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Abstract
In this paper we obtain existence and uniqueness of sokutioin forward
stochastic differential equations driven by compensatessdn random measures.
To this end, an It6-Ventzell formula for jump processes isvpd and the flow
properties of solutions of stochastic differential eqoiasi driven by compensated
Poisson random measures are studied.

1. Introduction

In recent years, there has been growing interests on jumpegses, especially
Lévy processes, partly due to the applications in mathealafinance. In [7] a
Malliavin calculus was developed for Lévy processes. Amoifeothings, the au-
thors in [7] introduced a forward integral with respect torgensated Poisson random
measures and showed that the forward integrals coincide thi 1t6 integrals when
the integrands are non-anticipating. The purpose of thiep#s to solve the following
forward stochastic differential equation

(1.2) X; = x0+/0t b(w, s, Xs)ds+/0t/Ro(Xs_,z) N(d~s,d2)

with possibly anticipating coefficients and anticipatimitial values, whereN(d~s,d2)
indicates a forward integral. To this end, we adopt a sansesly as in [21] where
anticipating stochastic differential equations driven Brpwnian motion were studied.
We first prove an It6-Ventzell formula for jump processes #meh go on to study the
properties of the solution of the stochastic differentig&tion:

t
(1.2) ¢t(x):x+/O/Rcr(¢s_,z) N(ds, d2).

Surprisingly little is known in the literature about the flogroperties of¢(x) (see,
however, [6] for the case of multidimensional Lévy proce$séNe obtain bounds on
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#t(x), ¢;(x) and @;(x))"! under reasonable conditions en whereg;(x) stands for the
derivative of¢y(x) with respect to the space variabte Finally we show that the com-
position of ¢; with a solution of a random differential equation gives risea solution

to our equation (1.1). We also mention that a pathwise appréa forward stochastic
differential equations driven by Poisson processes isidersd in [13].

The rest of the paper is organized as follows. Section 2 isptieéiminaries. In
Section 3, we prove the It6-Ventzell formula. The flow prdjesr of solutions of sto-
chastic differential equations driven by compensated$@oisandom measures are stud-
ied in Section 4, where the main result is also presented.

2. Preliminaries

In this section, we recall some of the framework and prelanynresults from [7],
which we will use later. Lef2 = S'(R) be the Schwartz space of tempered distributions
equipped with its Borelb-algebraF = 9B(2). The spaceS’(R) is the dual of the
Schwartz space(R) of rapidly decreasing smooth functions @& We denote the
action ofw € 2 =S'(R) on f € S(R) by (w, f) = w(f).

Thanks to the Bochner-Milnos-Sazonov theorem, the whitsenprobability mea-
sure P can be defined by the relation

/ ei(u),f) d P(a)) — e/R ¥ (f(x)) dxfiafR f(x) dX, fe S(R),
Q
where the real constant and
V) = [ (€ =1 itzljs-y) v(d2)
R

are the elements of the exponent in the characteristic ifumadt of a pure jump Lévy
process with the Lévy measurddz), z € R, which, we recall, satisfies

(2.2) /Rl/\ 72 v(d2) < oc.
Assuming that
(2.2) M = /R Zv(d2) < oo,
we can setr = [, zlj,-1y v(d2) and then we obtain that
E[(-,f)]=0 and E[(-, f)]]= M/]R f2(x)dx, f e S(R).

Accordingly thepure jump Lévy process with no drift

n=n(t), weQ, teR,,
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that we do consider here and in the following, is the cadlaglifimation of (w, xo1),
w € R, t >0, where

1, O<x<t
0, otherwise, x € R,

(23) xou(X) = {

with n(w, 0) := 0, w € Q. We remark that, for alt € R., the valuesn(t) belong to
L2(P) = La(S2, 7, P).
The Lévy processg; can be expressed by

(2.4) n(t):/ot/RzN(ds,dz), t € Ry,

where N(dt, d2) := N(dt,d2) — v(d2) dt is the compensated Poisson random measure
associated withy.

Let F, t € R,, be the completed filtration generated by the Lévy proce<g.4).
We fix F = Fu.

Let Lo(A) = Lo(R4, B(R4), ) denote the space of the square integrable functions
on R, equipped with the Boreb-algebra and the standard Lebesgue mea&(ui¢),
t € R,4. Denote byL,(v) := Lo(R,B(R),v) the space of the square integrable functions
on R equipped with the Boreb-algebra and the Lévy measure Write Lo(P) :=
Lo(S2, F, P) for the space of the square integrable random variables.

For the symmetric functiorf € Lo((A x v)™) (m=1,2,...), definelq(f) := f for
f eR.

