UNSTABLE HOMOTOPY GROUPS OF UNITARY GROUPS
 (odd primary components)

Нiromichi MATSUNAGA
(Received December 2, 1963)

1. Introduction

The purpose of this paper is to prove the following
Theorem. For each odd prime p,

$$
{ }^{p} \pi_{2 n+2 k-3}(U(n))=Z_{p^{N}}
$$

for $k \leqq p(p-1), n>k \quad$ and $\quad n+k \equiv 0 \quad \bmod p$, where $\quad N=\min \left(\left[\frac{k-1}{p-1}\right]\right.$, $\left.\nu_{p}(n+k)\right)$ and $\nu_{p}(x)$ is the highest exponent of p dividing the integer x.

This theorem contains one of the result of [5] as a special case. We shall use the following well-known isomorphism.

$$
\begin{aligned}
\pi_{2 n+2 k-3}(U(n)) & \approx \pi_{2 n+2 k-2}\left(E P_{n+k} / E P_{n}\right) \text { for } n \geqq k-2 \text { [8] } \\
& \approx \pi_{2 n+2 k-2}\left(E\left(P_{n+k, k}\right)\right) \\
& \approx \pi_{2 n+2 k-5}\left(P_{n+k, k}\right) \text { for } n>k[4],
\end{aligned}
$$

where E is the suspension, $P_{m}(m-1)$ complex dimensional projective space, $E P_{n+k} / E P_{n}$ or $P_{n+k, k}$ the space obtained from $E P_{n+k}$ or P_{n+k} by smashing the subcomplex $E P_{n}$ or P_{n} to a point.

In $\S 2$ we recall some material from the homotopy theory of the sphere and the K-theory, and deduce some results which are used in $\S 3$. In $\S 3$ we prove the Theorem.

2. Preliminary material

2.1. Denote by $\alpha_{n+k, r}$ the coefficient of x^{n+k-1} in $\left(e^{x}-1\right)^{n+k-r}$ for $1 \leqq r \leqq t$. For any non zero rational number x, if $x=p^{r} \cdot q^{s} \cdots$ is the factorization of x into prime powers, we define $\nu_{p}(x)=r$. By (5.3), (5.4), (6.4) and (6.5) in [1], if $\nu_{p}\left(\alpha_{n+k, r}\right) \geqq 0$ for $1 \leqq r \leqq t$ and a fixed prime p, then we have that $\nu_{p}\left(\alpha_{n^{+k}, t^{+}}\right) \geqq 0$ with the exceptional case $t=s(p-1)$,
and in this case, $\nu_{p}\left(\alpha_{n+k, t+1}\right) \geqq 0$ if and only if $\nu_{p}(n+k)-\nu_{p}(s)-s \geqq 0$.
2.2. In the present work we discuss only such finite CW -complexes K that consisting only of even dimensional cells, at most one for each even dimension. So we make this assumption without any more comments. Then $H^{n}(K, Z)=Z$ or 0 , and the n-cell e_{n}, if it exists, is the generator and, for any coefficient group G, the element αe_{n} of $H^{n}(K, G)$ determines uniquely $\alpha \in G$, we shall identify $\alpha \cdot e_{n}$ and α as our convention.

Now consider two finite CW-complexes X and X^{\prime}. If a mapping $f: X^{\prime} \rightarrow X$ induces isomorphisms $f^{*}: H^{*}\left(X, Z_{p}\right) \xrightarrow{\approx} H^{*}\left(X^{\prime}, Z_{p}\right)$ for a fixed prime p, then we have that
(i) it induces the isomorphism $f_{p}^{\prime}: K(X) \otimes Z_{p} \rightarrow K\left(X^{\prime}\right) \otimes Z_{p}$, and
(ii) $\nu_{p} \operatorname{ch}_{n}(\lambda)=\nu_{p} \operatorname{ch}_{n}\left(f^{!} \cdot \lambda\right)$ for any λ of $K_{c}(X)$.

