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1. Introduction

The general nonlinear filtering or estimation problem may be described
as follows. x;, (0<t<T), called the signal or system process is a stochastic
process direct observation is not possible. The data concerning x, is provided
by observation on another process 2, which is related to x, by the model (2.1).
(See Sections 2 and 4 for notation and precise definitions). In general it is
assumed that x, takes values in a complete separable metric space while 2, is
an n-dimensional process. The least squares estimate of f(x,) (where f is a
suitable real valued function) based on the observations (2,, 0 <7 <t) is given by
the conditional expectation E[f(x,)|2,, 0<7<t]. In the general case this
estimate depends non-linearly on the observations and is known as the non
linear filter. A “Bayes” formula for the conditional expecation has been given in
[9] but is useful in applications only when # is fixed. If the data is coming in
continuously and we require an estimate which can be continuously revised
to take into account the new data, this formula, while valid, is not practical
since the estimate at a future time #+A must be computed using all the past
data. The formula computed for time # is of no help in computing the estimate
at ++A. A practical as well as mathematically more interesting way of doing
this is by obtaining a stochastic differential equation for the filter.

This problem has acquired a growing literature in recent years. The
papers having a direct bearing on our results are the ones by Kallianpur and
Striebel ([10], [11]), Shiryaev [18] and Liptzer and Shiryaev [13]. In [18] x, is
assumed to be a Markovian jump process and in [13] the system and observa-
tion processes are components of a diffusion process governed by a stochastic
differential equation. The results closest in spirit to the present paper are
those in [11] where x, is a Markov process in R* and independent of the
“noise” process w;. In that paper the Bayes formula for the filter given in
[9] is used in deriving the corresponding stochastic differential equation.

Our paper differs from the above mentioned work in two essential res-

* The second author was supported in part by NSF Grant GP-1188-8.
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pects. First, we develop the innovation process approach first considered by
T. Kailath [7]. The method we use relies on a basic result due to I.V. Girsanov
[5] and on the representation of square integrable martingales. The second
difference consists in replacing the assumption of complete independence of
(x,) and (w,) by a more natural assumption which immediately enlarges the
scope of the applications. We are thus able not only to unify and extend the
results of [11] and present simpler proofs but also to treat the filtering problem
for controlled system processes.

Section 2 introduces the basic model (2.1) connecting the observation and
system process and also the innovation Wiener process. In Section 3 is derived
the stochastic integral representation for a square integrable martingale
(Y,, &F,, P) where &, is the o-field o {2,, 0<7<t}. The main result is proved
in Section 4. In Section 5 we study the filtering problem in a more general
setting though still within the framework of the main theorem. As a corollary
we obtain the stochastic differential equation for E[f(x,)|2,, 0<7<t¢] when (x;)
is a controlled process, or more precisely, when (x,) and (2,) are given by func-
tional stochastic differential equations of the type considered by K. Ito-M.
Nisio [6] and by W. Fleming-M. Nisio [3]. The Markov process case is
discussed in detail in the last section.

We thank Professors Thomas Kailath and Charlotte Striebel for their
valuable comments and suggestions.

2. Observation process and the associated innovation process

The system or signal process h,(w) and the observation process z,(w)(t<[0, T])
are assumed given on some probability space (Q, A, P) and further related as
follows.

2. 1) 5= hdutw,
where

(2. 2) w, is an N-vector standard Wiener process
and

T
(2. 3) hyw)is a(t, w)-measurable N-vector process such that S E|h,|? dt<co.
0

Here | | denotes the norm of the N-vector.

In order to take into account applications involving stochastic control we aban-
don as unrealistic the condition of complete independence of (k) and (w,) and
substitute the more natural condition.

(2. 4) For each s, the o-fields
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oi{h, w,; 0<u<s}, o{w,—w,; s<u<v<T}

are independent.
Let

(2. 5) F, = o{z,; 0<s<1t}.

The monotone family (<,) represents all the data available concerning the process
(h;). We observe before proceeding further that if (.%,) is a monotone family
of sub o-fields of ./, then in view of condition (2.3) it can be shown that there
exists a mondification of E(k,| M,)=(E(h}| M,),+, E(hY | HM,)) which is jointly
measurable and adapted to (M,). In other words there exists an N-vector
function H(?, w) with the latter properties such that for a.e. ¢ in [0, T},
E(h,| M,)(w)=H(t, ) a.s. P. In what follows we shall always work with such
modifications. The same remark will apply to conditional expectations of other
processes to be encountered later. (Sections 4 and 5). Writing hy=E(h;|F,)
let us define the so-called “innovation” process

t o,
2. 6) by = z,—jo hods .

The starting point of our work is the fact that (v,, F,, P) is a Wiener process.
Proofs of this result under varying hypotheses have appeared in earlier works
([71, [8], [13]) and the importance of the innovation approach to filtering pro-
blems has been particularly stressed by Kailath ([7]). Let us state Doob’s
theorem concering the standard Wiener process in a slightly sharper form, since
our proof of the innovation process is based on this.

