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In the book of Mitchell [5] he has defined a category of a commutative
diagrams over an abelian category 2. Especially he has developed this idea to a
finite commutative diagrams and obtained many interesting results on global
dimension of this diagram. Among them he has shown in [5], p. 237, Corollary
10. 10 that if [ is a linearly ordered set, then gl dim [/, ]==14-gl dim A for an
abelian category A with projectives. This is a generalization of Eilenberg,
Rosenberg and Zelinsky [1], Theorem 8.

On the other hand, the author has studied a semi-primary hereditary ring
and shown that it is a special type of generalized triangular matrix ring in [2].

In this note we shall generalize the notion of a generalized triangular matrix
ring to an abelian category of generalized commutative diagram [I, ;] over
abelian categories 2; and obtain the similar results in it to [2], Theorem 1,
where I is a finite linearly ordered set. The method in this note is quite similar
to [5], IX, §10 and different from that of [2]. Finally we shall show that if the
A; are the abelian category of right R;-modules, then [, %] is equivalent to a
generalized triangular matrix ring over R; in [2], where R; is a ring.

The author has shown many applications of generalized triangular matrix
ring to semi-primary rings with suitable conditions in [2], [3] and [4]. However
we do not study any applications of our results in this note and he hopes to
continue this work on some other day.

1. Abelian categories of generalized commutative diagrams

Let I={1, 2, ---, n} be a linearly ordered set and ?; be abelian categories.
We consider additive covariant functors T;; of U, to A; for i<j. For objects
A;e¥;, A;€¥U; we define an arrow D,;: 4,—~A4; as follows:

(1) D;; =d;T,;, where d;; is a morphism in 2[;.

Using those D;; we can define a category [/, ;] of diagrams over {2},,.
Namely, the objects of [I, ;] consist of sets {A;};c; with D, (4,E9%,) and the
morphism of [1, ;] consist of sets (f;);c;(f; EU;) such that
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(2) 5 Ti(f) = fidij s

where f;: 4,4 and D;;=d;;T,;, D;;=d};T;; are arrows in A=(4;) and A'=
(A7), respectively.

Let £=(f,);c;r be a morhphism of A to A’. Then we define a set (Im f;),
(coker f,) and so on. If (Im f;), (coker f;)---coincide with Im £, coker £---in
[Z, A;], respectively, we shall call [1, ;] a category induced naturally from 20;.

Proposition 1.1. Let I and U; be as above. [I, ;] is an abelian category
induced naturally from U; if and only if T,; is cokernel preserving.

Proof. We assume that T,; is cokernel preserving. Let f=(f,)ics: (4:)—
(A47) be a morphism in A=[7, A;]. Then we can easily see that (ker f;);c; is
Kerf in 2 and that (coker f;);c; is in ¥ since T}, is cokernel preserving. Hence,
we know from [1], p. 33, Theorem 20.1 that 2 is an abelian category. Con-
versely, we assume 9 is an abelian category as above. We may assume I==(1, 2).
Let f: A,—C, be an epimorphism in ¥, and B,=im T(f), where T=T,,. Put
A=(4,, T(4,)) C=(C,, T(C))) and f=(f, T(f)). Then Im#F=(C,, B,), (f:

’
)
A—1Imf— C). By the assumption £’ and 7 are morphisms in 2. Hence,
there exists an morphism d: T(C,)—B, in Y, such that dT is an arrow in im 7.
Namely

T(A4,) ) T(C)

(3) @ o

T(4,) —> B,
is commutative, where if';="T(f).