00 t ~ ~
Im(f)::m!fO fR-“/O/Rf(t1,X1,---,tm,Xm)N(dtl,dxl)-“N(dtm,de)
(m=1,2,...)

and setlo(f) := f for f € R. We have

Theorem 2.1 (Chaos expansion).Every F € L,(P) admits the(unique repre-
sentation

(2.5) F= i lm( )
m=0

via the unique sequence of symmetric functiopse fLo((A x v)™), m=0,1,....
Let X(t,2), t € R+, z € R, be a random field taking values Inp(P). Then, for all

t € Ry andz € R, Theorem 2.1 provides the chaos expansion via symmetrictins

X(t,2) = i Im(fm(te, z1, . . . sty Zm; £, 2)).

m=0
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Let fm = fm(ts, Z1, . . ., tme1, Zme1) be the symmetrization ofm(ty, za, . . . , tm, Zm; t, 2)
as a function of then+ 1 variables 1, z;), . . ., (tm+1, Zm+1) With tye1 =t and zpe = z

DEFINITION 2.1. [11], [12] The random fielX(t,z), t € R4, z € R, is Skorohod

integrableif Y (m+1)!|| fAm||2Lz((MU)mﬂ) < 00. Then itsSkorohod integral with respect

to N, i.e.
//X(t,z) N(st, d2),
+JR
is defined by
2.6 X(t, 2) N(5t, d ::oo It (fm)-
(2.6) //R CELCIEED SRS

The Skorohod integral is an element bf(P) and

[e¢]

2
(27) HA A X(tv Z) N(8t1 dz) = Z(m + 1)| ” fm”iZ(()LXU)mﬂ)
+ L2(P)  m=0
Moreover,
(2.8) E/ /X(t,z) N(st,d2) = 0.
+JR

The Skorohod integral can be regarded as an extension oftGhiategral toan-
ticipating integrands. In fact, the following result can be proved. [@f], [12], [5],
[7], [18] and [21].

Proposition 2.2. Let X(t,2), t € Ry, z € R, be a non-anticipating(adapteq
integrand Then the Skorohod integral and the 1td integral coincide is(R), i.e.

//Rx(t,z) N‘(at,dz):/ /Rx(t’z) Ri(dt, d2).

DEFINITION 2.2. The spacé; , is the set of all the elements € L2(P) whose
chaos expansionF = E[F]+ > " Im(fn), satisfies

[ ¢]
IFIB,, = > meml | fllZ o ym < 00
m=1
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The Malliavin derivative O, is an operator defined di; , with values in the standard
L,-spacely(P x A x v) given by

(2.9) DizF =) My a(f( -, t,2),
m=1
where (-, t,2) = fu(ty, 22, . . ., tme1, Zm-1; t, 2).

Note that the operatob; , is proved to be closed and to coincide with a certain dif-
ference operator defined in [22].

We recall theforward integral with respect to the Poisson random meashirele-
fined in [7].

DEeFINITION 2.3. Theforward integral

J(0) = /()T/I;Q(t,z) N(dt,d2)

with respect to the Poisson random meashireof a caglad stochastic functiai(t, z),
t € R4, z € R, with

0t,2):=0(t,z,w), we<,

is defined as

T N — T Y a—
(2.10) /O /Re(t,z)N(d t,d2) = m'i"oo/o /Re(t,z)lum N t,d2)

if the limit exists in L?(P). HereUn, m = 1,2,..., is an increasing sequence of
compact setd), ¢ R\ {0} with v(Uy) < oo such that lim},. . Un =R\ {0}.

The relation between the forward integral and the Skorohoiggral is the
following.

Lemma 2.1 ([7]). If 6(t,2)+ D+ ,0(t,2) is Skorohod integrable and B,0(t,z) :=
lims_ Ds,0(t,2) exists in I?(P x A x v), then the forward integral exists in
L,(P) and

/OT/R o(t,2) N(d7t,d2) :/OT/R D ,(t, 2) v(d2) dt

T ~
+/0 /R(G(LZ)+ Dy 20(t, 2)) N(5t, d2).
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3. The It6-Ventzell formula
Consider the following two forward processes depending gammeterx € R:
Fe(X) = Fo(x) +/(;t Gs(X) ds+/:/ﬂ; Hs(z, x) N(d~s, d2),
Y (X) = Yo(X) +/0t Ks(X) ds+[0t/]R Js(z, X) N(d’s, d2),

where the integrands are such that the above integrals détoh?(Q x R, P x dX).
Let ( , ) denote the inner product in the spacé&R, dx).

Lemma 3.1. It holds that
(3.11)
t t t
(Fu Yo = (Yo, Fo)+/ (Fe, Ks>ds+[ <Ys.Gs>ds+//<Hs(z. ) J(z ) v(d2) ds
0 0 0JR
t
+ / / [(Fe, &z ) + (Hs(z, ), You) + (Ha(z, -), Js(z, - ))] Ni(d s, d2).
0JR

Proof. Lete, i > 1 be an orthornormal basis df?(R,dx). For eachi > 1,
we have
t t
(Fe) = (Foe) + [ (Gae)ds+ [ [ (Hutz, ).@) Ritd s, d2)
0 0JR

t t N
Y @) :<Yo,a>+/o <Ks,a>ds+/O/R<Js(z, @) N(d-s, d2).

