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1. Introduction

In his work [1], Eichler discussed a relation between the automor-
phic forms of dimension —2k (k is an integer and >1) for a fuchsian
group I" and the cohomology groups of I' with certain modules of
polynomials as coefficients, where the cocycles appeared as the periods
of ‘the generalized abelian integrals’ attached to the automorphic forms.
Gunning [2] gave a more general form of this relation.

The purpose of the present paper is to give an analogous relation
in the case of automorphic forms of dimension —1 for a fuchsian group
and give an application to Selberg’s eigenspace [3].

I express my gratitude to Dr. H. Shimizu for suggesting this pro-
blem to me and for his many valuable critical comments during the
preparation of this paper.

2. The eigenspaec iU%(l, —%)
Let
S={2=2x+iy; x,y real and y> 0}

denote the complex upper half-plane and let G=SL(2, R) be the real
special linear group of the second degree. Consider direct products

S = SxR/(27),
G = GxR/(27),

where R/(2~) denotes the real torus, and let an element (o, §) of G
operate on S as follows :

§2(a ¢~ (& #)e, 0) = (ZF0 grarg (cz+d)+0) <8,

where 0'=(Z Z)eG. The operation of G on S is transitive. S is a
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weakly symmetric Riemannian space with the G-invariant metric
2 2 2
dx tdy +<d¢_d_x> ,
y 2y
and with the isometry p defined by
wz, ¢) = (—2, —¢).

The G-invariant measure d(z, ¢) associated to the G-invariant metric
is given by
d(z, &) = d(x, 3, ¢) = PADYND,

The ring R(S) of G-invariant differential operators on S is generated

by
9
0¢
and
&\ 506 . 8 0
A= 2( )+~— —_,
Y\ox oy ) 4ot Y og ox

where A is the Laplace-Beltrami operator of S.
For an element (o, )G, we define a map T, 00 of C=(S) into
itself by

(Ter,0f)a ) = e #)o, 0) = £(#2E2,

¢+arg (cz+d)+0>,

where 0'=<? Z) (0,0) — T¢, o is a representation of G.
By the correspondence
Goo < (0, 002G = GX R/(27),

we identify the group G=SL(2, R) with a subgroup G x {0} of G, and
for an element c=G we put T, 4,=7T,. Then we have

(Tf)a 4) = (Z22, prarg (cz+a).

Let T" be a discrete subgroup of G not containing the element

(_(1) _2), and suppose that G/T" is compact. We also identify the

subgroup I' with a subgroup I'x {0} of G.
Denote by C=(5/T") the set of all C~ functions on S invariant under T":
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C=(S/T) = {f(2, $)C=(S); T,f = f for all oI}

and define C~(S/T") similarly.
Now consider the following simultaneous eigenvalue problem in
C=(S/T):

fec=S/r),
P )
(A) %f(z» (;b) = _zf(zy (l)) ’

5 (1)
Afie, §) = =2 1@ 9).

We denote by ‘.UEF(l, -%)ziﬂl(l, —%) the set of all functions satisfy-

ing the above condition (A). The eigenspace 9)3%(1, —%) is of finite

dimension (A. Selberg and T. Tamagawa). We put
_ 4 3
, = dim EU%(I, —§> (<o0).

We shall denote by &,(I") the linear space of all holomorphic auto-
morphic forms of dimension —1 for the fuchsian group I" and put

d = dim &(T).

Then we have the following
Theorem 1. d=d,<2d.

Proof. By (1) and the identification of (2, ¢) with (2, ¢+ 2nz), the
element f(z, ¢)E‘Jﬁ<1, —%) is of the form

[z, ¢) = 7 G(2),
where G(z) is a function depending only on z. If we put

E(z) = y7/G(2),
then
flz, ¢p) = ey E(2),

and E(z) satisfies the following condition :
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E(2)eC=(S),
) E(c2) = (cz+d)E(z), where o = (f Z)el“, (2)
2929 B2y =i E).
0z 0zZ 0z

Conversely, if E(2) is any function satisfying the above condition (B),
then the function e *y/?E(2) satisfies the condition (A).
Hence

‘Jﬁ(l, —%) = {e7#*y?E(2); E(2) satisfying the condition (B)},

and therefore

dim Sm(1, —%) — dim G, (3)

where @ denotes the linear space of all functions satisfying the condi-
tion (B).
Since each element F(2)e&,(T") satisfies the condition (B), we have

(1, —2) 2y F@); F@)eer)
and therefore

d,>d. (4)

Now we put

-%Wbﬂd (5)
V4

By virtue of the condition (B) for E(z), the function g(2) satisfies the
following condition :

g()eC=(S), ,
© g(oz) = (cz+d)(cz+d) g(z), where o = <? Z)EF ’

2y 2 g(a) = ig(@).

