Supplement to Note on Brauer's Theorem of Simple Groups. II

By Osamu Nagai

The aim of this note is to complete the proof of the following theorem: Let (S5 be a finite group which contains an element P of prime order p which commutes only with its own powers (condition (*)) and assume that (S) is equal to its commutator-subgroup (5' (condition (**)). Then the order g of ($B 5$ is expressed as $g=p(p-1)(1+n p) / t$, where $1+n p$ is the number of conjugate subgroups of order p and t is the number of classes of conjugate elements of order p. If $n \leqq p+2$ and $t \equiv 0$ (mod. 2), then p is of the form $2^{\mu}-1$ and $\mathbb{E} \cong L F\left(2,2^{\mu}\right)$.

In [3], the theorem was proved for the case $n<p+2$ and $t \equiv 0$ (mod. 2) : If $n<p+2$ and $t \equiv 0(\bmod .2)$, under ($*$) and ($* *$), then p is of the form $2^{\mu}-1$ and $\mathbb{G} \cong L F\left(2,2^{\mu}\right)$. In [4], the case $n=p+2$ and $t \equiv 0$ (mod. 2) are discussed, but the equation in p. 230, line 6 is not correct ${ }^{1)}$, this value should be $\omega^{j\left(\mu_{+\nu)}\right)} \cdot(-1)^{j t}$. So the representation of degree $p+1$ may occur. Therefore, in this note, we shall assume that the irreducible representation of degree $p+1$ occurs besides the assumptions ($*$), ($* *$), $n=p+2$ and $t \neq 0$ (mod. 2). Under these assumptions we shall prove that such a group does not exist.

We shall use the same notations as Brauer [1]. First of all, we shall assume that $n=p+2=F(p, 1,2)=F(p, u, 1)$ with positive integer u. For, if n does not have the expression $F(p, u, 1)$ with positive integer u, then the character-relations in $B_{1}(p)$ yields a contradiction easily. Simple computations show that the possible values of the irreducible characters in $B_{1}(p)$ are $1, p+1, u p+1,(u-1) p-1,(u p+1) / t$ and $((u-1) p-1) / t$. In order to consider such characters, we shall prove following lemmas, essentially due to Brauer.

Lemma 1. Under assumptions (*), (**), $n=p+2 t \equiv 0$ (mod. 2), if (53) has an irreducible character A of degree $u p+1(u>1)$, then for the element I of order 2 in the normalizer $\mathfrak{N}(\mathfrak{F})$ of a p-Sylow subgroup \mathfrak{B}

[^0]\[

A(I)=\left\{$$
\begin{array}{cl}
u+1, & \text { if } u \text { is even } \\
0, & \text { if } u \text { is odd }
\end{array}
$$\right.
\]