By the I1td’s formula for forward processes in [7],

t t
<Ft,e><Yt,a>=<Fo,e><Yo,a>+fo <Fs,a><Ks,a>ds+f0 (Ys,8)(Gs, &) ds

t
+/O/R[<Fs_,a>(Js(Z, &) t(Hs(z - ) @) (Ys—, &)

(3.12)
+(H(z, -),@)(%(z ), &) N(ds, d2)
t
N RGOSR NSRS
Taking the summation ovdr, we get (3.11). U

We now state and prove an Itd6-Ventzell formula for forwardgasses. LeK; be
a forward process given by

t t
(3.13) Xi = X0+/ asds+// y(s, 2) N(d*s,dz).
0 0JR
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Theorem 3.1. Assume that fx) is C! w.r.t. the space variable x R. Then

(3.14)
t
RO = FolXo)+ [ FilXoasds
0
t
# [ TR0t (5,2 = Fitxe) — Fixy (s, 2] vdd ds
0 JR
t t
¢ [ e dst [ 1 Xot v(5.2) - Hlz, X v ds
0 0 JR
t
o [ 1Rt +7(s.2) = Foo (%) Hilz Xe + (5, 2)] N 5,02,
0JR
Here, and in the followingF/(x) denotes the derivative dfs(x) with repect tox.
Proof. We are using the same method as in [21]. et CF(R,R:) with

Jg #(x) dx = 1. Define fore > 0, ¢.(x) = e~1p(x/¢e). It follows from Theorem 4.6 in
[7] that

(3.15)
t
B (X — X) = pu(Xo — X) + / ¢/ (Xs — X)ars dS
0

t
+ / / [6(Xe + (5. 2) — X) — bu(Xe — %) — 6.(Xs — X)y (5. 2] v(d2) ds
0t R
+ /0 /R [Be(Xs- +7(5,2) — ) — ¢e(Xs. — %] N(d"s, d2).
Using Lemma 3.1 we get that
/R Fu(X): (X — X) dx
t
- /R Fo(X)és (Xo — ) dx + fo fR Fo(X)atsb, (Xs — X) dx

+/Otds/]R Fs(x) dx

X /lé[‘ﬁs(xs + V(S, Z) - X) - ¢a(xs - X) — ¢£(Xs — X)]/(S, Z)] V(dZ)
(3.16) ;
* /o ds /R Gs(X)g:(Xs — X) dx
t
+/O ds/]R v(dz)/]R Hs(z, X)[¢0: (Xs + ¥(S, Z) — X) — ¢e(Xs — X)] dx
t
. /O /R { fR Fe (06 (Xeo + 7(52) — X) — ¢ (Xe — x)] dx

+/ Hs(Z, X)¢ (Xs— + (S, z)—x)dx} N(d~s, d2).
R
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Integrating by parts,
/R Fe () (X; — x) dx
t
- fR Fo(X). (Xo — X) dx + /O /R F/(X)atsghe (Xs — X)X
t
+ /0 ds /R Fo(x) dx /1; [6(Xs + (5, 2) = X) — e (Xs — X)] v(d2)
t
- / ds / F(x) dx f 9.(Xs — X)y(s, 2] v(d2)
(3.17) 6o .
+/0 ds/RGs(x)@(Xs—x)dx
t
+ fo ds /R v(d2) fR He(z, X[+ (Xs + (5, 2) — %) — bu(Xs — X)]
t
s /0 /}R { fR Fe (0006 (X + 7(5.2) — %) — hu(Xs_ — x)] dx

+/ Hs(z, X)$e(Xs_ + ¥ (S, 2) — X) dx} N(d~s, d2).
R

Since ¢, approximates to identity as — 0, lettinge — O we obtain that

(3.18)

t
FU(X) = Fo(Xo) + / F/(Xe)as ds
. 0
+ / / [Fa(Xe + 1(5.2)) — F(Xe) — FL(Xe)y (5. 2)] v(d2) ds
OI ® t
+ /0 Go(Xe) ds+ /0 /R [Hs(z, Xs +7(5.2)) — He(z Xs)] v(d2) ds
t
+ /0 /I;[Fs—(xs— +v(s,2) — Fs_(Xs2) + Hs(z, Xs— + ¥ (S, 2))] N(d*s,dz). ]

Next we are going to deduce an It6-Ventzell formula for Skaa integrals using
the relation between the forward integral and the Skorombelgial. Consider

t t
Xi=Xo+ | asds+ v (s, 2) N(Ss, d2),
et 1
Fe(X) = Fo(X) + / Gs(X) ds+ / / Hs(z, X) N(8s, d2).
0 0JR

The stochastic integrals here are understood as Skorohedrafs. Let I:|S(z, X) =
SzHs(z,X), 7(s,2) = S2y(s, 2), where S;; is an operator satisfying

%,ZG + Dt*,z(ss,zG) =G
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for any smooth random variablé. See [7] for details.