We shall denote by &, the linear space of all functions satisfying the
above condition (C).

If g(2) is an element of &, then g(2)=y 'F(z), where F(2)e& (),
and the mapping g— F is a bijection of the linear space &, onto the
linear space &,(I"). Therefore

dim G; = dim &(T") .
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On the other hand, the differential equation (5) is transformed as
follows :

_aafE(z) — y'F(2), where F(2)e®,T). (6)
r4
Consider the following linear map

216~ ' F@; Faesm)

From the above discussion, the kernel of this linear map is &,(I"), and
we have

dim G, — dim &(T")+ dim .58; (@)
< dim &(I")+dim {y'F(2); F(z)e&,")}
=d+d=2d.
Since dim &} is equal to d, by (3), we have
d,<2d. (7)
By (4) and (7), we have d<d,<2d. Q.E.D.
Corollary. The dimension of 9)32(1, —%) is different from 0O if and
only if S (") =+ {0}.

3. The Eichler periods of integrals

For each function F(2) in &,(T"), consider the differential equation
(6) in §2:

—%E(z) — y Q). (6)

The function F(z) is a holomorphic function of z; put F(2)=F*(Z).
Then the differential equation (6) has a C~ solution of the form

B@)=E?) = “2r®d  (me<o),

20 -
where 2z, is a fixed point in the lower half-plane and the integral is
taken along an arbitrary peicewise differentiable arc in the lower half-
plane with initial point 2, and terminal point zZ. Therefore the general

solutions of class C~ of the equation (6) is

E(Z) = El(z)_EO(z) ’
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where E,(2) denotes an arbitrary holomorphic function on S.

For each o= (Z‘ Z)eI‘, the function E,(2) is transformed as follows:

R = Sl

by F*(e7'8)=(—cE+a)F*(§).

Putting o '£=¢ we have

—2 F*(o’ LE) _ _——ZZ . _
g’oE— oz —ck+a d (cz+d)S lzot—zF (t)dt=(cz+d)

XS —_—-F*(t)dt+(cz+d)g 2 prpydr .
N t—=z 2 t—2

Hence we have
E(c2) = (c2+d)E@R)+(cz+d)E(2)+(cz+d)C(c ; 2)—E(c?),

where o= (? 3>EF and

o) =", “Zr@a.
T "2 E—‘ <
Hereafter we put
[*] = (cz+d)E(2)+(cz+d)C(c ; 2)— Efc2) .

Let N be the set of all holomorphic functions on S and let T
operate on N as follows:

W2)o = h(o; 2) = Ei—dh(az),

where a=(“ Z)EF and A(z)eMN. Then N forms a I'-right module. A
c

map o — k(o ; 2) of T into N is called a (rnon-homogenecous) 1-cochain, and
if a cochain satisfies the equation

k(z)(a'r) = h(a‘ ; z)-'r +h(r;2),

then it is called @ 1-cocycle. A 1-cocycle of the form h(o ;2)=mn(2)-
o—n(z), where n(z2) is a fixed element of I is called a coboundary.
The cocycles form an additive group ZYT', M), and the coboundaries
form a subgroup BT, N) of Z*(T", N). The factor group Z*(T", N)/BX(T, N)
is denoted by H'(T, ) and called the first cohomology group of T in R,
and its elements are called cokomology classes.
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For each function F(2) in &(I'), the map
s — C(s;2), where C(o;2) = g?—x,og%z::F*(g)d‘f (8)
is clearly a cocycle. We shall call it the Eichler period of the integral

E(2) on o, where

E(z) = S‘ — 2

W E—2

F*(@&)dg .

This cocycle depends on F(z), and moreover on the constant z, ocurring
in the definition of E,(2). But a change of z, would add a coboundary
to C(o; 2). Therefore the cohomology class of (8) depends only on F(2).
We shall call it the Eichler class of F(2).

It should be noted that a cocycle C(s ; 2) satisfying the condition

[*]:0’

is a coboundary.