Proof. Since $H^{2 n+1}(X, Z)=H^{2 n+1}\left(X^{\prime}, Z\right)=0$ for each n, using 2.1 in [2] we have that

$$
H^{2 n}(X, Z) \cong K_{2 n}(X) / K_{2 n+1}(X), \quad K_{2 n-1}(X)=K_{2 n}(X)
$$

and

$$
H^{2 n}\left(X^{\prime}, Z\right) \cong K_{n}\left(X^{\prime}\right) / K_{2 n+1}\left(X^{\prime}\right), \quad K_{2 n-1}\left(X^{\prime}\right)=K_{2 n}\left(X^{\prime}\right)
$$

where $K_{m}(X)=\operatorname{ker}\left[K(X) \rightarrow K\left(X^{m-1}\right)\right], X^{m-1}$ is the $(m-1)$-skeleton of X, and for $K_{m}\left(X^{\prime}\right)$ we make the same convention. Then f^{*} induces the isomorphism $\bar{f}_{p}: H^{n}(X, Z) \otimes Z_{p} \rightarrow H^{n}\left(X^{\prime}, Z\right) \otimes Z_{p}$. Consider the following commutative diagram

$$
\begin{aligned}
& 0 \rightarrow K_{2 n+1}(X) \otimes Z_{p} \rightarrow H^{2 n}(X, Z) \otimes Z_{p} \rightarrow K_{2 n}(X) \otimes Z_{p} \rightarrow 0 \\
& \downarrow \bar{f}^{n_{+1}} \downarrow \bar{f} \quad \downarrow \bar{f}^{n} \\
& 0 \rightarrow K_{2 n+1}\left(X^{\prime}\right) \otimes Z_{p} \rightarrow H^{2 n}\left(X^{\prime}, Z\right) \otimes Z_{p} \rightarrow K_{2 n}\left(X^{\prime}\right) \otimes Z_{p} \rightarrow 0,
\end{aligned}
$$

where the horizontal sequences are exact. If \bar{f}^{n+1} and \bar{f} are isomorphisms then \bar{f}^{n} is an isomorphism. By descending induction on n we complete the proof of (i). The relation (ii) follows from the naturality of ch and that $f^{*} e_{n} \equiv 0 \bmod p$.
2.3. In a complex of two cells $X=S^{2 m} \|_{f} e^{2 m+2 s(p-1)}(1 \leqq s \leqq p)$ where f belongs to an element of the p-primary component of the stable homotopy group of the sphere, by (3.13) in [7] III, Theorem 4, Lemma 3 in [6], Theorem 1 in [3], 2.2 above, and (4.13) in [7] IV, we have that for any bundle λ of $K_{c}(X), \nu_{p}\left(\operatorname{ch}_{m+s(p-1)}(\lambda)\right) \geqq 0$ if and only if f is inessential.
2.4. Take the stunted projective space $P_{n+k, k}$ such that $k \leqq p(p-1)$.

By (4.13) in [7] IV there exists a CW-complex $P_{n+k, k}^{\prime}$ consisting of one cell for each degree $2 s, n \leqq s \leqq n+k-1$, and a mapping $f: P_{n+k, k}^{\prime} \rightarrow P_{n+k, k}$ such that f induces isomorphisms $f^{*}: H^{*}\left(P_{n+k, k} Z_{p}\right) \rightarrow H^{*}\left(P_{n+k, k}^{\prime} Z_{p}\right)$ and the order of the homotopy boundary of each cell of $P_{n+k, k}^{\prime}$ is a power of p. Then the complex $P_{n+k, k}^{\prime}$ has the following cell structure.

$$
\begin{aligned}
P_{n+k, k}^{\prime}= & {\left[\bigvee_{i=0}^{l}\left(S^{2 n+2 i} \bigcup e^{2 n+2 i+2(p-1)} \cup \cdots \cup e^{2 n+2 i+2 q(p-1)}\right]\right.} \\
& \bigvee\left[\bigvee_{j=l+1}^{p-2}\left(S^{2 n+2 j} \cup e^{2 n+2 j+2(p-1)} \cup \cdots \cup e^{2 n+2 j+2(q-1)(p-1)}\right]\right.
\end{aligned}
$$

where we denote by V the union with a single common point and set $k=q(p-1)+l+1$ for $0 \leqq l \leqq p-2$ and $q<p$. Using the formula in $\S 1$ and \mathcal{C}-theory (Serre) we have

$$
{ }^{p} \pi_{2 n+2 k-3}(U(n)) \approx^{p} \pi_{2 n+2 k-3}\left(S^{2 n+2 l} \bigcup \cdots \bigcup e^{2 n+2 l+2 q(p-1)}\right) .
$$

2.5. Let ξ be the dual bundle to the canonical line bundle over P_{n+k}. It is well-known that $\tilde{K}\left(P_{n+k}\right)$ is a truncated polynomial ring over the integer with the generator $\tilde{\xi}=\xi-1$ and a single relation $\tilde{\xi}^{n_{+k}}=0$.

