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Introduction. In the course of developments of algebraic topology,
one of the advantages to use the cohomology theory (in the ordinary
sense) rather than the homology theory was the existence of multi-
plicative structures, i.e., cup products. Cup products exist not only in
the integral cohomology but also in the cohomology with any coefficients
whenever the coefficient domain has a multiplicative structure. Recently
it is known that for any general cohomology theory one can associate
cohomology theories with coefficients. Since there are important general
cohomology theories with multiplicative structures such as K-theories,
one can expect to introduce multiplicative structures in their associated
cohomology theories with coefficients. The present work is directed to
introduce and to study multiplicative structures in cohomology theories
with coefficients. However, since coefficients are limited to finitely
generated groups at the present time, the most important cases are those
with coefficients in some finite cyclic groups, i.e., Z,, ¢>1. Henceforth
our research is limited to mod ¢ cohomology theories to avoid com-
plexity of discussions.

To introduce multiplications in mod ¢ cohomology theories it is
important to check a connection with the multiplication in the original
cohomology theory. Since there is the notion of “reduction mod ¢”
also in general cohomology theories, we postulate this connection as
the compatibility through reduction mod ¢, postulation (A,). In the
ordinary mod ¢ cohomology theory, the mod ¢ Bockstein homomorphism
works as a derivation. Since this property has been proved to be much
useful, we postulate a corresponding property also in general mod g
cohomology theories, postulation (A,). Proof of associativity of multi-
plications in mod ¢ cohomology theories are very round about even if
it is possible. But, to get some uniqueness type theorems, it is sufficient
to postulate a weaker form of associativity, which we call “quasi-
associativity,” postulation (A,). We have an example of mod ¢
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cohomology theory which have a multiplication satisfying (A,), (A,) and
(A,;) but no commutative one, i.e., complex K-theory mod 2. So that
we postulate nothing about commutativity. A multiplication in a mod ¢
cohomology theory satisfying (A,), (A,) and (A,) is called “an admissible
multiplication.”

If ¢g=2 (mod 4), then there exist an admissible multiplication always
whenever the multiplication in the original cohomology theory is given
and associative (Theorem 5.9). But, if ¢=2 (mod 4), some condition
is necessary for the existence of admissible multiplications. A sufficient
condition for this is obtained (Theorem 5.9). In case ¢=2 (mod 4), a
necessary and sufficient condition for the existence of a multiplication
satisfying only (A,) is obtained (Corollary 5.6). There are examples
which do not satisfy this condition, e.g., KO-cohomology theory of real
vector bundles.

Not only the existence but also a uniqueness-type theorem of
admissible multiplications is discussed, which states that admissible
multiplications are in a one-to-one correspondence with elements of a
group which is specific to the considered cohomology theory under the
assumption that the original multiplication is commutative and associative
(Corollary 3.10). In case of ordinary cohomology this group consists
only of zero, hence true uniqueness holds. In case of complex K-theory,
this group is Z,, hence there are ¢ different admissible multiplications
in mod ¢ K-theory. In case of the KO-theory, this group consists only
of zero if ¢ is odd, hence true uniqueness holds for odd gq.

In §1 we summarize some known basic properties of stable homo-
topy groups of two CW-complexes, which is necessary as preliminaries.
In §2 we exhibit some elements of additive mod ¢ cohomology theories :
reduction mod ¢, Bockstein homomorphisms, universal coefficient
sequences, cohomology maps induced by coefficient homomorphisms, etc.
In §3 we develop an axiomatic. approach to multiplications in mod ¢
cohomology theories, and arrive to the notion of admissible multipli-
cations. Uniqueness-type theorems and deviations from the commuta-
tivities are discussed. In §4 we compute some stable homotopy groups
and make preparations for the existence theorem of admissible multi-
plications from the homotopy theoretical point of view. §5 is devoted
to the proof of the existence theorem of admissible multiplications by
constructing a multiplication.

In a subsequent paper with the same title we will discuss associa-
tivities, commutativities and multiplications in Bockstein spectral
sequences, at least for the K-theory.
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1. Preliminaries

1.1. First we shall fix some notations :

XAY the reduced join of two spaces X and Y with base
points,

FAE the reduced join of two base-point-preserving maps f
and g,

SX=XAS" the (reduced) suspension of X,

1, (or simply 1): A— A an identity map of A into itself,

T(A, B) (or simply T): AAB—~BAA a map switching factors,

S*PA=S(S"*A)=AANS*" 'AS'=AANS" an n-fold suspension of A,

S*f=fAls» an n-fold suspension of a map f,

q:S'->S? for an integer ¢ to denote a map of degree g given
by ¢{t} ={qt} for {# mod 1} &S

Denote by {A, B} the stable homotopy groups of CW-complexes A
and B with base point, i.e., the limit of the sets of the base-point-
preserving homotopy classes of maps : S”A—S”B with respect to suspen-
sions, endowed with the usual structure of an abelian group. Obviously
we have

1. 1). {A, B} =~ {S"4, S"B}, n=0,1,2, .

For a map f:S"A—S"B, n=0, we denote by the same letter f the
stable homotopy class represented by f, i.e., f={A, B} when there
arises no confusion. For example,

1=1,{4, A} and T=T(A B)e{AAB, BA\A}
for the classes of the identity map and the switching map,
ne{S% St and rve{S, S}
for the classes of the Hopf maps 7:5*—S? and »:S"—S"
1.2. The composition of a={A, B} and B< {B, C}, denoted by
Boa or simply by Bacs{A,C},

is defined as the class of S™goS”f, where f:S”A—S™B and g:S"B—S"C
are respectively representatives of a and B. Tnis definition is in-
dependent of the choices of f and g.

For a={A, B} and o’={A4’, B’}, their reduced join

ana’'e{ANA, BAB'}
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is defined as follows: choosing representatives f:S”A—S”B and
g:S"A’—>S"B’ of a and o’ respectively, a Aa’ is the class of the com-
position

AATALD(fAL)(ANTAL) : ANANS™" = ANA AS”AS™
—ANS”NA' ANS" —>BAS”AB'ANS*—BAB' ANS™™.

This definition is also independent of the particular choices of f
and g.
We have obviously

(1.2). The composition and the reduced join are bilinear and the re-
lations

(BOAN(B'2)=(BABNaNa')
and (ana)T(A’, A)=T(B’, B)(a’ \a)
hold for aci{A, B}, a’'={4’, B'}, B={B,C} and B’'={B’,C'}.

We regard that, for any a< {4, B} and the class 1, {S”*, S"} of the
identity map, the relation

(1.3) S"a=aNnl,=«a

holds via the identification (1.1). In general 1,A« differs from aAl,,
but, if a={S?*°, S?} and B={S?", S}, then we see from (1.2) that

(1.4) aAB=(—1)*"*aB=(~1)"Ba,
in particular LAa=(-1)"a.

By the bilinearity of compositions, {4, A} (or X}, {S*A4, A}) forms
a ring (or a graded ring) with the composition as the multiplication.
Also the formula

Bx(a) = a*(B) =Ba, as{4, B}, B€{B, C},
defines homomorphisms
Byx:{A, B} > {A,C} and a*:{B,C}— {4, C}.
1.3. Let f: A—B be a map of finite CW-complexes and let
C,=BU,CA

be the mapping cone of f. We have Puppe’s exact sequence [7]
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n+1f>|< n * S” y K
(1. 5). e 25 {S714, X} S {s*C,, X} —
£ 3
{S"B, X} — Sf = {S"4, X} -

for any X, where = :C,—SA is the map collapsing B to a point and
i:B—C, the canonical inclusion. As a dual of (1.5) we have the
following exact sequuence for finite dimensional CW-complex Y [4]:

sn S

1.5) e (Y, S™IC) T (y, smay 2T
" s

—{Y, S"B} 2% (v, S"C} 2% ... .

Both sequences will be called the exact sequences associated with
the cofibration

B—tac,-"s4.
1.4. Let M, be a co-Moore space of type (Z,, 2), where ¢ is an
integer >1. To fix a space M, used in the sequel we put
M,=S'U,e*=S"U,CS*.
Denote by

(1.6) 7y (OF 7):M,—S* and i, (or i):S'—>M,

the map collapsing S*! to a point and the canonical inclusion.
The following theorem is basic in our later discussions.

Theorem 1.1. If ¢=2 (mod 4), 1,,={M,, M}, M=M,, is of order
g. If q=2 (mod 4), then q-ly=i,nn, for the class of Hopf map
ne{S? S'Y=Z, and the order of 1, is 2q.

We sketch the proof (for details, see [3] or [9]). In the exact
sequence

¥ ¥
{Sz, Mq} — {M,, Mq} I {Sl’ Mq}

i*(1,)=1 is of order ¢, and ¢-1,, is in the image of =*. i,:{S?% S}
— {S?% M,} is an epimorphism. Thus ¢-1,,=0 or inz. If ¢ is odd then
ine=0. Let ¢ be even. ¢-l,=inr if and only if the functional Sg*
operation associated with ¢-1,, is not zero, i.e., S¢*+0 in M,AM,
=SM, U ... C(SM,). By Cartan’s formula, S¢*=Sq'ASq'==0 if and only
if g=2 (mod 4). This proves the theorem.
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Ini
1.5. Apply (1.5) and (1.5) for the cofibration sx =2 XAM,

1
——/}-ZSZX, where XAM,=SXU,C(SX) and f=1lxyAg=¢:lsx:SX—-SX

induces the ¢ times of the identity map. Then we have the following
two exact sequences
1 k 1AD)*
wn  o—isx, ez, T xam,, wy T2
Tor ({SX, W}, Z,)—0,
1IN 1
W7 0—{X, sx10z, 0% (v, xpny LA
Tor ({Y, S*X}, Z,)—0
for finite dimensional Y.
By Theo. 1.1 and (1.2) we see that the order of the identity class
1xA1l, of XAM, is a divisor of ¢ if ¢%2 (mod 4) and is a divisor of
2q in general. Hence

1.8) {XAM, W} and {Y, X \M,} are Z,,~modules in general, and are
Z~modules if q=2 (mod 4).

From this we see that the sequences (1.7) and (1.7’) split for odd
prime gq.

2. mod g cohomology theories

2.1. By a cohomology theory we understand, throughout the
present work, a general cohomology theory defined on the category of
pairs (X, A) of finite CW-complexes (or of the same homotopy type).
Each cohomology theory % has its reduced cohomology theory % defined
on the category of finite CW-complexes with base points. The cor-
respondence k—% is bijective, and the postulations for % have an
equivalent form of postulations for %z [10]; thereby the excision axiom
is replaced by the suspension isomorphism

o (X)) S FSX)
for all 4.
Put
(X)) = 3B (X).