Theorem 3.2. Assume that fx) is C! w.r.t. the space variable x R. Then
(3.20)
t t
() = FOX)+ [ F0G) as— [ Deap (6202 dsr [ 600108
0 R 0

t
+ / ds / [Fs(Xs+ (5,2)) — Fs(Xs) — FU(Xs)7 (5, 2] v(d2)
0 R
t ~ ~
+ /o ds /R [Fla(z, X+ (5,2)) — Fls(2, Xs)] v(d2)
t
+ / ds f Do Fs (Xs_ +7(5.2) — Fs_(Xs )+ Fs( Xs +7(s,2))] v(d2) ds
0 R

t ~
+ / ds / ([Fs_(Xo_ +7(5,2)) — Fs_ (Xs)* Fy(z, Xs+ (5, 2)]
0 R

+Dg ,[Fs (Xs_ +7(5,2)) — Fs_(Xs_ )+ Fs(z, Xs +7(5,2))]} N(85,d2).

Proof. Using the relation between forward integrals andr&hkod integrals, we
rewrite X; and F(x) as

Xt = X0+/t |:as —/ D¢ 27(S, 2) v(dz)] ds+/t/ 7(s, 2 N(d‘s,dz),
0 R 0JR
FiX) = Fo(x) + / t [Gs(x) - / De- 2Fs(z, %) u(dz)} ds+ f t f Az x) N(d~s, d2).
0 R 0JR
It follows from Theorem 3.1 that

t
FU(X0) = Fo(Xo)+ fo FL(Xe) [as— /R Ds+,z&(s,z)u(dz)}ds
t t
+ /0 ds /R [Fu(Xs+7(5.2)) — Fa(Xe) — FU(Xs)P (5. 2] v(d2) + /O G(Xs)ds
t
+ /0 ds /R [Fla(z, Xs+7(5,2)) — Fis(z X&) v(d2)
t
. / ds / [Fo(Xeo_ +7(5.2)) — Fo (Xe_) + Fis(2 X+ 7/(5,2))] Ni(d"5,d2)
0 R
t t
= FOxo+ [ RO [as— [ Ds+,zy(s,z)v<dz)}ds+ [ eitxads

t
+ / ds / [Fa(Xs+ 7/(5,2)) — Fo(Xs)— FU(X)7(5,2)] v(d2)
0 R

t " ~
+ /0 ds fR [Fly(z, X+ 7(5.2) — Fs(z, X&)] v(d2)
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+ / 'das / De o[ Fo (Xeo +7(5,2)) — Fo_ (Xe_) + Fls(2, Xs +7(5, 2)] v(d2) ds
0 R

t ~
+ / ds / ([Fs_ (oo +7/(5.2)) — Fs_ (Xs_) + Fls(2, Xs+ (5, 2)]
0 R

+Dst o[ Fs— (Xs- +7(8,2)) — Fs—(Xs-) + As(z, Xs +7(5,2))]) N(8s,d2).
]

ExampLE 3.1 (Stock price influenced by a large investor with insiderimation).
Suppose the pric& = S(x) at timet of a stock is modelled by a geometric Lévy pro-
cess of the form

(3.21) dS(xX)=S-(x) |:/,L(t, x) dt + /1; o(t, 2 N(dt, dz)] , S >0 (constant).

(See e.g. [2] for more information about the use of this typepmcess in financial
modelling.) Herex € R is a parameter and for eaoh and z the processegi(t) =
u(t, X, w) ando(t,z) = 0(t, z, w) are Fi-adapted, wherer; is the filtration generated by

the driving Lévy process
t ~
;7(t):// zN(ds, d2).
0JRr

Suppose the value of this “hidden parameterfs influenced by a large investor with
inside information, so that can be represented by a stochastic procésef the form

(3.22) x:xt:x0+/t a(s)ds+/t/ y(s,2) N(d~s,d2); XoeR
0 0JR

where «(t) and y(t, z) are processes adapted to a larger insider filtraGignsatisfy-
ing 7t C G; for all t > 0. (For a justification of the use of forward integrals in the
modelling of insider trading, see e.g. [7]).

Combing (3.21) and (3.22) and using Theorem 3.1 we see tlatyhamics of
the corresponding stock pric&(X:) is, with §(x) = (3/9x)S(X),

(3.23)
d(S (X)) = §(Xo)a(t) dt

+ /R (SO (1 2) — S(X) — ¥ (t 2S(X)) v(d2) dit
+SXut, X dt

+ /R (S(X + (6, 2) — S(XOI(, 2) v(d2) dt

+ /R (S_ (K- +7(t, 2) — S (%) + S_(Xe_ + ¥ (t, 2)0(t, 2} N(dt, d2).
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By the It6 formula

t t
S(x) = Sjexp{/; u(s, x)ds+/;/l;(ln(l +6(s, 2)) — 6(s,2)) v(d2) ds

(3.24) t
+/0/R|n(l +0(s, 2)) N(ds,dz)},
and hence
t
S(x) = S(x) / w'(s, x) ds,
0
where

, _ 9
(s, x) = X u(s, x).
Substituted into (3.23) this gives

t
dS(X) = S(X) [a(t) st X) + /0 (s, %) ds] dt

+/ {S(Xt +y(t, 2)(1+6(t, 2)
(3.25) .

t
— S(Xy) (1 +0(t, 2) + p(t, z)/0 w'(s, Xt) ds)} v(d2) dt
N /R (S-(Xe_ +y(t, )L +6(t, 2)) — S_(X)) N(dt, d2).