Lemma 2.1. (Doob [2], Chapter 7, Theorem 11.9, Kunita-Watanabe [12],
Theorem 2.3). Let 3,=(8}, -+ BY) be an N-vector process with continuous sample
paths such that (8%, M,, P)is a square integrable martingale. If

E[(B:—B3) (BI—BH|I M] = (t—9)8;; Vi>Vs>0
is satisfied, then (3, is a standard Wiener process. Moreover, o{B3,—B,;

s<u<v<T} is independent of M,

Proof. The result except the last assertion is found in the above cited
reference. Also, the independence of B,— B, and M, is found in [12]. Now
let s=¢, <t,<---<t,<t,,,=T and {a,}%-1 be a sequence of constant N-vectors.

Then E[ei(a"" Piaes =Au) | Ms,] = E(ei(a”" ﬂ"‘“_ﬂ"')) holds. Hence

i(afk» ﬂ‘k+l_ﬂ'h)

E[fI e | Ht,]

_ E[E(ez(az,,y Bty 1—Bty) |L%’tt,,) :I;:[: ei(at,,r ﬂthl—ﬁt,,)lj'ts]
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— E[ei(atn, /91,,+1—ﬂt,,)]E['ﬁ ei(at,,, /9t,,+1—ﬂ‘tk)

k=1

| M) = -

i(atky ﬂtk+1_ﬁfk)

=}:'[1E[e 1.

This proves that o {3,,,,—B:,; k=1, -+, n} is independent of . The proof
is complete.

Lemma 2.2. Under assumptions (2.1)~(2.4), (v;, F,, P) is an N-vector
standard Wiener process. Furthermore ¥ and o{v,—v,; s<u<ov<T} are inde-
pendent.

Proof. From (2.6) we have for s<¢,
@. 7) E[p,|F.] = ys+E[St7zudu—[—w,—ws|EFs]

where h,—h,—h,. The second term on the right hand side of (2.7) is clearly 0
since E[h,|F,]=0 and E[w,—w,]=0. The last statement is true because
w,—w, is indepent of F,. Hence (v,, F,, P) is a martingale, that is (v{, F,, P)
is a martingale for each 7, 1<i<N. Now let J[],={#} be a finite partition of
[S, t] and let 0‘,‘.":; (Di,:ﬂ—v’.,z) (v’.,zﬂ— Dj,z).

Then making use of (2.3) it is easy to see

1 o
B[ dul

n
k

tends to zero as # —oo and max (#.,—#;)—0. A direct calculation shows
k

(2. 8) E[IX (w",zn—w",z) (w/y, ,— W) —(2—9)8;;1"] = 0.
It follows that

2. 9) lim E | o4 —(t—5)8;,| = 0.

Finally since
Bl(vi—v}) (wi—2))| L] = E[o7)|F.]
for every II, and since
(2.10) E[| E(ct/— (t—5)8,,1 F,) | <E| ot/ — (t— )3, ] = 0
from (2.9) we obtain
(2.11) E[(vi—v3) (i—vd)| L] = (t—9)3;; .

The conclusion of the lemma follows from the previous lemma.
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ReEMARK 2.1. It is worth pointing out that Lemma 2.2 can be established
under weaker conditions on (k). First of all, in proving that (v;,, &,) is a
martingale we need the existence of a jointly measurable modification of

E(h,¥,). We need it and also the finiteness of STElh“[du to validate the

steps which show that the second term on the right hand side of (2.7) vanishes.
Given this, one sees that for (v;, &,) to be an L*-martingale it is necessary and
sufficient that for each s<#,

2.12) Elg’ Frudu|? <o .

Assuming these conditions the proof of the lemma is modified as follows; Defin-
ing o4’ as before we have

Lkt

' hudu| (2| S: (h,—h)du|)

”
k

S Sthﬂ ﬁudulzgmaxlg
k tﬁ k

7
1A i1 s T _
Ihuldu—l—-maxs \h, | dud] [S \Ti | du]
k t 0

n
k

< [max| St

k
#

which tends to 0 a.s. as max(f;,,—#)—0. Secondly (2.8) holds. Hence it
k

follows that there is a sequence [], of partitions such that o’—(t—5)3;; a.s.
Now the sequence o4’ of random variables is known to be uniformly integrable
(see [16], Appendix), so that (2.10) holds. The rest of the proof is unchanged.
It has been shown that with the measurability condition mentioned and the
assumption

T
(2.13) SO Elh,|du< oo

(vsy Fyy P) is a martingale which is square integrable if and only if it is a Wiener
process

ReEMARK 2.2. It should be noted that the innovation process v; can be
calculated from the observation data z,, s<t. In fact, since v, is an (<, P)--
martingale, we have

limL Ez,.,—2,|9.] = lim
P} A0

1 ¢s+n A
ZS Eh|F.)du=h, as (s ).

This shows that the two processes St h.ds and v, are determined directly by the
0

observation data z,, s<t.
By the definition of the innovation process, v, is (&,)-measurable. It is
conjectured that the converse would be also true, that is F,=o{r,; s<#}. It
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seems to us that no satisfactory result is known to this problem. We shall prove
in the next section a slightly weaker assertion: Every separable &,-martingale is
represented as a stochastic integral by the innovation process. This will play a
fundamental role in deriving stochastic differential equation for the filtering
process. (Sections 4 and 5).