Then 7#* is a functor of Z-graded abelian groups. (In case ~=K or
KO we use * instead of * to denote the Z-graded groups so as to avoid
confusions with the periodic cohomologies.) For the sake of simplicity
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#*(f) is denoted by
SRR (Y) -k (X)

for any map f: Y— X preserving base points. From the commutativity
Sf*¥oa=cof* (the naturality of o) follows that f* depends only on the
stable homotopy class of f.

Let A, B be finite CW-complexes (with base points). For any
element o of {A, B}, we define a homomorphism

a** ¥ (X AB) — ¥ (X A\ A)
by the formula
a** =(a")(Ix A\ f)¥o"

where f:S"A—->S”B is a map representing «. The commutativity
oA f)*=AASf)*c shows that the definition does not depend on the
choice of f. We have easily

(2.1). i) a** is the identity homomorphism if a is the class of the
identity map,

i) (Boay™ = ar*or,
iii) (a,+a,)** = af* +af*,

iv) o®* is natural, i.e., (gA1x)¥oa®* = a**o(gA1p)*
for any map g: Y —X.

2.2. The mod g k-cohomology theory [57], #( ; Z,) and Z( ; Z,),
is defined by

(X, A; Z,)=h"*(XxM,, XxX*U AXM,),
H(X; Z)=h"*(XAM,  for all i.

For a map f: XY, #*(f; Z,) is defined by
B*(f; Zo) = (FA1)*, M=M,,
and, for the sake of simplicity, denoted sometimes by
XX (Y5 Z)—I¥(X 5 Zo)
The suspension isomorphism
oot (X5 Z,) S (SX; Z,)

is defined as the composition
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oo= (g A T Yoo : 1 (XAM,) S W (XAMASY) S W (XAS'AM,),

where T=T(S", M,). Since o is natural, o, is also natural. With these
definitions %( ; Z,) satisfies all axioms of a reduced cohomology theory.
Thus A( ; Z,) becomes a cohomology theory.

Making use of maps (1.6) we put

pe (01 p) =1 Am)*e?: B (X)W (X; Z,)
and 800 (0r 8) = o (LAL)* : 1 (X Zg)— i+ (X),

which are natural and called as the reduction “mod ¢” and the Bockstein
homomor phism respectively. The following relations are easily seen.

2.2) 0gPq = Pg0, 84 004=—08,, and 8, ,p4=0.
From the exact sequence of 7 associated with the cofibration

1IA: 1
X/\Sl—/\—iK/\Mq —/\ZX/\S2

and the definitions of p, and §, , we obtain the following exact sequence

- N Sq0 .
@.3). L) LU B 2) S e x) s

where ¢ denotes a homomorphism to multiply every element with ¢,
from which follows the exact universal coefficient sequence

5 r & s
2.4) 0-H(X)RZ~L W (X; Z,) —— Tor (F*(X), Z,)—0

for all 7, which is natural, and the natural maps p’ and &’ are induced
respectively by p and 4.
Put

80.r=p840: B (X; Z))—>H(X; Z,)

for ¢, r>1, In case g=7, putting §,=§, ,, we call it the “mod ¢” Bock-
stein homomorphism. The following relations follow from (2.2) and the
definitions.

2.2) 0,84 ,=—084,04 and &, .8,,=0.
2.3. The following propositions follow from (2.1) and Theo. 1. 1.

Proposition 2.1. The groups W(X; Z,) are Z,-modules if q=2
(mod 4) and Z,,~modules if g=2 (mod 4).
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Proposition 2.2. If 7¥**=0 in %, then W (X; Z,) are Z,~modules for
any g>1.

As an example, we consider Atiyah-Hirzebruch K-cohomology theory
of complex vector bundles.

Theorem 2.3. Let wec {S*", S™}, then a**=0 in K if r+0. Thus
Ki(X; Z,) are Z,~modules for any X and g>1.

Proof. Tensor products of vector bundles defines a multiplication
which induces natural isomorphisms : K (X)QK*(S") =~ Ki**(XAS"). Via
the naturality of these isomorphisms it is sufficient to prove the trivi-
ality of a*:K"(S™)—K"(S*™"). By Serre [8], {S™”, S"} is finite for
r=+0. On the other hand, K"(S"")=0 or Z. Thus a*=0. q.e.d.

The above theorem does not hold for I?(’)—cohomology theory of
real vector bundles. For, it is known [1], [9], that

KO2(S°; Z)=KO"(M,))=Z, .
2.4. Take groups of coefficients Z,, Z,, and let ¢ be an integer
such that
a-q=0 (mod 7).
Put @’=aq/r and let a, a’:S*—S* be the maps defined as in 1.1. Put

d|51=a’ and let a|CS':CS*—CS' be the canonical extension of a.
Then the map

(2.5) a:M,~M, with a|S'=a’ and =,0a=Sacr,
is well-defined and continuous. The map & induces a homomorphism
@A*=AAa)*: BE(XAM,) -2 (XAM,) which is denoted by
(2. 6) ay W (X; Z)-H(X; Z,).
We see easily
2.7), 0) 04=0. If g=r, 1, is the identity.
i) a@ob = ab, thus byoa, = (ab)s.
i) aype(x) =a-p,(x) for xh(X).
iii) 8, (a4 (x)=(aq/r)-8, ,(x) for x€W (X; Z,).
iv) ay is natural, i.e., f¥oa, = ayof* for any map f.
We have

(2.8). The map 7: M,— M, is homotopic to zero. Thus ry=0:k( ; Z,)
—k( ; Z,).
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In fact, we define a homotopy 7,: M,— M, between 7 and a constant
map as follows. Representing each point of M,—S' (or M,—S') by
(x,8), x€8%, 0<t<1, with the relations (x, 1)=x and (x, 0)=r(x) (or
=gq(x)), we put

re(x) = (x, 6) for xeS'cM,
(r(y), 0), t=6,

for yeS' 0<t<1.
(), t), t=0, O 7

and ro(y, t) = {

Then 7, is a homotopy between r,=7 and r,=0 (constant map).
Now let

Cl) =M, Ui CM,
be a mapping cone of the map 1:M,—M,,. For the map 7: M,,—M,,

the composition 7o1: M,— M, is homotopic to zero by (2.7), i) and (2.8).
Thus the map 7 is extended over a map

R:C(D)—M,, R|M,, =7,

using the above homotopy. We have
(2.9). R is a homotopy equivalence.

In fact, R is a deformation retraction by regarding M, as the sub-
space S*U,CS* of C(I) as T'Slzq.

Making use of the equivalence R, we have the following exact
sequence (2.10) associated with the cofibration XAM,,—XAC(1)
—-XASM,:

y N 1, . 3,,
@.10) o = F (X Z) D5 W (X Zg) 5 (X Z,)—%
'ﬁi+1(X; Zq)—>"'

2.5. Compair @+b and a+b in {M,, M,}. From the exactness of the

wk

yk

sequence {S%, M,} —— {M,, M,} L, {S%, M,} and from the fact
i¥(@a+b)=i*(a+b) we see that a+b—(a+b) is in »¥{S% M,} which is
generated by i,7z,. If g or » is odd, then =¥{S? M,} =0. Therefore
we obtain

Proposition 2.4. If q or r is odd or if 7**=0 in h, then ay+by
=(a+b)y as natural maps:h( ; Z,)—=h( ; Z,); in particular, a(x)
=a-x, x€l(X; Z,), when g=r.

(2.7), i), (2.8) and Prop. 2.4 show the following

Proposition 2.5. Given a homomorphism f:Z,—Z, and let a be an
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integer such that f(t)=at (mod »). Then, under the assumption of Prop.
2.4, ay is independent of the choice of a, i.e., we may write

f*_—_a*;ﬁf( > Zq)*ﬁ’.( s Zy) .

Theorem 2.6. If q is prime to r, then we have the isomorphism

Ly, 1) 0 (X; Zo) S H(X; Z)DR(X; Z,).

Moreover, if 7*=0 in h, the inverse of (1, ly) is

(W) + Q) = u-rs+v-gy B (X; Z)OH(X; Z)S H(X; Z,,),
where u und v are integers such that ur+vg=1.

By assumption ¢ or 7 is odd. Let ¢ be odd. For 1,:% (X; Z,,)
—=W(X; Z) and ry: W (X; Z,)—> W (X; Z,,), lyory=r is an automor-
phism of #(X; Z,) by (2.7), i), Props. 2.1 and 2.4. From the exactness
of the sequence (2.10) the first assertion of the theorem follows. The
second assertion is straightforward from (2.7), i) and Prop. 2.4.

When ¢ is a multiple of », we put
(2.11) pa,r=1s: B ( ; Z)—k( ; Z,).

2.6. The following theorem gives a condition for to split the exact
sequence (2. 4).

Theorem 2.7. If q=%2 (mod 4) or if 7**=0 in h, then the sequence
(2. 4) splits -

W(X; Z)= I (X)®Z, ® Tor (W (X), Z,).

Proof. Since Tor (%*(X), Z,) is a Z,~module, it is isomorphic to
the direct sum of cyclic groups F, (the set of indices {k#} may be infinite
[6]). Let a be a generator of F), and let s be the order of a. It is
sufficient to prove the existence of an element v of % (X; Z,) such that
sYy=0 and &y=a. Put t=¢q/s. By (2.7) we have the following com-
mutative diagram :

. s o~ & .

(X)W (X5 Z.) —— Tor (F(X), Z,)—0
lt te j

7 (X) 2% B (X5 Z,) —> Tor (FH(X), Z,)—0,

where j is the inclusion. Let B€/ki(X; Z,) be chosen such as j&'B=a,
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Put y=#,8. Then §y=a. If »**=0 in % or if s=2 (mod 4), then
s3=0, thus sy=0. The remaining case is that s=2 (mod 4) and ¢=0
(mod 4), then ¢ is even. By Theo. 1.1, we have

57 =tk (sB) = tx(LAinm)* B =t (A A=)* (L Ain)* B
=lupso *(AA)* B =t-poo(ANI)*B=0,
since ¢ is even and f7=0. q.e.d.
Corollary 2.8. (2.4) splits for h=K:
K'(X; Z,)=K{(X)®Z,® Tor (K (X), Z,)
for any X and ¢>1.
By a parallel proof to that of Theo. 2.7 we obtain
Theorem 2.9. The sequences (1.7) and (1.7') split if q=2 (mod 4):

{XAM,, W}={$*X, W}RZ, ® Tor ({SX, W}, Z,),
{Y, XAM} ={Y, SX}®Z, ® Tor ({Y, S*X}, Z,).

