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Abstract

A torus manifoldis an even-dimensional manifold acted on by a half-dimeradio
torus with non-empty fixed point set and some additional maitton data. It may
be considered as a far-reaching generalisationtooic manifolds from algebraic
geometry. The orbit space of a torus manifold has a rich coatbiial structure,
e.g., it is amanifold with cornersprovided that the action ikcally standard Here
we investigate relationships between the cohomologiagperties of torus manifolds
and the combinatorics of their orbit quotients. We show thatcohomology ring of
a torus manifold is generated by two-dimensional classasdfonly if the quotient is a
homology polytopeln this case we retrieve the familiar picture from toric gery:
the equivariant cohomology is tHace ring of the nerve simplicial complex and the
ordinary cohomology is obtained by factoring out certaimeéir forms. In a more
general situation, we show that the odd-degree cohomoldgg torus manifold
vanishes if and only if the orbit space face-acyclic Although the cohomology
is no longer generated in degree two under these circumegartbe equivariant
cohomology is still isomorphic to the face ring of an appraf simplicial poset

1. Introduction

Since the 1970s algebraic geometers have studied equivaigebraic compact-
ifications of thealgebraic torus(C*)", nowadays known asomplete toric varieties
The study quickly grew into a separate branch of algebramnggry, “toric geome-
try”, incorporating many topological and convex-geonegtiideas and constructions,
and producing a spectacular array of applications. A toddety is a (normal) alge-
braic variety on which an algebraic torus acts with a dendé@.ofhe variety and the
action are fully determined by a combinatorial object ahléefan [7].

With the appearance of the pioneering work [6] of Davis andudakiewicz in
the beginning of the 1990s, the ideas of toric geometry haades penetrating into
topology. The orbit space of a non-singular projectivectasariety with respect to the
action of the compact toru3" c (C")* can be identified with the simple polytope
“dual” to the corresponding fan. Moreover, the action of tleenpact torus on a non-
singular toric variety is “locally standard,” that is, ldlgamodelled by the standard
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action onC". Davis and Januszkiewicz took these two characteristipgoties as a
starting point for their topological generalisation of itovarieties, namelyquasitoric
manifolds A quasitoric manifold is a compact manifoll?" with a locally standard
action of T" whose orbit space is (combinatorially) a simple polytopeayis and
Januszkiewicz used the term “toric manifold,” but by the dirtheir work appeared
the latter had already been used in algebraic geometry asangy of “non-singular
toric variety.”) According to one of the main results of [@he cohomology ring of a
quasitoric manifoldM has the same structure as that of a non-singular complate tor
variety, and is isomorphic to the quotient of the StanleysRer face ring of the or-
bit space by certain linear forms. In particular, the cohtmgy of M is generated by
degree-two elements.

In contrast, the convex-geometrical notion of polytope,ileviplaying a very im-
portant role in geometrical considerations related toctgeometry, appears to be less
relevant in the topological study of torus actions. The todpiotient Q = M/T of
a non-singular compact toric varietyl locally looks like the positive con®? and
thereby acquires a specific face decomposition. This combiimal structure onQ is
known to differential topologists as that ofraanifold with cornersMoreover, all faces
of Q, including Q itself, and all their intersections are acyclic. We call lswic mani-
fold with corners ahomology polytopelt is a genuine polytope provided that the toric
variety is projective, but in general may fail to be so. Thisplies, in particular, that
the class of quasitoric manifolds does not include all nagtdar compact toric va-
rieties (see [3,85.2] for more discussion on the relationships between tesideties
and quasitoric manifolds). On the other hand we might expleat all the topologi-
cal properties of quasitoric manifolds would still hold @nda weaker assumption that
the orbit space of the torus action is a homology polytopés Té justified by some
results of the present paper (see Theorem 8.3).

An alternative far-reaching topological generalisatioh ammplete nonsingular
toric varieties was introduced in [13] and [11] under the paof torus manifolds
(or unitary toric manifoldsin the earlier terminology). A torus manifold is an even-
dimensional manifoldV acted on by a half-dimensional tords with non-empty fixed
point set; we also specify certain orientation data Mnfrom the beginning, in or-
der to make certain isomorphisms canonical. Particulamgias of torus manifolds
include non-singular complete toric varieties (otherwks®wn as toric manifolds) and
the quasitoric manifolds of Davis and Januszkiewicz. On dtiger hand, the condi-
tions on the action are significantly weakened in comparigoguasitoric manifolds.
Surprisingly, torus manifolds admit a combinatorial treant similar to toric varieties.
It relies on the notions omulti-fans and multi-polytopes developed in [11] as an al-
ternative to fans associated with toric varieties.

The notion of torus manifold appears to be an appropriateemnfor investigat-
ing relationships between the topology of torus action dme combinatorics of orbit
quotient, which is the main theme of the current paper. Ouwt finain result (Theo-



ON THE COHOMOLOGY OF TORUS MANIFOLDS 713

rem 8.3) measures the extent of the analogy between the @ibgical structure of
non-singular complete toric varieties and torus manifolds

Theorem 1. The cohomology of a torus manifold M is generated by its degre
two part if and only if M is locally standard and the orbit sgpa® is a homology

polytope

The cohomology ring itself may also be calculated and hasructstre familiar
from toric geometry: it is isomorphic to the Stanley-Reisfigéce ring of Q modulo
certain linear forms.

Next we study a more general class of torus manifolds: thagie wanishing odd-
degree cohomology. Under these circumstances the equitatbhomology ofM is
a free finitely generated module over the equivariant coltogyoof point, H{(pt) =
Z[ty, ..., t;]. This condition is known to algebraists &ohen-Macaulaynesand is
equivalent toM being equivariantly formalin the terminology of [9]. The orbit space
of a torus manifold withH°4d(M) = 0 may fail to be a homology polytope, as a sim-
ple example of torus acting on an even-dimensional sphere/stisee Example 3.2).
We introduce a weaker notion dace-acyclicmanifold with cornersQ, in which all
the faces are still acyclic, but their intersections may taibe connected, and prove

Theorem 2. The odd-degree cohomology of M vanishes if and only if M is lo-
cally standard and the orbit space Q is face-acyclic

This result is stated as Theorem 9.3 in our paper. We also ghawthe equi-
variant cohomology is isomorphic to the face ring of the dioil poset of faces of
Q and identify the ordinary cohomology accordingly (Theor@m and Corollary 7.8).
The face ring of a simplicial poset is not generated by itsreedgwo elements in
general.

At the end we prove Stanley’s conjecture on the charactesaf h-vectors of
Gorenstein* simplicial posets in the particular case ofefgosets of orbit quotients
for torus manifolds (Theorem 10.1). Unlike the case of Gsrein* simplicial com-
plexes (which can be considered as an “algebraic approxiniato triangulations of
spheres), the conditions for an integer vector to benarector of a Gorenstein* sim-
plicial poset are relatively weak. Such &avector must have non-negative entrigs
and satisfy theDehn-Sommerville equations k= h,_j, i = 0,...,n. There are no
other conditions for oddh. In even dimensions there is one other troublesome con-
dition; the middle-dimensional entry of tHevector must be even if at least one other
entry is zero. It is not hard to check that these conditiore sasfficient, by provid-
ing the corresponding examples of simplicial posets. Wewsltttat these simplicial
posets can be realised as the face posets of orbit quotient®rus manifolds with
H°dd(M) = 0 (so that theh-vectors of posets are the even Betti vectors of torus mani-
folds). Stanley’s conjecture [17] was that those three it are also necessary. In
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this paper we establish the necessity fevectors of posets associated to torus man-
ifolds with H°4(M) = 0. This is done through the calculation of the Stiefel-tay
classes of torus manifolds. Similar topological ideas wased by the first author to
prove the Stanley conjecture in full generality in [14].

We note that the characterisationtefectors for Gorenstein* simplicial complexes,
as well as for sphere triangulations, remains wide open.

The paper is organised as follows. In Section 2 we estalfismbtation concern-
ing torus actions on manifolds and prove three pivotal statds (Lemmas 2.1-2.3)
describing different properties of fixed point sets. In 8tt3 we introduce the con-
cept of torus manifold, give a few examples, and establishesbasic facts about them.
In Section 4 we discuss locally standard torus actions. Thémesult here is Theo-
rem 4.1 showing that a torus manifoM is locally standard provided that °4(M) =
0. We also introduce a canonical model for a torus manifolthvgiven orbit space
Q and the distribution of circle subgroups fixing charactarisubmanifolds. Then we
show that a torus manifold is equivariantly diffeomorphicits canonical model pro-
vided thatH?(Q) = 0. This extends the corresponding result for quasitoranifiolds
due to Davis and Januszkiewicz. In Section 5 we develop tlessary apparatus of
“combinatorial commutative algebra.” Here we introduceefaings of manifolds with
corners and simplicial posets, and list their main algebmbperties. We try not to
overload the notation with poset terminology, but a reademiliar with posets will
recognise the notions of (semi)lattice, meet, join, etcSécttion 6 we turn to the equi-
variant cohomology of torus manifolds. We introduce certkey concepts and con-
struct a map from the face ring of the orbit quotient to theieyiant cohomology of
the torus manifold, which is later shown to be an isomorphismler certain condi-
tions. Sections 7-9 contain the proofs of the main resultdegliabove. In Section 10
we prove the above mentioned particular case of Stanleyjecture on Gorenstein*
simplicial posets.