4. A theorem of monomorphism and its application

Consider the following map from &,(I') into H'(T, N)

?:F@) > Clo;2), (9)
where  Clo32) = |7, ZEFede, FrE) = FO.

The map is obviously a homomorphism of &,(I') into H(T, N). We
shall prove that ¢:&,(I")— HYT, N) is one-one.

For the cocycle C(o ; 2) such that ¢(F,(2))=C(c ; 2) with F.(2)e&,T),
we put

E@ =[] Z2r@ds (FX = FE),
then E,(2) is a C> function satisfying the conditions
Clo;2) = E(2)-0—E\(2) (10)
and
DB =y FL@). (11)
Z

The differential form ¢(2)=0E,(2) is a C> differential form on D®, and

1) D denotes a fundamental domain of T' in S. As mentioned in §2 G/T" is compact,
so D is compact.
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by (11) it satisfies the relation ¢(c2)=(cz+d)p(z) for all o= (a 3)61"
For an arbitrary element F(z) of &,(T), #(z)=F(z)dz is a holomorphic
0(z) for all

differential form on D and satisfies the relation 6(c2)= 1 p
cz

cd
under the group T.
We consider the following integral over D,

a:(a b)el‘. Therefore the differential form ¢(2)A6(2) is invariant

| s@n0@. (12)

From the above discussion, the integral converges and is independent
of the choice of fundamental domain of T" in S. If g,(2), g.(2) are two
C> functions associated with the same cocycle C(o;2) by the relation
(10), then we have

go2) = (cz+d)g(2),

where g(2)=g,(2)—g,(2). Then the differential form g,2)F(z)dz is in-
variant under the group I'. Therefore

| da@AF@dz-| danF@dz = | de@)AF@)dz

),
l,
L

0,

I

(8(2) F(2))dz Ndz

)
ml@

82 F(z)dz

where 8D denotes the boundary of D. Consequently, the integral (12)
depends only on C(s;2). We shall denote it by

Cos2), @y = | sanew.

If the cocycle C(o; 2) is an element of BT, M), then ¢(2)=0; and
hence

C(o;2), F(z)>=0

for all F(z)e®,(TI"). Therefore, if there exists a function F(z) in &,(T")
such that {C(s ;2), F(2)>=+0, then C(c;2)&EB T, N).

Let F(2) be a nontrivial function in & (") and C(s ; 2) the image of
F(2) by . If we put
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W(2) = y ' F(2)dz
and

0(z) = F(2)dz,
then the integral

[ v@no@ = |y F@FEdzndz

is not equal to zero. On the other hand, let
E@ = | “ZFr@ae.
zq E— 2
Then the function E,(z) satisfies the following conditions :
C(o; 2) = E(2)0 —E\(2)
and
0 TS
FEI(Z) =y 'F(2).
z
Hence
OE(2) = L E(@)dz =y F@dz = ¥(2),

and therefore
{C(c;2), F(2)>=+0.

47

Consequently, if F(2)=£0, then for the corresponding cocycle C(s ; 2),

(o ; 2), F(2)>=*0.

By the two results obtained above, we see that if F(z)=0, then the
corresponding cycles C(o;2) does not belong to BT, ). Therefore
F(2)=%0 is equivalent to C(c; 2)&BY(T, N); and hence the kernel of ¢ is

equal to zero.
We have the following

Theorem 2.2 The map F(2)—C(o; 2) defined by (9) is a monomor-

phism of S(T) into H'(T, N).
Corollary. With the same notations as in §2, we have
d=d,.

Proof. In §2, we have considered the following linear map

2) The possibility of this theorem was indicated by Gunning ([2]. p. 56).
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0

i G {97 Fz); F()e&,I)},
¥4

and proved that the map is into. Next we prove —6@_—(@p)= {0}. For
<

every nontrivial function F(z) of &(I"), there exists an inverse image
of y'F(z) if and only if the cocycle C(s;2) corresponding to F(z) by
@ belongs to BYT', N) (cf. §3 in this paper). On the other hand, by
Theorem 2 the cocycle C(o ; 2) corresponding to the nontrivial F(z) does
not belong to BY(T, ). Therefore

0 _ 3
—ag(@I‘) - {O} ’

and hence, we have
d=d,. Q.E.D.
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3) Therefore all the functions E(2) in €p are holomorphic.





