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Supplement to Note on Brauer’s Theorem of
Simple Groups. II

By Osamu NAGAI

The aim of this note is to complete the proof of the following theorem:
Let @ be a finite group which contains an element P of prime order p
which commutes only with its own powers (condition (%)) and assume that
S is equal to its commutator-subgroup &' (condition (¥x)). Then the order
g of @ is expressed as g=p(p—1)1+np)/t, where 1+np is the number of
conjugate subgroups of order p and t is the number of classes of conjugate
elements of order p. If n<p-+-2 and t==0 (mod. 2), then p is of the form
2*_1 and ®=LF(2, 2").

In [3], the theorem was proved for the case n< p+2 and ¢==0
(mod. 2): If n<p+2 and t==0 (mod. 2), under (x) and (xx), then p is of
the form 2—1 and S=LF(2, 2*). In [4], the case n=p+2 and £==0
(mod. 2) are discussed, but the equation in p. 230, line 6 is not correct®,
this value should be &/***.(—1)!, So the representation of degree p+1
may occur. Therefore, in this note, we shall assume that the irreducible
representation of degree p+1 occurs besides the assumptions (x), (%),
n=p+2 and £==0 (mod. 2). Under these assumptions we shall prove that
such a group does not exist.

We shall use the same notations as Brauer [1]. First of all, we
shall assume that n=p+2=F(p, 1, 2)=F(p, u, 1) with positive integer u.
For, if n does not have the expression F'(p, #, 1) with positive integer u,
then the character-relations in B,(p) yields a contradiction easily. Simple
computations show that the possible values of the irreducible characters
in B(p) are 1, p+1, up+1, u—1)p—1, (up+1)/¢t and (x—1)p—1)/t. In
order to consider such characters, we shall prove following lemmas,
essentially due to Brauer.

Lemma 1. Under assumptions (x), (xx), n=p+2 t==0 (mod. 2), if &
has an irreducible character A of degree up-+1(u">1), then for the element
I of order 2 in the normalizer N(P) of a p-Sylow subgroup P

1) W.F. Reynolds kindly pointed out this error and gave the auther many useful sugges-
tions. By this error, Theorem in [5] (p. 107) should be corrected as follows; If 2p—-3<n<
2p+3, t=0 (mod. 2) and #>1, then 2p+1 is a prime power and & =LF(2, 2p+1), unless
the irreducible representation of degree p-+1 occurs. But Theorem in [5] (p. 116) is valid.
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u+1, if u is even.

Al = { 0, if u is odd.

The normalizer N(P) of a p-Sylow subgroup P is a metacyclic group
{P, @} of order pg=p(p—1)/t and has ¢ linear characters w, and ¢ p-
conjugate characters Y of degree q. If we consider the character A in
N(P), then A is decomposed into two parts A and A,, where A is a sum
of u+1 linear characters o, and A,is a linear homogeneous combination
of Y., Now, as # _>1, n (=p+2) has an expression F(p, u, 1)=(up+
w’+u+1)/(w+1). This implies p=u’*—u—1 and g=p qup+1)(p+u+1)/
(u+1). Since gn(G)*+(D,A)"*+A(G) is an algebraic integer, where n(G)
is the order of the normalizer of G in @ and D,A is the degree of A,
gn(@’) - (up+1)*-A(Q’) is, and also A(Q’)/(u+1) is an algebraic integer.
But A(Q)=A(Q’) for j==0 (mod ¢). Then applying Burnside’s method,
we have A(Q)=0 or (u+1)o* : that is, A(Q")=0 or (#+1)e" for j=£0
(mod ¢). Assume A=a,o, +®&w, + - +&,, is a decomposition of A
in M(P). Let m be the least positive integer satisfying A(Q™)==0. Then
m is a divisor of ¢ and any integer x satisfying A(Q")==0 is a multiple
of m. Now there exist g/m integers satisfying A(Q")==0. From the
orthogonality-relations, we have

g A(Q)5,(Q) = a;oq.