2. Preliminaries

We start with recalling some basic theory &f-spaces, referring to [1, Ch. II]
for the proofs of the corresponding statements. Xebe a topological space with a
left action of a compact topological groug. The action iseffectiveif unit is the
only element ofG that acts trivially, and idree if the isotropy subgroup G = {g €
G: gx = x} is trivial for all x € X. The fixed point set is denoted®. There ex-
ists a contractible free righG-spaceEG called theuniversal G-spacethe quotient
BG := EG/G is called theclassifying spacdor free G-actions. The producEG x X
is a free leftG-space byg- (e, x) = (eg™?!, gx); the quotientEG x¢ X := (EG x X)/G
is called theBorel constructionon X or the homotopy quotienbf X. The equivariant
cohomologywith coefficients in a ringk is defined as

HE(X;K) = H*(EG xg X;K).
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The mapp collapsing X to a point induces a homomorphism
(2.1) p*: HE(ptk) = H*(BG; k) — HE(X; k)

thereby defining a canonicdl *(BG; k)-module structure ot (X; k). The Borel con-
struction can also be applied to G-vector bundle. For instance, E is an oriented
G-vector bundle over &-spaceX, then the Borel construction oB produces an ori-
ented vector bundle oveEG xg X and its Euler class is called trexjuivariant Euler
classof E and denoted by®(E). Note thate®(E) lies in H5(X;Z). Below we use
integer coefficients, unless another coefficient ring iscigs.

If G is a commutative group (e.g., a compact tofus TK), then the notions of
left and right G-spaces coincide. As is well knowtd*(BT) is a polynomial ring in
k variables of degree two, in particulat®¥d(BT) = 0. All manifolds M in this paper
are closed connected smooth and orientable.

Lemma 2.1. Let M be a manifold with a smooth action of T such that the fixed
point set M is finite and non-emptyThen H:(M) is free as an H(BT)-module if
and only if H9(M) = 0. In this case H(M) = H*(BT) ® H*(M) as H*(BT)-
modules

Proof. AssumeH®(M) = 0. Then the Serre spectral sequence of the fibration
ET xr M — BT collapses andd*(M) has no torsion, sdi;(M) is isomorphic to
H*(BT) ® H*(M) and thus is a fredd*(BT)-module. This proves the “if” part.

To prove the “only if” part, we use the Eilenberg-Moore spakcsequence of the
bundleET xt M — BT with fibre M. It converges toH*(M) and has

E;™ = Tonii g (Hr (M), Z).
Since H¥(M) is free as anH*(BT)-module, we have

Tory gn)(Hi (M), Z) = Tor gy (HF (M), Z)
= H;(M) ®u:g1) Z
= Hi(M)/(p*(H™°(BT))).

Therefore,ES* = Hx(M)/(p*(H>(BT))) and E, »* = 0 for p > 0. It follows that the
Eilenberg-Moore spectral sequence collapses atBhéerm and

(2.2) H*(M) = Hf(M)/(o*(H™°(BT))).

On the other hand, it follows from the localisation theoresag( [12]) that the kernel
of the restriction map

Hi(M) - Hf(MT) = H*(BT) @ H*(MT)
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is the H*(BT)-torsion subgroup and hence the restriction map is injedth our case.
ThereforeH24(M) = 0 becauseM" is a finite set of isolated points. This fact together
with (2.2) proves that°%(M) = 0. O

Two classes ofl -manifolds, namely those having zero odd degree cohomodogy
even cohomology generated in degree two, are of partical@oitance in this paper.
Next we prove two technical lemmas showing that these colmyical properties are
inherited by the fixed point seMt for any subtorusH < T. These lemmas will be
used in inductive arguments later in the paper.

Lemma 2.2. Let M be a T-manifold H a subtorus of T and N a connected
component of NI. If H°(M) =0, then H9N) =0 and N' # @.

Proof. We first prove thaH%(M™) = 0. Note that for a generic circle sub-
group S € H we haveMS = M". Let p be a prime andG be an orderp sub-
group in S. The induced action ofs on H*(M) is trivial becauseG is contained in
the connected grou. Then dimH%(M©®;Z/p) < dimH%YM;Z/p) by [1, Theo-
rem VII.2.2]. Therefore,H°¥(M®;Z/p) = 0 by the assumption. Repeating the same
argument forM® with the induced action oB/G, which is again a circle group, we
conclude thatH°¥(M©€: Z/p) = 0 for any p-subgroupG of S. However, M€ = MS =
MH if the order of G is sufficiently large, so we havel®¥(M*";Z/p) = 0. Sincep
is an arbitrary prime, this implies that °d4(M™) = 0.

Now since H°Y(N) = 0, the Euler characteristig(N) of N is non-zero. As is
well-known x(N) = x(NT), which implies thatNT is non-empty. O

Lemma 2.3. Let M, H, N be as inLemma 2.2.1f H*(M) is generated by its
degree-two part(as a ring, then the restriction map HM) — H*(N) is surjective
in particular, H*(N) is also generated by its degree-two part

Proof. SinceH°d(M) =0, we haveH°¥(N) = 0 by Lemma 2.2; so it suffices to
prove that the restriction mag*(M;Z/p) — H*(N;Z/p) is surjective for any prime.

The argument below is similar to that used in the proof of Taeo VIL.3.1 in
[1]. As in the proof of Lemma 2.2, le§ be a generic circle subgroup ¢f (so that
MS = MH) and letG be the subgroup o of prime orderp. Then the restriction
map H(M;Z/p) — HE(MC;Z/p) is an isomorphism for sufficiently large by [1,
Theorem VII.1.5]. Hence, for any connected compondit of M€ the restriction
r: HS(M;Z/p) — HE(N';Z/p) is surjective ifk is sufficiently large. Now consider
the commutative diagram

HE(M; Z/p) —— HE(N';Z/p) = H*(BG; Z/p)@H*(N'; Z/ p)

| |

H*(M;Z/p) ——= H*(N'; Z/p)
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Choose a basis;, ..., vg € H3(M;Z/p); then these elements are multiplicative gen-
erators for H*(M;Z/p). Since H°¥(M;Z/p) = H°YYMC;Z/p) = 0 and x(M) =
x(MT) = x(M®), we have} dimH (M;Z/p) = > dimH!(M®;Z/p). By [1, The-
orem VII.1.6] the Serre spectral sequence of the fibraidhxg M — BG collapses.
Therefore, the vertical mapli(M;Z/p) — H*(M;Z/p) in the above diagram is sur-
jective. Let& € HE(M;Z/p) be a lift of v;, andw; :=s(v;). Lett be a generator of
H2(BG;Z/p) = Z/p. Since the above diagram is commutative ah&(N’;Z/p) = 0

by Lemma 2.2, we have(¢j) = ojt+w; for somew; € Z/p. Now leta € H*(N"; Z/p)

be an arbitrary element. Then there exisind a polynomialP (&4, ..., &) such that

r(PL, ..., &) =t'a

On the other hand,

r(P1, ... &) = Pleat + w1, ..., gt +wa) = > t“Qu(wa, ..., wq)

k>0

for some polynomialsQx. Therefore, a = Q;(wy,...,wy), the restriction map
H*(M;Z/p) — H*(N’;Z/p) is surjective, andH*(N’;Z/p) is generated by the
degree-two elementsy, ..., wy.

Now we can repeat the same argument for with the induced action ofS/G,
which is again a circle group. It follows that the restrictionap H*(M;Z/p) —
H*(N’;Z/p) is surjective for any connected componext of M€ with G any p-
subgroup ofS. However, if the order ofG is sufficiently large, therM® = MS = MH
and henceN’ = N, so it follows that the restriction mapl*(M;Z/p) — H*(N;Z/p)
is surjective for any connected componevitof M. Since the primep is arbitrary,
the proof is finished. ]

3. Torus manifolds

The notion of torus manifold was introduced in [11] and [1&8hd here we follow
the notation of these papers with some additional spedtitsit

A torus manifoldis a h-dimensional closed connected orientable smooth mani-
fold M with an effective smooth action of amdimensional torusT = (SH)" such that
MT # &. Since dimM = 2dimT and M is compact, the fixed point sédlT is a finite
set of isolated points.