3. Stochastic integral representation of a separable martingale on
Q, &, P)
Theorem 3.1. Under conditions (2.1), (2.2), (2.3) and (2.4) every separable

square integrable martingale (Y,, F, P) is sample continuous and has the
representation

¢ N ¢
G. 1) Y,— E[Y, =S (®@,, dv,) EES Ot dv
0 i=1Jo
where
T
@. 2) S E|®,|%ds< + oo
0

and ®,=(Dy, -+, DY) is jointly measurable and adapted to (F,).

Since our proof is based on a theorem of Girsanov [5], we shall state it here
in a modified form for convenience of later reference.

Lemma 3.1. Let (B,) (0<t<T)be an N-vector standard Wiener process on
(Q, M,, P) and ¢(t, »), a jointly measurable N-vector process adapted to (M,)
and further satisfies

T
3. 3) S E|p,|dt < oo.
Define
t 1 ¢
(.4 o) = e [ 0w 48— 1T 1oulidu],
3. 5) T, = inf{t; 0<t<T, at(p)>n or S'|<ps|2ds>n}

=T if the above set {---} is empty.
Then for each n the measure
3. 6) P, = af*dP
is a probability measure and the process

tATy,

(3. 7) Br =8~ puu

0
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is an N-vector standard Wiener process in (M,, P,,).

Proof. Set ¢}=, I}, r,1(t), where I is the indicator function of the set
[0, T,]. Then af""(p)=ai(e") and Bi=R,— St @ids holds. We shall drop
]

the index 7 for notational convenience in the following discussion. Ito’s formula
[14] implies

t
3. 8) o =1+{ (ai., ap.).
The last member is a square-integrable martingale because
T T
[ By, 0as<nwB ([ 1,105 ) <nt.
0 ]

Therefore we have E(ad)=1 by (3.8), proving that P is a probability measure.

We shall next prove that 3, is a square-integrable (.,, P)-martingale. The
square integrability is clear since af is dominated by n. By the definition of
the conditional expectation,

E(B,| M) = E(at Be| M,) ()™, t>s

so that 3, is an (H,, P)-martingale if and only if a§ B, is an (H,, P)-martingale.
Now Ito’s formula implies

3. 9) S' (@3@., dB,)% B = P-martingale +S' bt ds

and

t t s
(3.10) (S (a} o, dﬁs)) X S ptds — P-martinga1e+j'(s (., d,B,,))¢>§ ds
0 0 s 0
= P-martingale+ St oy ptds— S’ pids,
0 0
the last equality following from (3.8). Thus we get

a8t = (14 (@t 9., a8 )i [ otds) = P-martingale

by (3.9) and (3.10), proving that (B,, <M,, P) is a square integrable martingale
with continuous sample paths. Now the argument in the proof of Lemma
2.2 can be applied to the present case, replacing (v,, &, w,, F,, P) by
(Bss — e Bey My, P) there. We then have

E[(Bi—B%) (Bi— B M) = (2—9)3;; .

The proof is complete.
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Proof of Theorem 3.1: Set 8,=v,, p,——h, and H,=F, and apply the
preceding lemma. Then we see that
AT,

(3.11) = v'-f—s by ds

0

is an (Z,, P,)-standard Wiener process. Set F'=c{z"; s<t}. Itis well
known that every separable square integrable (F7, P,)-martingale ¥, is sample

o (.
continuous and is represented as Y=S (&%, d=7)". Note that 2,=2" holds for
0

s<T, and apply Doob’s optional sampling theorem. Then we see that

Vonr, =S:AT" (@, dz,) holds and it is an (%247, P,)-martingale, where
(3.12) Fenr, = BT} BN{T,<s}eF; forall 0<s<T}.
On the other hand, it is easily seen that

Finr, = o{&iar,; 0<s<t} = o{z7,; 0<s<t} = Fypr,,

where the o-field &, 7, is defined by (3.12) replacing F7 by &F,. We have thus
seen that if Y, is a separable square-integrable (F,,r,, P,)-martingale, it is
represented as

_ AT,
(3.13) Y, = Pz, =$0 (@, dz,) .

Suppose now that Y, is a separable square-integrable (<,, P)-martingale
and let ¥,=(a§)"'Y,. ThenY,.r, is a separable square-integrable (F,nz,, P,)-
martingale as we have noted in the proof of the preceding lemma so that it has
the representation (3.13). Consequently,

o tATy tAT, N
(3.14) Vinr, = | (@5 do)+ | (@2 ho)ds.
0 0
Ito’s formula applied to Y, r,=a§"7*¥Y,r1, enables us to write
tA
0

tAT, Ty
Your,= | (@ dv)+ (""" wrds

The second term of the right hand vanishes a.s. since it is an (&,,7,, P)-mart-
ingale with bounded variation ([12], Corollary to Theorem 1.3). We have thus
obtained

tATy
(3.15) Yor,= | (@ dv),

T
where 5 E|®}|°ds<E[Y%]<co. The uniqueness of the representation (3.15)
(]

1) We may and do assume that ¥4=0. The same remark is applied to other martingales.
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yields @y=®7 if s<T, and n<m, i.e., there exists @, adapted to (Z,) such that
T
&, =% for s< T, and j E|®,|?ds<co. The proof is complete.
0

Corollary to Theorem 3.1. Every separable martingale (Y,, F,, P) is
T

sample continuous and has the representation (3.1), where S | D, |2ds<oo and D,
0

is jointly measurable and adapted to (F,).