~ o — . a/m . _
On the other hand, 3] A(Q’)w,(Q’) = > A(Q*)®,,(Q*")=(u+1) g/m. Hence
j A=1
a,gq=(u+1) g/m. This means a;=(u+1)/m for i=1, 2, ---,r. Therefore
ﬁ:%—l(wﬁl—l—w,@L -+ +w,, ). Furthermore AQ™==0 implies "1™ =w"2™

= ..« =o*»”, This means py,=p,=--=p 6 (mod ¢/m). Then we can

put u,=a, g,=a-+q/m, -, p, =a+(m—1) g/m. Thus

(D) A= Zf’;;‘l(wa +wa+4/m+ +wa+(m—1)q/m)+Ao .
Next consider its determinant for @’ for j==0 (mod ¢). This value
must be 1.

Det(A(QY)) = w/™+(— 1);’(1—&;%1) )

Suppose (#+1)/m=0 (mod 2), then &/*“*’=(—1). For j=1, we have
a(u+1)=q/2 (mod q), a(u+1)==0 (mod ¢). These yield u—2=0 (mod
2). This contradicts #+1=0 (mod 2). Now we have (#+1)/m==0 (mod
2) and then a(#+1)=0 (mod ¢). From (D),
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ALY = L (1 (=1 (1)

i) If u is even, then m is odd. And ¢/m must be even. From
a(u+1)=0 (mod gq), a is even. Thus A(l)=u+1.

i) If # is odd, then %:%Hu%Z is odd. Hence A()=0. This

proves lemma 1.
For other type of irreducible characters, similar results can be proved.

Lemma 2.2 Under the same assumptions as in Lemma 1, if & has an
irreducible charactor B of degree (u—1)p—1, then for an involution I (the
element of order 2) in T(P)

0, if u is even.

B(I) =
() {u—2, if u is odd.

Lemma 3. Under the same assumptions as in Lemma 1, if & has an
irreducible character C of degree (up-+1)/t, then for an involution I of MN(P)

(u+1)/t, if u is even.

c) =
(7 { 0, if u is odd.

Lemma 4.° Under the same assumptions as in Lemma 1, if & has an
irreducible character C of degree (u—1)p—1)/t, then for an involution [
of N(P)

Ccl) = { 0, if u is even.
(w—2)/t, if u is odd.

2) If u—2=1, then the Burnside’s method yields nothing. But #—-2=1 yields p=5. For
p=5, g=5-4-(1+7-5)/t. Since ¢ is odd, t=1. Then B,(5) consists of the principal character, x
characters of degree 6, y characters of degree 16 and z characters of degree 9. And we have
1+x+y+2=5 and 1+4+6x+16y=92z. This is a contradiction. Hence »—-2>>1.

3) Let u+1=t. If the irreducible character of degree up-+1 occurs, then ¢=0 (mod
(u+1)). And u=2. This contradicts (**). Therefore B,(p) may consists of the l-character,
x characters of degree p-+1, y characters of degree (#—1)p—1 and ¢ characters of degree
(up+1)/t. Then 1+x+y=(p-1)/t=u—2 and x+1=(u-1)y. This is also a contradiction.
Hence (u+1)/t>1.

4) Let u—2=¢. If the irreducible character of degree (x—1)p—1 occurs, then ¢ =0 (mod
(#—2)). And either =5 or u=3. If u=5, then p=19. B,(19) may consist of the l-character,
x characters of degree 20, y characters of degree 96, z characters of degree 75 and ¢ characters
of degree 25. Then 1+4+x+4-y4-2z=6 and x+5y=4z+41. This is a contradiction. If #=3, then
p=5. So B;(5) may consists of the 1-character, x characters of degree 6, y characters of degree
16 and z characters of degree 9. Then 14x+4y+42=5 and 14+6x+19y=9z. This is a contradic-
tion. If the irreducible character of degree (#—1)p—1 does not occur, then B;(p) may consist
of the 1-character, x characters of degree p+1, y characters of degree up+1 and ¢ characters of
degree ((#—1)p—1)/(u—2). Then 1+x+y=u+1 and x+uy=1. This is a contradiction. Hence
(u—-2)/t>1.



150 0. Nagar

Lemma 5. Under the same assumptions as Lemma 1, let X be an
irreducible character of degree p+1, then for an involution I of N(P)

0, if q==0 (mod 4).

xan =1 .
either+-2 or —2, if q=0 (mod 4).

In the latter case, we denote by y, and y, respectively the numbers
of characters whose values for I are +2 and —2.

Now, we shall consider two cases.

