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In [9], A. Grothendieck introduced the notion of “‘revetement principal”.
The purpose of this paper is to give characterizations of the notion and a gen-
eralization of the fundamental theorem of Galois theory in this case. In par-
ticular we shall know that the notion is a generalization of Galois extension by
Chase, Harrison and Rosenberg [4].

In our first section, a notion of Galois covering will be introduced and we
shall show that it is related to Galois extension. Moreover we shall know that
the notion of Galois covering means ‘‘revetement principal”. In our second
section, a generalization of the fundamental theorem of Galois theory is de-
veloped in the case of preschemes by using the notion of the above covering.

We refer to Eléménts de Géomeétrie Algébrique by Grothendieck by signals
such as E.G.A. I(8.7.1) and in this paper we shall use the notations in that book
without explanation.

In this paper, all rings are assumed to be commutative and to have an
identity.

1. Galois coverings

Let ®=(p, a); X—Y be a morphism of preschemes. We shall say that
the prescheme X is a quasi-unramified covering (resp. a quasi-etale covering) of
Y if

1) @ is a finite morphism: X —Y (resp. @ is finite and flat)

2) O,/m,0, is a finite separable extension of k(y)=0,/m, for any x= X,
y=a(x) where O, and O, are the fibres of the structural sheeves Ox and Oy of
X and Y at the points x and y, respectively and m, is the maximal ideal of O,.

Now we easily obtain the following lemma by [11, theorem 1].

Lemma 1.1. Let ¢: X-->Y be a surjective morphism of preschemes.
Then the Y-prescheme X is a quasi-unramified covering (resp. a quasi-etale covering)

1. This paper was written while the auther held a visiting position at Universidad de
Buenos Aires. He takes the opportunity to express his thanks to that good situation.
*) Dedicated to Professor K. Asano for the celebration of his 60th birthday.
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if and only if, for any affine open covering {V,}yc; of Y, the following conditions
hold; for any ye1,

1) U,=@ (V,) is an affine open set of X

2) the ring T(U,, Ox) is a separable T'(V,, Oy)-algebra of finite type

3) the ring T(U,, Ox) is integral over T'(V,, Oy)
(resp. 4) T'(U,, Ox) is a finitely generated flat T'(V,, Oy)-module).

Let Y be a prescheme, X a Y-prescheme and & a finite group of Y-
automorphisms of X. We shall denote the sum of n-copies of Y by &, for
n=(8:1). For o=@, there exists uniquely a morphism (1, ¢)y: X—>X§< X

such that pr,+(1, 0)y=1 and pr,- (1, 0)y=0c where 1 is the identity morphism of
X and pr; (=1, 2) are the projections: X Xx X—X. Then the morphisms
Y

(1, o)y define canonically a morphism of the sum of n-copies of X into X >;X
which is denoted by (1, ®),.

Proposition 1.2. Let Y be a prescheme and X a Y-prescheme such that the
structural morphism @: X —Y is surjective and finite. Let & be a finite group of
Y-automorphisms of X. If X is formally principal homogeneous on Gy, i.e.
(1. ®)y is an isomorphism, then X is a quasi-unramified covering of Y.

Proof. Let {V,},c; be any affine open covering of Y. Then it is sufficient
to show that a ring T'(U,, Ox) is a separable T'(V,, Oy)-algebra for every y&l
where U,=@7'(V,). Let

: U‘Y,GI”U'Y,O'zﬂ: e ”U'Y,O'n - U‘Y>< U’Y
Vy

be a morphism induced by (1, 8), where U, ,,.=U, for 5,®. Then 3 is an
isomorphism. Let 4,=T(U,, Ox) and B,=T(V,, Oy). The homomorphism

8: Ay @Ay —> Ay g X Ay o X - XA
By

Y,on

induced by 8 is an isomorphism where A4, , X Ay , X+ X 4, ,, means the direct
sun of n-copies of 4,. If o, is the identity of &, 4, , is a direct summand of

AyRAy as A,RAy-module, since 8(a@b)=a-a(b) X -+ X a-a,(b) for aQbe 4,
By By

Y,on

®Ay. Hence A, is a separable B,-algebra.
This completes the proof.

Let A be a separable B-algebra finitely generated as B-module for a com-
mutative ring B. Let Q be an algebraic closure of B/m for any maximal ideal
m of B. If p is a homomorphism; B— Q such that Ker p=m (we shall say that
such homomorphism p is a geometric point of B), then let V'Z(A4) be the set of all
homomorphisms §: 4— such that the diagram
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A

N
B— QO
p
is commutative where the vertical mapping is the canonical homomorphism.
If @ is a group of B-automorphisms of A, then VZ(A4) forms a left &-set
defining the operation of ¢ €® by ¢-0=0c" for 0= VE(A).
The following proposition is a generalization of theorem of Chase [3].

Proposition 1.3. Let A be a separable B-algebra which is a finitely gene-
rated faithfully projective B-module and let & be a finite group of B-automor-
phisms of A. If there is a bijective correspondence between VE(A) and & as left
&-sets for any geometric point p of B, then A is a Galois extension of B with a
Galois group ®.