4. Forward SDEs driven by Poisson random measures

Let b(w, s, X): Q xRy x R — R, 0(X,2): R x R — R be measurable mappings
(possibly anticipating). LeXo be a random variable. In this section, we are going to
solve the following forward SDE:

(4.26) X; = x0+/0t b(w, s, Xs)ds+/0t/R o(Xs_,Z) N(d~s, d2).

Let ¢i(x), t > O be the stochastic flow determined by the following nonepditing
SDE:

t
(4.27) ¢t(x):x+/O/Ro(¢s_(x),z) N(ds, d2).

Define

b(w, s, %) = (@) (X)b(, S, $s(x)).
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Consider the differential equation:

dy, -
(4.28) d—t‘ =b(w,t,Y), Yo=Xo.

Theorem 4.1. If Y, t > 0 is the unique solution to equatio@.28), then X =
¢ (Y;), t > 0 is the unique solution to equatiof@.26).

Proof. It follows from Theorem 3.1 that
t t
Xe = i (Ye) = Xo + / PL(Yeb(w, s, Ye) ds-+ / / o (ge (Yo ), 2) N(d™s, d2)
0 0JR
t t
:xo+/ b(w, s, Xs)ds+// o(Xs_, 2) N(d~s, d2). O
0 0JR

Next we are going to provide appropriate conditions undeiciwh(4.28) has a
unique solution. To this end, we need to study the flow geedraty the solution of
the following equation:

t
(4.29) Xi(X) = X +// o (Xs—(X), 2) N(ds, d2).

0 JRr
Let (p,Dp) denote the point process generating the Poisson randorsuneg(dt,dz),
where Dy, called the domain of the point procegs is a countable subset of [65)

depending on the random parameder

Proposition 4.1. Let k> 1. Assume that for £1, 2,..., 2k,

(4.30) /R (v, 2] v(d2) < C(L+1y[).

Let X (x), t > 0 be the unique solution to equatidd.29). Then we have

(4.31) E[ sup IXt(X)IZK} < Cr(1 +x1%).

o<t<T

Proof. It follows from It6’s formula that

(4.32)
(X (x))*

t ~
= [ 10600+ (%00, 207 - (X ()15 02
0JR

+ / t / [(Xs(0) + 0 (Xs(x), 2)% — (Xe(X))% — k(X (¥ o (Xe(x), 2] v(d2) ds:
0JR
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Denote byM; the martingale part in the above equation. We have

1/2
[M]¢/2 = ( PN Ms)2>

O<s<t
1/2
(4.33) :( 3 (X () + o (Xs- (), D(S)))Zk—(Xs(X))Z"]z)
O<s<t,seDp
= 31X () + o (Xsm(x), PENX — (Xs— ().

O<s<t,seDp

By Burkholder’s inequality,

E[ sup |Ms|} < CE(IMI?)

O<s<t

<E |: Do (X0 + 0 (Xs-(x), P(S)))* — (Xs—(X))ZkI}

O<s=<t,seDjp

t
-F [/ f (X0 + 0 (Xs-(x), 2)% = (X5 (x))] N(ds,dz)]
0 JR
= t o %k _ 2 :|
E[/O/RI(XS(XH (Xs(X), 2))* — (Xs(x))*| dsv(d2) | .

By the Mean-Value Theorem, there exi$k, z, w) € [0, 1] such that

(Xs(x) + 0 (Xs(x), 2)* = (Xs(x))*
= 2k(Xs(X) + (s, 2, )0 (Xs(X), 2)* o (Xs(X), 2.

Therefore,

t
E[ sup|M5|} < GE [ fo s Xe(x) 2 /R o (Xs(x), 2) v(dz)}

O<s<t
(4.34) +CE [/ot ds/R|o(Xs(x),z)|2k u(dz)]

t
< G+ G / E[IX()%] ds
0
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By Taylor expansion, there existgs, z, w) € [0, 1] such that
(4.35)
t
E [ [ 10600+ 0300, 2% — (X000 = 2KX0)> (s, D v(d2) ds]
0JR

t
= k(2K — 1)E [ /0 /R ((Xs(x) + 1(5. Z, @) (Xs(X), )22 10 (Xs(x), 2) 2 dsv(dz)}

< CE [ /0 t ds) Xs(x)[*2 /R o (Xs(x), 2)|? v(dz)}

+CE [/Ot ols/IR lo(Xs(X), 2)|* u(dz)i|

t
< Ce+ G / E[IX(x)[%] ds
0

(4.32), (4.34) and (4.35) imply that

E[ sup |Xs(x)|2k} < Cx+Cx /t E[Xs(x)[*] ds.
0

O<s<t

Applying Gronwall's lemma we get

E|: sup |Xt(X)|2k:| < Cr p(1+[x[%). O

0<t<T

Proposition 4.2. Assume thabo(y, z)/0y exists and

[
v(d2) < o0,

4.36
(4.36) syupr

o (Y, 2)
ay

forl =1,2,...,2k. Let X/(x) denote the derivative of ) w.r.t. X. Then there exists
a constant Gy such that