3. An axiomatic approach to multiplications in mod ¢ cohomolegy
theories

3.1. A cohomology theory % is said to be multiplicative, if it is
equipped with a map
3.1) wi b (X, AAQR (Y, B)=>h" (XxXY, XXxBUAXY)
for all 7, j, which is

(M) linear,

(M,) natural (with respect to both variables),

(M,) has a bilateral unit 1€h°(S°, *), i.e., W(1RXx)=wW(xR1)=x for
any x€hi(X, A),

(M,) compatible with the comnecting morphisms. cf., Dold [5], p. 6.

If u is associative, i.e., satisfies

(M) wp®1) = p(1lQu),

(where we used 1 to stand for an identity map of a group and such a
kind of usage of 1 would not give rise to any confusion with the unit
1€hr°(S°, ), or if x is commutative, i.e., satisfies

(M) T*u(x®y) = (=1)7u(y@x)
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for xehi(X, A) and yeh/(Y,B), where T:YXX—>XXY is a map
swiching factors, then we say that p is an associative, or commutative,
multiplication.

To give a multiplication x in % is equivalent to give a multipli-
cation in %

(3.2) pi(X)QW(Y) >R (XAY)

for all 4, j, such that they transform naturally to each other by Ithe
passages from % to % and converse. About the multiplication (3.2) the
axiom (M,) is replaced by

(M%) the compatibility with the suspension isomorphism o :
ou(x®y) = AN TY* lox®y) = (—1) w(xQay)
for deg x=i, where T=T(Y, S").

By the reason of this equivalence our discussions are limited only
for multiplications (3.2) in 4.

3.2. Let % be a multiplicative cohomology theory with a multipli-
cation x. The multiplications

pril( 5 ZYRW( )=k 5 Z,)

3.3 ~ - ~
©-9 pr R (O)QK( 5 Z)—=hH( 5 Zy)

for all 1,7,

are canonically induced by requiring that the following diagrams should
be commutative :

(X; Z)QW(Y) Er FH(XAY; Z,)

o - B AATY* . .
R XAM)QW(Y) —— BT ( XAMANY) —— 7" XANYAM,),

BX)QW(Y; Z) LLHEGXAY; Z)

F(X)QW (Y AM,) o W 2(X A YAM,).
As is easily checked, ur and p, satisfy the following properties :

(H,) [linear;

(H,) natural;

(H,) 1 is a right unit for pp and a left unit for u,;

(H,) compatible with suspension isomorphisms in the sense that
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oour(A®y) = AN T Yur(o2@y) = (—1) pr(x®oy),
onL(x®3) = AAT u(cx@y) = (—1) pL(*Q0oe¥)
for deg x=1;
(H,) compatible with the reduction mod q in the semse that

pr(pe®1) = pop = pL(1Qp,) ;
(H,) compatible with the Bockstein homomorphisms in the sense that
Sur(2Q@y) = p(82®y), Sur(x®y)=(—1)u(x®3y),
8o nr(2®Yy) = pr(8,2®y), 8,pL(x®y)=(—1) pL(*®3,¥)
for deg x=1.
If p is associative, then the following associativity
pr(pr®1) = pr(lQu),

(H,) pr(pL®1) = pL(1Qug)
1254 (M@l) = /LL(1®ILL)

holds ; and it x is commutative then the commutativity
(Hy) T*p(x®y) = (—1)7 pr(yQx)

holds for x€% (X) and yeki/(Y; Z,), where T=T(Y, X).
If »**=0 in %, then the following compatibility with the homomor-
phisms of coefficients holds :

(Hg) f*F’Rz.U'R(f*®1)’ f*l/«L:lbL(1®f*),

where fy: #( ; Z,)—#( ; Z,)is induced by a homomorphism f:Z,—Z,.
For general case (H,) holds after replacing fy by a4 (@, an integer).

3.3. Let Z be a multiplicative cohomology theory with an associative
multiplication u. We shall discuss multiplications

(3.4) Mg : E"(X; Zq)®}~lj(Y; Zy) _)EiJrj(X/\ Y; Z,)
in ii( ; Z,) by postulating the following properties :

(A,) ng is a multiplication, i.e., satisfies (M,), (M,), (M,) and (M})
for the cohomology theory h( ; Z,);
(A,) compatible with pr and p; through the reduction mod g, i.e.,

pr=pe(1Qpy) and pp= p,(p,®1);
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(A,) &, is a derivation (in the graded sense), i.e.,

81q(XxRY) = 1q(8,xR@y)+(—1) (xR 8,Y)
for deg x=1i;
(A,) “quasi-associative” in the Sense that, if at least one element of
{x, ¥, 2} is in p,~images, then the associativity

pe(pe(XRY)R2) = p (xR py (YR 2))
holds.

(A,) is a minimal requirement to call x, as a multiplication. (A,)
means a compatibility of u, with x. In fact, (A,) and (H;) imply that

(A)) pq is compatible with n through the reduction mod q in the
sense that

ll'q(Pq®Pq) =Pgl

Denote by 1, the bilateral unit of u,, then we have
Proposition 3.1. If a multiplication n, satisfies (A,), then
(Ai,) 1«1 = Pq(l) .

From (A,) and (H,) we see easily that p,(1) is a bilateral unit of
ug. Then from the uniqueness of bilateral units follows (Af).

Proposition 3.2. If a multiplication u, satisfies (AY), then h¥(X ; Z,)
is a Z,~module for any X.

For any x€h*(X; Z,),

g% =p(1,Qq-%) = pne(q-p,(1)R %)
= pqe(pe(g-1)®x) =0

because p,(¢-1)=0 by (2.3). Thus Prop. 3.2 was obtained.

From Prop. 3.2 we see that, if u, satisfies (A{), the exact sequence
of ( ; Z,) associated with the cofibration

IWAV 1
XAS 25 XAM, LI XA

breaks into short exact sequences

_ 1Az LAD)*
(3.5) 0—H(XAS*; Z,) UA=Y W(XAM,; Z,,)(—i’-)» F(XAS'; Z)—0

for any X and i.
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Postulation (A,) and (A,) are necessary to get theorems of uniqueness-
type. A multiplication u, satisfying (A,), (A,), (A,) and (A,) is called
an admissible multiplication.

3. 4. Assuming the existence of u, satisfying (AY), put
(3. 6) k, = n¥efl,e*(M,; Z,).

By the exactness of (3.5) for X=S° =* is monomorphic. Hence «,=0.
We shall prove that there exist an element «x,&%'(M,; Z,) such that

3.7) S, =k, and ¥k, = —0a,1,.
Let

' Mg AMg— (Mo AMo)/(S'ASY)

be a map collapsing S*AS' to a point. The map
ING: M AS'—>M,AM, (or iAN1:S'AM,—M,\NM,)
induces an injection '
i, :SP=SPAS' > (M,AM,)/(S*ASY)  (or i,:S*=S'NS*—>(M,AM,)/(S'\S"))
such that the commutativities
7’ (AND) =1, (x A1) and =2'(iA1)=1i,(1Ax)

hold. Putting 7,(S*)=S?, k=1 or 2, we obtain the following cell
structure
(Mq/\Mq)/(Sl/\Sl)zsfngUq1+q234,

where ¢, :S*—S2%, k=1 or 2, is a map of degree ¢q. Let i}, k=1 or 2,
be the map i, considered as the maps into S¥\v/S}, and

Dr:S3VSE - S°
the map collapsing S?, /=%, to a point such that

Drin = 1s3.
Then
(i + @) (p¥a’l—pFa*1) =0

since prqr=gq. Thus, by the exact sequence of % associated with the
cofibration

SIASE L (M, AM,)/(S'AS) —S*,
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there exists an element
k€ (M;AM,[/(S'ASY)) such that j*x = p¥e®l—p¥sl.
Put
Ky =2 k€W (MyAM) = k' (M, ; Z,),
which satisfies (3.7) as will be proved in the following way :
So6, = (ANZ (AN ke, = (AARZ e (m A1) * ¥k
=@An¥eil**k =z Ar) o'l =k,,
¥, = (EN)* %k = (A NA=)*ife
= (AAz*ig¥*e = —(LAn)*o’l
= —pgol=o0c,l,.

The choice of x, is not unique. Nevertheless we fix «, once for all.
We remark that in the choices of «, and «, we did not use any special u,.

3.5. The next proposition gives a necessary condition for the ex-
istence of an admissible multiplication in case of ¢=2 (mod 4) which is
sufficient for the existence of a multiplication u, satisfying (A,), c.f.,
Cor. 5.6).

Proposition 3.3. If ¢=2 (mod 4) and there exists a multiplication
wy Satisfing (AY), then

pa* (1) =0 and (nz,)** =0 in h.

Proof. qor, =(q-1)*«, = (inz)*k, by Theo. 1.1,
= () i*r, = —(1w)* o l,
= —o,7y(7*1,).

On the other hand ¢g-x,=0 by Prop. 3.2. Thus
oqmi(1*1)=0.
Now o, and =} are monomorphic (by (3.5)). Hence
7%1,=0.
By (A1), 7*1,=7%c,(1)=p,7*(1). Thus
par*(1)=0.

Next, »z,=n°S%,:SM,—S*—S=
For any x&/Zi(XAS?),
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(n72g)** x = (72, J** (xR 1) = (170, )** (o *2@c* 1)
= o *xQ(Szg)* n*o’1)
= w(o 22 Q T*(L Ar,)* THo*n*1),
where T=T(M,, S*) and T,=T(S', S?. Since T¥=1,
(7 )**% = u(o 2@ TH*A N 7w, f* o™r*1)
= u(c22Q T*p,n*(1))=0. q.e.d.

3.6. Next proposition can be viewed as a special kind of Kiinneth’s
theorem.

Proposition 3. 4. If a multiplication u, satisfies (AY), then for any
X and xhi(XA\M,; Z,) it can be expressed uniquely as a sum

X = pg(%, Q)+ po(£.Qx,)

with x,chi(X; Z,) and x,€hi*(X; Z,).
Proof. Define a homomorphism
k: W (XNASY; Z)—W(XA\M,; Z,)

by putting

k(y) = (=1 pe(od’y Q) -
By an easy calculation we see that

(IAi,)*k =an identity map,

i.e., k gives a splitting of the exact sequence (3.5). Thus, for any
rehi(XAM,; Z,) two elements yeki(XAS'; Z,) and y €hi(XAS?; Z,)
are determined uniquely so as to satisfy

x=AAzy*y +k(y).
Put

x,=(—1Yo7'y and x,=07% .