Therefore, £5=dT(f)=dif}. Since £} is epimorphic di=1I5,. On the other
hand, we obtain similarly from an morphism 7 that id=I,,. Hence, d is

isomorphic and T is an epimorphic functor. Let 4 £ A, Z) A,/g(A7)—0 be
exact and By’ =im T(g). Put A=(A4Y, By’), C=(4,, T(4,)), and f=(g, 7), where

T(g): T(4")—By’ 4 T(A4,). From the assumption coker f=(4,/g(41"), T(4,)/
By’). Hence there exists d: T(4,/g(A41"))—T(4,)/BS such that dT(f)=h, where

h=coker (B3’ i T(A,)), (cf.(3)). Hence, ker T(f)SBy’. By CKer T(f) is clear,
since fg=0. Therefore, T is cokernel preserving.
From this proposition we always assume that T); is cokernel preserving.
We shall define functors T;: A—; and S;: 2,—A as follows:
Let Az(Ai)iEI
(4) Ty(d) = 4,
TJS,(A,)) == 0 fOI‘ J < i )
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Tjgi(Ai) = 2 GaTiij"k-ﬁk"'Tiil(Ai) for i < J ,

i<y < <ip<i
with arrow D, =T}, for j<k.

Then we have a natural equivalence 7: [S;(A;), D]~[A;, T«D)] for any
A;€; and DeA. Hence, we have from [5], p. 138, Coro. 7.4.

Proposition 1.2. We assume that each N; has a projective class &;, and T;
is cokernel preserving. Then N T;Y(E;) is a projective class in A=/[1. WA,], whose
Projectives are the objects of the form @ S/P;) and their retracts, where P; is &;-

€I

projective for all i 1.

2. Commutative diagrams with special arrows

In the previous section we study a general case of abelian categories of
commutative diagrams. However, it is too general to discuss them. Hence,
we shall consider the following conditions:

[I1 T, is cokernel preserving.
[II] There exist natural transformations

Sbijk: T]le] i Tik fOr any i<j < k .
[III] For any i<j<k<!land N in A;

TwT; T (N) T, T g Ti(N)
Dire l¢ikl
¢'ijl
T][TU(N) — T:l(N)

is commutative

[IV] For arrows d;;: T;(A;)—~A; in A=[I, A,]

Tu(d:;) N

T jkTij(Ai) T jk(Aj)
$; ik d'k di
Tik(Ai) — A

is commutative.

From now on we always assume I, IT and for any arrows in 2, we require
the condition IV.

We note that IV implies D;,D;;(4,)S D;x(4;) for any A=(4;);; in A.

First we shall show that 9 is still an abelian category under the assumption I
even if we require IV in 2.

Proposition 2.1. Let (;),c; be abelian categories. We assume I1.  Then
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A=[1, ;] requiring IV is abelian if and only if I is satisfied.
Proof. Let f=(f;): (4;)—(47) in 2. We consider a diagram

T(d,;) .
T T:5(A) — T;(4))
yf(f,-) T(f))
d ik
"b Tj. kTi j(Aﬁ) T(d ij) > Tfk(A;')
(5)
Tii(A)) ? i > As e
Tik(Af) it > Aj

We only prove from Proposition 1.1 that for any morphism g=(g;), (ker g;);e;
(coker g;);c; satisfy IV.  Put 4,=ker g; and f;=inclusion morphism in the above.
Then all squares except the rear in (5) are commutative from II, IV and (2).
Since f, is monomorphic, the rear one is commutative. Which shows (ker g;);c,
satisfies IV.  Similarly if 4,=(coker g;) and f; epimorphism of cokernel, then
(coker g;) satisfies IV, since T ;T (f;) is epimorphic from I.

Next, we shall define functors similarly to S;. For A;€%; we put

(6) Si(4;) = (0,0, -, 4;, T;;11(4)), -+, T;a(4;)) with arrows

Dy=0 for t<1i

D;, =T, for k>1

Djr = ¢:ijeTjn for k>j>1.
If T,,’s satisfy III, then S;(4;) is an object in [Z, ;] requiring IV. Furthermore,
we can prove easily [S,(4;), D]~[4;, T{D)] for D[, ;). Hence, we have

similarly to Proposition 1.2

Proposition 1.2°. We assume that each ; has a projective class &; and I~

III are satisfied. Then N=[I, WA, requiring IV has a projective class N T 7X(§;)

whose projectives are the objects of the form @ S,(P;) and their retracts, where P; is
€1

&;-projective for all ic 1.
In the rest of the paper we always assume that [1, 9] is an abelian category
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of the commutative diagrams whose arrows are required IV and that I~III are
satisfied.

