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1. Introduction. In [5] Schwarzenberger investigated the problem of
determing whether a real vector bundle over the real projective space RP" can
be extended to a real vector bundle over RP™ (n<<m). In[3], he also investigated
the case of the complex tangent bundle of the complex projective space.

The purpose of this note is to prove the non-extendibility of a bundle over
lens spases mod 3 by making use of Schwarzenberger’s technique ([5]).

Let S*** be the unit (2z+1)-sphere. That is

S2”+1 = {(2’0, --',2',,); -"20 lzilz = 1’ z,-eC for all l}

Let v be the rotation of S***' defined by
ry(zo’ o, z”) — (ezfi/pzo .-, ezﬁ/pz”) .

Then v generates the differentiable transformation group T of S*** of order p,
and lens space mod p is defined to be the orbit space L*(p)=S**/T" It is a
compact differentiable (27--1)-manifold without boundary and L"(2)=RP**'.
The Grothendieck rings k\é(L”( ), K(L"(p)) were determined by T. Kambe
[4]. We recall themin 2. Let {2, -+, 2,} € L*(p) denote the equivalence class
of (2, -, 2,)E 8™, L"(p) is naturally embedded in L"*'(p) by identifying
{20y *+*5 2o} With {2, +*-, 2,, 0}. Hence L*(p) is embedded in L™(p) for n<<m.
Throughout this note we suppose p=3. Now we state our theorems which
shall be proved in 3 and 4.

Let ¢ be any ¢-dimensional real bundle over L*(3). Let p({) be the mod 3
Pontryagin class of ¢

@) = ;Pj(g) where p (£) = (—1) C,,((®C) mod 3.
From the property of the cohomology algebra H*(L"(3): Z;), we have

Pj(gy: dszj ’
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where d ;€ Z; and x is a generator of H*(L*(3): Z). Then there exists an integer
s such that

(1) p@) = 1+da+-+da* for 0<25<t.
Then we have the following

Theorem 1. Let ¢ be a t-dimensional real vector bundle over L"(3). If
2t<n-+1, then we have

p©&) = (1+x%)° mod 3 for some integer s 0=2s=t.
Corollary 2. Under the assumptions of Theorem 1,
PE) = p(naD-+(s)---Dnyn)  for some 0<2s<¢,
where we denote by D a Whitney sum of n;n. (See 2 for the definition of 7.».)

For a pair (X, Y) of compact spaces, a bundle {y over Y is said to be ex-
tendible to X provided there exists a bundle {x over X such that

gXlYgCY)

where we denote by | the restriction to Y.
Let a be a real number. We denote by [a] the integral part of a. Let b
be an integer. We denote by »,(b) an integer g such that

b=r-39 where(r,3)=1.

For integers ¢ and m, define

it m) = Min((i=[ ] 1) == 5 [}l (i )]

where t<<i<<m, i=0 mod 2 and /=1 mod 6.

Theorem 3. Assume that n, m and t are the positive integers such that

(2) 2t<m+1

(3) n=0 mod 4

(4) m=0 mod 4

(5) |2 ]z[2]+64 m.

Let ¢ be a t-dimentional real vector undle over L™(3) which is extendible to
L™(3) (n<m). Then ¢ is stably equivalent to
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NnD e (s)--Dnn  for some integer s (0=<2s<1¢).
As an application of Th. 3, we obtain the following

Theorem 4. Let ¢ be a t-dimensional real vector bundle over L*(3) (n%0
mod 4). Assume that { is stably equivalent to

NP e (§)oe- Py for some s>[—;—] .
Then ¢ is not extendible to L*“™(3), where

(t, n) — Min {mgzn m=£0 mod 4, [%]493@, m)g[%]} ,
Next we show

Theorem 5. The tangent bundle T(L*(3)) of L"(3) is mot extendible to
Leem+™(3) for n=0 mod 4. And T(L"(3)) is not extendible to L*"**(3) (n==0
mod 4).

2. The structure of Eé(L”( p)). The structure of I?é(L”( p)) is stated
as follows [4]. Let CP” be the complex projective space of complex z-dimension.
Let 7 be the canonical complex line bundle over CP”, (%) the real restriction of
7. Consider the natural projection

z: L*(p) — CP*.
Define 7 »=n*(r(n))e KO(L"(p)) where =*: KO(CP™)— KO(L"(p)) is the
induced homomorphism of =. Let &, denote the stable class of 7., i.e.,

Ga=mpn—2E I’C\é(L"(p)). We recall 7, »@1=(n+1)n.» where 7,» is the tangent
bundle of L*(p). The theorem of T. Kambe (Th. 2, [4]) is as follows:

Theorem (Kambe). Let p be an odd prime, g=(p—1)/2 and n=s(p—1)+r
0=r<p—1). Then

(ZPS+1)[7/2]+(Zps)q—[r/zl oo (Z‘.f nEEO mod 4)