(4.37) E[ sup |x;(x)|2k} <Crx.
o<t<T

Proof. Differentiating both sides of the equation (4.29) get
t
Xse ~
(4.38) X!(x) = 1+// 00X 2) 3 ) Ri(ds, d2).
0Jr ay

Put
90 (Xs-(x), 2)

h(s, 2) = %

XL (x).
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By Itd’s formula,
(4.39)
t ~
(X)) = 1+ / / (X, (x) +h(s, 2)% — (X,_(x))*] N(ds d2)
0JR

+ / t / (X400 + h(s, 2)% — (XY — 2K(X,(x)*h(s, 2)] v(d2) ds.
0JR

Denote the martingale part of the above equationMy Reasoning as in the proof of
Proposition 4.1 we have that

E[ sup IMSI] < CE(IM]?)
O<s<t
<CE [/t/ I(X,_(x) + h(s, 2))* — (X,_(x))*| N(ds, dz):|
0JR
=E [/Ot/R (XL (%) + h(s, 2)% — (X, ()% dSv(dz)]

= GE [/Ot dSIXQ(X)IZ"_lf]R Ih(s, 2)]| V(dz)}

(4.40) .
%
+C«E [/O dsf]R|h(s, 2)| u(dz)}
- ‘ 7 1o 12K 90 (Xs-(x),2) i|
< CkE [fo ds| X{(x)] /R —8y v(d2)
t 2
+CyE [/0 ds|X;(x)|2"/R 3"()(587‘;’()2) v(dz):|
. R t
< Gor & [ EDXC0P ds
0
where
A o (y, 2 do(y, 2 2
Ck = Cx <S;JD/R By ‘ v(d2) + S;pr]R By v(dz)) .

A similar treatment applied to the second term in (4.39)dsel

il

t
< G+ G / E[X()%] ds
0

/ t / (X400 + h(s, 2)% — (XL00)% — 2K(X,(x))%*h(s, )] v(d2) ds
0JR

}

(4.41)
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Combining (4.39), (4.40) and (4.41) we get

E|: sup |xg(x)|2k] < Cx <1 +f E[I1X(x)1%] ds) .
0

O<s<t
An application of the Gronwall's inequality completes thegf.

Our next step is to give estimates fox{(x))~!. Define

t
zt:// M ﬁ(ds,dz).
0Jr ay
Then we see that
t
Xi(x)=1 +/ Xg (X) dZs.
0

Define

S /0 (0 (Xs- (9. 2)/3y)?

g 1+00(Xs_(x),2)/dy N(ds, d2).

Let Y;(x), t > 0 be the solution to the equation:
t

(4.42) Yi(x) =1 +/ Yo (X) dW.
0

An application of Itd’s formula shows thaf (x) = (X;(x))*.

Proposition 4.3. Assume

(3o (y, 2)/3y)? |

4.43 su/ ————"— | 1(d2) < oo,
(4.43) P (1% 90 (y, 270y| V97
for 1 =1,...,2k. Then there exists a constant f such that
(4.44) E[ sup |Yt(x)|2k:| <Crx.

o<t<T

Proof. Note that

Yt(x):l—/; Ys_(x)/Ra“(xz;;X)’z) N(ds, d2)

t (00 (Xs—(x), 2)/3y)?
+/o Ye-() g 1+00(Xs_(x),2)/dy

(4.45)

N(ds, d2).
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Set
(90 (Xs_(x), 2)/9y)?
1+90(Xs-(x),2)/0y’
30 (Xs-(x), 2)

oy '

f(s,2) = Ys_(X)

h(s,2) = —Ys_(X)

By Itd’s formula,

(4.46)
t ~
YO0 =1+ / [ [(Ys () + h(s, 2)* — (Ys_ ()] N(ds, d2)
0JR

t
% 2%
+ /0 /R [(Yo_(x) + £(5, 2)% — (Yo (x))?] N(ds, d2)
t
+ / / [(Ya(X) + h(s, 2)% — (Ye(x))% — 2k(Ye(x))%h(s, 2)] v(d2) ds
0JR

Denote the three terms on the right hand side of (4.46) byl{, Ill; respectively.
Similar arguments as in the proof of Proposition 4.2 show thare exists a constant
C; such that