Proposition 2.2. (Dy;D;z)D;;=Dy(D;,D;;) for i<j<k<lI.

Proof. (DpD;z)D;ij(A) = d;sju(Tei'T ) (di;) Tt T T, 5(A)
=d;;T;)(d;));us T’ T ;s T;(A) {naturality of )
= dud;jid i Tw'T 4 Tij(4) (Iv)
= duits Trs(Pije) T T T (A) (ITI)
= dlekl (dik)TkI (‘/’, jk)Tkl T jkTi j(A) (IV)
= A Tr(dindiji) Tl T 3 T 1(A)
= Du(D,D;;)(A4) forany Ae¥;.

Theorem 2.3. (cf. [1], p. 234, Lemma 9.3) Let I=I,U I, and I,={1, 2..-,
i—1}, L={i, -, n}. Then A is isomorphic to A'=[(1, 2), [L,A), [1,, y]] with
a suitable functor Ty: [I,, Wp]—[1L,, Aw].

Proof. First we define a functor T;,. Let A,=(4,);e;,- For any k> i we
consider a diagram D,={T,(4,), Ty,TiwrA4,) for I<l'<i<k with arrows
¢ Tz'k(du')
T Tir(4)) —> Tu(4)) and Ty Ty(4)) ——— > TypAr)). D, has a
colimit A4, in A, by [1], p. 46, Coro. 2.5, ({Dy} Gk, Ag). Put A,=(4;, -, 4,).
We shall show that A4, is in [I,, Ay]. We have to define D,y for i<k<k'.
Consider a diagram

Trp'Tie (A,) &* Tl’k’(Al)

[T o

buew
(7) Tkk'Tl’kTIl’(Al) _—> Tl’k’Tu’(Al) —Ay
Ty lel' (du’ ) Ty 14 (du’ )
O ew

Trw Tl’k(Al’) — > Tl’k(Al’)

The upper and lower squares are commutative by III and naturality of ¢,
respectively. Then (7) implies that these exist compatible morphism:
{Tww(Dg)}—Ay. Since Ty is colimit preserving by [5], p. 55. Proposition 6.4,
we have a unique morphism dpy: Tpp(A4r)—Ay. Hence we can define D=
dp' Trw. Next we show that those D,y satisfy IV.  For i <k<k'<k” we have
a diagram
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(8)
Tk’k”(‘)b)
Tew’T (Dy) — Ty (Dy)
\4’ o
T(ay
TTa) , ( n\
Tkk”(Dk) ¢ - Dk/l
Tkk'(dk.'z')
T Trw(Ar) —_— " Vo (Ak’) o
X‘ e X
k/k”
7 A 77
T (Ag) A _ "

‘All squares except bottom are commutative by IIT and the definitions d,

TT
dpy and dyyr. On the other hand, it is clear that @g: T/ Tep(Dy) &'+

¢

Tuw T (Ar) —> Tr(A4y) L A, is compatible. Since T,/ T, is colimit
preserving, we have a unique morphism ®: Ty Tyy(4g)— Ay’ such thaty,=
®TT(a). Therefore, the bottom square is also commutative, which means II.
Thus we have shown that T, is a functor. Let (A4,, 4,) be in ', where 4,=
(A))ier, and A,=(B;);cr,- From the definition of T;, we have a morphism:

d
To(A,) 22> 4, —2> B, for je,, kel,, where (d)ies: Tu(A)—A,. We put

D', = dpa, T for j<i<k and
D'y, = Dy, for s,t€l, or T,.