Then, by (3.6) and (3.7), we get
X = /Lq(x1®/‘1)+/~‘q(xz®xz) .

The uniquepess of x, and x, follows also from the exact sequence (3.5)
and the definitions of «, and «,.

3.7. Let p be an associative and commutative multiplication in %.
We fix p once for all throughout this paragraph and shall discuss
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relations between different admissible multiplications pu,, p}, pf etc.
To simplify notations we put

pe(xRy) =2y, pi(xQy)=xN\"y etc.

For two u, and u, we see by (A,) that
(3.8) XAYy=2xN"y if either x or y is in p,~images.
In particular,
(3.9) 8,2xAy=38,xN'y and xN8,y=x/N\"8,y for any x and y.
Thus, by (A.) we obtain
(3.9 8, (xAY)=38,(xN"y)  for any x and y.

Also, by (H,) and (A,) we obtain

(3.10) T*xAy)=(—1)yAx if either x or y is in p,~images,
where deg x=i and deg y=j.

By (3.6)-(3.10) we obtain
(3. 11) IC;/\ICj=I€;/\/I€j lf 1=2 07’j=2,
(3.12) T*(x; \kj)=Kj/N\k; if i=2o0r j=2.

3.8. By Prop. 3.4 every element x&#(XAM,AM,; Z,) can be
expressed uniquely as

x:(xl/\’cl)/\lcl+(x2/\x2)/\xl
+(x3/\/cl)/\"2+(x4/\’cz)/\"'2
with x,€hi *(X; Z,), %, %,E0 (X ; Z,), x, €k (X; Z,).

Put

(3.13) T*(r, A key) = (@ A re)) A ey + (@, A k) A ey
+(a3/\’c1)/\"2+(a4/\"2)/\/€2

with a,€k(S°; Z,), a,, a,ch™(S°; Z,), a,€h™*(S°; Z,). Apply (iAL1)*
on both sides of (3.13’), then, by (3.6), (3.7) and (3.10), we obtain

gl Ak, = (—a,a)\Kk,+o.a, Nk, .
Thus, by Prop. 3.4, we see that

a,=—1, and a,=0.
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Similarly, applying (1A7)* on both sides of (3.13’), we see that
a,=0.

Finally, making use of (A,), we get

(3.13) T*(ky A k) = — . A ey +a(pg) A\ (16, A\ K3)

with a(u)Eh™*(S°; Z,). Apply 8, on both sides of (3.13), then, by (A,),
(3.6), (3.7), (3.12) and Prop. 3.4, we see that

3.14) d,a(py)=0.
a(u,) is characteristic of u,.
Next, put
(3.15") N A VN AU YN AV

+(b3/\/‘51)/\"2+(b4/\’€2)/\’€2
with b,€2°(S°; Z,), b,, b,ch™*(S°; Z,), b,ch™*(S°; Z,).

Apply (:A1)* on both sides of (3.15’), then, by (3.6), (3.7), (3.8) and
Prop. 3.4, we see that

by=1, and b,=0.
Similarly, applying (1Az)* on both sides of (3.15), we see that
b,=0.
Thus, making use of (A,), we get
(3.15) Ny = N6y =g BN\ Ks)

with b(u,, pl)Eh*(S°; Z,). Apply §, on both sides of (3.15), then, by
(A,), 3.7), (3.9) and Prop. 3.4, we see that

(3.16) 84b(1gs me) = 0.
By (3.8) and (3.15) we obtain
(3.17) Wrg, 1wd)=bpe, p)+b(ug, nd).

Apply T* on both sides of (3.15) and make use of (3.13); then,
by Prop. 3.4 we get the relation

(3.18) a(pg)—alpe) = 2b(pqes mq) -

3.9. Here we state the following
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Lemma 3.5. Let p, be an admissible multiplication in W ; Z,). If
x€p,(H (X)) and acki(S Z,), then

xAa=(—1)aNx.
Proof. By (3.10) we have
(=1¥anx=T*(xNa),

where T=T(S° X). Via the identification XAS°=S°’A X=X, we see
that T(S°% X)=1x. Thus T* is an identity map, and the lemma follows.

The next theorem shows that &(u,, p}) measures the difference of
we from pl.

Theorem 3.6. Let u, and p be admissible multiplications in k( ; Z,).
Then

ANY—2NY=(=1)"b(nqg, n)A(B2N8.)
for any x€h'(X; Z,) and yeh(Y; Z,).
Proof. In case y=«,:by (3.9)-(3.9) we obtain
Sq(x ANk ) Nty =8,(x N'k)N\'key .
from which, making use of (A,), (A,), (3.8) and (3. 10), we get
(=1 (A (e N'iy) = 2 A (ke A k)
SR EINCAN T NND

= (qu/\b(.“q, /Lé))/\(’cz/\’fz)
= (b(#q’ ,u{,)/\qu)/\(lcz/\/cz)

by Lemma 3.5. Here apply (1xAT)*, T=T(M,, M,), on both sides of
this equality. Making use of (A,), (3.11) and (3.12), we obtain

((b(#tn l’“é)/\aqx)/\’fz)/\/fz
=(=1 ANk, — XN\ r)N\K; .

Then, from the uniqueness of the expression of Prop. 3.4 follows
(*1) TNk =N 16, = (=1 0(pg, ) NBqxNKs) .

This shows the theorem in case y=«,.
The theorem for x=&k, can be proved similarly as above by de-
forming the formula

”1A8q(xl/\y) = Kl/\/sq(’ﬁ/\/y) >
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and we obtain
(*2) B NY— - N'Y =g, 1) N (€:/\8q9).
Now we shall discuss the general case. By (3.9)-(3.9") we have
Se(EAIAS(YAK) =8, (XN k) NS (IN'1,)

Decompose the both sides into four terms by (A,), and apply (1A TAL1)%,
T=T(Y, M,), on the both sides. Remarking that we can drop many
brackets by the quasi-associativity (A,) we obtain

(=178, 2 N8y ANy Arey+(—1Y 8, x N T (e, Ay) Nty
+(—=1YxAS YA Aty + (=1 XA YAk A Ky
= (=18, A8y A (i N'k)+(—1Y 8o x A T* (e, N'y) Ay
(1P (XA YN )N 16+ (=1 (XN D) N e A ey -
Thus
(1Y 8,2 NSy N (e Awe,— 1, N'k)
F(—1Y 8,2 AT (e, Ay—r, N'Y) A ey
F (=LY (NS YN k)N, —(XNS gy A1) N\'cy)
+(=1Y (X AYy—2N'Y) Ak A ks
=0.

Rewrite the first three terms by making use of (*1) or (*2). Then, by
using Lemma 3.5, we see that the first and second terms cancel to each

other, and obtain

((Upar mINBgENEY)+ (=1 (FAY =X ND)A k) A&, =0
Making use of Prop. 3.4 twice, we obtain

b(par BYABENSY)+(—1F(xAy—xA'9)=0. q.e.d.

3.10. The following theorem shows that a(u,) measures the de-
ficiency of p, from the commutativity.

Theorem 3.7. Let p, be an admissible multiplication in W ; Z,).
Then
T*yAx)= (=D (xAy+(=1Ya(p) N\ (8,2N\8,))
for any x€l’(X; Z,) and yehi(Y; Z,), where T=T(X, Y).

Proof. Put ui(x®y)=(—1)"T*(yAx), then it is a routine matter
to see that p} is also an admissible multiplication. (3.13) shows that
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VAN /"1 =K, N\ K, —a(ﬂq)/\(’cz/\ ’Cz) .
Hence the theorem follows from Theo. 3. 6.

Theorem 3.8. Let p, be an admissible multiplication in I ; Z,) and
any beh>(S°; Z,)N8X0) given. If we put

pdx®y) =2 Ay+(—1YbA (8,2 N8,9)

for x€l¥(X; Z,) and yhi(Y; Z,), then ul is also an admissible multi-
Dlication and b(u,, pl)=>.

Proof. It is straightforward to see that u/ satisfies (A,), (A,) and
(A,). By a simple calculation we see that

(*3) EANNINZ2=2 N (YN\'7)
=((xAPNzZ2—2A\(YN\?7))
F(=1Y(OAXx—xAND)NS YN, 2,

where j=degy. If x is in p,~images, then
bAxXx=xND

by Lemma 3.5. If y or z is in p,~images, then
3,9N8,2=0.

Thus, if x or y, or 2z, is in p,~images, then the second term of the left
side of (*3) vanishes, and the first term also vanishes by (A,) for pq,
i.e., (A,) for u} was proved. q.e.d.

In the formula (*3), if b is in p,~images, then
bAx=2xAb
by a similar proof as in Lemma 3.5. Thus we obtain from (*3) that

(3.19) if ug is an associative admissible multiplication and b is in p,~
images, then the multiplication nl defined as in Theo. 3.8 is also as-
sociative.

3.11. From Theos. 3.6, 3.7, 3.8, (3.18) and (3.19) we obtain the
following corollaries.

Corollary 3.9. Let u, and p} be two admissible multiplications. The
following conditions are equivalent.

i) we=ung
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i) o(pgr pa)=0,
iii) w, coinsides with nu) for the case of X=Y=M,.

Corollary 3.10. If there exists an admissible multiplication in
W ; Z,), then admissible multiplications in W ; Z,) are in a one-to-one
correspondence with the elements of h™*(S°; Z,)N8;%(0).

Corollary 3.11. If q is odd and admissible multiplications exist in
W ; Z,), then the correspondence n,—a(n,) is bijective, and there is just
one commutative multiplication (which corresponds to a(u,)=0).

Corollary 3.12. If q is even and admissible multiplications exist in
W ; Z,), then either there is no commutative one, or commutative ones are in
one-to-one correspondence with the elements of Tor (h™*(S°; Z,) N87X0), Z.)-

Corollary 3.13. If there exists an associative admissible multipli-
cation in W ; Z,) and h*(S°; Z,)=p,(h*(S°), then every admissible
multiplication in h( ; Z,) is associative.

3.12. Assume that ¢ and 7~ are relatively prime integers, u, v are
integers such that ur+wvg=1, and %»**=0 in % or gr is odd. Given a
multiplication u,, in A( ; Z,), we define multiplication g, in Z( ; Z,)
and u, in #( ; Z,) respectively by the formulas

Mq(x@)y) = Par, q#qr((ur)* x®(ur)*y) ’
1 (XQRY) = Par, » ar (09) 5 2R (V)5 ) »
where (ur)y; #*( ; Z)—=W*( ; Z,) and (v@)y: ¥ ; Z))—h*( ; Z,,). If
g, satisfies (AY), then it is straightforward to see that u, and u, are

multiplications satisfying (A{’) by (2.7) and Prop. 2.4. Given multipli-
cations u, and p,, we define a multiplication u,, in #( ; Z,,) by

(3.20)

(3. 21) pe(xRy) = (ur)ypq (qu, eXQpar, 23+ (v9)x ﬂr(qu, +XQpgr, 2y) -

Also in this case, if u, and u, satisfies (A{), then u,, becomes a multi-
plication satisfying (A{).