Proof. Let o be any element (#1) of ® and M any maximal ideal of A.
Then we shall show that there is an element a=a(M, o) in 4 such that a—o(a)
EM. If o(M)+=M, then it is trivia. Assume o(M)=WIM. Let 6 be a
geometric point of 4 such that M=Ker . Since Ker (c0)=M, there exists
such element a=a(M, o) in A. Then A is a Galois extension of A® with a
Galois group & and so A4 is finitely generated as a B-module [4, theorem 1.3].
It is sufficient for proving the proposition to show B=A4%. For any maximal
ideal m of B, a residue field B/m is the fixed ring of 4/mA under the group of
all B/m-automorphisms of 4/mA. Since any B/m-automorphism of A/mA4
is induced by an element of &, we have A8/mA®=B/m. Then we obtain our
result.

Let a be a geometric point of a prescheme Y. Then we canregard o as a
pair of a point y of ¥ and a local homomorphism 6,: ©,—Q where Q is an
algebraic closure of k(y)=0,/m,. If a prescheme X is a quasi-unramified
covering of Y, then the set of all geometric points of X with values in  over a
geometric point « of Y is finite which we shall denote by EY(X) [c.f. 5]. We can
consider EY(X) as the set of pairs (¥, ) where x is a point of X such that y=
@(x) and @ is a local homomorphism: ©,— Q such that the diagram

o
'yf,I \\0
o @

O,
is commutative where (@, ¥): X— Y is the structural morphism.
Moreover let & be a group of Y-automorphisms of X. Then EY(X) is a
left G-set defining the operation of elements ¢ of & by o:B=(c(x), §o") for
B=(x, ) E¥(X).

y
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DErFINITION 1.4, Let Y be a prescheme, X a Y-prescheme and & a finite
group of Y-automorphisms of X. Suppose that the structural morphism; X —Y
is surjective. Then we shall say that X is a Galois covering of Y with a Galois
group & if the following conditions hold;

1) X is an etale covering i.e. X is a quasi-etale covering and is finitely
presented over Y.

2) There exists a bijective correspondence between EY(X) and ® as left
&-sets for any geometric point « of Y.

Lemma 1.5. Let ¢: X—Y be a morphism of preschemes and & a finite
group of Y-automorphisms of X. We assume that the prescheme X is a quasi-
unramified covering of Y. If, for any affine open set V of Y, we set A=T(p (V),
Ox) and B=T\(V, Oy), then, for any geometric point p of B, there exist a geometric
point a of Y and a bijective correspondence between EY(X) and VE(A) as left
&-sets.

Proof. Let p be any geometric point of B, y the point of ¥ which is as-
sociated with the maximal ideal m=Ker p in B and Q an algebraic closure of
k(y)=0,/m,. Then, for the canonical homomorphism 6,: O,—Q, the pair
a=(y, 0,) is a geometric point of the affine scheme V" and so it is a geometric
point of X. It is trivial that there is a bijective correspondence between EY(X)
and E}(U) for U=¢ (V). It is sufficient for proving our lemma to show that
there exists a bijection between EY(U) and VZ(A) as left G-sets. We shall
define a correspondence f: EY(U)—VE(A4) by f((x, 0))=0-a, for (x,0)c E}(U)
where a, is the canonical homomorphism of 4 into O, (=4;). Since A4 is
integral over B, j, is a maximal ideal of 4. We have f((x, 0))=+ f((x', 8")) if
(%, 0)=£(x', 0") for (x,0), (x',0")=EY(U), because the kernels of f((x,6)) and
f((x’, 8")) are the maximal ideals i, and i,/, respectively. Therefore it is trivial
that the bijective correspondence between EY(U) and VE(A) as left G-sets is
given by f.

Lemma 1.6. Let B be a commutative ring, A a commutative B-algebra and
& a finite group of B-automorhisms of A. Then A is a Galois extension of B with
a Galois group & if and only if A is a faithful flat B-module and a homomorphism

8: AQA — A, x A,,X « XA,
B

by 8(a®@b)=ac,(b) X -+ X ac(b) for aQbs AR A, is an isomorphism where =
(o 00 oy 0, and A, =4 (i=1,2, -+, n).

Proof. Necessity. It is trivial by [E.G.A. O (6.6.1)] that A4 is a faithful
flat B-module. There exist elements x;, y; in 4 (i=1, 2, -+, 7) such that

?;l %;01(Y:)=0,,,¢, [4, theorem 1.3]. Hence § is an epimorphism. On the other
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hand the ranks of AQ A4 and 4, x 4,,% -+ X A, over B are equal [c.f. 4, lemma
B
4.1]. 'Therefore § is an isomorphism.
Sufficiency. Let e=Z'] %;Qy;€ AR A such that §(e)=1x0X --- xX0. Then
i=1 B

Hence it is sufficient to show that B is the fixed

we obtain 2 %;06(Y:)=080,,04
i=1
ring of 4 under G. Set B,=A®. Then 4 is a Galois extension of B, with a

Galois group @, so that A®A is isomorphic to 4, X =+ X 4,,. By the hypothesis
the canonical mapping x: A@A—>A®A by ,u,(a®b)—a®b for a®b€A®A is

an isomorphism. It implies that if we put B[B,] a subrmg of 4 generated by
B, over B, AQB[B,] is isomorphic to AQB (==A). Since A4 is a faithful flat
B B

B-module, we have B=B[B,] and so B=B,.
Now we may give characterizations of the notion of Galois covering.