We shall show that D’;; satisfy IV. Take j<h<k. IfjeI,orkel,, then
it is obvious. We assume j &1, and &, k=1,. Then we have

Thijh(AJ) L‘)’ Thk(A) —(k—)’ Thk(-Bh)

(9) 2
T,.,!{Z,.) _an ld b Jid ’

where d’,, is a given morphism in A4,. The left side is commutative by the
definition of T}, and so is the right side, since 4, kI,. Hence, the out side
square means IV. We can easily see by the defininition of {D,} that IV is
satisfied for j, h€I, and k€l,. Hence, T(4,, A,)=(4,, -, A;_1, B, -++, B,)
iq an object in A. Conversely, for A=(4,, -, 4,) we put S(4)=((4,, -+, 4;_)),

A;y -+, A,)). Then it is clear that S(A)eA’ and TS=Iy, ST=Iy. This
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shows that T, is cokernel preserving by Proposition 1.1.

3. Hereditary categories

In this section, we always assume that I~IV are satisfied and every 2; has
projectives and hence A=[I, ;] has projectives by Proposition 1.2,

If every object in an abelian category B is projective, we call B a semi-
simple category, which is equivalent to a fact gl dim B=0. If gl dim B=<1 we
call B hereditary.

Proposition 3.1. ([5], p. 235, Coro. 10.3). We assume that N; has pro-
Jectives and that T;; is projective preserving. Let D=(D,);c; be an object in [I, ;]
and m=max (hd D;), n==the number of elements of 1. Then hd D<n-+m—1.

Since T); is projective preserving, we can prove it similarly to [1], p. 235.

Corollary. Let I=(1,2) and T,, be projective preserving. Then
max (gl dim 2, gl dim 2,)<gl dim [(1, 2), ¥,, A,]<max (gl dim A;)+1.

Proof. The right side inequality is clear from Proposition 3.1. ILet 4 be
an object in ;. Itis clear that hd(4, 0)=hd A. Since T,, is projective preserv-
ing, we have similarly hd(0, 4")=hdA4’ for A'€¥,.

Lemma 3.2. LetUA=[(1,2),A,,A,]. If gldim A=<1, then T, is projective
preserving.

Proof. ILet P, be projective in ;. Then (P,, T},(P,)) is projective in A
by Proposition 1.2. Let 0<-'T,(P,)<-Q be an exact sequence in 2, with Q pro-
jective.  Then (0. 0)<(P,, 0)<(P,, T,(P))<(0, Q) is exact in A Since
gl dim A<, (0, T, (Py)) is projective in A((0, T, (P)) (P, T(P,)). Hence,
T(P,)<-0O is retract and T,(P,) is projective in 2,.

Similarly to the category of modules we have

Lemma 3.3. Let A be an abelian category. If ADB=A'@Cand ADA’,
then A'=ADA", A"=ANC and C=A"PC".

Lemma 3.4. Let I=(1, 2) and U=[1,A;]. If T\, is projective preserving,
then every projective object A in N is of a form (P, Ty,(P,)®P,) and the arrow d,,
in A is monomorphic, where P; is projective in ;.

Proof. Since A=(4,, 4,) is a retraction of an object of a form P=
(P,, T(P,)PP,) with P; projective in ;. Hence, 0—>A—P splits. Let P,=
A,PQ,. Then T,(P)=T(A4,)PT,(0:) and A4, is a coretract of T,,(4,)D

dy,
T(0))®DP,. Furthermore, Tyy(4,) —= A,—> Tyu(P) @ P,=T,(4,) > Tyu(P,)P
P,, and the right side is monomorphic. Hence, d,, is monomorphic. Thus we
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may assume T',(4,)CA,CT(P,)DP,. Therefore, 4,=T (4,)DA4; by Lemma
3.3. Since P, is projective and T, is projective preserving, T ,(P,)®P, is pro-
jective in ,. Hence, 43 is projective by Lemma 3.3.

Lemma 3.5. Let %, %, be hereditary and T,, projective preserving. If
T.(P,) is a coretract of Ty,(P,) for any projective objects P,DP, in U,, then A=
[, 2), A, A,] is hereditary.