E’ L =
O () { Z A (Z ps )V (Z )2 U eeo(if n=0 mod 4)

and the direct summand (Z ps+1)U'"?) and (Z ps)? U/ are additively generated by
Guy oy 37 and 5,171 ... 5,7 respectively. Moreover its ring structure is
given by

5,0 = é —(2¢+1) <Q+i_1>5”", M =0,
=1 (21—1) 2i—2

In the theorem, (Z,)° indicates the direct sum of b-copies of cyclic group
of order a. Let p=3 in the above theorem. If 730 mod 4 then
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RO(L"() = Zy, s= [%] .

and Z is generated by 4,. Its ring structure is given by
o, =(—3)a, =0.

3. The proofs of Theorem 1 and Corollary 2. From Th. 11.3 in [2],
we obtain the following equality. (For the proof, see Proposition 5, in the last
part of this section.) Let @®4: HYL"(3): Z,)—>H****(L"(3): Z,) the k-th
reduced power operation mod 3. Then we have

(6) ®3(2+(8)) = (| 2 2aE)PmENLAE)+ 23 2E) ()

for 0=<k=<s.
Let s be an integer such as (1) in 1. Since d;=0 for all j>s and d,=0,
then (6) gives

( 7 ) (pg(ps(g)) = (ﬂékpn(C)PM(g))Ps(t) .
For an element ¥* of H°(L"(3): Z,), we have

@g(xzs) _ (i.f>xzs+2h and ds(2k5>x2s+2k = ( 3 kdndm) d s+

n+m=

From 254 2k<4s<2t<n-+1, x*+?*=0. Hence <21:)= S dd,

n+m=k

By induction, we obtain d jz< s ) mod 3. Therefore
J

&) = 1—|—< ; )x’—l—-u—i—( ; )x” mod 3
= (14%°° mod 3.

The proof of Theorem 1 is completed if we prove Proposition 5. Now, it is
well known that the bundle %.» over L”(3) has the total Pontryagin class mod
3 p(mm)=1+44%*. Thus the proof of Corollary 2 is completed.

Now, in order to prove the formula (6) in the proof of Theorem 1, we
conisder a following symmetric polynomial. Let >3 x%Zx%---x%x,,,---x; be a
homogeneous symmetric polynomial in variables x,, x,, +--,x, of degree
N=(p—1)k+s where p, k and N are positive integers.

To prove (6), we show the following propositions.
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Proposition 1.

3w xtng, o, = 2 A@)ou_ 00
where A(i)=(—1)3) (‘—kfz’) A(i—j), 1=i<k and A(0)=1.
= J
Proof. Ptu f(k, s)= >} &3---xjx,,+--x,. By an easy calculation,

(8) b9 = (Smem)(Snerm)— (TP g o).

1

By making use of (8) repeatedly, we have
k
fik, 5) = auo+ 23 Fs

-1
k— 37

/
~j1 i= — . —k+2 ".
where F,=(—1) 2* "2 S 1 (s k.—|-2]l>..,(s T.-El: )a'k-)’: ,Fer ;. and

Jy=1 = i= J1 11

i=1

1<j,<k— SYj,<k—(I—i). If I=k, then k= 31j,.

Let A,(7) be the coefficient of o_;o,4; in F,, then

a—yf s (s—k.—}—Zjl)m(S—k+2:§:i¢)(s—k+2i).

n=1 j1+...+jl_1=i—n ]1 jl—l n

Put A(7)=A4,(i)+ -+ A,7). Then

A(¥) = (—U:Zi (S_T'z")i—glA,_l(i_n)_(S—ki—I—Zi) .

Since ﬁ A,_,(j) is a coefficient A(j) of ay_;o,.; in f(k, s), we have
1=2
L (s—k+2: .o
A@) = (—1)X (s _+ l)A(z—]) .
= J
This completes the proof of Proposition 1.
Proposition 2.
k
Z xi"’x% = Eo A(i) Op_iOkt;
o (2 _
where @ 3 Ai—j)(? ) =0 and A(0)=1
j=o J

() A@)=(—1)* mod 3 for i+0.

401
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Proof. The part of (a) is completed by Proposition 1. The proof of (b)
is obtained by induction. For i=1,2, A(l):(—l)( f >z1 and A(2)=2.
Assuming the equation (b) for integers i <2¢g, we have

i S R ity
By making use of ,é (2{72)(— 1y = <217_:_12)+ 2<§ii§) + 2(2i32)+2<2il.—;—‘—12>’

we have

A(GE+1)=1mod 3.

Assuming the equation (b) for integers i <2¢g+-1, we can obtain 4(:41)=2mod 3.
Thus Proposition 2 is obtained by induction.

Proposition 3.

2 xfod e adng e x, = (0 ofexf) o — ; o(++) .