The normalizer $\mathfrak{R}(\mathfrak{F})$ of a p-Sylow subgroup \mathfrak{B} is a metacyclic group $\{P, Q\}$ of order $p q=p(p-1) / t$ and has q linear characters ω_{μ} and $t p$ conjugate characters $Y^{(\tau)}$ of degree q. If we consider the character A in $\mathfrak{R}(\mathfrak{F})$, then A is decomposed into two parts \widetilde{A} and A_{0}, where \widetilde{A} is a sum of $u+1$ linear characters ω_{μ} and A_{0} is a linear homogeneous combination of $Y^{(\tau)}$. Now, as $u>1, n(=p+2)$ has an expression $F(p, u, 1)=(u p+$ $\left.u^{2}+u+1\right) /(u+1)$. This implies $p=u^{2}-u-1$ and $g=p q(u p+1)(p+u+1) /$ $(u+1)$. Since $g n(G)^{-1} \cdot\left(D_{g} A\right)^{-1} \cdot A(G)$ is an algebraic integer, where $n(G)$ is the order of the normalizer of G in (5) and $D_{g} A$ is the degree of A, $g n\left(Q^{j}\right)^{-1} \cdot(u p+1)^{-1} \cdot A\left(Q^{j}\right)$ is, and also $A\left(Q^{j}\right) /(u+1)$ is an algebraic integer. But $A\left(Q^{j}\right)=\widehat{A}\left(Q^{j}\right)$ for $j \not \equiv 0(\bmod q)$. Then applying Burnside's method, we have $\widetilde{A}\left(Q^{j}\right)=0$ or $(u+1) \omega^{\mu_{j}}$: that is, $A\left(Q^{j}\right)=0$ or $(u+1) \omega^{\mu_{j}}$ for $j \not \equiv 0$ $(\bmod q)$. Assume $\widetilde{A}=\alpha_{1} \omega_{\mu_{1}}+\alpha_{2} \omega_{\mu_{2}}+\cdots+\alpha_{r} \omega_{\mu_{r}}$ is a decomposition of \widetilde{A} in $\mathfrak{N (\Re)}(\mathfrak{F})$. Let m be the least positive integer satisfying $\widetilde{A}\left(Q^{m}\right) \neq 0$. Then m is a divisor of q and any integer x satisfying $\widetilde{A}\left(Q^{x}\right) \neq 0$ is a multiple of m. Now there exist q / m integers satisfying $\widetilde{A}\left(Q^{x}\right) \neq 0$. From the orthogonality-relations, we have

$$
\sum_{j=0}^{q-1} \widetilde{A}\left(Q^{j}\right) \bar{\omega}_{\mu_{i}}\left(Q^{j}\right)=\alpha_{i} \cdot q .
$$

On the other hand, $\sum_{j} \widetilde{A}\left(Q^{j}\right) \bar{\omega}_{\mu_{i}}\left(Q^{j}\right)=\sum_{\lambda=1}^{q / m} \widehat{A}\left(Q^{\lambda m}\right) \bar{\omega}_{\mu_{i}}\left(Q^{\lambda m}\right)=(u+1) q / m$. Hence $\alpha_{i} q=(u+1) q / m$. This means $\alpha_{i}=(u+1) / m$ for $i=1,2, \cdots, r$. Therefore $\widetilde{A}=\frac{u+1}{m}\left(\omega_{\mu_{1}}+\omega_{\mu_{2}}+\cdots+\omega_{\mu_{m}}\right)$. Furthermore $\widetilde{A}\left(Q^{m}\right) \neq 0$ implies $\omega^{\mu_{1} m}=\omega^{\mu_{2} m}$ $=\cdots=\omega^{\mu_{m}}$. This means $\mu_{1} \equiv \mu_{2} \equiv \cdots \equiv \mu_{m}(\bmod q / m)$. Then we can put $\mu_{1}=a, \mu_{2}=a+q / m, \cdots, \mu_{m}=a+(m-1) q / m$. Thus

$$
\begin{equation*}
A=\frac{u+1}{m}\left(\omega_{a}+\omega_{a+q / m}+\cdots+\omega_{a+(m-1) q / m}\right)+A_{0} . \tag{D}
\end{equation*}
$$

Next consider its determinant for Q^{j} for $j \equiv 0(\bmod q)$. This value must be 1 .

$$
\operatorname{Det}\left(A\left(Q^{j}\right)\right)=\omega^{j a(u+1)}(-1)^{j\left(1-\frac{u+1}{m}\right)}
$$

Suppose $(u+1) / m \equiv 0(\bmod 2)$, then $\omega^{j a(u+1)}=(-1)^{j}$. For $j=1$, we have $a(u+1) \equiv q / 2(\bmod q), a(u+1) \equiv 0(\bmod q)$. These yield $u-2 \equiv 0(\bmod$ 2). This contradicts $u+1 \equiv 0(\bmod 2)$. Now we have $(u+1) / m \equiv 0(\bmod$ 2) and then $a(u+1) \equiv 0(\bmod q)$. From (D),

$$
A(I)=\frac{u+1}{m}\left((-1)^{a}+(-1)^{a+q / m}+\cdots+(-1)^{a+(m-1) q / m}\right) .
$$

i) If u is even, then m is odd. And q / m must be even. From $a(u+1) \equiv 0(\bmod q), a$ is even. Thus $A(I)=u+1$.
ii) If u is odd, then $\frac{q}{m}=\frac{u+1}{m} \frac{u-2}{t}$ is odd. Hence $A(I)=0$. This proves lemma 1.