Case I: @ contains an irreducible character of degree (up+1)/t;

Let B,(p) contain x characters of degree #p+1, y characters of degree
p+1, z characters of degree (#—1)p—1. From the character-relations in

B.(p), we have
1+x+y+2 = (p—1)/¢t,
ux+y+@m+1)/t = (u—1)z,
p=u—u—1.

The character-relation which holds for p-regular elements shows for an
involution I that

(I) 1+2YAMN+ 22 XN +CI) =X B() .

Eliminate y and p, then (u—1)x—(¥—1)z+(¥*—1)/t=2+1. Put z+1=
a(u—1). Then x=—(u+1)/t+au—1, y=w*—1)/t—2au+a+1 and z=
ay—a—1. As x=0, a=1. And a=2 for t=1.

Now consider (I) for even # and for odd # separately.

Case Ia: Case where u is even ; From (I), none of X(I) can be zero.

Hence we have
1+ x(w+1)+2(y,—y,)+(u+1)/t =0.

But y,—»,<y. Then 1+x(u+1)+(x+1)/t<2y. Substitute above values
for x and y, then we have

Au,+5u—2)—u—2 < (3u*+u—2)/t.

This inequality yields =0 for t==1 and <2 for #=1. Hence we have
t=1 and a=2.

Case Ib : Case where u is odd ; From (I), none of X(I) can be zero.
Hence we have

1+2(9,—,) = (@—2)z.

But y,—y.<y. Then (#—2)z—1=<2y. Substitute the above values for
y and 2z, then we have
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a(+u)—u—1 < 2(u*—1)/t,
ay—1<2u—1)/t.

This inequality yields =0 for #==1 and a< 2 for £=1. This is a con-
tradiction.

Case II: @ contains an irreducible character of degree ((#—1)p—1)/
t; Let B/(p) contain x characters of degree up+1, y characters of

degree p+1, z characters of degree (¥—1)p—1. From the character-
relations in B,(p),

1+x+y+2=(p-1)/t,
uz+y = (u—1)z+wm—2)/t,
p=u—u—-1,

19) 1+NAD)+D X)) = 2B+ C(I) .

Eliminate y and p, then x+1=ux—wuz+u(u—2)/¢t. Put x+1=au. Then
z2=wu—2)/t+au—a—1, y=u(u—2)/t —2au+a+1 and x=au—1. Of course
« is a positive integer.

Case Ila: Case where # is even; As Case Ia, from (I’), we have
1+2(u+1)<2y. Substitute the above values for x and y, then we have

a(u*+5u—2)—u—2 < 2u(u—2)/t .

This yields ¢=1 and a=1.
Case IIb: Case where # is odd; We have from (I'),

14+2(3,—y,) = (u—2)2+u—2)/t.
As Case Ib, we have

(u—2)z+w—2)/t—1<L 2y,
a(+u)—u—1< (u—1)u—2)/t,
au—1< (u—2)/t.

This inequality yields a<’1. This is a contradiction.

Combining the above cases, the only posible case occurs when =1
for even . In this case B,(p) consists of the 1-character, #u—1 characters
of degree up+1, u?—4u+2 characters of degree p+1 and 2u—3 characters
of degree (u—1)p—1.

Denote the sum of the elements in the conjugate class containing G
by <G>. Now we consider the coefficient of <I>* in the group ring of its
center. From the orthogonality relations the coefficient a, of <(P) is

a, = gn(I)”* (D, X)X X(P),
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where the summation ranges over all the irreducible characters of ®.
(cf. [2], §5). On the other hand this coefficient is equal to the number
of pairs of conjugate elements T and S of <I> such that TS=P. If
TS=P, then TPT =P, By condition (%), this number of pairs is p.
Hence we get

? = gn()*33 (D, X) " XUyX(P),

where sum ranges over all irreducible characters of ©.
Applying this, we have

n(Iyp = g{l+wp+1)"(u+1)(u—1)+(p+1)"4(u’—du+2)} .

n(I) = 2u(u—2)(u—1)(3u—2)(u+1) .
Since n(I) is a multiple of p—1=(u+1)(x—2) and # is even, we have
u+1=5. Hence n([)*=5%2°3. This number is not a square.

Thus for n=p+2 and ¢==0 (mod 2), such a group & does not exist.
This completes the proof of the theorem.

(Received September 17, 1959)
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