Proof. Put f(a, b) = 23 ad-- a3, -+ a2, 444 51,100 &, With c=N—2a—b. By
calculation, we have the following equality;

k
(9) Sk 0) = (S )0, — 3 flk—a, @)
Define a,=k, b,=0 and c,=N—2a,—b,. Then (9) is reformed as follows:
(10) f(aO’ bO) =f(0, ao) O™ Zif(an bl) where a=a,—Q,, b1 = a1+BI(BIZO)

Now for each term f(a,, b,) in (10), we obtain

! b
(11) f(al’ b1) :f(ov al)a'N-zarbl_wZ_O 52014(612, Bz)f(al_az’ 0[2—}—,82)

2= 27
for some integers A(a,, B,) and A(0, b,)=0. We can inductively define two
sequences {a;}, {b;} satisfying the followings

: ai-1bi-1

(12)  f@ros i) = FO, )T, — 53 S5 Al Bf(as b)
(13) a; = a;_,—a, b= a;+p;

with some integers A(a;, 8;) and 4(0, b,_,) = 0.
Put ¢;_,=N—2a;_,—b,_,. Then we have s<<¢,<c¢,<---<<¢;<<---. From (13),
a;.,=a; for all i. Hence conisder the following cases:

(14) there exists an integer n such as a;,,<<a; for all i =>n,

(15) there exists an integer m such as a,,=:-+=a;="-- for all i=m.



EXTENDIBLE VECTOR BUNDLES 403

If (14) is satisfied, then @,=O0 for some integer ¢q. From (12) andProposition
1, we have

(16)  flagms by = O, ag-)y , 34O, £SO, b0
= 10, 0-)0ey, 3 A0, B)AG) o1y ey

If (15) is satisfied, then b,>b,., for all i =m.
Therefore b,=0 for some integer . From (12) we have

S by) = 10, 0, ), 33 Aty 0)f(a, 0).

Since a,<<a,, the above discussion is also applied to f(a,, 0) in this case. Hence,
by making use of (9) repeatedly, we have finally

Sk, 0) = £0, Ba,—Z (+)or
From Proposition 2 and Proposition 3 we have the following
Proposition 4.
St abtnnx, = (o 2 (1o jon)ort T (e
Now, we can prove the formula (6) in the proof of Theorem 1.

Proposition 5. ®3(p()) = ( 23 2u(E)Pm(E)PE)+23 2i(E)(+) -

Proof. Let C;= H*(Byc, : Z,) be the i-th Chern class mod 3. By Th. 11.3
([2]) and Proposition. 4, we have

(17) ®3(C)) = (Cit é (=177 C ;Cos ) Gt 2 () Ci

Let p,(£) be the s-th Pontrjagin class mod 3 of a real bundle §. Then p ()
=(—1)'C,(tRC) mod 3 where C,((!QC) is a 2s-th Chern class of {QC.
From (17) we obtain

OH(p.6)) = (PE)+2 2 Persl) s NPT+ T (+)u0)

and 6’§‘+‘(ps(§))=2(gpiﬂl(C)p;+,(c))ps(§)+Ig(---)pl(é)- This completes the

proof of Proposition 5.

4. Proofs of Theorem 3, 4 and 5. To prove Theorem 3, we discuss
the following lemmas. The proofs of Lemma 1, 2 and 3 are omitted.
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Lemma 1. Let A, A,, -+, A, be integers with v(A;)>0 for all j%n and
vy(A,)=0. If v(A,)<vy(A;) for all j=n, then

v 33 A)) = vi(4s).

Lemma 2. If r,s, a and u are positive integers with s<<a<<3“ and
(r, 3)=1 then following hold.
3u
)

N
(19) ,,3{(3; )} = u—r@).

Lemma 3. If u and n are positive integers, then

IA

wp _ 3¢—1
(20) vy((3)Y) = ——
(21) v((2n+1))<n
(22) vy((2n))<n.
u =(—1V(—3) 77! q). l——] | — .es _Z_ or
Put  A4;=(—1)/(-3) (i—j) (] ) =01, ,[2]) f some

positive integer g, :>2 with ¢>i—j.

Lemma 4. Let A; be above integers. Then

va([jiZ;‘,ZZAj) = vy(Ary) for i=1mod 6 and i=0 mod 2 .

Proof. If i=2n, then for each I=1, 2, ..., n—1

v(An-1) = (n+1=1)=vy((2) ) —v(n—D) )+ 2i()+ - +vi(g—n—1+1).
From Lemma 3 (22) vy(A4,_;)—v4(Ax)>1—v4((2])!). Then we have

vy(A4,;)>v,(4,) and v,(4;)>0 for all j=%n.
Therefore by Lemma 1 we obtain v,( [ﬁ A )=v,(Agya) for i=0 mod 2.
From Lemma 3 (21), we obtain a
v(An_s)—vy(An)>vy(n)—v((n—1))>0

under the conditon =1 mod 6, [%]-——n=3m.