Consider the following exact sequence

$$
0 \rightarrow \tilde{K}\left(P_{n+k, k}\right) \xrightarrow{p!} \tilde{K}\left(P_{n+k}\right) \xrightarrow{i} \tilde{K}\left(P_{n}\right) \rightarrow 0,
$$

where $i^{!}$and $p^{!}$are induced by the injection and the projection respectively. Define the elements of $\widetilde{K}\left(P_{n+k, k}\right)$ by $p^{\prime} \xi_{i}=\xi^{i} n \leqq i \leqq n+k-1$ It is well-known that $H^{*}\left(P_{n+k, k}\right)$ is a Z-module with generators x_{n}, \cdots, x_{n+k-1}, where $p^{*} x_{i}=x^{i} n \leqq i \leqq n+k-1$, and x is the chern class of $\tilde{\xi}$. Then $\pm \alpha_{n+k, r}=\operatorname{ch}_{n+k-1}\left(\xi_{n+k-r}\right)$ for $1 \leqq r \leqq t$.

Now we suppose that under the condition $\nu_{p}\left(\alpha_{n+k, r}\right) \geqq 0$ for $1 \leqq r \leqq t$ and $t=s(p-1)(s<p)$ the homotopy boundary of the $2(n+k-1)$-cell in $P_{n+k, s(p-1)+1}^{\prime}$ is deformable into its $2(n+k-s(p-1)-1)$-skeleton. Then we may regard a complex $S^{2(n+k-s(p-1)-1)} \bigcup e^{2(n+k-1)}$ as a subcomplex of $P_{n+k, s^{\prime}(p-1)+1}^{\prime}$ up to homotopy equivalence. Denote by $P^{\prime \prime}$ the complex obtained from $P_{n+k, s: p-1)+1}^{\prime}$ by smashing the subcomplex $S^{2(n+k-s(p-1)-1)}$ $\bigcup e^{2(n+k-1)}$, say $S \bigcup e$, to a point. The commutative diagram
shows that

$$
\nu_{p}\left(\operatorname{ch}_{n+k-1} \tilde{K}\left(P_{n+k, s(p-1)+1}^{\prime}\right)\right) \geqq 0
$$

if and only if

$$
\left.\nu_{p}\left(\operatorname{ch}_{n+k-1} \tilde{K}\left(S^{2(\boldsymbol{n}+k-s(p-1)-11}\right) \bigcup e^{2(\boldsymbol{n}+\boldsymbol{k}-1)}\right)\right) \geqq 0
$$

On the other hand by 2.2 we see that

$$
\nu_{p}\left(\operatorname{ch}_{n+k-1} \tilde{K}\left(P_{n+k, s\left(p^{-1)+1}\right.}\right)\right) \geqq 0
$$

if and only if

$$
\left.\nu_{p} \operatorname{ch}_{n+k-1} \tilde{K}\left(P_{n+k, s(p-1)+1}^{\prime}\right)\right) \geqq 0
$$

Then 2.1 and 2.3 show that the homotopy boundary $\beta e^{2(\boldsymbol{n}+k-1)}$ in $P_{n+k, s(p-1)+1}^{\prime}$ is trivial if and only if $\nu_{p}(n+k)-s \geqq 0$.

3. Proof of the Theorem

Consider a CW-complex $X=S \bigcup e_{1} \cup e_{2} \cup \cdots \bigcup e_{m}$, where S is an N sphere, N even, $e_{i}(1 \leqq i \leqq m)$ are $(N+2 i(p-1))$-cells and $m<p$. Through out this section we denote by $\pi(K)$ the p-primary component of $(N+2 q(p-1)-1)$-th homotopy group of K and suppose $N>2 q(p-1)$. Later in this section we prove the following