Theorem 1.7. Let ¢: X—Y be a morphism of preschemes and & a finite
group of Y-automorphisms of X. Then the following statements are equivalent;

1) X is a Galois covering of Y with a Galois group &.

2) There exists an affine open covering {V,bye; of Y such that the ring
T(e~'(Vy), Ox) is a Galois extension of the ring T'(Vy, Oy) with a Galois group &
for every y=1I where ¢: X —Y is the structural morphism.

3) @ is an affine and surjective morphism, X is p-flat and X is formally
principal homogeneous on S,.

Proof. 1)=2). For any affine open set V of Y, set U= (V). If we
put A=T'(U, Ox) and B=T(V, Oy), then, for any geometric point p of B, there
exists a bijection between V3(A) and & as left G-sets (1.5). Hence 4 is a
Galois extension of B with a Galois group .

2)=1). It is prove similarly as the proof of [3, proposition 3.3].

2) = 3). It follows trivially from Lemma 1.6.

2. Galois theory

Let ®=(p, 0): X—Y be a morphism of preschemes which satisfies the
following properties;

1) @ is surjective

2) For any affine open set V' of Y, the homomorphism 6y: T'(V, Oy)—
T(e7'(V), Ox) is injective.

Then a prescheme Z will be called to be an intermediate prescheme of X
and Y if there exist morphisms ®,: X—Z and ®,: Z—Y such that ®; (=
1, 2) satisfy the same properties as 1), 2) and furthermore ®=®,-®P,.

Proposition 2.1. Let Y be a prescheme and X a Galois covering of Y with
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a Galois group &. Then, for any subgroup O of ®, there exists the quotient
prescheme® X9 of X by © and X9 is an intermediate prescheme of X and Y.
Moreover the quotient prescheme X9 is an etale covering of Y and X is a Galois
covering of X[9 with a Galois group 9.

Proof. It follows from [9] that there exists the quotient prescheme X/9.
Let {V,},<; be a covering of Y consisting of affine open sets V,,=(Spec (B,), By)
and let @ be the structural morphism: X—Y. If we put ¢ '(V,)=(Spec (4y),
A,) for all yI, then we have that 4, is a Galois extension of B, with a
Galois group &, so that A4, is a Galois extension of A? with a Galois group
. Moreover A? is a separable B,-algebra of finite type and is integral over B,.

Since the affine scheme {(Spec (47), (4%)~)},es give an open covering of X/9,
we obtain our proposition.

Let Y be a prescheme. We consider the following conditions; C) There
exists an affine open covering {V,},e; of Y such that, for any pair (a, B)eIXI,
there is a sequence; V,=V,, V,, -+ V,,=Vg satisfying V, N\ V,, F¢ for v;E1.

Theorem 2.2. Let Y be a prescheme satisfying the conditions C) and X a
Galois covering with a Galois group &. Let Z be an intermediate prescheme of
Xand Y. If Z is a quasi-unramified covering of Y, then there exists uniquely a
subgroup O of & such that Z is the quotient prescheme X|9 of X by ©.

Proof. Let ®=(p, §): X—Y be the structural morphism. Then there
exist morphisms ®,=(p,, §,): X— Z and ®,=(p,, §,): Z— Y which satisfy the
conditions that Z is an intermediate prescheme of X and Y. Let {V,},<; be an
affine open covering of Y as above and set U,=¢~(V,), W,=¢@3*(V,) for all
veI. Then {U}ye; and {W,},<; are affine open coverings of X and Z, respec-
tively. Moreover we have U,=@7'(W,) for all yel. If we set U,=Spec (4y),
W,=Spec (B,) and V,=Spec(C,), we can consider that 4, is a Galois exten-
sion of C, with a Galois group & and B, is a separable C,-algebra. Then, by
the Galois theory of commutative rings [4, theorem 2.3], there exists uniquely
a subgroup 9, of & such that B,—=A%" for every yel. For any yeV,N Vy,
?+(Ox), (sz(Cng) is a Galois extension of O, (=C,;,) with a Galois group

Y

S and @,4(02), (=By®C;;,) is a separable O,-subalgebra of 4(Ox),, so that
Cy

there exists a subgroup , of & such that ,+(0z),=(px(Oz),)®. Then we
have ,=9, and so $,=9y for all v, y'1I which is denoted by . Then it is
clear that Z is the quotient prescheme X/9 of X by . The uniqueness of
such group is trivial.
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