Now we prove the theorems.
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Proof of Theorem 3. Let ¢’ be the extension over L™(3) of ¢. By the
structure of KO-ring of the lens space ([4]), {’ is stably equivalent to g7, for
some ¢E Ztms).  Since §'—t=ga,, KO(L™(3)), we have
(23) g—t = gi*n,m—2)e KOL"(3))
where *: I?B(L’"(fi))—)I?O/(L”(S)) is the induced homomorphism of natural
embedding i: L*(3)— L™(3). If 2¢=<t, then { is stably equivalent to % »P---
(g)--Pny» for some integer ¢ (0=2¢=<t). If 2¢>t, ¥(¢s,,)=0 for all
i>g. dim (¢s,,) ([1] Prop. 2-3). Since t=g. dim (¢5,,), we have
(24) v (¢6,,) =0 for all >¢.

According to the Theorem of Kambe ([4] Lemma 4.8),
Y(q0m) = (1+0.(t—1))7

20 [2/a]

= E ( Z Aj)amtu

@=0  j=0
where A4 ,:(-1)1‘(-3)*1‘"( ? .)(“.‘j) .
a—j/N ]
[a/2]
Then we have v¥(¢5,,)= 2 4,6,,. From (23),
j=0

[/2] ~

(2 4;)6m = 0= KO(L™(3)) = Zjtmz1 for all i>¢. Therefore
[a/2] m .
(24) (2142 2] foralli>t.

Now, according to Lemma 4, we have

[a/2]
u( g A,) = vy(Ayp) for i>t (i=0mod 2 and i=1 mod 6)

And so we have

@) (i-[+]- 1)4f (. [qi/z])}jtya{(’;/g{)z])} g[%] for i>1, i=0 mod 2

and 7=1 mod 6.

Now the total Pontrjagin class mod 3 of g7, is given by the equation p(gn, =)
=(1+«%)? Since m>2t—1, Theorem 1 implies that there exists an integer s
such that

pEC) = (1+4%°, 0=<2s<t.

Hence we have
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(14x*)?=(14x%° mod 3, i.e.,

1—]—(qu>902—|—---+<[Zn725]>x2["‘/2151 mod 3.

This implies that there exists an integer u such that
(26) q—s=37(3)=1 and 3“>[m/2].

Then we obtain the following

"3{<i- [qi/2]>} - v{(:f‘;/—zs] >}
= v3{<i_3[;/2]>} for t<<i<<m (by Lemma 2)
= u—v,(I—[/2]) .

Hence from (25) wu+(i—[i/2]—1)—v,(i—]z/ 2])+v3{ (l—[’; Z2/]2])} Z[—7;_1] for

t<i<mand i{=0 mod 2,7=1 mod 6. By the assumption (5) of Theorem 3, we
have

27)  u=[m/2]—Min [(i— [i/2]—1)—vy(i— [i/2])-{—v3{<i?i/[;./] 2])}]
= [m[2]—B4(t, m)=[n/2] .

According to (23), (26) and (27), there exists an integer s such that

0=2s<t,
E—t = (r3“+s)a,
= $Gy .

This completes the proof of Theorem 3.

Proof of Theorem 4. By the contraposition of Theorem 3 and the main
theorem of Kambe ([4] Th. 2), it is clear.

Proof of Theorem 5. Since 7(L*(3))®1=(n-+1)7.» and "+1>”=[2n; 1]

=[1/2 dim 7(L"(3))], Theorem 4 implies that the tangent bundle 7 is not exten-
dible to L*@**%™(3). For every m>2n+1, B4(2n+1, m)<n whenever n=0
mod 3, n=1 mod 3 B,(2n+1, m)<<n whenever n=2 mod 3. Then ¢(2n+1, n)
=2 (2n41).

This completes the proof of Theorem 5.
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ReMARK. The following table shows the value of ¢(¢, n) where 1<2<10
and 1<n<16.

1 2 3 45 6 7 8 910111213 14 15 16

8 810 10 12 12 14 14 16
10 10 12 12 14 14 16 16 18
10 10 12 12 14 14 16 16 18
10 10 12 12 14 14 16 16 18
10 10 10 10 10 10 12 12 14 14 16 16 18
12 12 12 12 12 12 12 14 14 16 16 18 18 20 20 22
14 14 14 14 14 14 14 14 14 16 16 18 18 20 20 22
16 16 16 16 16 16 16 16 16 18 18 20 20 22 22 24
18 18 18 18 18 18 18 18 18 18 18 20 20 22 22 24
20 20 20 20 20 20 20 20 20 20 22 22 24

o N N p
S o &N O b
o 0 oo O
o o o O

O 00 N O U1 W N~
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