A codimension-two connected component of the set fixed pidet by a circle
subgroup ofT is called acharacteristic submanifoldbf M. The existence of a -
fixed point is required for the definition of characteristidomanifold in [11] and [13]
but not in this paper. However, wheH®¥(M) = 0, these two definitions agree by
Lemma 2.2.

Since M is compact, there are only finitely many characteristic saifolds, and
we denote them by, i =1,..., m. Each characteristic submanifold; is orientable
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as a connected component of the fixed point set for a circlieracn an orientable
manifold. Following [4], we say thaM is omniorientedif an orientation is specified
for M and for every characteristic submanifoM,. There are ?*! choices of omni-
orientations. It is extremely convenient, although notodligly necessary to assume
that all torus manifolds are omnioriented (in [11] a choi¢deomniorientation for char-
acteristic submanifolds was a part of the definition of tomenifold).

Here are two typical examples of torus manifolds.

ExAMPLE 3.1. A complex projective spacEP" has a naturall -action defined
in the homogeneous coordinates by

(- o ta) - (Zo:z1 -1 Z0) = (2o tazg 1 -+ tnZn).

It has fi+1) characteristic submanifoldgy =0}, ..., {z, = 0} and 1+ 1) fixed points
2:0:---:0),...,(0:---:0:1). In this example the intersection of any set of
characteristic submanifolds is connected.

EXAMPLE 3.2. LetS™ be the &-sphere identified with the following subset in
C" x R:

{1, ... 20, y) € C" x R: [z + - + |z P +y* = 1} .

Define aT-action by

(ty, .-, tn) - (Za, -+ -5 Zn, YY) = (t22, - - -, thZn, Y)-

It has n characteristic submanifoldézy = 0},...,{z, = 0}, and two fixed points
(O,...,0,+£1). The intersection of ank characteristic submanifolds is connected if
k < n—1, but consists of two disjoint fixed points k= n.

If M is an (omnioriented) torus manifold, then baoth and M; are oriented, and
the Gysin homomorphisni;(M;) — H#*?(M) in equivariant cohomology is defined.
Denote byz € H2(M) the image of the identity element iHY(M;). We may think
of 7; as the Poinc#&r dual of M; in equivariant cohomology.

Proposition 3.3 (See section 1 of [13]).Let M be a torus manifold
1. For each characteristic submanifold ;Mvith (M;)T # @, there is a unique element
a € Hy(BT) such that

p*(t):Z(t,a)ri modulo H(BT)-torsions
i

for any element € H3(BT). Here the sum is taken over all characteristic sub-
manifolds M with (M;)T # @ and p* denotes the homomorphisf.1).
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2. The circle subgroup fixing Mwith (M;)" # @ coincides with the one determined
by a € Hy(BT) through the identification {{BT) = Hom(S, T).

3. If n different characteristic submanifolds;M. .., M;, have a T-fixed point in their
intersection then the elementsa. .., a, form a basis of H(BT) over Z.

The next lemma provides a sufficient cohomological condifior the intersections
of characteristic submanifolds to be connected (compawmariples 3.1 and 3.2).

Lemma 3.4. Suppose that H{M) is generated in degree two. Then all non-empty
multiple intersections of the characteristic submanifolare connected and have co-
homology generated in degree two.

Proof. Since every characteristic submanifd§ is a connected component of
the fixed point set of a circle subgroup ®f the cohomologyH*(M;) is generated by
the degree-two part and the restriction mdp(M) — H*(M;) is onto by Lemma 2.3.
It follows that the restriction mafH¥(M) — Hf(M;) in equivariant cohomology is
also onto.

Now we prove the connectedness of multiple intersectionpp8se thai;, N---N
M. # @, (1 < k < n), and pick a connected componeNt of the intersection. Since
N is fixed by a subtorus, it contains B-fixed point by Lemma 2.2. For eacdh e
{i1,..., ik} there are embeddings: N — M;, ¢i: Mj — M, and the corresponding
Gysin homomorphisms in equivariant cohomology:

@iy _ l/fn
HO(N) = HZ2(M) — HZ(M).

Since the restrictiony*: Hf(M) — H{(M;) is surjective, we havey;, (1) = ;*(u) for
someu € H&%(M). Now we calculate

(Wi 0 @i)i(1) = i, (1, (1)) = ¥, (¥"(u)) = ¥, (Du = 7 u.

Hence, (/i o ¢;)i(1) is divisible byt for everyi € {i4,...,ix}. By Proposition 3.4 of
[13], the degree part of Hy(M) is additively generated by the monomia|§ ... r}‘p"
such thatMj, N ---N M;, # @ andky +--- +kp = k. It follows that @; o ¢i)i(1) is
a non-zero integral multiple of;, --- 7, € HTZk(M). By the definition of Gysin map,
(i o @) (1) goes to zero under the restriction mijg(M) — Hy(x) for every point
x € (M\N)T. On the other hand, the image of --- 7, under the restriction map
H¥(M) — H{(x) is non-zero for everyr -fixed pointx € M;, N --- N M;,. Thus, N is
the only connected component of the latter intersectiore fEtt thatH*(N) is gener-
ated by its degree-two part follows from Lemma 2.3. J
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4. Locally standard torus manifolds and orbit spaces

4.1. Locally standardness. We say that a torus manifolt¥ is locally standard
if every point in M has an invariant neighbourhodd weakly equivariantly diffeo-
morphic to an open subs&/ c C" invariant under the standar@"-action onC".
The latter means that there is an automorphismT — T and a diffeomorphism
f: U — W such thatf(ty) =y (t)f(y) forallte T, ye U.

The following statement gives a sufficient cohomologicahdition for local stan-
dardness.

Theorem 4.1. A torus manifold M with B99(M) = 0 is locally standard

Proof. We first show that there are no non-trivial finite isply subgroups for
the T-action onM. Assume the opposite, i.e., the isotropy grofpis finite and non-
trivial for some x € M. Then T, contains a non-trivial cyclic subgrou® of some
prime orderp. Let N be the connected component B¢ containingx. SinceN con-
tains x and Ty is finite, the principal isotropy group of is finite. Like in the proof
of Lemma 2.2, it follows from [1, Theorem VII.2.2] thad°®¥(N;Z/p) = 0. In partic-
ular, the Euler characteristic dfl is non-zero, and thereforé\ has aT-fixed point,
sayy. The tangentiall -representatioryyM at y is faithful, dimM = 2dimT and7ZyN
is a properT-subrepresentation dfyM. It follows that there is a subtorus’ (of pos-
itive dimension) which fixes/yN and does not fix the complement G{yN in 7,M.
Clearly, T’ is the principal isotropy group oN, which contradicts the above observa-
tion that the principal isotropy group dfl is finite.

If the isotropy groupTy is trivial, M is obviously locally standard near. Suppose
that Ty is non-trivial. Then it cannot be finite and therefore, digr> 0. Let H be the
identity component ofT,, and N the connected component " containingx. By
Lemma 2.2,N has aT-fixed point, sayy. Looking at the tangential representation at
y, we observe that the induced action BfH on N is effective. By the previous ar-
gument, no point ofN has a non-trivial finite isotropy group for the induced aatio
of T/H, which implies thatTy, = H. Sincex andy are both in the same connected
componentN fixed pointwise byTy, the Tx-representation ir/xM agrees with the re-
striction of the tangentiall -representatior¥yM to Ty. This implies thatM is locally
standard neaxk. O

In the rest of this section we assume tiatis locally standard.

Let Q := M/T denote the orbit space dfl andz: M — Q the quotient projec-
tion. SinceM is locally standard, any point in the orbit spa@ehas a neighbourhood
diffeomorphic to an open subset in the positive cone

R;:{(ylv-~-’yn)eRn:yi 207 I:l”n}
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This identifiesQ as amanifold with cornerssee e.g. [556], and faces ofQ can be
defined in a natural way. The vertices &, that is, the 0-dimensional faces, corre-
spond to theT -fixed points of M through the quotient projection. Codimension one
faces ofQ are called thdacetsof Q. They are ther images of characteristic subman-
ifolds M;, i =1,...,m. We setQ; := 7(M;). We refer to a non-empty intersection of
k facets as a codimensidnpreface k =1, ..., n. In general, prefaces of codimension
> 1 may fail to be connected (see Example 3.2). Faces are detheomponents of
prefaces. We also regar@ itself as a codimension-zero face; other faces are called
proper faces If H°4(M) = 0, then every face has a vertex by Lemma 2.2. Moreover,
if H*(M) is generated in degree two, then all prefaces are connégtdcemma 3.4;
so prefaces are faces in this case.