Proposition 3.1. If, for a generator S of the group $H^{N}\left(X, Z_{p}\right)$, $\mathfrak{F}_{p}^{i} S \neq 0$ for $1 \leqq i \leqq m$, and $m<q<p$, then we have

$$
\pi(X)=Z_{p^{m+1}}
$$

From this Proposition follows the
Proposition 3.2. For $m=q$, if the homotopy boundary of the cell e_{q} in the complex X, say α, is deformable into the N-skeleton S (then $S \bigcup_{\alpha} e_{q}$ can be regarded as a subcomplex of X up to homotopy equivalence), and if $\mathfrak{S}_{r}^{i} S \neq 0$ for $1 \leqq i \leqq q-1$, then we have that

$$
\pi(X)=\left\{\begin{array}{l}
Z_{p^{q-1}} \text { if the } p \text {-primary component of } \alpha \text { is not zero } \\
Z_{p^{q}} \text { if the p-primary component of } \alpha \text { is zero. }
\end{array}\right.
$$

Proof. If the p-primary component of α is not zero we have $\pi\left(S \bigcup_{a} e_{q}\right)=0$. Consider the following exact sequence

$$
\begin{aligned}
0 \rightarrow \pi\left(Z \cup e_{q}\right) \rightarrow \pi(X) \rightarrow & \pi\left(X, S \bigcup e_{q}\right) \rightarrow 0 \\
& \pi\left(X / S \bigcup_{\omega} e_{q}\right)
\end{aligned}
$$

By the Adem relation we see easily that the complex $X / S \bigcup_{a} e_{q}$ satisfies
the condition of 3.1 for $q-1$. Then by 3.1 we have $\pi(X)=Z_{p^{q-1}}$. If the p-primary component of α is zero, we have

$$
\begin{aligned}
\pi(X) \approx \pi\left(\left(S \cup e_{1} \cup \cdots \cup e_{q-1}\right) \bigvee S_{q}\right) & \cong \pi\left(S \cup e_{1} \cup \cdots \cup e_{q-1}\right) \\
& =Z_{p^{q}}
\end{aligned}
$$

where S_{q} is the $(N+2 q(p-1))$-sphere.
Now we state Proposition 3.3, by which and by 2.5 , the proof of the Theorem are completed because the conditions about \mathfrak{S}_{p}^{i} are easily checked from the known cohomological structure about the complex projective space.

Proposition 3. 3. For $m=q$, if the homotopy boundary βe^{q} in X is deformable into the $(N+2(q-s-1)(p-1))$-skeleton and not deformable into $(N+2(q-s-2)(p-1))$-skeleton (the complex $S \bigcup e_{1} \cup \cdots \cup e_{q-s-1} \cup e_{q}$ can be regarded as a subcomplex of X) and $\mathfrak{S}_{p}^{i} S \neq 0$ for $1 \leqq i \leqq q-1$, then we have

$$
\pi(X)=Z_{p^{s}}
$$

To prove the Propositions 3.1 and 3.3 we use the following
Lemma. In a complex $S^{N} \bigcup_{\alpha} e^{N+2(p-1)}, N>2 s(p-1)$, if the p-primary component of α is not zero, then we have

$$
{ }^{p} \pi_{N+2 s(p-1)-1}\left(S^{N} \bigcup_{\infty}{ }^{N+2(p-1)}\right)=Z_{p^{2}} \quad \text { for } \quad 2 \leqq s \leqq p-1
$$

Proof of 3.1. We prove this proposition by induction on m. Consider the following commutative diagram

where $S_{i} \cup e_{i+1} \cup \cdots \cup e_{m}$ denotes the complex obtained form the complex $S \bigcup e_{1} \cup \cdots \bigcup e_{m}$ by smashing a subcomplex $S \bigcup e_{1} \cup \cdots \bigcup e_{i-1}$ to a point. Two vertical and horizontal sequences are exact. By the Adem relation we see easily that the complexes $S_{1} \cup \cdots \cup e_{m}$ and $S_{2} \cup \cdots \cup e_{m}$ satisfy the conditions of 3.1 for $m-1$ and $m-2$ respectively. Hence $\pi\left(S_{1} \cup \cdots \cup e_{m}\right)$
$=Z_{p^{m}}$ and $\pi\left(S_{2} \cup \cdots \cup e_{m}\right)=Z_{p^{m-1}}$ by induction hypothesis. The middle vertical exact sequence takes the form

$$
0 \rightarrow Z_{p^{m}} \rightarrow \pi(X) \rightarrow Z_{p} \rightarrow 0 .
$$