For other type of irreducible characters, similar results can be proved.
Lemma 2.) Under the same assumptions as in Lemma 1, if (5) has an irreducible charactor B of degree $(u-1) p-1$, then for an involution I (the element of order 2) in $\mathfrak{R}(\mathfrak{F})$

$$
B(I)=\left\{\begin{aligned}
0, & \text { if } u \text { is even } \\
u-2, & \text { if } u \text { is odd }
\end{aligned}\right.
$$

Lemma 3.) Under the same assumptions as in Lemma 1, if (5) has an irreducible character C of degree $(u p+1) / t$, then for an involution I of $\mathfrak{R}(\mathfrak{F})$

$$
C(I)=\left\{\begin{array}{cl}
(u+1) / t, & \text { if } u \text { is even } . \\
0, & \text { if } u \text { is odd } .
\end{array}\right.
$$

Lemma 4. ${ }^{4)}$ Under the same assumptions as in Lemma 1, if (S) has an irreducible character C of degree $((u-1) p-1) / t$, then for an involution I of $\mathfrak{M}(\mathfrak{F})$

$$
C(I)=\left\{\begin{array}{cl}
0, & \text { if } u \text { is even } \\
(u-2) / t, & \text { if } u \text { is odd }
\end{array}\right.
$$

[^1]Lemma 5. Under the same assumptions as Lemma 1, let X be an irreducible character of degree $p+1$, then for an involution I of $\mathfrak{R}(\mathfrak{P})$

$$
X(I)=\left\{\begin{aligned}
0, & \text { if } q \equiv 0(\bmod 4) \\
\text { either }+2 \text { or }-2, & \text { if } q \equiv 0(\bmod 4)
\end{aligned}\right.
$$

In the latter case, we denote by y_{1} and y_{2} respectively the numbers of characters whose values for I are +2 and -2 .

Now, we shall consider two cases.
Case I: (S) contains an irreducible character of degree $(u p+1) / t$;
Let $B_{1}(p)$ contain x characters of degree $u p+1, y$ characters of degree $p+1, z$ characters of degree $(u-1) p-1$. From the character-relations in $B_{1}(p)$, we have

$$
\begin{aligned}
& 1+x+y+z=(p-1) / t \\
& u x+y+(u+1) / t=(u-1) z \\
& p=u^{2}-u-1
\end{aligned}
$$

The character-relation which holds for p-regular elements shows for an involution I that

$$
\begin{equation*}
1+\sum A(I)+\sum X(I)+C(I)=\sum B(I) \tag{I}
\end{equation*}
$$

Eliminate y and p, then $(u-1) x-(u-1) z+\left(u^{2}-1\right) / t=z+1$. Put $z+1=$ $\alpha(u-1)$. Then $x=-(u+1) / t+\alpha u-1, \quad y=\left(u^{2}-1\right) / t-2 \alpha u+\alpha+1$ and $z=$ $\alpha u-\alpha-1$. As $x \geqq 0, \alpha \geqq 1$. And $\alpha \geqq 2$ for $t=1$.

Now consider (I) for even u and for odd u separately.
Case Ia: Case where u is even ; From (I), none of $X(I)$ can be zero. Hence we have

$$
1+x(u+1)+2\left(y_{1}-y_{2}\right)+(u+1) / t=0 .
$$

But $y_{2}-y_{1} \leqq y$. Then $1+x(u+1)+(u+1) / t \leqq 2 y$. Substitute above values for x and y, then we have

$$
\alpha\left(u_{2}+5 u-2\right)-u-2 \leqq\left(3 u^{2}+u-2\right) / t .
$$

This inequality yields $\alpha=0$ for $t \neq 1$ and $\alpha \leqq 2$ for $t=1$. Hence we have $t=1$ and $\alpha=2$.