A space X is acyclic if Hj(X) = 0 for all i. We say thatQ is face-acyclicif
all of its faces (includingQ itself) are acyclic. It is not difficult to see that i® is
face-acyclic, then every face d has a vertex. We calQ a homology polytopef
all its prefaces are acyclic (in particular, connected)piher words,Q is a homology
polytope if and only if it is face-acyclic and all non-emptyultiple intersections of
characteristic submanifolds are connected.

REMARK. A simple convex polytopes an example of a manifold with corners
and is a homology polytope. Auasitoric manifold[6], [3] can be defined as a lo-
cally standard torus manifold whose orbit space is a simplevex polytope with the
standard face structure.

ExAMPLE 4.2. Torus manifoldCP" with the T-action from Example 3.1 is lo-
cally standard and the map

(0 :21:-+:27) >

induces a face preserving homeomorphism from the orbitesfd®"/T to a standard
n-simplex. The latter is a simple polytope, in particular, @mology polytope.

EXAMPLE 4.3. Torus manifoldS®" with the T-action from Example 3.2 is also
locally standard and the map

(Zla L) Zn, y) — (|Zl|7 LRI ) |Zn|, y)
induces a face preserving homeomorphism from the orbites§4t/ T to the space
{(X2, o X, V) € R™E 2+ x2+y2 =1 % >0,..., % >0}

This space is not a homology polytope, but is a face-acychmifold with corners.
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4.2. Canonical model. In this paragraph we reconstruct the torus manifiid
from the orbit space& and a mapA defined below using a “canonical mode¥lg(A),
which generalises a result of Davis-Januszkiewicz [6, Pio@).

Remember thatVl; = 7—1(Q;) is fixed by a circle subgroup of. We choose
a map

(4.1) A:{Q4, ..., Qm} = Hx(BT)=Hom(S, T) = 2"

such thatA(Q;) is primitive and determines the circle subgroupTofixing M;. When
M; has aT-fixed point, A(Q;) coincides with the elemerd; introduced in Proposi-
tion 3.3 up to sign. The following lemma follows immediatefisom the local stan-
dardness ofM.

Lemma 4.4. If Q;; N---N Q;, is non-emptythen A(Q;,), ..., A(Q;) is a part
of basis for the integral latticsHom(St, T) = Z".

Given a pointx € Q, the smallest face which contaiisis an intersectionQ;, N
--- N Q;, of some facets, and we defing(x) to be the subtorus ol generated by
the circle subgroups corresponding AqQ;,), ..., A(Qi,). Now introduce the identifi-
cation space

(4.2) Mg(A) =T x Q/~,

where ¢, x) ~ (', x) if and only if x = x" andt~t’ € T(x). The spaceMq(A) admits

a natural action off and is a closed manifold (this follows from Lemma 4.4 and the
fact that Q is a manifold with corners). The following is a straightf@ms generalisa-
tion of a [6, Prop. 1.8].

Lemma 4.5. Let M be a locally standard torus manifold with orbit space Q
and the mapA defined by(4.1). If H?(Q) = 0, then there is an equivariant homeo-
morphism

Mg(A) > M
covering the identity on Q

Proof. The idea is to construct a continuous miapT x Q — M taking T x g
onto 7~1(q) for each pointq € Q. This is done by subsequent “blowing up the sin-
gular strata.” The condition on the second cohomology grguprantees that the re-
sulting principal T-bundle overQ is trivial. Then the mapf descends to the required
equivariant homeomorphism. See [6] for detalils. ]

REMARK. Like in the case of quasitoric manifolds, it follows that@us mani-
fold whose orbit quotienQ satisfiesH?(Q) = 0 is determined byQ and A.
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5. Face rings of manifolds with corners and simplicial poset

Before we proceed with describing the ordinary and equavercohomology rings
of torus manifolds we need an algebraic digression. Hereeveew a notion of face
ring generalising the classical Stanley-Reisner face 1@} to combinatorial structures
more general than simplicial complexes. We consider twesaghich are in a sense
dual to each other: “nice” manifolds with corners and simipli posets. The latter one
is more general, however the former one is more conveniengpplications to torus
manifolds. The face ring of a manifold with corners is alsattel easier to visualise,
so we start with considering this case.

The relationship between nice manifolds with corners antpkcial posets is sim-
ilar to that between simple polytopes and simplicial comgse Face rings of simpli-
cial posets were introduced and studied in [17]. Most of tlestents in this section
follow from the general theory of ASL'salgebras with straightening laywand Hodge
algebrasas explained in [17] and [2, Ch. 7], however our treatmenhéependent and
geometrical.

5.1. Nice manifolds with corners. To begin, we assume th& is a homology
polytope (or even a simple convex polytope) with facets Qq, ..., Qn. Let k be a
ground commutative ring with unit, and assign a degree-taiyromial generatowg,
to each facetQ;. We refer to the quotient ring

k[Q] = k[le""’va]/(inl T UQ, =0 if Qi,N---NQj, :®).

as theface ringof Q. In coincides with the Stanley-Reisner face ring [18] of tierve
simplicial complexK.

For arbitrary pair of face$s, H of Q the intersectionG N H is a unique maxi-
mal face contained in bots and H. There is also a unique minimal face that con-
tains bothG and H, which we denoteG v H. Let k[vg: F a face] be the graded
polynomial ring with one R-dimensional generatars for every proper codimensiok-
face F. We also identifyvg with the unit andvy with zero. The following proposition
gives another presentation & Q], by extending both the set of generators and rela-
tions. It will be used for a subsequent generalisatiorkp®] to arbitrary manifolds
with corners.

Proposition 5.1. There is a canonical isomorphism of rings
k[ve: F a facd/Zq = K[Q],
whereZg is the ideal generated by all elements

VGUH — VGvHVUGNH -
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Proof. The identification is established by the map sendiado [ 5F vq . U

Now let Q be an arbitrary connected manifold with corners. We alsairassthat
Q is nice that is, every codimensiok-face is contained in exactly facets. Note that
the orbit space of a locally standard torus manifold is abvaice. In a nice manifold
with corners, all faces containing a given face form a Boolkstice (like in the case
of RY).

REMARK. By the definition of manifold with corners, every codimensk face
is contained in at mosk facets. A 2-disc with one 0-face and one 1-face on the bound-
ary gives an example of manifold with corners which is notenic

The intersection of two face& and H in a manifold with corners may be discon-
nected, but every its connected component is a face of codiioe codinG+codimH.
We regardG N H as the set of its connected components; so the not&ienG N H
is used below for connected componemsof the intersection.

Proposition 5.2. For every two faces G and H with non-empty intersectibere
is a unigue minimal face & H that contains both G and H

Proof. Take anyE € G N H. The statement follows from the fact that the poset
of faces containinge is a Boolean lattice. O

Now we use the interpretation from Proposition 5.1 to introel a more general
version ofKk[Q)].

DEerINITION 5.3. Theface ring k[Q] of a nice manifold with cornerQQ is a
graded ring defined by

K[Q] := k[ve: F a face}Zq,

where degg = 2codimF andZg is the ideal generated by all elements

UGVUH — UGVH - E VE.
EeGNH

If G and H are transversal, that is, codigdmn H = codimG + codimH, thenG v
H = Q, so ink[Q] we get the identity

UGUH = Z VE.

EeGNH

Below we give a sequence of statements describing algeprajuerties ofk[Q]
and emphasising its analogy with the classical StanlegiiReiface ring.



ON THE COHOMOLOGY OF TORUS MANIFOLDS 725

Lemma 5.4. Every element & k[Q] can be written as a linear combination

a= Y AGi1D:DGgai...,aqvd - vg

G1D-DGq
[ 4 FETT Qq

with coefficients £G1 D --- D Gq; a1, ..., aq) € k. Here codimG; =i and Gy is an
inclusion minimal faceand the sum is taken over all chains of faces G--- D Gy
with all non-negative integers;.

Proof. We may assume that= vy, vy, - - - vy, (SOmeH; may coincide), and it is
enough to show that it can be written 3Svg, - - - v, With G; 2 --- D G, for every
summand (without making any assumptions on codimensioutsallowing someG;
to coincide). By induction we may assume thdg O --- O Hy. Now we apply the
relation from Definition 5.3 and replace by

UH;vH, E VE | UHg * * * UH-
EeH;NH,

The first two faces in every summand above are ordered. Thereplace eachgvy,
by vevH, (Y geenn, ve). Since Hy v Ha 2 E v Hs, we get the first three faces in a
linear order. Proceeding in this fashion we finally end up isuan of monomials cor-
responding to ordered sets of faces. ]

We refer to the presentation from Lemma 5.4 as thain decompositiorof an
elementa € k[Q].
For any vertex (O-facep € Q we define therestriction map g by

Sp: K[Q] — K[Q]/(ve: F ¥ p).