The proof is based on Theorem 3.1 and follows, almost without change,
the arguments in Theorem 3 of J.M.C. Clark’s recent paper ([1], p. 1291). To
avoid misunderstanding it should be pointed out that Clark has proved the
theorem in case F,=ao{v,; s<t}. We are not sure in the present context if
the above two o-fields coincide or not.

In many applications, it may happen that the signal and the observation
processes are related in more complicated forms. We shall introduce in the
next two sections two types of observation processes and derive stochastic
differential equations satisfied by the filtering processes.

4. A stochastic differential equation for the non-linear filtering

problem

The signal process that we consider in this section is denoted by
xy(w), t=[0, T] and is assumed to take values in a complete metric space S.
We assume as in Section 2 that

(4 .1) For each s, the o-fields
ot w U<}, o{w,—w,; s<u<v<T}

are independent. The observation process is again denoted by 2, and is defined
by (2.1), where k() is an N-vector process satisfying (2.3) and

(4. 2) For each s<T, h o) is o{x,, w,; u<s}-measurable.

Then conditions (4.1) and (4.2) imply that the new observation process z, satisfies
(2.4). Thus the three processes (w,, k,, 2,) satisfies conditions (2.1)~(2.4) of
Section 2.

Let us introduce the following notation for the family of o-fields.

4. 3) TF,=o{z,; s<t}, G, = a{x,,w,;s<t}.
Let f be a real measurable function on S such that
4. 4) E|f(x,)]?<oo for all 0<#<T.

The function f is said to belong to space D(A) if there exists a jointly (¢, »)-
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measurable real function A, f(w) adapted to o(x,, 2,; s<¢) such that

(4. 5) S:Elﬁ,f]’dt<oo
and
(4. 6) M,(f)=fx)—EUf )| F)~ | A.fds

is a (g, P)-martingale. Such a function A,f(w) is at most unique up to
(¢, ®)-measure 0. We assume in the following that D(A) is non-empty. 'Then
D(A) is a linear space and A, is a linear transformation from D(A) into L*(Q)
for a.e. t.

RemARK. Let x'=(x,, 0<s<t) and 2*=(z,, 0<s<t). Then in case that
((«*, #*), F,, P) is a Markov process, the above operator A, is a stochastic
analogue of the generator defined for the function f(x,) depending only on the
component x,. We shall discuss this problem in Section 6.

Lemma 4.1. Let f = D(A) and let
_ to
(4.7 W)= Elf)| FA-Blf )| F)- | BLA.719.10
Then (M,(f), F., P) is a square integrable martingale.

Proof. The square integrability of (4.7) is obvious from (4.4) and (4.5).
Observe that the o-fields (Z;) are monotone and F,C g, Then for s<t¢,
E[M,f)— M/f)|F,] coincides with

E[f(x)| F]~ E[f(=)| 5.~ E[ || BIAfIZ.11ul S, |

— B[ fw)— f(x)— | Auf du 5,

= E[M,(f)~ M(f)|F]]
= E[E[M,(f)—Mf)| @)1 F.],

the last term being zero since M,(f) is a (&;, P)-martingale. The proof is
complete.

In the proof of the principal theorem of this section we shall need a fact
which it seems convenient to separate out as a lemma although it is hardly more
than an observation and follows directly from H. Kunita-S. Watanabe [12] and

Meyer [16].

Lemma 4.2. Let (M,(f), G,, P) be the square integrable martingale of (4.6).
Then there exist unique sample continuous processes <M(f), w'> (i=1, .-+, N)
adapted to (G,) such that almost all sample functions are of bounded variation and
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M,(f)wi—<M(f), w'>; are G,-martingales. . Furthermore each {M(f), w*), has
the following properties: It is absolutely continuous with respect to Lebesgue measure
in [0, T). There exists a modification of the Radon-Nikodym derivative which is
(¢, )-measurable and adapted to (G,) and which we shall denote by D{f(w). Then
using the vector notation D,f=(D}f, ---, DYf),

(4. 8) M(f)yw = Dfss  as
where

T ~
*. 9) S E|D,f|*ds< o .

If the process (x,) and (w,) are completely independent then a.s.

(4.10) CM(f), wh = 0.

Proof. The first part of the lemma, (4.8) and (4.9) follow from [12, 16]
upon noting that (M,(f), G;) and (v;, ;) are both square integrable martingales
and that {w’, w>,=18;;,, To show (4.10) it suffices to prove the equivalent
assertion that (M,(f)w;, G;) is a martingale. For s<¢, a direct calculation shows

E[(M(f)— M(f))w:—w,)| ;] = E[Mf)w,| G} — M(f)w. .

