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Kernel Functions of Diffusion Equations II

By Hidehiko YAMABE

The present paper is a continuation of the author's previous paper
"Kernel Functions of Diffusion Equation I", Osaka Mathematical Journal
Vol. 9, 1957, pp. 201-214. Some notations which were defined in the
previous paper will be used without repeating the definitions.

2. Suppose that D be regularly open and 3D be smooth. Then
Theorem 1 of the previous paper holds and K(x, y\t) is a well defined
continuous non-negative function, which is smaller than Et(x, y). In this
pafrer the dimension d is assumed to be 2^3. Set

( 1 ) G(*, y) = lim (~ K(x, y t)dt = Γ K(x, y t)dt
A->0 Jh J+0

Lemma 2. 1. G(xy y) is the Green's function of the Laplacίan over D
with zero boundary.

Proof. Take a C2- function φ(y) and set φs(y)=\ K(x, y s)φ(y)dy
JD

over D. Then

( 2 ) Δ ( G(x,y)φΛ(y)dy= ( ΔxG(x,y)φ,(y)dy
JD JD

= { Γ ΔxK(x, y; t + s)dtφ(y)dy
J£>J+Q

= limK(x,y, h + s)φ(y)dy
JD Λ->0

= liml K(x,y\ h + s)φ(y)dy
JD

Therefore by making 5 towards 0, we have the required relation, which
proves the lemma.

Now take an arbitrary bounded open set D and consider an increasing
sequence of bounded open sets {Dk} with smooth boundaries converging
to D. To each Dk we can associate the kernel function Kk(x, y /) which
forms an increasing sequence of non-negative functions.
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Define for each k

( 3 ) lim (Et/n*DkΓ = Kk(xy y t ) .

Here *Dk should be understood as a convolution over Dk . Evidently
Kk(x, y; t) is an increasing function in k and

( 4 ) 0 ̂  ( Kk(x, y t)dy ^ { Et(x, y)dy < 1 .
Jok JD

Hence everywhere in D

lim Kk(xy y,t) = K(xy y t)
k

exists.

Lemma 2. 3. Suppose that both x and y are in D. Then K(x> y \ t )
is continuous in x and in y at least separately.

Proof. Because of being the strong limit of Kk's9 K(x, y; t) is non-
negative and is a strong solution of a diffusion equation 3[7/3f = Δf7.
Hence K is a genuine solution15. Therefore k is continuous in x and in
y at least separately.

Since

( 5 ) 0 ̂  K(x, y t) ̂  Et(x, y) ,

( 6 ) G(x,y) = llm(°K(x,yι t}dt
A->0 Jh

= K(x, y; t)dt^ Et(x, y)dt
J+o Jo

is a well defined function unless x=y.
Clearly

( 7 ) G(x, y) = lim Gk(x, y)
k-*^

= Γ K(x,y; t)dt
J+O

when both x and y are in D. This G(x, y) is called as a generalized
Green's function25 of the Laplacian over D.

Suppose that there are given a point y on 3D and a sequence of
points {ym} in D convergent to y. We further assume that

( 8 ) lim G(x, yj = 0.

1) See (15) of the previous paper I. There are other papers where this result or a more
generalized one is given.

2) The author does not claim at all that the introduction of such a definition is original.
Indeed, Bouligand, Kellogg and de la Vallee-Poussin already had introduced such definition. How-
ever, the author does not have any decisive information as to who was the first to have done it.
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Remark : Kellogg's3) result says that except for y on a set of
capacity 0, (8) holds.

Lemma 2. 3.

( 9 ) ]m[°K(x,ym; t)dt = 0.
-> °° J s

l]m

Proof.

(10)

+o

= lim G(x,
m-+oo

Hence the lemma is proved.

Lemma 2. 4. The sequence

, ym; t)dt

K(x,ym; t)dt

(11)

constitutes a family of equi-continuous functions over any compact set C
contained in D.

Proof.

(12) K(x, ym t)dt = Γ ( K(x, z s/2)K(z, ym t-s/2)dzdt
Js JD

= \ \K(x, 2 s/2) Γ K(z, ym t)dt\dz .
JDL Js/2 J

However

f" K(z, ym ;t)dt^ Γ Et(x, ym t)dt
JS/2 Js/2

(13)

Sd / d
= V STt

4

Therefore

(14) I [~K(x, ym t)dt- j~ W, ym t)dt

(K(x,z; s/2)-K(x',z; s/2))dz

3) See (14) of the previous paper I.
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The right hand side can be made arbitrarily small if x and xf are

sufficiently near to each other, because the function \ K(xy z\ s/2)dz
JD

itself is a solution of the diffusion equation, and is therefore uniformly
continuous over C. This proves the lemma.

Lemma 2. 5.

(15) lim ( ( [~K(x, ym t)dt\dx = 0 .
» »~ Jθ\ Jί /

Proof. Given small positive 8, there exists a compact subset C of
D such that

(16)

= (

D-C\ 4

—J(sπΓd meas (D-Q

For this C there exists a large wc such that if m^mc, then

(17)

uniformly over C because of Lemmas 2. 3. and 2. 4.
Hence

(18)

<^6 (1 + measD),

if m2>mc. This proves the lemma.

Lemma 2. 6.

(19) ( (Γ K(x,y, t)dt]2dx^sΛ (K(x,y; s))2dx.
JD\Js/2 I 2 ' D

Proof. In order to prove this lemma, the Fourier expansion with
respect to Δ with 0 boundary condition will be employed.

Since Dk's are bounded domains with smooth boundaries, this type
of Fourier expansion is available. Namely there exist eigenvalues
— λ^'s and nomalized eigenf unctions 0J*' of Δ satisfying:

(20) Δ0<» = -λW

for i=l, 2, ••• , and & = 1, 2, •••
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(21) λ<»>0 and

(21)' lim λ<*> = oo .
i->°°

Then, in the L2-sense

(22) Γ Kk(x,y, t)dt
Js/2

Therefore

(23) ( (T Kk(xyy t)dt]2dx
JDk\Js/2 /

= Σ (exp <-λί»ί/2)/λS»m»(jO)
1=1

Σ
1=1

^ -J Σ

By making k tend to infinity we have

(24) ( f Γ K(x, y /)«//) rfj ̂  A ( (/f^, j, ; s)γdx
JD \ > s/2 I 2 JD

which proves the lemma.
Immediately from Lemma 2. 5 and Lemma 2. 6,

Lemma 2. 7.

(25) l imf (K(x,ym; s))2dx = 0
w-><~ Jz>

Now we are going to prove that

Theorem 2. // lim G(x, ym) = 0,
Wί-^,00

then

(26) lim ΛΓ(*, jm s) = 0
W^oo

for any positive s.
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Proof.

(27) 0 < K(x, ym s) ̂  ( K(X, z sλ K(Z, ym —} dz
Jz> \ Δ I \ Z /

\ \ 2 \ l / 2 / f / _ _ / C \V . \ V 2

*,*;^))ώi

2^
where the right hand side will go to 0 as m goes to infinity because of
Lemmas 2. 5, 2. 6 and 2. 7. Hence the theorem is proved.

Remark: Throughout this paper Δ does not have to be the Lap-
lacian, but has only to be a Laplace-Beltrami operator with respect to a
C2-Riemannian structure which is continuous on the boundary 3D.
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