(4.47) E [ sup ||s|} <C; (1 +/t E[1Ys(X)|%] ds) .
O<s<t 0

(4.48) E [sup |ms|} <C (1 +/t E[IYs(x)*] ds) .
O<s=<t 0

By the Mean Value Theorem, we have

t
E[supmsq < E[ [ 10600+ f5,20% ~ 06 N(ds,dz)}
0JR

O<s<t

=E [/Ot/R I(Ys_(X) + T (s, 2)) = (Ys_(x))%| dsv (dz)]
t ok (30 (Xs—(X), 2)/3Y)?
(4.49) <CE |:/0 ds|Ys(X)] A; 1+90(Xs—(X), 2)/0y
t - (00 (Xs—(X), Z)/ay)z
+CE [/O ds|Ye_(¥)| /R

1+00(Xs—(x), 2)/0y
t
<CE [/ dles(X)lzq ,
0

where we have used the fact that

sup/

v(d z)}

2k
v(d z)}

(3a(y,2)/3y)* 2)/0y)? |
1+ ao(y 2)/0y

v(d2) < oo,
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for 1 =1,..., 2k It follows from (4.46), (4.47), (4.48) and (4.49) that

E[ sup IYs(X)IZ"] =G (l +/t EL1Ys(x)1*] dS) :
O<s<t 0

The desired result follows from the Gronwall’s lemma. O

Finally, we need some estimates for the derivativeYdk). Define

K(s,2) = =Yg (x )My(x)z) Yo (X)XL(x )32"();57)/2()02)

_. (3a(y, 2)/9y)?
D= 1500, a7y
. 200(y, 2)/9y)(L +d0(y, 2)/9y)(@*0 (¥, 2)/9y?)
(1+d0(y,2)/3y)?
(8% (y, 2)/0y*) (0 (y, 2)/3y)?
(L+d0(y, 2)/9y)> '
m(s, z) =: Y, (X)I(Xs—(X), 2) + Ys— (X)X (X)L(Xs—(X), 2).

L(y,2) =

Proposition 4.4. Assume

(4.50) sup/ 82"(3"2) 1(d2) < oo,

and

(4.51) sup/ IL(y, 2)['v(d2) < oo, sup/ 13(y, 2)|'v(d2) < oo,
y R y R

for | =1,...,2k. Then there exists a constanf Guch that Esupy_- |Y,(X)|*] < Ck.

Proof. The proof is in the same nature as the proofs of prevpyapositions. We
only sketch it. Differentiating (4.45) we see that

(4.52) Y{(x) = /ot/R K(s, 2) N(ds, dz) + /ot/R m(s, z) N(ds, d2).

By I1t6’s formula,
(4.53)

(Y (00)% = / t / (YL (x) + K (s, 2)% — (Y. ()] N(ds, d2)
0JR
v, 2 (v,_(x))] N(ds, d2)
+ /0 /R [OYL_ () + m(s, )% — (Y._ ,

+ / t / [OY20) + K (5, 2)% — (Y.00)% — 2k(Y,00)* K (s, 2] v(d2) ds
0JR



THE ITO-VENTZELL FORMULA AND STOCHASTIC EQUATIONS 225

Let us denote the three terms on the right side Hylll and Ill;. Reasoning in the
same way as in the proof of Proposition 4.2, we have

E[SUp ||s|:|
O<s<t
t . 2k _ v/ (y))2K }
< | [ 10700+ K 5,20 — (15000 dsie
t , 2k 90 (Xs-(X), 2)
(454) §CE|:/ dsIYL_(X)| /ﬂ{( =92,

+CE[/ ds|Y._ ()| Ys(x) XL (X)I/

+CE|:/ ds|YS(x)x;(x)|2k/ M
0 R

90 (Xs-(X), 2)
ay
aza(xs (x) 2)

v(dz)} .

2k
) v(dz):|

o z)}

ay2
Since
do(y, 2|
sup/ M v(d2 <00, for 1=1,...,2k,
y Jr y
and
0% (y, 2)|
sup/ > v(d2) <oo, for |1=1,...,2,
y JR

(4.54) is less than

t t
CE [ / ds|(Ys’(x)|2k] +CE [ / ds|(Y;(x)|2“|vs(x)x;(x)|]
(4.55) 0 0

t
+CE [/ ds|Ys(x)X’S(x)|2k} .
0
Note that
ELIYZ ()1 HYs() XS] < Ce(EI(YS ()1 + ELYs(X) XL (x) 1),

and from Propostion 4.3,

E[ sup |Y5(x)X/S(x)|"‘] <oo, for a <2k

0<s<T

It follows from (4.55) that

(4.56) E|:sup ||S|} <C <1+E [/t |Y;(x)|2kdsD.
O<s<t 0



226 B. @KSENDAL AND T. ZHANG

By a similar argument, we can show that

(4.57) E[ sup ||||S|} <C (1 +E [/t |YS’(x)|2kdsD :
O<s=<t 0

For the second term, we have

(4.58)

t
E[ sup |”s|i| <E [/O/R (YL (x) + m(s, 2))% — (Y,_(x))%| dSV(dZ)i|

O<s<t
<CE [ | t [ v o imis, 2+ imts, 2% dsv(dz)}
t
sckE[ [f |v;(x)|2k(|a(xs_(x).z)|+|J(xs_(x),z)|2k)dsv(dz)}
t
= [ [ v o v 0x; (1 1L0G-00, 2 dsv(dz)]
+GE [ / t / Ve (OXL_ ()L (Xs_(x), )% dsv(dz)}
IO ; 2k ‘ 2k
fc:kE[/o YL () ds]+ckE[fo Yo (X, ()] ds],