On the other hand, the assumption of the complete idnependence of (x,) and
(w;) processes implies that w,—w, and G,V o {M/(f)— M,(f)} are indpendent.
Hence

E[(M(f)—M(f)) (we—w,)| Gs] = E[Mf)— M(f)| G E[w,—w,] =0

a.s., thus proving (4.10).

The lemma just proved indicates the possibility that in the situation where
in place of the independence of (x,) and (w,) we only have (4.1) the stochastic
differential equation we seek might have a more general form the one derived in
[10]. As we shall see below this is indeed the case.

In our next theorem it will be understood that we are always considering
separable versions of the martingales of M,(f) and M,(f). We shall also use the
shorter E*( - ) for E( - |<)).

Theorem 4.1. Assume (4.1), (4.2) (and (2.1), (2.3)). If f=D(A) satisfies
(4.11) STElf(x,)h,lzdt<oo

then E*[f(x,)] satisfies the following stochastic differential equation

(412) B = B+ Branes
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+ (B Gh) ~ B(F @) )+ E(Duf)), dvs).

Proof. The equation (4.12) is equivalent to that M,(f) equals the last
term in (4.12) involving the stochastic integral, which we shall denote as M¥(f).
The proof is then reduced to proving E[M(f)Y,]=E[M#(f)Y,] for all Y, such
that

(4.13) Y, — S' (@, dv;)  (@,: bounded),

since such Y, is dense in L*(¥,, P) (up to constants) by virtue of Theorem 3.1.
We shall show this calculating E[(M,(f)— M,(f))Y,] and E[M(f)Y,] separately.
In what follows we write M,, M, and M¥ suppressing f as it is fixed throug-
hout the argument. Using (4.6) and (4.7) a simple calculation yields

(4.14) E[(,—M,)Y,] = E[S' (Y,— Y,)A, fds] :

From (4.13) writing ¥, — S’ (@, dws)—i—st (®,, h,—hy)ds the right hand side of
0 0
(4.14) is reduced to the form

t t t t

4.15 B A1 @, dwlast+[( 2 b h)du)ds |
( ) So L sf SS( u wu) S+ SO A5f<$s (‘I)u u hu) u) s
The integrand in the first term of (4.15) is zero because A,f is G,-measurable

¢ .
and E(S (@, dw,,)lg’s>=O. The latter fact follows since S’ (®,, dw,) is a Gi
martingale. The quantity inside the brackets in the second term of (4.15)
becomes (after an integration by parts) St |:Ss A.f du](@s, h,—h;)ds. Hence the
right hand side of (4.14) equals
(4.16) EU' U A, fdu] (@., hs—l;s)ds] .
On the other hand it is easy to verify that

@417)  E(M,Y,) — E[M, S' (@., dfws)]—{— E U' F(x,) (@, hs—fzs)ds]

—E[S' (S A, fdu) (@., hs—izs)ds] .

0

Consider the right hand side of (4.17). From Lemma 4.2 and the properties of
stochastic integrals the first term is equal to

(4.18) EU' (@, D, f)ds] — E[S' (@,, E(D,f| gs))ds]
=8| v.{ @Dy, )]
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The second term equals

#19) B[ @ BUe) s | = B[ V.f @ 1f5) =), dvs) |

From (4.14), (4.16), (4.17), (4.18) and (4.19) we immediately obtain E[M,Y,]=
E[M¥Y,]. The proof is complete.

5. A filtering problem connected with the observation process
determined by a stochastic differential equation

In this section we shall discuss the filtering problem for the case when the
observation process denoted by y, is determined by the following form of a
stochastic differential equation

(5.1 dy, = a(t, x,, s<t,y,, s<)dt+b(¢, y;, s<t)dw; .

As we shall see below this type of the filtering problem is reduced to the former
one with a suitable modification.

The sample paths x, of the system process are assumed to take values in
a separable, complete metric space S and to be right continuous with left hand
limits. We donote by C the space of all continuous mappings from [—T, 0] to
RN with the usual uniform topology, and by D the space of all right continuous
mappings with left hand limits from [— T, 0] to S, the topology of which is that
of Skorokhod [18]. Let a(t,g,f) be an N-vector valued functional in
[0, TTx D x C and b(¢, g, f), an N X M-matrix valued functional in [0, T]x DX C
satisfying the following conditions.

(5.2 aef ) and &(¢, g, f) are Borel measurable in [0, T]Xx Dx C
There exists a bounded measure I" on [ — T, 0] and a positive contant K such that
- 3) |a(t, &, f)—alt, & )|+ 101, 8, /) ~b(t, &, /)1*

=k( _1f©-F@Iare
G4 latg N+ e NI=KA+] 1 FOIre+ L6917,
where L(t, g) is a Borel measurable real valued functional in [0, 7] X D such that

S:E|L(t, ) |2dt < oo .