Theorem 3.14. Under the assumptions that q and v are relatively
prime, and 7**=0 or gqr is odd, the correspondences w,, —>(pq, w,) and
(pas ty)—> thqr, defined by (3.20) and (3.21) respectively, are bijections of
multiplications satisfying (AY) which are the inverses of each other. pu,,
satisfies (A,), (A,) or (A,) if and only if n, and w, do so.

Proof. The first assertion follows from a simple calculation to check
that the two correspondences are the inverses of each other (making
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use of Props. 2.4, 2.5 and (2.7)). The assertions for (A,) and (A,) are
also easily checked.

To prove the assertion for (A,), first we remark that, by (2.7), ii)
and iii), when as=0 (mod ¢) and as?/t=0 (mod ¢) the following diagram
is commutative :

(X5 Z) —25 (X Z)

|
5 5
A By 4
olx: z) sty 2.

In the following calculations the above commutativity is used.
Assume that u,, satisfies (A,), then

)ty = 8, par, » 1har (V)5 R (Vq)5)

= ¢34, ar (v9)xR(Vq)%)
=G+ Par, » ar (80, (V)5 R (V)5 £ (V)5 R84, (v9) )
= Par,r Bar(84,(V47)x R (V)5 £ (v9) xRS 4, (V4%)4)
= Par, r 11ar((09)48, R (V9)4 £ (v9) 4 D (vq)45,)
= p,(8,Q1) %1, (1K3,) .

That is, u, satisfies (A,). Similarly p, satisfies (A,).

Next, assume that p, and p, satisfies (A,), then

84r thar = 84, (W) g (15 R 1) + 84, (Vg s, (15 1)
= (U748 114 (LR 1)+ (V’9) 40, 1, (1R 14)
= (U )x14(3,13R1 £1,®38,14)
+ (V@) 412, (5, 14, ®1, +1,28,1,)
= (W7 )x1q(7 - 1384, QL)+ (V@) 51, (g + 1484, @1y)
(7)o (14Q7 - 148,4,) + (0°Q)sn, (14 R g - 1484,))
= per(8qy ®1) £ 1, (1R8,,) ,

i.e., u,, satisfies (A,). q.e.d.

4. Stable homotopy of some elementary complexes. I.

4.1. The results in the following table are well known.

i<0 ] i=0 | i=1 i=2 i=3 i=4,5

{§"+i, $"} 0

N

Z Z, Za 0

-

generators

7 =717 v
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From (1.7) and (1.7) we have the exact sequences

K
O_>{Sn+i—l, Sn}®Zq T {Sﬁ+i—3Mq’ Sn}
i*
n+i;-2 ” s
@) —— Tor ({S , S", Z,)—0,

0— {S™, S™} @2Z, —X5 {S™, S"M,}
T, Tor ({8, S*}, Z,)—0.

(4.1) When q is even, there exist elements 7E{S"M,, S*t and
7€ {S*, S*"M,} such that i*n=ni=7 and wy7=ni=n.

(4.1) is clear from the exactness of (4.1’) for i=3. We see also

that the groups {S”"M,, S*} and {S"*°, S"M,} are of order 4 when ¢
is even.

4.2 If q=2 (mod 4), then 25=x*r and 25=1iv".
Because : making use of Theo. 1.1, we see that

27 =2n+(q—-2)7=7(q-1)=wine =7'm,
20 =25+ (q—2)7 = (q-1)% = inmij = in* .

and

From (4.2) and Theo. 2.9 applied to (4.1’) we obtain

(4.2). The groups {S*"°*M,, S*} and {S**', S*M,} are both isomorphic
to the corresponding groups in the following table :

i<0 i=1 1=2 i=3 i=4
g :odd 0 Z, 0 0 Zg, 20
¢=0 (mod 4) 0 Z, Z, Zy,+2Z, Zy+Zcq, 20
g=2 (mod 4) 0 Z, Z, Z, Zy+Zq, 20
generators of {Sn+i-3M,, S"} ™ 7 7 7' 17, Vi
generators of {S»*+f, S"M,} i in 7, in? 7 iy

4.2. For even ¢, we use the following notations
(4.3) n=17, n,=gre{S""M,, S"M,},

(4.4) When q=0 (mod 4), there exists an element 7, {S""*M,, S"M,}
such that mnyi=n and 27,=0. Thus we may choose 7 and 7% such as
n=mn, and f=mn,i, then
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1= ({n)n, and n,=n,(iz).

By Theo. 2.9, there exists an element », such that 7,i=i*n,=#%# and

27,=0. Then =nn,i==7=7. Changing 7 by =n, if necessary, we see that
(4. 4) holds.

From (1.7) and (1.7’) we have the following exact sequences :

£ 3 K
0— {S"ti*z, S"M,,}@Zqz» {S***M,, S"M,} z—>Tor ({S™*1, S"M,}, Z,)—0,
0—{S""*M,, S} (X)Zqi’i< {S™*M,, S"M,} ZikTor ({S"*M,, S"*?%}, Z,)—0.
We obtain

Theorem 4.1. The group {S*"*M, S"M,} is isomorphic to the cor-
responding group in the following table

i<-—1 i=—1 =0 i=1 i=2
g : odd 0 Z, Z, 0 Zq, 20
generators i 1 ivm
¢=0 (mod 4) 0 Z, 2o+ 2, | Z,+Z,+2Z; | Zy+tZo+Zo+Zaa, o0
generators in 1, inm N1s N2y 02T Mm% NP N3, VT
¢=2 (mod 4) 0 Z, Zsq Z,+2Z, Zy+ 23+ Zq, 20
generators in 1 715 M2 7% 12 ivw

Proof. In case ¢%2 (mod4), the above two sequences split by
Theo. 2.9, and the results follow easily from (4.2). In case ¢=2
(mod 4): for i=1,2, combining the above two sequences we see that
the sequences split, then we have the results; for i< —1, the proof is
obvious ; for i=0, the results follows from Theo. 1.1. q.e.d.

Corollary 4.2. (i) In case ¢=0 (mod 4): {S*"*M,, S"M,} are multi-
Dlicatively gemerated for i<2 by ir, 7, and ivr, i.e., putting S=inr we
have the relations :

inw = &n,8, 7m,=08n,, Mm=mn3,
in'r = 8, 0m,8, 2= 08n,8n,, n2=n,01,3,
72,7, =0, 7,7,=0 or 12(ivr),
and 88 = 8(ivr) = (ive)8 = 0.

(i) In case ¢=2 (mod 4):{S""*M,, S"M,} are multiplicatively
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generated for i<2 by iz (=3), n,, n, and ive with the relations :

88 = 81, = 1,8 =08(ivw) = (lvx)d =0,
7,8 =08, =inr=q-1, nm,=n7=0,
and 728 =08 =i"r=0.

Proof. The proof is easy except the relations on 7,7,.
By (4.3) n,n,=inHz. By (4.2)-(4.2") 25=(q/2)7*=. Then,

277 = (q/2)7* =7 = (¢/2)7° = 6gv .

This implies that

77 = 3qv mod 12v .
Thus 7,7, =0 mod 12(ivr),
where 12(jvz)=0 if ¢=2 (mod 4). q.e.d.

4.3. We shall see that M,A M, is homotopy equivalent (in stable
range) to the following mapping cone

(4.5) N,=SM,U,;C(SM,),
where

{(Si)n(Sn):SMq—>Ss—>SZ—>53CSMq if ¢=2 (mod 4),
0 (constant map) if ¢=*2 (mod 4).

We denote also by N, a subcomplex of N, obtained by removing
the 3-cell SM,—S? i.e.,

(4.5) N,=S*UzC(SM,),

where
B {n(Sn):SM,,—>S“—>Sz if ¢=2 (mod 4),
o if g=2 (mod 4).

Obviously N,=N,USM, and N,NSM,=S>.
The cell structures of N, and N, can be interpreted as follows :
(4.6) (i) if ¢=*=2 (mod 4),
N,=SM,vS*M, and N,=S*VS*M,;

(i) if ¢=2 (mod 4),
N,=(SM,VvS»Ue¢ and N,=(S*VS)Ue',
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where ¢ is attached to S®*\V/S* by a map representing the sum of
7€ {S? S? and Siq=q-1,€{S? S°}.

We use the following notations :
(4.7) j:N,CN,, the inclusion;
i,:SM,CN,, i,:S*CN,, the inclusions ;
1,:S°CN,, i, :S*CN,, the inclusions ;
p:N,—S? the map collapsing N, :
7y Ng—>S*M,, my:N,—S*M,, the map collapsing SM, or S*.

Hereafter, these mappings will be fixed as to satisfy the following
relations :

4.7 ji,=1,(Si), i, =7ji,, pi,=Sm, m,= =] and =i, =m,i,=S%.

Lemma 4.3. Teere exists an element @ of {N,, M,AM,} satisfying
the following three conditions :
(4.8), (i). @ is a homotopy equivalence, i.e., there is a (uniquely deter-
mined) inverse B {M,AM,, N} of @ such that &B=1 and Ba=1.

(iii). (1, Am)@=n,, thus =SL=1,Ar.

Proof. In general, a homotopy between f and g:X—Y gives a
homotopy equivalence %2:Y U ,CX—YU,CX such that %#| Y=1, and,

by callapsing Y, # induces a mapping %:SX—SX homotopic to 1sx.
By Theo. 1.1, g is homotopic to ¢-1s,, in stable range. On the other
hand M,A N, is a mapping cone of g-1s,,. Thus the lemma follows.
q.e.d.

Put
(4.9) a,=ai,e{S*, M\,AM,} and B,=pBes{M,AM,, S°}.
It follows from (ii), (iii) of (4. 8)
(4.9). AuA=)a,=S% and B,(1yAi)=Srz.
Remark that
(4.9”) if ab and B} satisfies (4.9) then
ay—ay=0 or =GNi)n and B,—BRi=0 or =n(xAx),

where (i) n=n(zx A7)=0 if q is odd.
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For, a,—aie(lyAi)g{S’, SM} and B,—BieluAr)*{S*M,, S}
((c f. (4.2)).