Proof. Let (4,, A;,) be any object in A and 0<—(4,, 4,) <J: P be exact,
where P U-projective. 'Then P=(P,, T,,(P,)®P,) with P; projective by Lemma
3.4, Put ker f=(K,, K,). Since ¥, is hereditary, K, is projective. ~Hence,
T..(K,) is a coretract of T},(P,) by the assumption. Hence, K,=T,,(K,)B XK} by
Lemma 3.3. Since K, is projective, (K,, K,) is 2-projective.

Theorem 3.6. Let I=(1, 2, -, n) be a linearly ordered set, U; abelian
categories with projectives. Let A=[I, W] be the abelian category of commutative
diagrams over W; with functors T;; satisfying I~IV. If N is hereditary, then we
have:

1) FEvery projective object of U is of a form -621 S(P;), where P; is projective
in ;.

i) 'Ty; is projective preserving for any i<j.

i) T, ;(P,) is a coretract of T, ;(P,) for any projective objects P,DP, in ;.

i) (i, 55, =5 2,), Ay, Aiyy 200y A J=U(, 2y ooy 1) 5 hereditary for any
1 <<2,<loer<li,.

v) If P=(P,)ic; is projective in W, then edery d; in P is a coretract.
(Piys Piyy »+ey Piy) is Wy, 25, -0+, 2,)-projective.

Proof. We shall prove the theorem by the induction on the number # of
element of I. We obtain A~[(1,2), A, A(J—1)]=A"from Theorem 3.2. Then
A(I—1) is hereditary by Lemma 3.2 and Corollary to Proposition 3.1.  Further-
more, T, in WA’ is projective preserving. 1) Let P=(P;);c; be projective in 9.
Then P=(P,, T,(P,)® P,) by Lemma 3.4, where P, is projective in A(J—1). We
obtain, by the definition of Ty, that T,(P)=(T.(P)ic;.- Hence, P=
EBI S:(P;) by the induction hypothesis. ii) Every component of projective object

in A(/—1) is projective by the induction. Hence, T,;(P,) is projective in ;.
ii1) Let P,OP, be projective in ¥,. Put A=(P,/P,, 0, ---,0). Then we have an
exact sequence 0<A4<(P,, T,(P)). Since A is hereditary, its kernel
(P,, T(P)))is projective. Therefore, T ,(P,)is a coretract fromi). iv) We may
show that (/—7) is hereditary for any . UA=~[1,, i, I,, A, A;, A3], where I,=
1, -, i=1), L=(+1,-+, n), A, =A(1,) and A,=A(Z,). From Lemma 3.2 T, is
projective preserving and hence A(/—7) is hereditary from iii) and Lemma 3.5 and
the definition of T,. v) Since P=(P,, T\,(P,)BP,), d,;: T,;(P,)—P;is a coretract.
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P=~(Pi, P,, P3), where P1=(P;);c;, and P3=(P,);cr,- Then it is clear from
i) and induction that (P], P3) is A(/—1)-projective.

Next we shall study a condition of every projective objects in 2 being of a
form @S,(P;), when T,; is projective preserving.

Lemma 3.7. Let A and YU, be as above and T;; projective preserving. If
we have

(*) Tij(Pi) = Ti+1jTi,i+1(Pi)®Ti+2j(Ki+2(Pi))®"'@Tj—lj(Kj_l(Pi))eaKj(Pi)

for any projective object P; in U; for all i, then every object A=(A4,;);cr in W is of a
SJorm ®S,(0;) whenever A is subobject of P=(Q});cr and A; is a coretract of Q) for
all i, where K7(P;) is an object in U ;, Q; and Q} are U;-projective, and the equality
in (*) is given by taking suitable transformation from the right side to the left in (*).