Therefore $\pi(X)=Z_{p^{m+1}}$ or $Z_{p^{m}} \oplus Z_{p}$.
If we suppose that $\pi(X)=Z_{p^{m}} \oplus Z_{p}$, the exactness of the upper horizontal sequence shows that i_{1}-image must be the second direct factor, which is impossible because

$$
\begin{aligned}
i_{1}(\pi(S)) & =i_{2} \circ i(\pi(S)) \\
& \left.=i_{2}\left(p \pi\left(S \bigcup e_{1}\right)\right)\right) \\
& =p i_{2}\left(\pi\left(S \bigcup e_{1}\right)\right) .
\end{aligned}
$$

Then $\pi(X)=Z_{p^{m+1}}$. q.e.d.
Proof of 3.3. Put $S \bigcup e_{1} \cup \cdots \bigcup e_{q-s-1} \bigcup e_{q} / S \bigcup e_{1} \cup \cdots \bigcup e_{i-1}=Y_{i}$ for $0 \leqq i \leqq q-s-1\left(Y_{0}=S \bigcup e_{1} \cup \cdots \cup e_{q-s-1} \cup e_{q}\right)$. By decending induction on i, we shall prove that
(*)

$$
\pi\left(Y_{i}\right)=0 \quad \text { for } \quad 0 \leqq i \leqq q-s-1 .
$$

By the assumption of the proposition we have (*) for $i=q-s-1$. Assume that (*) is true for $0 \leqq k<i \leqq q-s-1$ and consider the following commutative diagram

The left vertical sequence and the two horizontal sequences are exact. By induction hypothesis the two right terms are zero. Then the same argument as in the above proof of 3.1 , making use of the lemma shows that $\pi\left(Y_{k}\right)=0$. Especially we obtained that

$$
\pi\left(S \bigcup e_{1} \cup \cdots \bigcup e_{q-s-1} \bigcup e_{q}\right)=0
$$

The exact sequence

$$
\begin{aligned}
\pi\left(S \cup e_{1} \cup \cdots \cup e_{q-s-1} \cup e_{q}\right) \rightarrow \pi(X) \rightarrow & \pi\left(X, S \cup e_{1} \cup \cdots \cup e_{q-s-1} \cup e_{q}\right) \rightarrow 0 \\
& \pi\left(S_{q-s} \cup \cdots \cup e_{q-1}\right)
\end{aligned}
$$

shows that $\pi(X)=\pi\left(S_{q-s} \cup \cdots \cup e_{q-1}\right)$ and the group is isomorphic to $Z_{p^{s}}$ because the Adem relation proves that the space $S_{q-s} \cup \cdots \cup e_{q-1}$ satisfies the conditions of 3.1. q.e.d.

Proof of the lemma. At first we summarize some well-known results. By the Adem relation, if $i<p$, we have

$$
\begin{align*}
& \mathfrak{S}_{p}^{i} \mathfrak{P}_{p}^{\prime}=\binom{i+j}{i} \mathfrak{P}_{p}^{i+j} \tag{1}\\
& \mathfrak{S}_{p}^{i} \Delta_{p}^{1} \mathfrak{P}_{p}^{j}=\binom{i+j-1}{i} \Delta_{p}^{1} \mathfrak{P}_{p}^{i+j}+\binom{i+j-1}{j} \mathfrak{S}_{p}^{i+j} \Delta_{p}^{1} \tag{2}
\end{align*}
$$

Consider the following exact sequences

$$
\begin{align*}
& 0 \rightarrow Z_{p^{h}} \rightarrow Z_{p^{h+1}} \rightarrow Z_{p} \rightarrow 0 \tag{3}\\
& 0 \rightarrow Z_{p} \rightarrow Z_{p^{h+1}} \rightarrow Z_{p^{h}} \rightarrow 0 . \tag{4}
\end{align*}
$$

The coboundary operators associated with (3), (4) are denoted by $\delta_{h}, \delta_{h}^{\prime}$ respectively. In [9] (§2.1) the cohomology operations $\Delta_{p}^{i}(1 \leqq i)$ are defined:

$$
\Delta_{p}^{h}: \Delta_{p}^{h-1}-\operatorname{kernel}\left(\subset H^{n-1}\left(X, Z_{p}\right)\right) \rightarrow H^{n}\left(X, Z_{p}\right) \bmod \delta_{h-1}^{\prime} \text {-image }
$$

then, the following relations hold:

$$
\Delta_{p}^{h} \text {-kernel }=\delta_{h} \text {-kernel, } \Delta_{p}^{h} \text {-image }=\delta_{h}^{\prime} \text {-image } / \delta_{h-1}^{\prime} \text {-image } .
$$