Lemma 4.4. (i). Let ac{N,, M,AM,} be an element satisfying
(4.8). Any element & ={N,, M,AM,} satisfies (4.8) if and only if

& = a+(LyAi)yz,+x(GEND)np  for some yE {S*M,, SM,},

where x=0 if g2 (mod 4) and x=0 or 1 if ¢g=2 (mod 4).

(ii). For any o,={S°, M,AM,} and B,={M,AM,, S} satisfying
(4.9") there exists ac{N,, M,AM,} which satisfies (4.8) and (4.9).
Such an element @ is unique if qis odd, @ or a+ (i \i)n*(S*z)=, if ¢=0
(mod 4), & or @+ (ENi)np if ¢=2 (mod 4).

Proof. (i). Assume that @ and & satisfy (4.8). There exists
v'e{N,, SM,} such that (1,,A7)y’'=& —& since (1yAz) @ —a)=0. Then
(1pgA2)y'i,=(@ —@)7,=0. The kernel of (1y,A%)s: {SM,, SM,} — {SM,,
M,AM,} is ¢{SM,, SM,} which vanishes if g==2 (mod 4) and is generated
by (Si)n(Sz) if ¢g=2 (mod 4). We have (Si)npi,=(Si)n(Sz) by (4.7).
Thus (v'—x(Si)np)i,=0 for some x(cZ, if ¢g=2, =0 if g=2). Then
there exists ye {S*M,, SM,} such that yz,=v’—x(St)np, and

& = a+(IyN\i)y" = a+AyuAi)y7e+ 2(EN)7D -

Conversely, if @ satisfies (ii), (iii) of (4.8) then so does &@. @ and
@ induce the same homomorphisms of ordinary cohomology groups.
Thus & is a homotopy equivalence if so is @.

(ii). If ¢ is odd «, and B, are unique by (4.9”). Also @& is unique
since {S*M,,SM,}=0 if ¢q is odd. Thus (ii) is obvious for odd gq.

Let ¢ be even and choose an element & satisfying (4.8). By (i)
and (4.1), any @&” satisfying (4.8) can be written in the form

%) & =& + (L Ai)(xm, + ym,) 7o+ 28

with x, y, z€Z,, where 8=(iAf)np if ¢g=2 (mod 4), and 8=(1,A7)(S7)
7(S*m) 7, =N (S?*x) =, if g=0 (mod 4).
By a caluculation making use of (4.1), (4.3) and (4.7’) we see that
ag = ao+x(iNi)7,

where a;=a'i, and af=ayi,. Putting Bi=pB’ and BY=pR"’ (B and B”
are the inverses of @ and @” respectively), by a similar calculation we
see that

(Bo+yn(m ANm)@" =p.
On the other hand
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BS, all — p .
Since @” is a homotopy equivalence we obtain
¢ = Bo+yn(x Ar).

Now, for the given a, and B, satisfying (4.9’), by (4.9”) we can put

a,—at=x(GAi)n and  B,—B4=yn(zr A=)

with %/, ¥ €Z,. Since, for arbitrarily chosen x, y and 2, the element &”
satisfying (4. 8) and (%) exists uniquely by (i), if we put x=x" and y=y’,
then the determined &’ is the required element. Thereby z can not be
determined by given «, and 8, but may have two possible values, which
corresponds to the conclusions of the lemma (ii). q.e.d.

4.5. Consider the groups {M,AM,, S°M,} and {SM,, M,AM,}.
From (1.17) and (1.17’) we have the following exact sequences :
1AZ)* IND)*
0—{S*M,, S"M}Q®Z, QA=) {M,ANM,, S*M,} SAUN {SM,, S*M.},
1A 1A
OQ{SMq’ SMq}®Zq (——_)';k {SMq’ Mq/\Mq} (_”_)’* {SMqr Squ} .
By (4.2) and Theo. 4.1, (Sz)*: {S°, S*M,} — {SM,, S*M,} is an isomor-
phism. The formula B(1,,AZ)=Sz of (4.9) implies that B¥(Sz)* ' is a
right inverse of (1A7)*. Thus the first sequence splits. Similarly the
second sequence splits since a4 (S?7);' is a right inverse of (1Ax)y.
Then it follows from Theorem 4.1

(4. 10).
| g%0 (mod 4) 2=0 (mod 4)
{M; » My, S?M}={SM,, M, » Mg}= Zy+2Z, Zy+2Zy+2Z,
generators of {M, A My, S2M,} 1y ~m, (S%)By | 1urm, (S%)By, (S*)n(m A7)
generators of {SM,, M, ~ M,} 1y Ad, ag(Sm) | larAd, ao(Sm), (4 A8)9(Sw)

Lemma 4.5. For each q>1, there exist elements a,=a,,=
{S®, My,AM,} and By,=RBy S {M,AM,, S°} which satisfy (4.9") and the
following relations :

1) AuAm) T =1yAz+(S%)B,,

(4.11) .. . .
(i) TQApuAD)+1yNi=«a,(S7),

Proof. Let G be a subgroup of {M,AM,, S*M,} generated by
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(S2)n(w Am) if ¢g=0 (mod 4), or consisting only of zero if g=0 (mod 4).
Then, using an element B, satisfying (4.9’), we can put

1) AAZ) T =a(Q A7)+ b(S?*)B, mod G,

for some a, b= Z, by (4.10).
Let us use the ordinary mod ¢ reduced cohomology H*( ; Z,) and
the generator g, Hi(M,; Z,), i=1,2, such that

i*g, = —0ol, and =*(c?’l,)=g,,

i.e., g,=«; in the sense of 3.4. Then, by (3.7) and Prop. 3.3 §,4,=g.
and the four elements g; A\ g;=u,(g;Qg;) form a base of H*(M,AM,; Z,),
where p, is the reduced cross product.

From (1) we obtain the identity

T*AA7)* = a(l \=)*+b-BF(S*i)*

of cohomology maps. Applying this to o’g,=g,ANo*1l,, we have
&N\& = a(&Ng)—b-Bi(a1,).
Since the class B¥(s*1,) is integral,
§(0° 1) = 2(& N\ & — &N &)

for some x=Z,. It follows from (4.9’) that

o = (StI* (0" 1,) = (LAI* B (o 1)

= —x(&ANoly) = —x-0g,.

Thus, x=—1 and

&:N\& =(a—b)(&N&)+b(gNg).
That is, a=b0=1, and
(#2) AAD)T=A A7)+ (S*)B, mod G.

This shows that, in case ¢==0 (mod 4), arbitrarily chosen G, satisfies (i).
In case ¢=0 (mod 4), put

AAT) T—=(AA7)—(S*) By = HS* ) n(z A7),  yEZ,.

If y=0, then B, satisfies (i). If y=+0, put B4=B,+n7(z A=), then B
satisfies (4.9) and (i) as is easily checked.

Thus the existence of B, satisfying (4.9’) and (i) was proved.

The proof of the existence of «, satisfying (4.9’) and (ii) is com-
pletely parallel to the above, and is left to the readers. q.e.d.
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From the above proof and (4.9”) we see that

(4.12) the elements o, and B, satisfying (4.9) and the relations (i) and
(i) of (4.11) is unique if q=2 (mod 4); if ¢=2 (mod 4), any elements
o, and B, satisfying (4.9) satisfy (i) and (ii) of (4.11).

4.6. Next we compute the groups {M,, M,} (¢,t>1), By (1.7)
we get the following exact sequence

* .k
0—{S*, M}} ®Z, —> {M,, M} — Tor ({S', M}, Z,)—0.

Let d=(g, ) be the greatest common divisoa of g and ¢. Tor ({S*, M,}, Z,)
is isomorphic to Z, and generated by (#/d)-i,. By (2.5).

i?(m)=(m)iq=(f/d)-i: .

From (4.2) it follows that {M,, M,} is generated by ¢/d and i,7x,,
where d(q/d)=0 or i,7z,, and i,7z,#+0 if and only if ¢ and ¢ are even.
We have

(4.13") d(g/d)=i,m7=+0, i.e., g/d is of order 2d, if and only if q=t=2
(mod 4).

To see (4.13’), we may assume that ¢ and ¢ are even. g¢/d or t/d
is odd since they are relatively prime. Assume that ¢/d is odd. Then,
using Theo. 1.1,

d-(g/d)=(g/d)d-(¢[d)=q-(¢/d)=0 if g=%2 (mod 4)
and, if ¢g=2 (mod 4)
d-(g/d)=gq-(q/d) = (q/d)ignm, = (t]d)-iynm,

by (2.5), which prove (4.13’) in case g¢/d is odd. In case ¢/d is odd,
(4.13’) can be proved similarly.

From (4.13’) and the above exact sequence we obtain

(4. 13).
g or ¢:odd ¢g=t=2 (mod 4) ' others
(M, My} Z Zo | zz
generators q/d q/d i q/d, igmq

where d=(g, t).
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Let ¢>1, =1, and consider the elements (i,N\i)7(S*7q)E
{SM,,, M,AM,} and (S%,)n(m,Ar)E {M;AM,, S*M,}. By (4.13),
(S2,)n(S*7,,)=+0 if and only if ¢ and ¢gr are even. The kernel of the
homomorphism

(lAi)*: {Squ SMq} - {SMqr» Mq/\Mq}

is ¢{SM,,, SM,} which is generated by (Si,)n(Sz,) if g=¢gr=2 (mod 4)
and vanishes otherwise. Thus we conclude that

(4.14) (@G NI )(S*7,,)E0 if and only if g=0 (mod 4) or ¢=2, qr=0
(mod 4).

Similarly we see that

(4.14) (S%i)n(mgAmg)E0 if and only if ¢q=0 (mod 4) or ¢=2, qgr=0
(mod 4).

The following table (4.15) and the relation (4.15’) are verified from
1.7), 1.7, (4.2) and Theo. 1.1 (c¢f., Theo. 4. 1).

(4. 15)
\ q:odd 2=0 (mod 4) g=2 (mod 4) |
{83, My » Mp}y={M,; » M, , S3}= Z, Zy+Z, Zy
generators of {S% M, » M;} Qo ag, (14 Nig)n Qp
generators of {M,; » M, S3} Bo Bo» n(mg A 7q) Bo

where o, and B, are arbitrarily chosen elements satisfying (4.9).
(4.15) gea,=(i,Ni)n+0 and q-B,=n(r,Anz)=£0 if ¢=2 (mod 4).