The next observation is straightforward.

Proposition 5.5. The image s(k[Q]) of the restriction map can be identified with
the polynomial ringk[inl, R inn] on n degree-two generatqrsthere Q,, ..., Q;,
are the n different facets containing. p

Lemma 5.6. If every face of Q has a vertethen the sum s= B, s, of re-
striction maps over all vertices g Q is a monomorphism frorkR[Q] to the sum of
polynomial rings.

Proof. Take a non-zera € k[Q] and write it as in Lemma 5.4. Fix a monomial

n

vG, -+ vg. entering the chain decomposition with a non-zero coefficiand consider
the restrictions, to the vertexp = G,. We claim thatsy(a) # 0. Identify sp(k[Q]) with
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the polynomial ringk[ty, ..., t,] (so thatt; := Vg, in the notation of Proposition 5.5).
Thensp(vg,) = t1---tn and we may also assume th&f(vg,) =tr---tj, j =1,...,n.
Hence,

Sp(véﬁ ces vgnn) =t (tat)*? - (ty - - - ).

It follows that sp(a) # O unless some other monomiq‘f,l1 e vﬁ"n hits the same mono-
mial in k[ty, ..., ty]. Note that

sp(vf'l1 S, vﬁ”ﬂ) =0 unless H¢ 2 G, for B¢ #0.

Suppose

(5.1) Sp(v"‘Gl1 e vé”n) = Sp(vﬁl1 e vﬁ‘;)

We want to prove thavg. - -ver = vfi -+ v}, that is, e = f and Gj = H; if o #0,

i =1,...,n. By induction, we may prove this for = j assuming that it is true for

i > j. Then (5.1) turns to the identity

SP(Ugll o vgjj )(tl st (t e )

= sp(uf 0 )t b)),

whencesp(vg, -+ vg) ) = sp(vﬁ‘l---vﬁjj). Suppose thaf is the last non-zero expo-
nent (so thatg+1 = --- = B; = 0). Then we also havey+; = --- = «; = 0, since

otherwises, (vg; - - - vg,) would be divisible byt; - - -ti+, while sp(vi ---vﬂjj) is not.

We also havey; = g and G, = H, sinceq, is the maximal power of; ...t that di-
vides sp(vg, - - - véjj). By induction, we conclude thatg, - -- vy = vﬁll e vﬁ”n, whence

sp(@) # 0. U

REMARK. The same argument as in the proof of Lemma 5.6 shows thatrfor a
bitrary Q the sums = P sg of (obviously defined) restriction magsg over all min-
imal facesG C Q is a monomorphism.

Corollary 5.7. The chain decomposition of @ k[Q] is unique and the mono-
mials vg11~--vgl corresponding to all chains GO --- D Gq and all exponentsy;
form an additive basis ok[Q].

The f-vector of Q is defined asf(Q) = (fo, ..., fn_1) Where f; is the number
of faces of codimensiom + 1 (so thatfo = m is the number of facets). The equiv-
alent information is contained in thie-vector h(Q) = (ho, ..., h,) determined by the
equation

(5.2) hot"+-+-+hy gt +hy = (t — )"+ fot — 1)1+ + f_q.



ON THE COHOMOLOGY OF TORUS MANIFOLDS 727

In particular,hg =1 andh, = (=1)"+(=1)"1fo+---+ f,_1, which is equal to 1 when
Q is face-acyclic.

EXAMPLE 5.8. We turn again to theT"-action on S*" from Examples 3.2
and 4.3 and seh = 2 there. ThenQ is a 2-ball with two O-faces (sayp andq) and
two 1-faces (sayG and H). Thenf(Q) = (2, 2), h(Q) =(1,0,1) and

K[Q] = K[vg, vH, vp, vql/(vavH = vy +vg, Vpvg = 0),

where degc = deguy = 2, degup = degug = 4.

5.2. Simplicial posets. The faces (simplices) in a (finite) simplicial complék
form a poset (partially ordered set) with respect to theusicn, and the empty sim-
plex @ is the initial element. This poset is called tfi@ce posetof K, and it car-
ries the same combinatorial information as the simplic@hplex itself. A posetP is
called simplicial if it has an initial elemenD and for eachx € P the lower segment
[f), x] is a boolean lattice (the face poset of a simplex). The fas®etpof a simplicial
complex is a simplicial poset, but there are simplicial peshat cannot be obtained
in this way. In the sequel we identify a simplicial complexthvits face poset, thereby
regarding simplicial complexes as particular cases of koiap posets.

To eachx € P := P — {0} we assign a geometrical simplex whose face poset is
[f), x], and glue these geometrical simplices together accordirthe order relation in
P. We get a cell complex such that the closure of each cell caidémtified with a
simplex preserving the face structure and all the attachiags are inclusions. We call
it a simplicial cell complexand denote its underlying space by|. If P is (the face
poset of) a simplicial compleX, then |P| agrees with the geometric realisatii |
of K. The barycentric subdivision of a simplicial cell complex abviously defined,
and is again a simplicial cell complex.

Proposition 5.9. The barycentric subdivision of a simplicial cell complexds
(geometric realisation 9of simplicial complex

Proof. Indeed, we may identify the barycentric subdivisiomder question with
the geometric realisation of the order complA;(P) of the posetp. J

In the sequel we will not distinguish between simplicial gissand simplicial cell
complexes, and call (the face poset of) the order compl¢®) the barycentric sub-
division of P. The set of faces of a nice manifold with cornegpsforms a simplicial
poset with respect to reversed inclusion (@ois the initial element). We call it the
face posebf Q. It is a face poset of a simplicial complex if and only if allmempty
multiple intersections of facets d@ are connected.
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ExAMPLE 5.10. LetQ be the orbit space from Example 4.3. There arfacets
in Q and the intersection of ank facets is connected whdn< n — 1, but the inter-
section ofn facets consists of two points. The corresponding simplicédl complex
is obtained by gluing twor(— 1)-simplices along their boundaries.

Let P be a simplicial poset. Wheff), x] is the face poset of ak(— 1)-simplex,
the rank ofx e P, denoted by rix = k, is defined to bek. The rank of P is the
maximum of ranks of elements iR. Introduce the graded polynomial riﬂg{vx: X €
5] with deguy = 2rkx. We also write formallyvy = 1. For any two elements, y € P
denote byx v y the set of their least common upper bounds, andhbyy the set of
their greatest common lower bounds. Sirfeds simplicial, x A y consists of a single
element provided that v y is non-empty. The following is the obvious dualisation of
Definition 5.3.

DerINITION 5.11. Theface ring of a simplicial posetP is the quotient
K[P] := K[vx: X € P]/Zp,

whereZp is the ideal generated by the elements

UxVy — Uxay - E V.

ZEXVY

REMARK. Let Q be a nice manifold with corners and Igt be the face poset
of Q. Thenk[Q] = k[P]. Let K be the nerve simplicial complex of the covering of
3Q =L, Qi by the facets, that is, the simplicial complex onvertices whosek —
1)-dimensional simplices correspond to the codimengigrefaces ofQ. If all non-
empty multiple intersections of facets iQ are connected, then the Stanley-Reisner
face ringk[K] agrees withk[P], but otherwisek[K] may differ from k[P].

The f-vector of a simplicial posetP of rankn is f(P) = (fo, ..., fn_1) Where f;
is the number of elements of rank The h-vector h(P) = (ho, ..., h,) is determined
by (5.2). If P is the face poset of a nice manifold with corné@sthen h(P) = h(Q).
Since we have defined deg= 2rkx, the face ringk[P] has no odd degree part.
Its Hilbert seriesF(K[P];t) = Y, dim¢k[P]at?, wherek[P], denotes the homo-
geneous degree dart of k[P], looks exactly as in the case of simplicial complexes.

Theorem 5.12 (Proposition 3.8 of [17]). Let P be a simplicial poset of rank n
with h-vector(hg, hy, ..., hy). Then

ho + hyt?+- .-+ hpt?"