Proof. We may assume P= E{B S:(P;) and P; is U;-projective. Put P=

(P3)ier- From the assumption P,=A,PQ,. We shall show the following fact by
the induction on 7.

i) A4; =T (4)PT, (KD DT, (K )PK:

ii) Ki®Q; = P,OR (Q)DR(Q.)  BKHQ; )BT, 14(0i)
and this is a coretract of P;, where K¥Q;) is the object in (*) for projective Q;
and the equalities are considered in P; by suitable imbedding mappings. If

i=1, 2, i) and ii) are clear (see the proof of Lemma 3.4). We assume i) and ii)
are true for k<<z. Using this assumption we first show for 2<j<(7—1 that

iif) P; = T,(4,)®TAK*)D - BT ;(K)
DOT;i(Pin®(K7Q)D - BKI(Q,-)DT,,1(0,))
DT 42 P; B KTTHQ) D+ BKIHQ,_,)DK*(Q,))

DT (P DK Q) D DKTHQ;-)K Q)
DP,OK(Q)D -+ DK(Q;-)+KHQ;) -

Now P; =T (P)DT,(P,)D - DT, i(P:,)DP;
= Tll'(Pl)@Tzi(PZ)@Pi (P: = Ta,-(Pa)@'"@P,-)
= Tu(4)DTH(Q)DT.u(0)D Tl P,) D P
= Tu(4)B(TuTu(Q)B THKHQ,))D - BT, _(K(0,))

DSK(0,)BTu(P,)DP: (*)
= T(A4)B (T PO Too Q1)) D (Tu(K(Q1)) D+ DKHQ,)+- P
= T(4,)DTu(K?)

DTu(PDOK(Q)DTw(Q2))
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EBT4£(P4® K%QJ@K‘(QD)@' ’
DT Pi, OKTHQ)DKT(Q)
DP,BR(Q,)DKHQ,) -
This is a case of j=2 in iii). We assume iii) is true for k< j. Since j4 1<,
we obtain from ii) and taking T ,,;
T K7D T144(Q541) = Tjaid Pra KON DK HQ,) B - BKITHQ;-1)
DT;;:1(05) -
On the other hand,

Tj11d(Qj1) = Tj+2iTi+1j+z(Qj+1)@Tj+si(Kj +3(Qi+1))@
BT (K¥H(0:,)) DKA(Q;11)
Since Q;,, is a coretract of P;,, and T, (P;.,) is a coretract of P; by the

following Lemma 3.8, we may regard the above objects on the both sides as sub
objects in P;. Hence, we obtain

P; = T(4)BT (KD BT,;(K)DT; . i(Kt)
DOT;1a(PreDKIHQ)D -+ BRIHQ)D T j14o(Q)11)) D+
DT, (P:PKT(Q)D - OKIT(Q)DKT(Q;.41))
DP,0K(Q,)®- OKHQ,))DK(Q;.) -

Thus we obtain from i) and ii)

P; = T(A)DTou(K*)D+ BT, o K* *)D T P, BKTHQ)D
OKHQ;- ) D Ti-5i-1(0s-0)) D(PiDKH(Q1) D+ OKH(O:-2))
= {T(4)DT(K)D- DT, (K HPT;_ (K ") PD{P,PK Q)P
DOK(Q;-)DT-1(Qs-)s -
Since 4;,DK’ and 4;,DT (A,)BT,(K*>PD--- BT, (K ")=4;, we obtain
A;=A,BK"* and Q; in U, such that
Ki®Q; = P;®oK{(Q,)D--- OKHQ; ) D T;_1:(0i-1) »
and hence, K'®Q; is a coretract of P;. Therefore, A=§28,~(K )P S,(4,).
Since T}, is projective preserving, each K? is ¥;-projective. -

Lemma 3.8. Let A and NA; and T;; be as above. We assume that T;;

satisfies the condition (*). Then T;,(P;) is a coretract of P; for any projective object
P=(P;);cs.

Proof. We may assume P = G%_S,-(Q,-) by Lemma 3.3, where Q; is 2;-pro-
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jective. Then P; —2 GBT,,,(Q,,)GBQ We shall show under the assumption of

Lemma 3.8 that T],T, (P —> Yist 4(P;) is a coretract. Let t=I—i. Ift=2,
then the fact is clear from (¥). We assume it for <<k and k=I—i. T;T;;(P;)=
T Ty Tiina(R) @ T (T y(KEFHP;)) B D Tj—lj(Kj—l(P ;) DKI(P :)) and

TiI(P i) = Ti+1lTii+l(P i)EBTHzl(KHz(P i))GB‘“ EBle(Kj(P .))
+Tu(RF(P) @ BK(P)) .