4.7. Lemma 4.6. (i) There exist sequences {c, .}, 18, q}» ¢>1, of
elements a, .= {S°, M;AM,} and B, ;= {M,A\M,, S*} which satisfy (4.9),
(4.11) and

(4.16) (FAP)Q, (=74, ¢» Bo o(INT) =78, , for the maps 7: M,,—M,,
1:M,—-M, of (2.5), r=1.

(ii) There are just two sequences {a, ,} and {ag .} satisfying (4.9)
and (4.16); a, ;=ab 4 if q*2 (mod 4) and af ;=a, ,+(i,Nig)n if ¢g=2
(mod 4).

(iii) There are just two sequences {8, ;} and {5 ,} satisfying (4.9)
and (4.16); B, ;=% 4 if g2 (mod 4) and Bé,q:l@o,q+77(”q/\77q) if ¢g=2
(mod 4).
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(iv) If two sequences {a, .} and {B, .} satisfy (4.9) and (4.16),
then they satisfy (4.11).

Proof. (i) For each ¢>1 choose a pair of elements {ay ,} and {87,
satisfying (4.9") and (4.11).
For each (¢, 7), ¢>1, =1 the element

(PAP)A ¢p—7- A 4 (7: M,,—M,)
is in the kernel of

(ANATs5: S, Mo AMG} —{S%, S* M}

since ANrm)r-ag ,=r-S%, by (4.9)
AR FAPIAE o = (FAT70,) A o by (2.5)

=r-(FA1)S%,, by (4.9)

=7r.S%, by (2.5).

By (1.7) and (4.2), the kernel of (1Ax,), is generated by (1AZ,)(Si,)n
=(i,N\i,)n which vanishes if and only if ¢ is odd. Hence

(h 1) (7/\7)a6,/qr=r‘a6fq+xq,r‘(iq/\iq)77’

where x, ,=Z, if ¢ is even, and x, ,=0 if g is odd.
Compose (7A7) to the equation

(Tqr+ 1)(1/\iqr) = Tqr(l/\iqr)+ 1/\iqr = a« qr(S”qr)

of (4.11) from the left, where 7,,=T(M,,, M,,). Then, making use of
(1.2), (2.5), (4.11) and (41), we have that

the left side =(T,+1)ZAP)AANi,) = (T,+1DAAP,)NFAL)
= (T, +1DANI)S7 = ai/ ((S7,)S7 = 7-ai ((S=,,)
the right side = (PA7)aq 4, (S7,,)
=70y o(Sme)+ Xq,, (4 \ig)1(S7qr)
i.e., Xq (igNig)1(Smy,) = 0.

Hence, by (4.14), we have

4 2) %4 ,=0 if ¢g=0 (mod 4) or if ¢=2, gr=0 (mod 4).
From (41) and (42) we have

t3) FPAP) G ¢ =7-af 4 if g2 (mod 4) or g2 (mod 4).

Now we put
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oy g if ¢=*2 (mod 4)
Ay g = {

4
@4) O gt T o GgNig)  if g=2 (mod 4).

By (4 12) the sequence {«, ,} satisfies (4.9’) and (4.11). We shall
check (4.16) for this sequence {«, ,}. In case ¢=%2 and ¢r=2 (mod 4),
(4.16) is obvious by (43) and (44). In case ¢=2 and gr=2 (mod 4), ¢
is odd, hence (,Ai,)n=0 and (4.16) is easily seen. In case g=2 and
gr=2 (mod 4), r is even and we obtain (4.16) as follows :

(77/\77)‘10, qr = (FA?)aéfqr = r'aél, q
=70y g FVXgp g Nig)n =70 4.

Finally consider the case g=¢»=2 (mod 4). Since {a, ,} satisfies (4.9’)
and (4.11), we can put, by (1),

(7/\7)0‘0, ar =70y g+, H(Eg\ig)n

for some y, ,=Z,. Compose (¢/2Aq/2), q/2: M,—~M,, to this equation
from the left. Then, by (#4), (2.7) and (2.5),

the left side = (g7/2/Aqr/2)Xa5) ¢+ Xarss,2s(lar Nigr) 1)
= (qr/z)‘at/)fz‘.‘z‘xqf/z,z(iz/\iz)’)
= (qr/z)'a(){z’
the right side = 7'(4/2/\Q/2)(a6f4+xq/z,z(iq/\iq)n)“"yq, MOYANAL
=r-((¢/2) agl,+ zquz,z(iz/\iz)"))"'yq, MOYNAL
=(gr/2)- aéfz‘l'yq, AL N7,
i.e., Ya, (G NG)n=0.
Since (3,A\4,)7=+0 by (4.15’) we obtain
Va,r = 0
which proves (4.16) for the considered case.

Thus we have proved the existence of the sequence {«, ,} satisfying

4.9, (4.11) and (4. 16).
The proof of the existence of a sequence {3, ,} satisfying (4.9),
(4.11) and (4.16) is completely dual to the above one, and the details

are left to the readers.
(i) Assume that {«@, .} and {ag ,} satisfy (4.9') and (4.16). By
(4.9”) we can put

Ao, q = 0y q+24°(1gN\Tg)7 2,E2Z,,

where 2,=0 if ¢ is odd. Let ¢ be even. By (4.16) and (2.5)



MULTIPLICATIVE STRUCTURES IN MoDp ¢ COHOMOLOGY THEORIES I. 107

(¢/2)-as,,=(g/2Nq[2) e,
= @75/\ m)(ao, q+zq'(iq/\iq)"7)
=(q/2)- 2+ 24 (1, A35)7n
= (4/2)'aé,z+((Q/2)22+zq)(iz/\iz)77 .

Since (i,A7;)7+0 by (4.15’), we have

(¢/2)2,=2, (mod 4),
i.e., 2,=0 if ¢=0 (mod 4),
=z, if ¢g=2 (mod 4).

Thus there are at most two sequences satisfying (4.9’) and (4. 16).

Next let {a, .} be a sequence of (i). Put af ,=a,, for ¢>2 and
ag ,=a, ,+ (1, \i;)n, then {ag,} satisfies (4.9") and (4.11) by (4.12).
Repeating the proof of (i) to this sequence {a7',} we get a sequence
{ag, 4} satisfying (4.9") and (4.16). We see in (§4) that

aa,z = al{)/,z = ao,z+(i2/\iz)77:,:ao,2

since x, ,=0. Thus {a, .} and {a; ,} are two different sequences satisfy-
ing (4.9") and (4.16), and we have proved (ii).

(iii) The proof of (iii) is a dual of that of (ii).

(iv) By (ii), there are just two sequences {«, .} and {«ag ,} satisfy-
ing (4.9) and (4.16). Buit, as is seen in the last half of the proof of
(ii), both sequences are constructed by a method employed in the proof
of (i), hence they satisfy (4.11). Thus (iv) was proved. q.e.d.

4.8. Take a pair of sequences {«, ,} and {3, ,} of Lemma 4.6, (i).
In virtue of Lemma 4,4, (ii), we see that

(4.17) there exists a sequence {&,}, ¢>1, of elements a=a,={N,, M,\
M,}, of which each element satisfies (4.8) and, putting &,i,=a, ,=a, and
DB,= B, 4= B, the sequences {a, ,} and {3, .} satisfy (4.9), (4.11) and (4. 16).

In the following, we fix a sequence {&,} of (4.17), and use as @
only the elements of this sequence.
We put

(4.18) a:ajE{Nq» M, A\M} .

This element « will play an important role in the following para-
graphs. By (4.8) and (4.7’) we have

(4. 18) ai,=a,, ai,=iNi and (IyAr)a=m,.
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Proposition 4.7. (i) (AyAz)Ta=r,.
(ii) Ty N8)+(ApyND) = ai, (S7) .
Proof. (i) (AuA7m) Ta = (L A7) a+(S%) B
=7, +(S%) pj = m,
by (4.9), (4.11), (4.18), (4.18) and (4. 8).
(ii) follows from (4.11), (ii) and (4.18’). q.e.d.
5. Existence of admissible multiplications

5.1. Let u be an associative multiplication in a reduced cohomology
theory 4. In this paragraph we define a multiplication u, in A( ; Z,)
for each ¢>1, and prove that u, is admissible. Thereby, we need some
assumptions on p and % in case ¢=2 (mod 4).

Using the notations of 4.3, the cofibration

A Ty

S2—— N,—> S’ M,

yields, for any object (finite C W-complex with a base point) W of %, a
cofibration
WAS LB WAN, D% was M,
In the exact sequence of % associated with this cofibration,
(LwAS™g)* : B*(WAS™?) — ¥ (WA M,AS™)

becomes a trivial map if ¢=%2 (mod 4), or if ¢g=2 (mod 4) and (nz)**=0,
since the attaching map g=0 in the former case and =#(Sz) in the
latter case. Thus,

(5.1) the h-cohomology sequence associated with the above cofibration
breaks into the following short exact sequences

N 1A z)* - A -
0—>h”(W/\SzM,,)(—/—\ﬂl r*(WAN,) (—/\—z)* h*(WAS?)—0

if ¢=2 (mod 4), or if ¢q=2 (mod 4) and (9z)**=0 in h.
When ¢=%2 (mod 4), N,=S*VS*M, by (4.6), (i). Let
i:5°M,—-N, and =':N,—S*

be the inclusion and the map collapsing S*M, respectively. Obviously
we have
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(5.2). 7'l,=1, i’ =1, /=0 and ='i,=0.

Lemma 5.1. If (i) ¢=2 (mod 4), or if (ii) ¢=2 (mod 4) and 7**=0
in h, then there exists an element vy, of W*(N,) satisfying

(5.3) ifv,=0o?l and ifv,=0.

In case (i), v,=n"*(c’1) satisfies these relations.
If (iii) ¢=2 (mod 4) and (nz)** =0 in h, then there exists v, h*(N,)
satisfying

(5.3 i¥y,=a1.

Proof. Case (i) follows from (5. 2) by putting v,=#"*(¢*1). In cases
(ii) and (iii), (»z)**=0. Then, by (5.1) for W=S", there exists y)& I?(Nq)
such teat ifv{=c*1. Thus the case (iii) is proved by putting v,=
In the remaining case (ii); (4. 6), (ii) implies that 7,(S%g) is homotopic to
i,m. Thus (S*q)*i¥v5=0. From the exactness of the sequence

sty S sy B9 sy

follows that (S?i)*x=i¥vy} for some x<#(S*M,). Put

Yo=Yo—mgXx .
Then we have

¥y, = i¥yl—itréx = o*1
and i, = i¥ye—ifngx = (S x — (mod, ¥ x
=0
by (4.7). q.e.d.