Case Ib : Case where u is odd ; From (I), none of $X(I)$ can be zero. Hence we have

$$
1+2\left(y_{1}-y_{2}\right)=(u-2) z
$$

But $y_{1}-y_{2} \leqq y$. Then $(u-2) z-1 \leqq 2 y$. Substitute the above values for y and z, then we have

$$
\begin{aligned}
& \alpha\left(u^{2}+u\right)-u-1 \leqq 2\left(u^{2}-1\right) / t \\
& \alpha u-1 \leqq 2(u-1) / t
\end{aligned}
$$

This inequality yields $\alpha=0$ for $t \neq 1$ and $\alpha<2$ for $t=1$. This is a contradiction.

Case II: (5) contains an irreducible character of degree $((u-1) p-1)$ / t; Let $B_{1}(p)$ contain x characters of degree $u p+1, y$ characters of degree $p+1, z$ characters of degree $(u-1) p-1$. From the characterrelations in $B_{1}(p)$,

$$
\begin{align*}
& 1+x+y+z=(p-1) / t \\
& u z+y=(u-1) z+(u-2) / t \\
& p=u^{2}-u-1 \\
& 1+\sum A(I)+\sum X(I)=\sum B(I)+C(I) \tag{I'}
\end{align*}
$$

Eliminate y and p, then $x+1=u x-u z+u(u-2) / t$. Put $x+1=\alpha u$. Then $z=(u-2) / t+\alpha u-\alpha-1, y=u(u-2) / t-2 \alpha u+\alpha+1$ and $x=\alpha u-1$. Of course α is a positive integer.

Case IIa: Case where u is even; As Case Ia, from (I^{\prime}), we have $1+x(u+1) \leqq 2 y$. Substitute the above values for x and y, then we have

$$
\alpha\left(u^{2}+5 u-2\right)-u-2 \leqq 2 u(u-2) / t
$$

This yields $t=1$ and $\alpha=1$.
Case IIb: Case where u is odd; We have from (I^{\prime}),

$$
1+2\left(y_{1}-y_{2}\right)=(u-2) z+(u-2) / t
$$

As Case Ib, we have

$$
\begin{aligned}
& (u-2) z+(u-2) / t-1 \leqq 2 y \\
& \alpha\left(u^{2}+u\right)-u-1 \leqq(u-1)(u-2) / t \\
& \alpha u-1 \leqq(u-2) / t
\end{aligned}
$$

This inequality yields $\alpha<1$. This is a contradiction.
Combining the above cases, the only posible case occurs when $t=1$ for even u. In this case $B_{1}(p)$ consists of the 1 -character, $u-1$ characters of degree $u p+1, u^{2}-4 u+2$ characters of degree $p+1$ and $2 u-3$ characters of degree $(u-1) p-1$.

Denote the sum of the elements in the conjugate class containing G by $\langle G\rangle$. Now we consider the coefficient of $\langle I\rangle^{2}$ in the group ring of its center. From the orthogonality relations the coefficient a_{p} of $\langle P\rangle$ is

$$
a_{p}=g n(I)^{-2} \sum\left(D_{g} X\right)^{-1} X(I)^{2} \cdot \bar{X}(P)
$$

where the summation ranges over all the irreducible characters of \mathbb{B}. (cf. [2], §5). On the other hand this coefficient is equal to the number of pairs of conjugate elements T and S of $\langle I\rangle$ such that $T S=P$. If $T S=P$, then $T P T^{-1}=P^{-1}$. By condition ($*$), this number of pairs is p. Hence we get

$$
p=g n(I)^{-2} \sum\left(D_{g} X\right)^{-1} X(I)^{2} \bar{X}(P),
$$

where sum ranges over all irreducible characters of \mathbb{E}.
Applying this, we have

$$
\begin{aligned}
& n(I)^{2} p=g\left\{1+(u p+1)^{-1}(u+1)^{2}(u-1)+(p+1)^{-1} 4\left(u^{2}-4 u+2\right)\right\} \\
& n(I)^{2}=2 u(u-2)^{2}(u-1)(3 u-2)(u+1)
\end{aligned}
$$

Since $n(I)$ is a multiple of $p-1=(u+1)(u-2)$ and u is even, we have $u+1=5$. Hence $n(I)^{2}=5^{2} 2^{6} 3$. This number is not a square.