Here n,xe D is defined for (x;) by

Tx(U) = Xy, if —t<u<0
= x, if —T<u<-—t.
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(Note that L(2, z,x) is jointly (¢, )-measurable. The norm of the N X M-matrix

N, M
b=(b;;) is defined as |b| = V 2163

Let w, be an M-vector standard Wiener process satisfying (4.1). The
dimention M is assumed to be larger than N. A stochastic process y, with
continuous paths is called a solution of the stochastic differential equation

(5. 5) Ve = 77+S' a(s, wyx, m,y)ds+ St b(s, mx, m,y)dw,

if o{y,; 0<s<t} is independent of o{w,—w,; t<u<v<T} and satisfies the
above formula. Here 7 is a constant.

Lemma 5.1. Under conditions (5.2) ~ (5.4), there exists an unique solution
e for (5.5) such that it is o {x,, w,; 0 <u<t}-measurable and square integrable.

Since the lemma can be established by the standard method of successive
approximations, we shall state the outline of the proof.
Set y,(t)=7 and

Y= n+ St a(s, mgx, £, y" s+ St b(s, yx, m,y* V)dw,, n=1.
(1] 0

Then a direct calculation show that p,(f)=sup E|y;— y77|* satisfies
s<t

pan) ZK(THDIT| pulo)ds < <K@+ DIITI 2L
making use of (5.3) and
PO SZR{(T+1) (14 7)TlI+ || BILGs, )75} <+

making use of (5.4). Here ||T'|| denotes the total mass of the measure T.
Therefore, y? converges to a continuous process Y, and it satisfies (5.5) by a
standard argument. It is clear that y, is o{x,, w,; s<t}-measurable. The
uniqueness can be proved similarly.

As before we shall denote the o-fields o{y,; 0<s<#} as &, and

G,=o{x,, w,; 0<s<t}. Let us further introduce the following conditions.
(5. 6) b(t, g, f) does not depend on gD .

(5. 7) The determinant of N X N-matrix ¢=>bb* is not zero for all ¢ and f,
where & is the transpose of b.

(5. 8) S: E|l(t, m, 7,y)|? dt<oo, where i (¢, g, f)=c""(t, f) a(t, g, f) -
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Lemma 5.2. Assume (5.2)~(5.8). Set

5. 9) wl = g’ (s, m, Y)bt, =, y)dw, ,
L]

(5.10) ol = S' W(s, 7., m,y)ds+w] .
0

Then w! is an N-vector standard Wiener process adapted to (G;) such that
o{w)—wl; s<u<ov<T} is independent of G,. Furthermore three processes
(w?, hi, 2}) satisfies conditions (2.1)~(2.4).

Proof. Since w,— w, is independent of G by the assumption, w, is a G-
martingale. Since ¢,"/?b, is G,-measurable by Lemma 5.1, the process w; is also
a G,-martingale. Now by the definition of the stochastic integral, we have

Bl(wii—wf) i —wi?) | 6] = B[ | (@ bbie, ), du) 4, |

= (t—5)5;; -
Hence we have obtained the first assertion. Since {/: u<s} is G,-measurable,
condition (2.4) is satisfied for (k{, w;). Condition (2.3) for the process A; is
obvious from the assumption (5.8), thus proving the latter assertion of the lemma.

Set
(5.11) Fl = o{25; 0<s<t}
and define
(5.12) vi=si—|iids  where hi= En|F7].

Then Lemma 2.1 shows that v/ is a standard Wiener process adapted to (7).
We prove

Lemma 5.3. ,=%] for all 0<t<T.

Proof. Since y, and 2/ are related by
(5.13) 3, = ,H_S: e dyl o zl— S'c, dy,

and ¢,7"? is & -measurable, it is clear that F/CSF,. For the proof of the
s s p

converse relation, we shall apply Lemma 3.1. Set B,=v/ and <p,=—fz§. The
tATy o ~

lemma states that 2/"=v} —l—S hids is an (¥}, P,)-standard Wiener process.
0

Then the solution y; of the stochastic differential equation
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Y= 7+ St cV¥(s, m y")d=L"
0

considered in (F/, P,) exists uniquely and o{y?; s<t} Co{2/*; s<t} by Lemma
5.1, since ¢'*(t, f) is Lipschitz continuous in the sense of (5.3) and (5.4) at least
locally. On the other hand, since 2{*=z2/ holds for t<T,, y,=y: holds for
t< T, by the uniqueness of the stochastic equation. This implies F} 7, D F;ar,-
Since T, { T as n—occ, we get F{DF,. The proof is complete.

We have thus reduced the filtering problem for the observation process y,
to that for the new observation process z/. Theorem 4.1 is then modified as
follows.

Theorem 5.1. Assume (4.1) and (5.2)~(5.8). If f belongs to D(A) and
satisfies STE | f(x)hl|?dt < oo, then E'[f(x,)]=E[f(x,)|F,] satisfies the following

stochastic differential equation
(5.14) B = EIf(s)]+ | EIA.f1ds
+{ e B f e )a) — E(f ) EYa) +0.E°D. S, dv)

where v} is the standard Wiener process determined by (5.12).

Proof. The only difference between (4.12) and (5.14) is in the term
corresponding to D,f. In (5.14), the N-vector D,f=(Df, ---, D¥f) is defined
as the Radon-Nikodym derivative of {M(f), w>, with respect to ¢, which is
related to that of {M(f), ">, in the following form (See [17, p 458] or [15, p 79])

<M(f), wy, = e, b, aM(f), W,

Therefore D, f in (4.12) corresponds to ¢,"?b,D,f in (5.14).