F([P];t) = Ty
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In [6], Davis and Januszkiewicz realised the classical I8yaReisner face ring
k[K] of a simplicial complexK as the equivariant cohomology ring ofTaspace. The
same approach works for a simplicial pog$etas well. The order complexx(f) is
a simplicial complex. LetP be the cone on the geometric realisation(7)|. Since
|A(P)| = IP|, the “boundary” ofP is |P|. For each simplexr € A(P), let F, C P
denote the geometric realisation of the pobete A(P): o C r}. If o is a k — 1)-
simplex, then we declaré, to be aface of codimension.kTherefore, each facet
(codimension-one face) can be identified with the star of esmertex inA(ﬁ). Each
codimensiork face is a connected component of an intersectiork dacets and is
acyclic since it is a cone. In the case wh@nis a simplicial complex the spack
with the face decomposition was called in [6, p.428%imple polyhedral complex

Suppose that the number of facetsPfis m and that we have a maf as in (4.1)
satisfying the condition form Lemma 4.4. (The existence wthsa mapA is equiva-
lent to the existence of lnear system of parameteiia the ring Z[P], see e.g. [18,
Lemma 111.2.4].) Then the same construction Blg(A) in (4.2) with Q replaced by
P produces dar-spaceMp(A). Since P is not a manifold with corners for arbitrarf,
the spaceMp(A) may fail to be a manifold. Nevertheless, a similar argumenthat
in [6, Theorem 4.8] gives the following result:

Proposition 5.13. Hf(Mp(A);Z) is isomorphic toZ[P] as a ring

For an arbitrary nice manifold with cornei@ the equivariant cohomology of the
canonical modelMq(A) may fail to be isomorphic t&Z[Q] as the faces olQ them-
selves may have complicated cohomology. In the next secti@nshall study this ques-
tion in more details. As the first step in this direction weatelMg(A) to Mp(A) in
our last statement of this paragraph.

Proposition 5.14. Let Q be a nice manifold with cornerand P the space as-
sociated with the face pos@ of Q. Then there is a map Q> P which preserves
the face structurelt is covered by a canonical equivariant map

o MQ(A) — Mp(A)

Proof. The mapQ — P is constructed inductively, starting from an identifica-
tion of vertices and extending the map on each higher-diroeakface by a degree-
one map. Every face oP is a cone, so there are no obstructions to such extensions.
Since the map between orbit spaces preserves the faceustruittis covered by an
equivariant map of the identification spaces

Mg(A)=T x Q/~—= T x P/~ = Mp(A)

by the definition of identification spaces, see (4.2). Ul



730 M. MASUDA AND T. PANOV

6. Axial functions and Thom classes

Here we relate the equivariant cohomology ring of a torus ifolis M to the
face ring of the orbit spac®. We construct a natural ring homomorphism fr&pQ]
to Hy(M) modulo H*(BT)-torsions. In the next section we show that this is an iso-
morphism whenH(M) = 0. In this and next sections we assume tiatis locally
standard for simplicity, but the arguments will work withotlis assumption with a
little modification.

6.1. Axial functions. Like in the algebraic situation of the previous section, we
have the restriction map to a sum of polynomial rings:

(6.1) r=@ rp: Hi(M) > Hi(MT) = €D H*(BT).

peMT peMT

The kernel ofr is the H*(BT)-torsion subgroup ofH{(M), sor is injective when
Hodd(M) =0 by Lemma 2.1.

We identify MT with the vertices ofQ. The 1-skeleton ofQ, consisting of ver-
tices (O-faces) and edges (1-faces) @f is an n-valent graph. Denote b¥(Q) the
set of oriented edges. Given an element E(Q), denote the initial point and ter-
minal point of e by i(e) andt(e) respectively. TherM, := 71(€) is a 2-sphere fixed
by a codimension-one subtorus T (herer: M — Q is the quotient map). It con-
tains two T-fixed pointsi(e) andt(e). The 2-dimensional subspadgeMe € TigM Iis
an irreducible component of the tangentedrepresentatiori/;M. The same is true
for the otherT-fixed pointt(e), and theT-representationgjeM and 7;gM are iso-
morphic. There is a unique characteristic submanifold, By intersectingM, at i (€)
transversally. Assuming botM and M; are oriented, we choose a compatible orien-
tation for the normal bundle; of M; and therefore, forZ;jMe. The orientation on
TiMe determines a complex structure, so thatyMe can be viewed as a complex
1-dimensional T -representation. This defines an element of Hbn®) = HZ(BT),
which we denote byx(e).

Let e’ (1;) be the equivariant Euler class iHTZ(Mi) and denote its restriction to
pe M by e"(n)lp € HZ(p) = H3(BT). Then

(6.2) e"(w)lp = a(e),

where e is the unique edge such thefe) = p ande ¢ Q; = n(M;). Following [10],
we call the map

a: E(Q) - HABT)

an axial function
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Lemma 6.1. The axial functione has the following properties
(1) a(e) = +a(e) for all e € E(Q), wheree denotes e with the opposite orientation
(2) for each vertexor a T-fixed poink p, the setw := {(€): i(€) = p} is a basis of
H?(BT) over Z.
(3) for ee E(Q), we havew;e = aye moda(e).

Proof. Property (1) follows from the fact thdfe Me and 7y Me are isomorphic
as real T-representations, and (2) from that tfierepresentatiorifj M is faithful of
complex dimensiom. Let T, be the codimension one subtorus fixiMy. Then theT -
representations; M and 7y M are isomorphic ade-representations, since the points
i(e) andt(e) are contained in the same connected compom&nbf the Te-fixed point
set. This implies (3). [

REMARK. In [10], the propertyx(€) = —«a(€) is required in the definition of axial
function, but we allowx(€) = a(€). For examplea(€) = «(€) for the T2-action onS*
from Example 3.2.

Lemma 6.2. Fix n € H{(M); then fg(n) — rye(n) is divisible bya(e) for all
ee€ E(Q).

Proof. Consider the commutative diagram of restrictions

H7 (M) —— Hy(i(€) ® H7(t(e)) = H*(BT) @ H*(BT)

| |

H7,(Me) —— Hy.(i(€)) @ Hi(t(e)) = H'(BTe) ® H"(BTe)

Since H{ (Me) = H*(BTe) ® H*(Me), the two components of the image of in
H*(BTg)®H*(BTe) above coincide. Therefore it follows from the commutayivof the
above diagram that the restrictions ©fy(n) andrye(n) to H*(BTe) coincide. Since
the kernel of the restriction mapl*(BT) — H*(BT,) is the ideal generated lky(e),
the lemma follows. [l

6.2. Thom classes. The preimageMg := #~(F) of a codimensiork face F C
Q is a connected component of an intersectionkatharacteristic submanifolds. The
orientations ofM and characteristic submanifoldg; determine compatible orienta-
tions for the normal bundles; of M;. These orientations determine an orientation on
the normal bundlevg of Mg, and thereby onMg itself, since M is oriented. With
this convention on orientations, we consider the Gysin haomphism H2(Mg) —
HTZK(M) in the equivariant cohomology and denote the image of tleatity element
by zr. The elementtg may be thought of as the Poinéadual of Mg in equivariant
cohomology and is called th&hom classof Mg. The restriction oftg € HZ(M) to
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H2(Mg) is the equivariant Euler class of, andrp(ze) = O unlessp € (Mg)T. It
follows from (6.2) that

[ «@. if pe(Me)T
(6.3) l’p(‘EF)= i(e)=p.eZF
0, otherwise.

We set
’H\}*(M) = Hf(M)/H*(BT)-torsions

The restriction map (6.1) induces a monomorphinﬁ(M) — Hi(MT), which we
also denote by. Therefore,zg = 0 in I’-T;‘(M) if Mg has noT-fixed point. The fol-
lowing lemma shows that the relations from Definition 5.3 chah H\;‘(M) with vg
replaced byrg.

Lemma 6.3. For any two faces G and H of Qhe relation

TGTH = TGVH E TE,
EeGNH

holds in H#(M), where we setg = 0.

Proof. Since the restriction map: ﬁ}"(M) — H#(MT) is injective, it suffices to
show thatr, maps both sides of the identity to the same element fopai M.
Let pe MT. For a faceF such thatp € F, we set

Np(F) :={ec E(Q):i(e)=p, e¢ F},

which may be thought of as the set of directions normalFtoat p. We also set
No(F) =@ if p¢ F. Then the identity (6.3) can be written as

(6.4) ro(te) = ] (e

eeNp(F)

where the right hand side is understood to be zerd\ifF) = @. If p ¢ GNH,
then Np(E) = @ for any connected componel of GN H and eitherN,(G) = @ or
Np(H) = @. Therefore, both sides of the identity from the lemma mapédm by .
If pe GNH, then

Np(G) U Np(H) = Np(G v H) U Ny(E)

where E is the connected component G'N H containing p, and N(E’) = @ for any
other connected component & N H. This together with (6.4) shows that both sides
of the identity map to the same element hy O
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By virtue of the above lemma, the m&ffvr: F a face]» Hf(M) sendingvr
to 7¢ induces a homomorphism

(6.5) ¢: Z[Q] - HE(M).
Lemma 6.4. The homomorphisnp is injective if every face of Q has a vertex

Proof. We haves =r o ¢, wheres is the map from Lemma 5.6. Sineeis injec-
tive if every face ofQ has a vertex, so ig. Ul

7. Equivariant cohomology ring of torus manifolds with vanishing odd-degree
cohomology

In this section we give a sufficient condition for the monopiasm ¢ in (6.5) to
be an isomorphism (Theorem 7.5). In particular, it turns that ¢ is an isomorphism
when H°d(M) = 0 (Corollary 7.6). Using these results, we give a desicnipbf the
ring structure inH*(M) in the case wherH®¥(M) =0 (Corollary 7.8).