<C (1 +E [/ |Y;(x)|2kdsD
0

where we have used the assumptions (4.51) and the fact that

E|: sup |YS_(x)X;(x)|2ki| < .

0<s<T

Now (4.53), (4.56), (4.57) imply

E[ sup |Ys’(x)|2k] <G (1 ¥ / NV ds> ,
O<s<t 0

which yields the desired result by Gronwall’s inequality.

Let J(y, 2), L(y, 2) be defined as in Proposition 4.4.

Proposition 4.5. Assume

dlo(y,2) :

oyl
(4.60) sup/ IL(y, 2)/'v(d2) < oo, sup/ 13(y, 2)|'v(d2) < oo,
y JR y Jr

v(d2) < oo,

4.59
(4.59) Syp /R
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and

oL(y, 2
(4.61) S;Jp/]R ‘ y

[
v(d2) < oo,

d

0J(y, 2
ay

[
v(d2) < o0, sup/‘
y JR

forl =1,...,2k, j =1,2,3. Then there exists a constan Guch that

E[ sup |YS”(x)|2k} < Cu.

O<s<t

The proof of this proposition is entirely similar to that ofoposition 4.4. It is
omitted.

Theorem 4.2. Assume that (w, s, X) is locally Lipschitz in x uniformly with re-
spect to(w, s) and

(4.62) Ib(w, s, X)| < C(L+x]"),

for some constants G 0 and § < 1. Moreover assume tha{4.30), (4.36), (4.43),
(4.59), (4.60)and (4.61) hold for some k= (1 +8)/(1 — 8). Then the equatior4.28)
admits a unique solutionSo does the equatiof#.26).

Proof. Recall the Sobolev imbedding theorem:pit- 1, then

(4.63) supgh(x)| < cpllhllLp,

xeR

where ||h||f,p = [r(h()IP + W' (x)[P)dx. Let B >0, « > 0 andp > 1 be any param-
eters with 2p > 1 and (8 — 1)p > 1. Set

fs() = (L +x%) P Xs(x),  gs(X) = (1 +x%)“Ys(x),

where Ys(x) = (X.(x))~1. For anyT > 0, using Proposition 4.2,

E[ sup | fsuf,p}
0<s<T

<Cpp fR E[ofé’ﬂ |xs<x)|p] [(1+x%) PP +|x|P(1 +x?)~B+*DP] dx

(4.64)

+cﬂ,p/ E[ sup |X;(x)|p}(1+x2)‘ﬁpdx
R 0<s<T

< / (XIP((L +x2) P + x]P(L + x2)#*DP) + (1 +x2) PP} dx < oo.
R
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Similarly, by Proposition 4.4,

E[ sup |1l f,p}
0<s<T

< Cup / E[ sup |Ys(x)|p}[(1+x2)“p+|x|p(1+x2)<°‘*1>p]dx
R 0<s<T

(4.65)

+Ca,pf E|: sup |Ys,(X)|p:|(1+X2)_ade
R

0<s<T

< /{((1 +X2)—ap + |X|p(1 +X2)—(a+l)p) + (1 +X2)—otp} dx < co.
R

By the Sobolev imbedding theorem there exist random cots@yr (w) and C, 1(w)
such that
sup [Xs(X)| < Cpr(w)(1+x3)F,

0<s<T
and

sup |Ys(X)| < Co7(@)(1 +x2)°.

0<s<T
The assumption (4.62) together with the above two inedealigives

sup [b(w, s, x)I = sup {|Ys(X)IIb(w, s, Xs(X))I}

0<s<T O=s=T
(4.66) < Cw)(L +x2)* (1 +|Xs(X)I)

< Mo r(@)(1 +x%)7 7,

If p>(1+8)/(1—29), it is possible to choos@ > 0 anda > 0 such that 2p > 1,
286 —1)p > 1 and & + 285 < 1. Therefore, there exists a random constan{w)
such that

(4.67) sup [b(w, s, X)| < Cr(w)(L +x]).

0<s<T

On the other hand, by the Sobolev imbedding Theorem and Bitapo 4.4 we see
that @) 1(x) is C! in x and the derivative is bounded on compact sets. Combining
this fact with the assumption oh, it is easily seen that for a fixedh, b(w, s, X) is
locally Lipschitz inx uniformly with respect tes on any compact sets. It follows from
the general theory of ordinary differential equations t@@a28) admits a unique global
solution. ]
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