ExampLE. Let us consider the case when the system and observation
processes are solutions of a stochastic differential equations of the type considered
by Fleming and Nisio [3].

(5.15) dx, = A(t, nx, =, y)dt + B(t, =%, =, y)dw, ,

(5.16) dy; = a(t, nx, m;y)dt+b(t, =, y)dw, .

Here w, is an M-vector standard Wiener process, a and 4 are N and (M-N)-
vector functionals (M > N) respectively, and b and B are NX M and (M-N)X
M-matrix functionals respectively. We assume similar Lipschitz conditions as

(5.2) and (5.3) for both of (a, b) and (4, B). For the initial random variables,
we shall assume that y,=0 and that
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(5.17) %, is independent of o{w,, 0<s<T} .

Then the equation (5.15) and (5.16) has an unique solution (x,, ¥,) which is
measurable with respect to o{x,, w,; s<t}. If additional conditions (5.7) and
(5.8) are imposed on a and b, Theorem 5.1 can be applied to this case. We
shall obtain explicit representations of A, and D. The results are that if f is a

C?-class function on R™~V, it belongs to D(A) and

~ M-N 1 x-~
(5.18)  Af(w) = 2 Ailt, 7w, m)f o)t 3 (BB (t i, my)f i ()
and

(5.19) Dif(w) = MEN B, (t, mex, m:y) f1, (%) -

To prove this, apply Ito’s formula to f(x,), we get
t _
F) = f5) = 3 | B ms, m) e dwi+ || Af(o)as,

where the integrand in the last term is the right hand side of (5.18). Since the
first term on the right hand side is a G,-martingale, we see that

t
M,(f) = ()~ f(x) . A.1ds
is a G,-martingale. 'This proves (5.18). The proof of (5.19) is immediate from
M), w =3 | Bafs, ms, may)fa(w)d<w, w,

=3 | Buts, mn, ma)fry(w)as

Using the vector notation, ¢,”"?b, D, f=c, "/*bB*f’, where B’ is the transpose of
B and f'=(f4, -, f4y). Therefore, the term involving D,f disappears if and
only if bB*=0.

ReMARK 6.1. There are many other ways of choosing N X N-matrices ¢"*

and ¢ *? in discussions of this section. In fact, in case where the dimmension
M is equal to NV, it is more natural to replace ¢'/* and ¢™'/* by b and b™* respectively.
‘More generally, if we choose an N X N-matrix d with the Lipschitz condition
(5.3) such that ¢c=dd’, then all discussions are valid replacing ¢* and ¢/ by d
and d7' respectively. It should be noted that the condition (5.8) does not
depend on the choice of such d. Although the the innovation process (5.12)
is changed by a such replacement, the the expression (5.14) does not depend
on the replacement. In fact, the last member of (5.14) is equal to
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¢
(5.20) So (E°[f (x)a,)— E°[f (x,)]E°[a,]+-b,E°[D,f], ¢7'dy,— 3 E°[a,]ds) .

6. Case of Markov Process

We now specialize the discussion of the previous section to the case where
the pair (x;, y;) of the signal process x, and the observation process y, is Markov
with repsect to (G;, P). In this context the stochastic differential equation has
a more definite meaning. We shall show in this section that A, f(w) is replaced
by A,f(x:, y;) where A, is the generator of the process (x;, y,) and that with
additional conditions Dif(t, ») is replaced by D’ f(t, x,, y;) where D' f(t, x, y) is
a measurable function in [0, T]X S X RN. D’ may be regarded as a first order
linear differential operator if »,=(x,, y,) is a diffusion Markov process.

Let us first investigate conditions for »,=(x;, y,) to be Markov.

Lemma 6.1. Suppose that (x,) is a Markov process which is completely
independent of (w;). Assume further that coefficients a(t, g, ) and b(t, g, f) of
(5.2) depend only on the values f(0) and g(0) and that the measure T is concentrated
at the point {0}. Then ((x,, y:), G:, P) is a Markov process.

Since the proof is carried out by a standard argument of Markov processes,
we shall state only the outline. Let us first notice that the latter condition of the
lemma states that a(t, z.x, =;y)=a(t, x;, y,) and b(¢, =,y)=>0b(¢, y;). Then the

equation (5.5) is written as

6. 1) ve =t aw, 2 y)ay+ | b, y)iw,

Now let {Q,} be the regular conditional distribution relative to (&,, P), i.e.,
0.(4), A J is G,-measurable for each A4, a probability measure for each w and
that Q,(4)=P(4|4,) a.e. (See[20]). Since o{x;; s<T} and o{w,—w,;
s<u<v<T} are independent relative to Q,, for a.s.», (,) t>s may be considered
as an observation process related to the signal process (%, Q,), £>s, by the
formula(6.1). Then the uniqueness of the above stochastic differential equation
and the Markov property of x, proves that the joint distribution of (x;, ¥,), >§
relative to the measure Q, depends only on the initial value (x,, y;) (together
with the transition probability function of x, and coefficients a(s, x, y) and
b(s, ¥)). 'This shows the Markov property of ((x;, ¥.), G, P).