7.1. Ring structure in equivariant cohomology. The following theorem shows
that the converse of Lemma 6.2 holds for torus manifolds wéhishing odd degree
cohomology.

Theorem 7.1 ([8], see also Chapter 11 in [9]).Suppose M) = 0 and we are
given an element, € H*(BT) for each pe MT. Then (i) € @D pemr H*(BT) be-
longs to the image of the restriction map r (6.1) if and only if 5 —n ) is divisible
by «(e) for any ec E(Q).

Corollary 7.2. The 1-skeleton of any face of @ncluding Q itselj is connected
if Hodd(M) = 0.

Proof. SinceM is connected, the image(H?(M)) is one-dimensional. Then it
follows from the “if” part of Theorem 7.1 that the 1-skeletoh Q is connected. Sim-
ilarly, the 1-skeleton of any facE of Q is connected becauddr = 7 %(F) is also a
torus manifold with vanishing odd degree cohomology (semra 2.2). Ll

REMARK. The connectedness of 1-skeletons of faceQafan be proven without
referring to Theorem 7.1, see remark after Theorem 9.3.

For a faceF of Q, we denote byl (F) the ideal in H*(BT) generated by all
elementsx(e) with ee F.
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Lemma 7.3. Suppose that thd-skeleton of a face F is connecte@ivenn €
Hi(M), if rp(n) ¢ 1(F) for some vertex pe F, then ry(n) ¢ |(F) for any vertex
geF.

Proof. Supposeq(n) € | (F) for some vertexg € F. Thenrs(n) € | (F) for any
vertexs € F joined toq by an edgef C F becauseq(n) —rs(n) is divisible by «(f)
by Lemma 6.2. Since the 1-skeleton Bf is connectedy(q) € | (F) for any vertex
g € F, which contradicts the assumption. O

Proposition 7.4. If the 1-skeleton of every face of Q is connectélien I’-T;‘(M)
is generated by the elements as an H(BT)-module

Proof. Letn e H7%(M) be a nonzero element. Set
Z(n) :={pe M :ry(n) =0}

Take p € MT such thatp ¢ Z(n). Thenrp(n) € H*(BT) is non-zero and we can
express it as a polynomial ifx(€): i(€) = p} (the latter is a basis oH2(BT)). Let

(7.) [T @™

i(e=p

ne = 0, be a monomial enteringy(n) with a non-zero coefficient. LeF be the face
spanned by the edgeswith ne = 0. Thenry(n) ¢ | (F) sincer () contains the mono-
mial (7.1). Hencerq(n) ¢ I(F), in particularrq(n) 7 O, for every vertexq € F by
Lemma 7.3.

On the other hand, it follows from (6.3) that the monomiallj7can be written as
ro(Urte) with someug € H*(BT). Setn’ := n — ugte € HF(M). Sincerg(te) = 0 for
every vertexq ¢ F, we havery(n’) = rq(n) for suchq. At the same timerq(n) 7 0O
for every vertexq € F (see above). It follows thaZ(n") 2 Z(n). However, the num-
ber of monomials inrp(n’) is less than that irrp(n). Therefore, subtracting from
a linear combination oftg’s with coefficients inH*(BT), we obtain an element
such thatZ(i) containsZ(n) as a proper subset. Repeating this procedure, we end
up at an element whose restriction to every vertex is zemceSthe restriction map
r: ﬁ;f(M) — H#(MT) is injective, this finishes the proof. U

Theorem 7.5. Let M be a(locally standard torus manifold with orbit space Q
If every face of Q has a vertex and ftsskeleton is connectethen the monomorphism
0. 7Z[Q] — ﬁ{f(M) in (6.5) is an isomorphism

Proof. To prove that is surjective it suffices to show thaﬁ;(M) is generated
by the elementsr as a ring. By Proposition 3.312(M) is generated oveZ by the
elementsrg, corresponding to the faceQ;. (Note: the notationr; is used forzg, in
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Proposition 3.3.) In particular, any element W?(BT) C ﬁ{f(M) can be written as a
linear combination ofrg,’s with coefficients inZ. Hence, any element itH*(BT) is
a polynomial intg’s. The rest follows from Proposition 7.4. ]

Now assumeH°(M) = 0. Then the assumption in Theorem 7.5 is satisfied, and
H7(M) is a freeH*(BT)-module by Lemma 2.1, whendd{(M) = H{(M).

Corollary 7.6. For a torus manifold M with vanishing odd degree cohomojogy
the mapg: Z[Q] — Hf(M) in (6.5) is an isomorphism

Proof. This follows from Corollary 7.2 and Theorem 7.5. U

REMARK. When H*(M) is generated in degree two, all non-empty multiple in-
tersections of facets are connected by Lemma 3.4. Therefloeeface poset of) is
the face poset of the ner¥é of the covering ofdQ, and Z[ Q] reduces to the clas-
sical Stanley-Reisner face ring of a simplicial complexefdfore, Corollary 7.6 is a
generalisation of Proposition 3.4 in [13].

If P is the face poset o), then Z[P] = Z[Q] by the definition. The following
statement gives a characterisation of torus maniféitisvith vanishing odd degree co-
homology (and with cohomology generated in degree two) imseof the face poset
P associated withM.

Theorem 7.7. Let M be a torus manifold with orbit space,@nd let? be the
face poset of QThen HY(M) = 0 if and only if the following two conditions are
satisfied
(1) H{(M) is isomorphic toZ[P](= Z[Q]) as a ring
(2) Z[P] is Cohen-Macaulay
Moreover H*(M) is generated by its degree-two part if and only7f is (the face
poset o} a simplicial complex in addition to the above two conditions

Proof. If H°(M) =0, then H3(M) = Z[Q] = Z[P] by Corollary 7.6, andZ[P]
is Cohen-Macaulay becaudd;(M) is a free H*(BT)-module by Lemma 2.1. This
proves the “only if” part of the first statement.

Now we prove the “if” part. Leto: ET xt M — BT be the projection, and con-
sider the composite map

H*(BT) & Hi(M) &> @D H*(BT).
peMT

Its restriction to each summand of the target is the identigy, r o p* is a diagonal
map. This implies thap*(ty), ..., o*(t,) is a linear system of parameters (an |.s.0.p.),
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see [2, Theorem 5.1.16]. By the assumptiéff,(M) is isomorphic toZ[P] and Z[P]
is Cohen-Macaulay, so every l.s.0.p. is a regular sequemee[{8, Theorem 1.5.9]). It
follows that Hi(M) is a freeH*(BT)-module and hencéi®¥(M) = 0 by Lemma 2.1,
thus proving the “if” part of the first statement.

It remains to prove the second statement. The “only if” paitofvs from Lem-
ma 3.4 by the last remark. For the “if” part, # is a simplicial poset, theZ[P] is
generated by its degree-two part. By the first statementetiteoremH; (M) = Z[P]
is a freeH*(BT)-module, whenceH*(M) is a quotient ring ofH{(M). It follows that
H*(M) is also generated by its degree-two part. U

The following description of cohomology ring of a torus nfald with vanishing
odd degree cohomology generalises that of a complete mgudar toric variety, see
[7, p.1086].

Corollary 7.8. For a torus manifold M with vanishing odd degree cohomojogy
H*(M) = Z[ve: F a face of Q/I as a ring

where | is the ideal generated by the following two types efnents

(1) vgvH — vGvH ZEeGmH VE,

(2 YL (t,a)vg for t € HA(BT).

Here Q are the facets of Q and the elemen{seaaH,(BT) are defined inProposi-
tion 3.3.

Proof. Since the Serre spectral sequence of the fibratioBT xtM — BT col-
lapses, the restriction map{(M) — H*(M) is surjective and its kernel is the ideal
generated by alp*(t) with t € H2(BT). Therefore, the statement follows from Propo-
sition 3.3 and Corollary 7.6. O

7.2. Dehn-Sommerville equations. Suppose thatH°(M) = 0. Then, since
H{(M) = H*(BT) ® H*(M) by Lemma 2.1 andH*(BT) is a polynomial ring inn
variables of degree two, the Hilbert seriestgf(M) is given by

YiLyrank, HZ (M)t?
(L—t2)n

F(Hr(M);t) =

On the other hand, the Hilbert series of the face #j®)] is given by Theorem 5.12
and these two series must coincide by Corollary 7.6. It fedldhat

(7.2) rank, HZ (M) = h;.
Since M is a manifold, the Poincarduality implies that

(7.3) hi =hn7i, i=0,...,n.
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When every non-empty multiple intersection of facetsdris connectedZ[Q] reduces
to the classical Stanley-Reisner ring of the nerve of theedog of dQ and equa-
tions (7.3) are known as thBehn-Sommerville equatiorfer the numbers of faces.