Let $F \rightarrow E \rightarrow B$ be a Serre fiber space with base space $B l(>1)$ connected and fiber $F m(>1)$-connected, and $n<l+m+2$, then we have the following exact sequence

$$
\begin{aligned}
0 & \rightarrow H^{1}\left(B, Z_{p}\right) \xrightarrow{p^{*}} H^{1}\left(E, Z_{p}\right) \xrightarrow{i^{*}} H^{1}\left(F, Z_{p}\right) \rightarrow \cdots \\
& \rightarrow H^{n}\left(B, Z_{p}\right) \xrightarrow{p^{*}} H^{n}\left(E, Z_{p}\right) \xrightarrow{i^{*}} H^{n}\left(F, Z_{p}\right)
\end{aligned}
$$

Let α and β be respectively elements of $H^{s}\left(E, Z_{p}\right)$ and of $H^{s+1}\left(B, Z_{p}\right)$ such that $\delta_{r-1}(\alpha)=0$ and $\Delta_{p}^{r}(\alpha)=p^{*}(\beta) \bmod \delta_{r-1}^{\prime}$-image. Then by [9] Th. 3.2

$$
\begin{equation*}
\tau \cdot \Delta_{p}^{r+1} i^{*}(\alpha)=-\Delta_{p}^{1}(\beta) \bmod \tau \cdot \delta_{r}^{\prime} H^{s}\left(F, Z_{p r}\right) \tag{5}
\end{equation*}
$$

Let α, β and γ be respectively elements of $H^{s}\left(E, Z_{p}\right)$, of $H^{s+1}\left(B, Z_{p}\right)$ and of $H^{s}\left(B, Z_{p}\right)$ such that $\Delta_{p}^{r}(\alpha)=p^{*}(\beta)(r \geqq 2)$ and $\alpha=p^{*}(\gamma)$, then by [9] Th. 3.8, there exists an element ε of $H^{s}\left(F, Z_{p}\right)$ with the following properties:

$$
\begin{align*}
& \tau(\varepsilon)=\Delta_{p}^{1}(\gamma) \tag{6}\\
& \tau \Delta_{p}^{r}(\varepsilon)=\Delta_{p}^{1}(\beta) \bmod \tau \delta_{r-1}^{\prime} H^{s}\left(F, Z_{p^{r-1}}\right)
\end{align*}
$$

To prove the lemma we consider the Cartan-Serre fiber space

$$
X(N+2(p-1)) \rightarrow X \rightarrow K(Z, N)
$$

for $X=S \bigcup e_{1}$, and the associated exact sequence, where $X(r)$ is $(r-1)$ connected and ${ }^{p} \pi_{i}(X(r))={ }^{p} \pi_{i}(X) i \geqq r$.

$$
\begin{aligned}
0 & \rightarrow H^{N}\left(Z, N, Z_{p}\right) \xrightarrow{p^{*}} H^{N}\left(X, Z_{p}\right) \xrightarrow{l^{*}} H^{N}\left(X(N+2(p-1)) Z_{p}\right)=0 \cdots \\
& \xrightarrow{\boldsymbol{\tau}} H^{N+2(p-1)}\left(Z, N, Z_{p}\right) \xrightarrow{p^{*}} H^{N+2(p-1)}\left(X, Z_{p}\right) \xrightarrow{i} H^{N+2(p-1)}(X(N+2(p-1)) \\
& \xrightarrow[\rightarrow]{\boldsymbol{\tau}} H^{N+2(p-1)+1}\left(Z, N, Z_{p}\right) \xrightarrow{p^{*}} H^{N+2(p-1)+1}\left(X, Z_{p}\right)=\rightarrow 0 \cdots \\
0 & \rightarrow H^{N+4(p-1)-1}\left(X\left(N+2(p-1), Z_{p}\right) \xrightarrow{\boldsymbol{\tau}} H^{N+4(p-1)}\left(Z, N, Z_{p}\right) \rightarrow 0\right.
\end{aligned}
$$

