty yt) where D*f(ty xy y) is

a measurable function in [0, T] X S X RN. Z> may be regarded as a first order

linear differential operator if ηt=(χty yt) is a diffusion Markov process.

Let us first investigate conditions for ηt=(χu yt) to be Markov.

L e m m a 6.1. Suppose that (xt) is a Markov process which is completely

independent of (wt). Assume further that coefficients a(ty gy f) and b(ty gy f) of

(5.2) depend only on the values/(0) andg(0) and that the measure Γ is concentrated

at the point {0}. Then ((xty yt)y Qty P) is a Markov process.

Since the proof is carried out by a standard argument of Markov processes,

we shall state only the outline. Let us first notice that the latter condition of the

lemma states that a(ty πtxy πty)=a(ty xty yt) and b(ty πty)=b(ty yt). Then the

equation (5.5) is written as

(6. 1) yt = ys+1 a(uy xuy yu)dy+1 b(uy yu)dwu .
Js Js

Now let {Qω} be the regular conditional distribution relative to (Ssy P), i.e.,

Qω(A)y A G:Jl is immeasurable for each Ay a probability measure for each ω and

that Qω(A)=P(A\gs) a.e. (See [20]). Since σ{xs;s<T} and σ{wv-wu;
s<u<v<T} are independent relative to Qω for a.s.ω, (yt) t>s may be considered

as an observation process related to the signal process (xty Qω)y ϊ>sy by the

formula(6.1). Then the uniqueness of the above stochastic differential equation

and the Markov property of xt proves that the joint distribution of (xty yt)y t>s

relative to the measure Qω depends only on the initial value (xsy ys) (together

with the transition probability function of xt and coefficients a(sy xy y) and

b(sy y)). This shows the Markov property of ((xty yt)y QtyP).

REMARK 6.1. The conditions of Lemma 6.1 are not always necessary for

the Markov property of (xty yt). For example, in the case of Fleming-Nisio, if

we assume that all coefficients ay by Ay B depend only on ty the values /(0) and

£(0), then the process {xty yt) is Markov as is well known. However the process

xt is obviously not Markov.

Let P(sy η; ty E) (η=(χ, y)) be the transition probability function of (ηt)
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assumed jointly measurable in (s, η, t) and let

A family of linear operators Au £e[0, T] defined in the space of real valued
measurable functions on S X RN is called an extended generator if

(6 2) Plf(v)-f(v) = Γ P»,Auf(v)du
Js

is satisfied for all 0<s<t<T. We denote by D{A) the set of all / depending
only on the first variable x and satisfying (6.1) together with

(6. 3) EI f(ηt) 12 < + °° for each t in [0, T],

(6. 4) \TE\Atf(ηt)\*&<oo .
Jo

Set

(6. 5) Mt{f)(ω)=f(xi)-f(x0)-\tAtf(Vt)ds.
JO

Lemma 6.2. Mt(f) defined by (6.5) is a square integrable (Qu P)-martingale.

Proof. Since f^D(A) we write f(xt) for f(vt) Note, however, that
Auf(η) need not involve x. From this observation, the fact that (ηt, Qty P) is
Markov, and (6.2)~(6.4) we have the following chain of relations. For 0<s<ί,

(6. 6) E[Mf(f) I ύ.l = Ms(f) + E[f(xt)-f(x.)- £ AJ{Vu) du |

The conditional expectation on the right equals

(6. 7) E[f{xt)\3s]-f{xs)-E]^sAuf{vu)du\S^ _

But this is zero since

(6. 8) E[f{xt)I£]-/(*.) = P'.f(v.)-f(v.)

= Γ E[AJ(Vα)\£s]du
J

Hence the right hand side of (6.6) equals Ms(f). The square integrability of
Mt(f) is obvious from (6.3) and (6.4). The lemma is proved.

The above lemma shows that D(A)αD(Ά) and that Atf(yt)=Άtf(ω),
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where At is the operator defined is Section 4. In order to investigate the
property of the operators D'y it is necessary to quote rather delicate but deep
results concerning additive functionals in the theory of Markov processes. The
following terminology and results are from Motoo-Watanabe [17] and Meyer
[15]. It is well known that the space time process (t, xty yt) is stationary
Markov. We assume

(6. 9) (t, xty yt) is a Hunt process with Meyer's Hypothesis (L),

(6.10) Mt(f) is σ{xsy ws; s<t}-measurable.

By the above two conditions, each i-th component w\ of wt together with Mt(f)
is an additive functional of the process ηt. Then the process (M(f)y w*yt

introduced in Lemma 4.2 is again an additive functional that is absolutely
continuous with respect to t for a.s.ω. Then there exists a jointly measurable
function /)*'/(£, x> y) such that

(6.11) <M(/), «,<>, = Γ D>f(s, *„ ys)ds a.s.
Jo

(Such D*f(sy x, y) is determined uniquely a.s. relative to a suitable measure
called "canonical". See [17], Theorem 7.2.)

Theorem 5.1 yields the following result for the Markov process case.

Theorem 6.1. Let Vt=(χt> yt) where yt is given by (6.1) be a Markov
process. Assume condition (4.1) and let the coefficients a and b satisfy (5.2), (5.3),

(5.4), (5.7) and(8.8). If/belongs to D(A) and ΓE\f(x t)h/

e\
2dt<oo j then E'f(xt)

Jo ^ ^

satisfies the stochastic differential equation (5.14) where At and Dt are replaced by
At the generator of (xt, yt) and by the operator Dt whose components D\ are defined
fry (6.11).

REMARK 6.2. If, as in Lemma 6.1, (xt) and (wt) are completely independent
it follows from (4.10) of Lemma 4.2 that the term involving Dt in the stochastic
differential equation of Theorem 6.1 disappears leading us to the case treated in
[10].

EXAMPLE (c.f. Liptzer-Shiryaev [13]). In case that coefficients ay by A and
B depend on (tff(O), g(0)) in Fleming-Nisio's case, the operators At and D are
given by

Atf(x, y) =*ίϊ A,{t, x, y)f'.t{χ)+γMi: (&B){J (t, x,

ί=i Δ it y=i

DΆt, x, y) =*Έ B}i(t, x, y)fψ),

where/is a C2-class function in RM~N,
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REMARK 6.3. It is possible and sometimes convenient to regard the pair

of processes (xt) and (wt) as a Markov process under more general settings by

enlarging the state space. Let x*=(xs, s<t) and y*=(ys, s<t). Then we can

prove that ((xf, y*), Gty P) is a Markov process by a similar argument as in

Lemma 6.1, making use of the uniqueness of the solution (5.5). Also, the case

that ((xt, y*), <2t,P) is Markov is discussed in the problems of stochastic control

based on a partially observable process. Such a case occurs if the coefficients

α, by A and B of Fleming-Nisio depend on £, /(0) and g. It will be obvious that

the discussions of this section can be applied to these cases.
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