5.2. Making use of v, of Lemma 5.1, hence at least under the as-
sumption of (77z)**=0 if g=2 (mod 4), we define a homomorphism

v =5w:B*(WAN,)—h*(WAS*M,)
by the formula
(5.4) Y w(x) = A Anm)* (2 — u(o*(Lw Aip)* x®7,))
for x€h*(WAN,). Since

AwA)* w(a (AN  2®7,) = wlo* (AN xQo" 1)
= (lAio)*x ’

x—ule 2 (ANL)* x®,) is in the kernel of (1AZ)*. By (5.1), Ay Am)*
is monomorphic. Thus the map v is a well-defined homomorphism.
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As is easily checked by (5.2), we have
(5.4). vYr=>ApAI)* if q=£2 (mod 4) and v,=n"*(c*1).

Lemma 5.2. (i) vwis a left inverse of (1yAny)*, i.e, vw(AwAm)*
=an identity map; hence the sequence of (5.1) splits:

I (WAN,) = k(W AS)DI*(WAS*M,) .
(i) v is natural in the sense that
(fAS L) *vw=vw(fALY*,
where f:W —>W, M=M, and N=N,.
(iil) v is compatible with the suspension in the sense that
AwAT"Vorw=vsw(lwAT ) o,
where T'=T(S', N,) and T"=T(S', S’M,).
(iv) The relation
w(yQY w(%x)) =V yAwr(yRx)
holds, where x€h*(WAN, and ysh(Y).

Proof. (i) If x=(1Amn,)*y, then (1Ai)*x=0 and (i) follows from
(5. 4).
(ii) Since (1,7 Am,)* is monomorphic, it it sufficient to prove the

equality
A Az (fAS* LV * v w (%) = (L Amo)* v wr (F AL () -
Now, the left ride = (fAz)* v w(x) = (FALW* AwAr)*vw(x)
= (FALN)*x—p(o S FRANG)* @7,)
= (AL 2 — (o (L Nig)* (FALN)* 2R ,)
= the right side.
(iii) Since T,=T(S?, S*) is a map of degree 1, we have
AswNi*AwA T Vo =AwA T oLy Ai)* =a(lwAip)*.
Making use of this identity, we have
AswAm)*vsw(lwA T')* o (x)
=AwATVox— o AswAi)* Aw AT )* o x®,)
=AwAT)ox—Aw AT V*oulo *(LwNi)* x&,)
=AwA T Vo(lwAm)* v w(x)
=LswAr)*AwAT" "V orw(x),
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from which follows (iii) since (1sy Ax,)* is monomorphic.

(V) Ayaw Az * Y yawn(y®x)
= w(yRx)— wlo *(Lyaw A i)* (¥R x)Q.,)
= p(yQx)— p(u(yQo * (1w A i) )07,
= (YR (L w Ame)* v w(x))
= Lyrw A7) 1(yR7 w(x)),

from which follows (iv). q.e.d.
Lemma 5.3. [f «, satisfies (5.3), then the relation
AwAS i vy =AwAi)*
holds for the inclusions i:S'CM, and i,:S*°CN,.
Proof. Since S*i=x,i, by (4.7’) and ifvy,=0 by (5.3), we see that

AwAS* )y w(x) = QAL )* Lw Az 7 w(x)
=AwAi)*x—pwlo(Ly Ai)* x®ifv,)
=1AwpAi)*x. q.e.d.

To prove the quasi-associativity of the multiplication u, to be defined
in 5.3, we need a special kind of commutativity, i.e.,

(5.5) if v,=n""(c*1) in case q=£2 (mod 4), or if p is commutative, then
there holds a commutativity

(5.9 w(2Rv,) = T"™*u(v,Qz)
for any z€hi(Z), where T'=T(Z, N,).
The proof is clear.

Lemma 5.4. If v, satisfies (5.5"), then there holds a relation

AwA T (v w()Q2) = Vwaz(Lw A TV (2R 2)

for any xch*(WAN, and z<hi(Z), where T'=T(Z, N, and
T"=T(Z, S’ M,).

Proof. (1wazAz)*(LwAT"V* u(y w(x)R2)
=AwAT YLy AmA1)* u(y w(x)@2)
= AwA TV p(xR2) =L A T)* p(plo *(Lw Aig)* xR7,)® 2)
= AwA TV u(xR2)— plo *(Lw AL)* xR T u(v,%2)),
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and Qwrz AT * Y wrz(Lp ATV p(2R 2)
=AwA TV u(xR2) = w(pwlo (L Aig)* x@2)R7,)
=1y ATV (xR2)— ple *(Lp Ai)* Q@ (2@ 7,)) -

Thus (5.5") concludes the lemma.

5.3. Making use of the homomorphism ¢ defined by (5.4) and the
element o= {N,, M,AM,} of (4.18), we define a map

(5. 6) we W (X; ZYRQW(Y; Z)—hiti(XAY; Z,)
as the composition

(5.6 te =0 Yx Ay (A AT AL p:
W(X; Z)RW(Y; Z) = (XAM)QI*(YAM,)
— (X AMA YAM,)— B (XA YAM,AM,)
— XA YAN,) = (XA Y AM,AS?)
- (XAYAM,) = (XAY; Z,),
where T=T(Y, M,).
ug is defined only if g==2 (mod 4) or if g=2 (mod 4) and (7z)**=0.
The definition of x, depends on the choices of v, and « which are
but fixed during the subsequent proofs of properties of an admissible

multiplication.
Note that

(5.6") py=oc2(ai)y*(AIxATALY* if ¢=£2 (mod 4) and v,=="*o*1).

5.4. Theorem 5.5. The map p, of (5.6)is a multiplication satisfy-
ing (A,).

Proof. The linearity and the naturality of u, is obvious.

To prove (A,): putting T’'=T(Y,M,), T,=T(S}, YAM,), T,
=TS M,) and T=T(M,, M,), by definitions of p, and x, we have

1e(pe®@1) = oy x Ay @ (Lx N T’ A1pgf* i{(Ax A7)* * @1y am)
= 2 Yxny @ (Ux AT AN L)*(Ix Az A llf;AM)*(lX/\ T.)* o
= Y xny @ (A ay AL A2 (Lx ay A To) o’
= 2 vxny (TN 7)) o’y
= o 2 yxrv((xayAn) Ta)™o’p
=0 yxny(IxayAm)*o’n by Prop. 4.7, (i),
=g tciu=p=ur by Lemma 5.2, (l)
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Similarly we see that
.U'q(1®Pq) =IxATYp=pg,

i.e., (A,) was proved.

From (A,) and (H,) follows that p,(1) is a bilateral unit of n,, i.e.,
the existence of 1, is obtained.

To prove the compatibility of u, with o,:putting T=T(Y, M,),
T.=T(Y,S", T,=T(S,M,), T,=T(S, YAM,), T.,=T(S, YAN,), T,
=T(S, N,) and T,=T(S', S*M,), by definitions of x, and o, we have

(lX/\ Tl)* ,Ulq(a'q@ 1)
=(Ix AT, ALy o vsxar @ (Lsx A TAL)* w((Ix A T2)* o Q1% aar)
=Ax AT AL o 2y *(Lsx A TA L (Lx A To ALy asd* A s A T o
=1x AT AL)* o 2v(Ax A T)*(Ix sy ASa)*(Ix A To A Lsp)* o
= Ik AT AS L y(Ix ATV o (Ixay A  (Ix AT ALy o
Here
AxATNAS L  vsxny(Ix A T)*o
= Yxrsv(Ix A TN AxA T ) e by Lemma 5.2, (ii),
=Yxrsy(xay A To)*o
=Axay AT *o¥xny by Lemma 5.2, (iii).
Thus
AxNAT)* po(o,®1)
=xay AT e Yxav A Axay AN)*(Ax AT ALy * 1o
=(Ixay AT oo vy Ay ™ (Ax N TALy)* 1
T Oqlhq -
Similarly we see that
(=1 p(l®cy) =ogpg. q.e.d.
The above theorem, combined with Prop. 3.3, shows

Corollary 5.6. When g=2 (mod 4), the condition that (nz)**=0 in
h is mecessary and sufficient for the existence of a multiplication pu,

satisfying (A,).

5.5. Theorem 5.7. If v, satisfies (5.3), then the multiplication .,
of (5.6) satisfies (A,).

Proof. By Theo. 5.5 we can use (A, for pu,. Putting
T=TWM,, M,), T"=T(Y,M,) and T"=T(YAM,, S*), we have (on
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"(X: Z)QW(Y; Z))

#q(8q®1)+(_1)iﬂq(1®3q)
= 14(pPR 1)+ (—1) 1, (1R p3)
= 1 (0@1)+(—1) pe(1R39)
= wlo ' Ax AV*R1F )+ (=1 (Ix A TV p(IEA @0 7 (Ly A)F)
= (e "AxAT"*Ax AiAIpan* +o 7 AxAST V* (Ax apany A8 ) 1
= o (Qxavam A Axay ATV +AxavamAND)* Ax AT ALy)* o
= (TAuAD)+ Ay NO)*F A AT A1Ly)* 1
= o ' w*F R ALNA T A1)  p by Prop. 4.7, (ii),
= o ¥y F A AT A 1y)* by Lemma 5. 3,
= p3uq = 3q,uq . g.e. d.

Theorem 5.8. If v, satisfies (5.5), then the multiplication p, of
(5. 6) satisfies (A,).

Proof. Since pu, satisfies (A,) it is sufficient to prove the following
three relations :

6.7 te(pr@1) = pn, (1Q p,),
(6.7) pe(r®1) = p,(1QuL),
(5.77) pr(re®1) = n,(1Q ug) -

To prove (5.7): discussing on #*(X; Z)QW(Y; Z,)Qh*(Z; Z,) and
putting T,=T(Z, M,), we have

ta(pL®1) =6 Y x Ay rz @™ Axay A TiA 130)* p(p®1)
=0 Yxavnz(1Qa* Ly A Ty A L) 1)
=2 u(lQY pay@™* Ay A T, A1) * 1) by Lemma 5.2, (iv),
= p(1Qac v ypz™* Ly A Ty A1) 1)
= IJ‘L(1®M) ’
i.e., (6.7) is proved.
In a similar way we can easily see (5.7’), and using Lemma 5.4
instead of Lemma 5.2, (iv), we can see (5.7”). The details are left to
the readers. q.e.d.

5.6. As a corollary of Theos. 5.5, 5.7, 5.8, Lemma 5.1 and (5.5),
we obtain

Theorem 5.9. (Existence theorem). In case g2 (mod 4) admissible
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multiplications p, exist always; In case ¢=2 (mod 4), if we assume that
*=0 in h and p is commutative, then admissible ones u, exist.
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