Then there exist elements a_{1} and b_{1} of $H^{N+2(p-1)}\left(X(N+2(p-1)), Z_{p}\right)$ and of $H^{N+4(p-1)-1}\left(X(N+2(p-1)), Z_{p}\right)$ such that $\tau a_{1}=\Delta_{p}^{11} \mathfrak{F}_{p}^{1} u_{1}$ and $\tau b_{1}=\mathfrak{F}_{p}^{2} u_{1}$, where u_{1} is the generator of $H^{N}\left(Z, N, Z_{p}\right)$. Since $H^{i}\left(X, Z_{p}\right)=0$ for $i>N+2(p-1)$ we have that the transgression $\tau: H^{N+i}\left(X(N+2(p-1)), Z_{p}\right)$ $\rightarrow H^{N+i^{+1}}\left(Z, N, Z_{p}\right)$ are isomorphic onto for $N+2(p-1) \leqq i<2 N-1$. Then we have relations:

$$
\begin{equation*}
\Delta_{p}^{1} b_{1}=\mathfrak{P}_{p}^{1} a_{1} \tag{3.1.1}
\end{equation*}
$$

(3.1.2) $2 \Delta_{p}^{1} \mathfrak{P}_{p}^{i-2} b_{1}=i \Im_{p}^{i-2} \Delta_{p}^{1} b_{1}=i(i-1) \mathfrak{P}_{p}^{i-1} a_{1} \quad$ for $\quad 2 \leqq i \leqq p$.

Next consider the Cartan-Serre fiber space

$$
X(N+4(p-1)-1) \rightarrow X(N+2(p-1)) \rightarrow K(Z, N+2(p-1))
$$

and the associated exact sequence

$$
\begin{aligned}
0 & \rightarrow H^{N+2(p-1)}\left(Z, N+2(p-1), Z_{p}\right) \xrightarrow{p^{*}} H^{N+2(p-1)}\left(X(N+2(p-1)), Z_{p}\right) \rightarrow 0 \\
\cdots & \rightarrow H^{N+4(p-1)-1}\left(X(N+2(p-1)), Z_{p}\right) \xrightarrow{i^{*}} H^{N+4(p-1)-1}\left(X\left(N+4(p-1)-1, Z_{p}\right)\right. \\
& \xrightarrow{\tau} H^{N+4(p-1)}\left(X, N+2(p-1), Z_{p}\right) \rightarrow H^{*} H^{N+4(p-1)}\left(X(N+2(p-1)), Z_{p}\right) \\
& i^{*} \\
& H^{N+4(p-1)}\left(X(N+4(p-1)-1), Z_{p}\right) \xrightarrow{\tau} H^{N+4(p-1)+1}\left(Z, N+2(p-1), Z_{p}\right) \rightarrow \cdots
\end{aligned}
$$

Denote by u_{2} the generator of $H^{N+2(p-1)}\left(Z, N+2(p-1), Z_{p}\right)$ and by b_{2} the i^{*}-image of b_{1}. Since $p^{*} u_{2}=a_{1}$, we have

$$
\begin{equation*}
\tau \Delta_{p}^{2} b_{2}=-\Delta_{p}^{1} \mathfrak{P}_{p}^{1} u_{2} \tag{3.2.1}
\end{equation*}
$$

by (3.1.1) and (5) above, and

$$
\begin{equation*}
\Delta_{p}^{2} \Re_{p}^{i-2} b_{2}=\frac{i(i-1)}{2} \mathfrak{S}_{p}^{i-1} \Delta_{p}^{2} b_{2} \quad \text { for } \quad 2 \leqq i<p \tag{3.2.2}
\end{equation*}
$$

by (3.1.2). Thus we have

$$
\begin{equation*}
{ }^{p} \pi_{N+4(p-1)-1}(X)=Z_{p^{2}} . \tag{3.2.3}
\end{equation*}
$$

When $p=3$ the proof is completed. When $p>3$, we shall prove the following assertions $\left(A_{l}\right)$ and $\left(B_{l}\right)$ for $2 \leqq l \leqq p-1$ by induction on l at the same time:

$$
\begin{equation*}
{ }^{p} \pi_{N+2 l(p-1)-1}(X)=Z_{p^{2}}, \tag{l}
\end{equation*}
$$

denoting by b_{l} a generator of $H^{N+2 l(p-1)-1}\left(X(N+2 l(p-1)-1), Z_{p}\right)$ there holds the following relation

$$
\begin{align*}
& \Delta_{p}^{2} \mathfrak{P}_{p}^{i-l} b_{l}=\varepsilon(l, i) \Im_{p}^{i-l} \Delta_{p}^{2} b_{l} \neq 0 \quad \text { for } \quad p>i \geqq l \tag{l}\\
& \text { with } \quad \varepsilon(l, i) \in Z_{p} .
\end{align*}
$$