ReMARK 6.1. The conditions of Lemma 6.1 are not always necessary for
the Markov property of (x,, y,). For example, in the case of Fleming-Nisio, if
we assume that all coefficients a, b, 4, B depend only on ¢, the values f(0) and
2(0), then the process (x;, y,) is Markov as is well known. However the process
x, is obviously not Markov.

Let P(s, 7; t, B) (n=(%, y)) be the transition probability function of (7,)
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assumed jointly measurable in (s, 7, #) and let

Pif(n) = g P(s, 75 t, d7')f (') .

A family of linear operators A, t=[0, T'] defined in the space of real valued
measurable functions on Sx R” is called an extended generator if

(6. 2) Pif(r)— f(n) = || PiA.f(r)du

is satisfied for all 0<s<#<7T. We denote by D(4) the set of all f depending
only on the first variable x and satisfying (6.1) together with

(6. 3) E|f(n)|?<+o0 for each ¢ in [0, T,
© 4 [ E14,f(n) de <o

Set

6. 5) M) (@)= f()— ()~ Auftn)is.

Lemma 6.2. M,(f) defined by (6.5) is a square integrable (G;, P)-martingale.

Proof. Since feD(A) we write f(x,) for f(n,). Note, however, that
A,f(n) need not involve x. From this observation, the fact that (»;, G;, P) is
Markov, and (6.2)~(6.4) we have the following chain of relations. For 0<s<1,

6. 6)  EMA)| G = M(D)+E| fx)—f(x)— Afr)ani ]

The conditional expectation on the right equals

(6. 7) BIf(x)| @) f()—E[ | Aftn)aui 4]
But this is zero since
6. 8) E[f(5)| 4]~ f(x) = Pf(n)—f(n.)

= [ Pra, s )au

— . BLAf ()1 Gau.

Hence the right hand side of (6.6) equals M (f). The square integrability of
M,(f) is obvious from (6.3) and (6.4). The lemma is proved.
The above lemma shows that D(4)c D(A) and that A,f(7,)=A,f(o),
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where A, is the operator defined is Section 4. In order to investigate the
property of the operators DF, it is necessary to quote rather delicate but deep
results concerning additive functionals in the theory of Markov processes. The
following terminology and results are from Motoo-Watanabe [17] and Meyer
[15]. It is well known that the space time process (2, x,, y,) is stationary
Markov. We assume

(6. 9) (¢, %, y;) is a Hunt process with Meyer’s Hypothesis (L),
(6.10) M,(f) is o {x,, w,; s<t}-measurable.

By the above two conditions, each i-th component w! of w, together with M,(f)
is an additive functional of the process 7,. Then the process <M(f), w');
introduced in Lemma 4.2 is again an additive functional that is absolutely
continuous with respect to ¢ for a.s.o. Then there exists a jointly measurable
function Dff(t, x, ) such that

(6.11) CM(f), w5, — S’ Dif(s, x, y)ds  as.

(Such Dif(s, x, y) is determined uniquely a.s. relative to a suitable measure
called “canonical”. See [17], Theorem 7.2.)
Theorem 5.1 yields the following result for the Markov process case.

Theorem 6.1. Let y,=(x,, y,) where v, is given by (6.1) be a Markov
process.  Assume condition (4.1) and let the coefficients a and b satisfy (5.2), (5.3),
(5.4), (5.7) and (8.8). If f belongs to D(A) and ST E| f(x,)h!|*dt < oo, then E'f(x,)

0
satisfies the stochastic differential equation (5.14) where A, and D, are replaced by

A, the generator of (x,, y,) and by the operator D, whose components D} are defined
by (6.11).

ReMARK 6.2. If, as in Lemma 6.1, (x,) and (w,) are completely independent
it follows from (4.10) of Lemma 4.2 that the term involving D, in the stochastic
differential equation of Theorem 6.1 disappears leading us to the case treated in
[10].

ExAMPLE (c.f. Liptzer-Shiryaev [13]). In case that coefficients a, b, 4 and
B depend on (¢, f(0), g(0)) in Fleming-Nisio’s case, the operators 4, and D are
given by

A4S ) ="8] Al % )20y 5 BB (b % )2

Dif(t, %, 3) =53 Bults 2 9)f4().

where f is a C*-class function in RM~¥,
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ReMARK 6.3. It is possible and sometimes convenient to regard the pair
of processes (x,) and (w,) as a Markov process under more general settings by
enlarging the state space. Let *=(x,, s<t) and y*=(y,, s<?¢). Then we can
prove that ((¥*, %), G;, P) is a Markov process by a similar argument as in
Lemma 6.1, making use of the uniqueness of the solution (5.5). Also, the case
that ((x,, *), &G,,P) is Markov is discussed in the problems of stochastic control
based on a partially observable process. Such a case occurs if the coefficients
a, b, A and B of Fleming-Nisio depend on ¢, f(0) and g. It will be obvious that
the discussions of this section can be applied to these cases.
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