Thus for $n=p+2$ and $t \neq 0(\bmod 2)$, such a group $\mathbb{C S}$ does not exist. This completes the proof of the theorem.
(Received September 17, 1959)

References

[1] R. Brauer: On permutation groups of prime degree and related classes of groups, Ann. of Math. 44 (1943), 57-79.
[2] R. Brauer and K. A. Fowler: On groups of even order, Ann. of Math. 62 (1955), 565-583.
[3] O. Nagai: Note on Brauer's theorem of simple groups, Osaka Math. J. 4 (1952), 113-120.
[4] : Supplement to "Note on Brauer's theorem of simple groups", Osaka Math. J. 5 (1953), 227-232.
[5] : On simple groups related to permutation-groups of prime degree. I, Osaka Math. J. 8 (1956), 107-117.

[^0]: 1) W. F. Reynolds kindly pointed out this error and gave the auther many useful suggestions. By this error, Theorem in [5] (p. 107) should be corrected as follows; If $2 p-3<n \leqq$ $2 p+3, t \neq 0(\bmod .2)$ and $t>1$, then $2 p+1$ is a prime power and $(\mathbb{F} \cong L F(2,2 p+1)$, unless the irreducible representation of degree $p+1$ occurs. But Theorem in [5] (p. 116) is valid.
[^1]: 2) If $u-2=1$, then the Burnside's method yields nothing. But $u-2=1$ yields $p=5$. For $p=5, g=5 \cdot 4 \cdot(1+7 \cdot 5) / t$. Since t is odd, $t=1$. Then $B_{1}(5)$ consists of the principal character, x characters of degree 6, y characters of degree 16 and z characters of degree 9 . And we have $1+x+y+z=5$ and $1+6 x+16 y=9 z$. This is a contradiction. Hence $u-2>1$.
 3) Let $u+1=t$. If the irreducible character of degree $u p+1$ occurs, then $q \equiv 0(\bmod$ $(u+1))$. And $u=2$. This contradicts (**). Therefore $B_{1}(p)$ may consists of the 1 -character, x characters of degree $p+1, y$ characters of degree $(u-1) p-1$ and t characters of degree $(u p+1) / t$. Then $1+x+y=(p-1) / t=u-2$ and $x+1=(u-1) y$. This is also a contradiction. Hence $(u+1) / t>1$.
 4) Let $u-2=t$. If the irreducible character of degree $(u-1) p-1$ occurs, then $q \equiv 0(\bmod$ $(u-2)$). And either $u=5$ or $u=3$. If $u=5$, then $p=19 . B_{1}(19)$ may consist of the 1 -character, x characters of degree 20, y characters of degree $96, z$ characters of degree 75 and t characters of degree 25 . Then $1+x+y+z=6$ and $x+5 y=4 z+1$. This is a contradiction. If $u=3$, then $p=5$. So $B_{1}(5)$ may consists of the 1-character, x characters of degree $6, y$ characters of degree 16 and z characters of degree 9. Then $1+x+y+z=5$ and $1+6 x+19 y=9 z$. This is a contradiction. If the irreducible character of degree $(u-1) p-1$ does not occur, then $B_{1}(p)$ may consist of the 1-character, x characters of degree $p+1, y$ characters of degree $u p+1$ and t characters of degree $((u-1) p-1) /(u-2)$. Then $1+x+y=u+1$ and $x+u y=1$. This is a contradiction. Hence $(u-2) / t>1$.