The case for $l=2$ is proved by (3.2.2) and (3.2.3). Assume $\left(A_{l}\right)$ ane (B_{l}), and consider the Cartan-Serre fiber space

$$
X(N+2(l+1)(p-1)-1) \xrightarrow{i} X(N+2 l(p-1)-1) \xrightarrow{p} K\left(Z_{p^{2}}, N+2 l(p-1)-1\right) .
$$

Denote by u_{l+1} and by b_{l+1} generators of $H^{N+2 l(p-1)-1}\left(Z_{p^{2}}, N+2 l(p-1)\right.$ $\left.-1, Z_{p}\right)$ and $H^{N+2(l+1)(p-1)-1}\left(X\left(N+2(l+1)(p-1)-1, Z_{p}\right)\right.$. Since $p^{*} u_{l+1}=b_{l}$ and $\Delta_{p}^{1} \mathfrak{P}_{p}^{1} b_{l}=0$, we have $\tau b_{l+1}=\Delta_{p}^{1} \mathfrak{P}_{p}^{1} u_{l+1}$. By $\left(B_{l}\right), \Delta_{p}^{2} \mathfrak{S}_{p}^{1} b_{l}=\varepsilon(l, l+1) \mathfrak{S}_{p}^{1} \Delta_{p}^{2} b_{l}$, hence by (6) the relation

$$
\left(C_{l+1}\right) \quad \tau \Delta_{p}^{2} b_{l+1}=\varepsilon(l, l+1) \Delta_{p}^{1} P_{p}^{1} \Delta_{p}^{2} u_{l+1} \neq 0
$$

holds. Further using (6) and the relation above we have the relation

$$
\varepsilon(l, l+1) \mathfrak{P}_{p}^{i-(l+1)} \Delta_{p}^{2} b_{l+1}=\varepsilon(l, i) \Delta_{p}^{2} \mathfrak{P}_{p}^{i-(l+1)} b_{l+1} \quad \text { for } \quad p>i \geqq l+1 .
$$

Since the group Z_{p} is also a field this relation are reduced to the following

$$
\left(B_{l+1}\right) \quad \Delta_{p}^{2} \mathfrak{S}_{p}^{i-(l+1)} b_{l+1}=\varepsilon(l+1, i) \Im_{p}^{i-(l+1)} \Delta_{p}^{2} b_{l+1} \quad \text { for } \quad p>i \geqq l+1 .
$$

By $\left(C_{l+1}\right)$ we obtain $\Delta_{,}^{2}, b_{l+1} \neq 0$ and that
$\left(A_{l+1}\right) \quad{ }^{p} \pi_{N+2(l+1)(p-1)-1}(X)=Z_{p^{2}}$.
Thus we complete the proof of the lemma.
Remark. This lemma is a part of Proposition 4.21 in [7] IV which
is obtained by the composition method.
Osaka University

References

[1] M. F. Atiyah and J. A. Todd: On complex Stiefel manifolds, Proc. Camb. Phil. Soc. 56 (1960) 342-353.
[2] M. F. Atiyah and F. Hirzebruch: Vector bundles and homogeneous spaces, Proceedings of Symposia in Pure Math. 3, Differential Geometry. Amer. Math. Soc. (1961), 7-38.
[3] E. Dyer: Chern characters of certain complexes, Math. Z. 80 (1963), 363373.
[4] I. M. James: On the suspension triad, Ann. of Math. 63 (1956), 191-247.
[5] H. Matsunaga: On the groups $\pi_{2 n+7}(U(n))$ odd primary components, Mem. Fac. Sci. Kyushu Univ. Ser. A, 16 (1962), 66-74.
[6] J. W. Milnor and M. A. Kervaire: Bernoulli numbers, homotopy groups, and a theorem of Rohlin, Proc. Inter. Congress. Math. 1958.
[7] H. Toda: p-primary components of homotopy groups, III Stable groups of the sphere, Mem. Coll. Sci. Univ. Kyoto 31 (1958), 191-210, IV. Compositions and toric constructions, ibid. 32 (1959) 297-332.
[8] -: A topological proof of the theorems of Bott and Borel-Hirzebruch for homotopy groups of unitary groups, ibid. 32 (1959), 103-119.
[9] T. Yamanoshita: On certain cohomological operations, J. Math. Soc. Japan 8 (1956), 300-344.