Hence, we obtain ¢;;; is a coretract from the assumption III, naturality of ¢ and
induction hypothesis. From those facts we can easily prove Lemma 3.8.

Lemma 3.9. Let N; and A be as above, and 1'a subset of I. Then there
exist functors M: [I'y Al—[1, A}, F: [I, Al—[I', A;] such that FM=I[r, u;], where
F is the restriction functor.

Proof. We may assume I=1I'U {i} by the induction. Let I,={j| €1, j<i}
L={jl €I, j>i} and A=(4,);er. If =¢, we put 4,=0. We assume I,=¢.

We consider a family D; = {Tu(Ay), ToiTowr(Ag) 245 Tu(4) and ToToe(4s)

T,:(d
wi( k”l T,(A4;) for k<k’<i}. Put 4; is a colimit of D;. Then we have

defined arrows Dy; and Dy, for ke1,, l€ 1, from (7). It is easily seen from the
definition of colimit that those D;; satisfy IV. Then M(4)=(4,)se; is a desired
functor.

ReMARK. We note that if 4=(4,) is a coretract of B=(B})sc,’, then M(A)
is a coretract of M(B), (cf. [5], p. 47, Coro. 2.10).

Proposition 3.10. Let {¥,},c; be abelian categories with projective class &
and A()=[I,A;]. Weassume T;; is projective preserving. Then every projective
object P=(P;);cy tn A(I') is of a form _G?’S;(Q,-) with Q; projective in U; for any
subset I' of I and (P;);er is W(I")-projective for any subset 1" of I' if and only if
(*) is satisfied.

Proof. “‘only if”. Let P; be projective in 2. 'Then S,(P;) is A-projective,
and hence, P'=(T;;.(P)), -+, Tin(Py)) is A(I-{1, -+, i}]-projective. Therefore,
the fact P'= @ S,(Q;) from the assumption is equivalent to (*). “if”’. Let

k>i+1
P'=(P})ser be projective in A(Z’). Then P’ is a retract of & S,(P,), where P,
ter’

is ,-pojectrive and S, is functor: A,—~A(I") in (6). Let M be a functor in
Lemma 3.9. Then M( @ S(P,))= 651 S,(P,) from the construction of M, and
ter i€r

M(P’) is its retract from the above remark. Hence, M(P’) is U-projective.
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Therefore, M(P')= 69 S(0;) with Q; projective in U; by Lemma 3.7. LetI'=
{iy, 1. We shall show Ay =(Ti Oy b= = Z @S,k( 1), where T,y

=I9,, and P{} is W,-projective. We obtain from Lemma 3.7 that T ;. (Quy)

‘—Ttt—ltk tktt—x(Q'k’)EBPik and T'k"t 1(Q ) Ttt-zzt—1Txk'1t-g(Q'k')@P‘t—1
Hence,

Tiwi Qi) = Tir_ i Tip_sis Vit Qi) BT, i P, )DPY,
= T:t 20t ik [is- 2(ka/)€BTtt 1't(P¢t 1)®P

from ITI. Repeating this argument we have A4;,/= 2 ®S;/(Pt,). Therefore,
P= 2 EBA,k/— EB Siy(PiY). This completes the proof

Proposxtlon 3.11. Let Nand N; be as above. We assume T;; is projective
preserving and satisfies (¥), then for D=(D,);cr in N

hd D <max (hd D,)+1 .

d,
Proof. Put n=max (hd D;). Let 0<-D<«-Py<«-«-P, «—P, be a

projective resolution of D and K,=ker d,. Since n=hd D;, every component
of im d, is projective. Hence, K, is A-projective by Lemma 3.7.

Corollary. Let A;, A and T;; be as above. Then
gl dim A= gl dim AY(I")
for any subset of I' and gl dim A<max (gl dim A,;)+n—1.

Proof. Let 4 be in 2A(I’) and 0<—M(4)<«—P,«P,<---be a projective resolu-
tion of M(4) in A. Then 0<—A<«F(P,)<—F(P,)« is a projective resolution of A
in A(I’) from Proposition 3.10.

We recall that 9 is semi-simple if and only if every object of U is projective.

Theorem 3.12. Let N; be semi-simple abelian categories and I a linearly
ordered finite set. Then A=[I, ;) with T;; satisfying I~IV is hereditary if and

only if
Ty (M)="T 1 Tis (M) D T (KM D DT, (K (M) DKAM)

for every object M in U for all i, where K*(M)=U,. Furthermore, gl dim A=1
if and only if there exists not a zero functor T;;, (cf. [2], Theorem 1).

Proof. The first half is clear from Lemmas 3.7 and 3.8 and Proposition 3.11.
If T;; is not a zero functor, then A=(4, 0) is not projective in A(7, j) for any A
such that T;;(A)==0 by Proposition 3.10. Hence, gl dim A=gl dim A7, j)=1.
If T,; is a zero functor for all 7<(j, then A=21PHA;. Hence, gl dim A=0.
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Let {R;};<; be rings. Finally we assume that 2(; is the abelian category of
right R;-modules. By [5], p. 121., Propo. 1.5 we know U=®S,(R;) is a small,

projective generator in . Put R=[U, U]. Let r,7’ be elements in R; and
T;;(R;), respectively. By 7,7, we denote morphisms in [R;, R;] and
[R;, T;;(R;)] such that r,(x;)=rx; and rj(x;)=r"x;, respectively where x,ER,.
We can naturally regard T, ;(R;) a left R;-module by setting 7y="T;(r;)y for any
rER; and yeT,;(R;). Furthermore, we define 7,2=¢; ;s T;s(r;) for any k>j
and 2T ,(R;), where we assume T;;=I9;;. Then we identify R with the set

rl r12 ......... rl ”
r2r22 ------ r2n
R=!| = .
0

I:” ) r,-]-ET,-j(Ri), riER,-

Lemma 3.13. 7ij7jk:?ij(rjk) and 7,‘_,'?]':7,']"‘—,‘) ?i?ij:ririj'

Proof. For any k= j we have 7,,7,=¢;;, T ;((r:))) T j&(r ))))=: j T (7 ;7))
=r,;;7, and
77 = Til(r:)0)0i e T s(ri)0) = Pije T Tijf((7:):) T 3a(r:;)0:)  (maturality of ¢)
= Qi Tia(Tij((7:)e)(r::)0)
= ;L j((ri7:;)1) (definition of R; module T;;(R;).

== r,-r,-]- .

7ii¥ ik = Pize Lj((ri))0)Pid Taer j)i)
= ;P iat Lo T ju(ri)))) Tre((r;2):) (naturality of ).

On the other hand we put

(7' k)
ie = Tij(7jk) = (Pije L ju(7:;))) 7 8)(Tir)s: Re —)’ T;(R;)

Tulri) WTis(R) —2> To(R)). Hence,
Pie = (Pije Tee)(Pije Tin(#:)0)(7 38)s) -

Therefore, 7;,;7;,=7,,(r;x) by the assumption III.
If we define a multiplication on R by setting

*) 7ii ik = Tij(7 &)
we have from [5], p. 104, Theorem 4.1 and p. 106, Theorem 5.1

Theorem 3.14. Let &F: be the abelian category of right R;-module. Then
[, ®F4] is equivalent to the abelian category of a left R-module, where
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R = ( RTy(R)++ T.u(R) '
Ryeeeee T,.(R,) | with product (¥¥) .
0
R,

And T, (M;)~MQT,(R;) for any M, A; (**) is given by an R;-R; homomorphism
SbtkTi](R;);@T]k(RJ)__)Ttk(Pl) (Cf. [2], Theorem 1).
J
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