8. Orbit spaces of torus manifolds with cohomology generatkin degree two

Using the equivariant cohomology calculations from thevimes section, we are
finally able to relate the cohomology of a torus maniféi and the cohomology of
its orbit spaceQ. The main result of this section is Theorem 8.3 which givesoa ¢
homological characterisation of torus manifolds whosédt@paces are homology poly-
topes. Using this result, in the next section we prove tkatis face-acyclic if
Hedd(m) = 0.

Lemma 8.1. If H°¥(M) = 0, then H(Q;k) = 0 for any coefficient ringk. In
particular, Q is orientable

Proof. We use the Leray spectral sequence (Witboefficient) of the projection
map ET x1 M — M/T = Q on the second factor. It&;, term is given byE>‘ =
HP(M/T;H?) whereH? is a sheaf with stalkd9(BT; k) over a pointx € M/T, and
the spectral sequence convergesH{(M; k). Since theT-action onM is locally stan-
dard by Theorem 4.1, the isotropy groilip at x € M is a subtorus; s¢1°4(BT,; k) =
0. Hence,H°% = 0, in particular,#* = 0. Moreover,H° = k (a constant sheaf). There-
fore, we haveEo! = 0 and E;° = HY(M/T; k), whenceH(M/T;k) = H(M;k). On
the other hand, sincéi®¥(M) = 0 by assumptionH;(M) is a free H*(BT)-module
(isomorphic toH*(BT) ® H*(M) by Lemma 2.1). Thereforeild?9(M; k) = 0 by the
universal coefficient theorem. In particulddt(M; k) = 0, thus proving the lemma.]

Lemma 8.2. If either
(1) Q is a homology polytopeor
(2) H*(M) is generated by its degree-two part
then the face poseP of Q is (the face poset 9fa simplicial Gorenstein* complex.
In particular, Z[P] is Cohen-Macaulay and the geometric realisatitfd| of P has
the homology of arfn — 1)-sphere

Proof. Under either assumption (1) or (2), all non-empty tipld intersections
of facets of Q are connected, s® agrees with the face poset of the nerve simplicial
complex K of the covering ofd Q. In what follows we identify? with K.

First we prove thatP is Gorenstein* under assumption (1). According to Theo-
rem 11.5.1 of [18] it is enough to show that the link of a simple of P, denoted
by link o, has the homology of a sphere of dimliik=n — 2 — dimo. If 0 = @ then
link o is P itself and its homology is isomorphic to the homology of treubdaryd Q
of Q, since?P is the nerve ofQ and Q is a homology polytope. I # @ then linko
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is the nerve of a face o). Since any face of is again a homology polytope, lirk
has the homology of a sphere of dim linkby the same argument.

Now we prove thatP is Gorenstein* under assumption (2). Using Theorem 11.5.1
of [18] once again, it is enough to show that
(&) P is Cohen-Macaulay;
(b) every f— 2)-dimensional simplex is contained in exactly two— 1)-dimensional
simplices;
© x(P)=x(S.
The condition (a) follows from Lemma 2.1 and Corollary 7.6y Befinition, everyk-
dimensional simplex ofP corresponds to a set & + 1 characteristic submanifolds
having non-empty intersection. By Lemma 3.4, the inteisacbf any n characteris-
tic submanifolds is either empty or consists of a singldixed point. This means that
the (h—1)-simplices of P are in one-to-one correspondence with Thdixed points of
M. Now, each f — 2)-simplex of P corresponds to a non-empty intersectionnof 1
characteristic submanifolds d¥1. The latter intersection is connected by Lemma 3.4
and has a non-trivial -action, so it is a 2-sphere. Every 2-sphere contains gxaet
T-fixed points, which implies (b). Finally, (c) is just the Delsommerville equation
ho = hy, see (5.2) and (7.3). L]

Theorem 8.3. The cohomology of a torus manifold M is generated by its degre
two part if and only if M is locally standard and the orbit sga® is a homology

polytope

Proof. LetP be the face poset df, and P the cone onP| with the face struc-
ture associated wittP, see end of Subsection 5.2.

We first prove the “if” part. Suppos® is a homology polytope. Sincel?(Q) =0
and M is locally standardM is equivariantly homeomorphic tMq(A) by Lemma 4.5;
so we may regard the map in (5.14) as a map fronM to Mp := Mp(A). Let Mp;
be characteristic subcomplexes - defined similarly to characteristic submanifolds
M; of M. Since theT-actions onMp\ | J; Mp; and M\ |, M; are free, we have

Hf (Mp, U Mp,i> TH(P, P, Hf <M, U Mi> > H'(Q. Q).

Therefore, the mapm induces a map between exact sequences

—— H*(P, |P|) — H#(Mp) — Hj <U Mp_i) —

(8.1) L l@*

—— H*(Q,0Q) —= Hi(M) ——= H} <U Mi> —
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Each V; itself is a torus manifold over a homology polytofg. Using induction and
a Mayer-Vietoris argument, we may assume that the &l J;, Mp,i) — Hi (U Mi)
above is an isomorphism. By Lemma 8|&| has the homology of am(— 1)-sphere,
and sinceP is the cone overP|, we have H*(P,|P|) = H*(D", S"1). We also
have H*(Q, Q) = H*(D", S" 1) becauseQ is a homology polytope. Using these iso-
morphisms, we see from the construction of the mépthat the induced map
H*(P, |P]) — H*(Q,dQ) is the identity map onH*(D", S"1). Therefore, the 5-
lemma applied to (8.1) shows th&": Hy(Mp) — H{(M) is an isomorphism; whence
Hf(M) = Z[P] by Proposition 5.13. We also know th&{P] is Cohen-Macaulay by
Lemma 8.2. Therefore, the two conditions in Theorem 7.7 atisfged. It follows that
H*(M) is generated by its degree-two part by Theorem 7.7, whidshfas the proof
of the “if” part.

Now we prove the “only if” part. Suppose that*(M) is generated by the degree-
two elements. TherM is locally standard by Theorem 4.1. Since all non-empty mul-
tiple intersections of characteristic submanifolds areaneszted and their cohomology
rings are generated in degree two by Lemma 3.4, we may assyniedbction that
all the proper faces of) are homology polytopes. In particular, the proper faces are
acyclic, whenceH*(9Q) = H*(|P|). This together with Lemma 8.2 shows that

(8.2) H*(BQ) = H*(S"?).
Claim. H?(Q)=0.

The claim is trivial forn = 1. If n = 2 then Q is a surface with boundary, hence,
H?(Q) = 0 in this case too. Now assumme> 3. Let us consider the exact equivari-
ant cohomology sequence of pdiM, [, M;), see the bottom row of (8.1). All the
maps in the exact sequence afe(BT)-module maps. By Lemma 2.1H;(M) is a
free H*(BT)-module. On the other hand{*(Q, Q) is finitely generated ove¥., so

it is a torsionH*(BT)-module. It follows that the whole sequence splits in skowct
sequences:

(8.3) 0— HX(M) —» HX (U Mi> — H*Y(Q,9Q) >0

Taking k = 1 above, we get

Ht (U Mi> = HX(Q, Q).

The same argument as in Lemma 8.1 shows that the former isoipbia to
HY((U, Mi)/T)= HY3Q), and the above isomorphism implies (through the projec-
tion (ET x M)/T — M/T = Q) that the coboundary mapl1(Q) — H?(Q, Q)
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in the exact sequence of the pa®,(0Q) is an isomorphism. Therefore, we get the
following exact sequence fragment:

0— H2(Q) - H?(BQ) — H3(Q, 4Q).

Since H?(3Q) = H?(S"1) by (8.2), we haveH?(Q) = 0 if n > 4. Whenn = 3,
the coboundary map above is an isomorphism bec&use orientable by Lemma 8.1,
whenceH?(Q) = 0 again. This completes the proof of the claim.

Since H?(Q) = 0, we have a magb: M — Mp(A) as in the proof of the “if”
part. Let us consider the diagram (8.1) wikh coefficient wherek = Q or Z/p
with prime p. Using induction and a Mayer-Vietoris argument, we deducat th
Hi (Ui Me.isk) = Hi(U; Mi;k) is an isomorphism. We know that*(P, |P|; k) =
H*(D", "1, k) by Lemma 8.2, and it follows from the construction ®fthat the in-
duced map

(8.4) H*(D", "1 k) = H*(P, |P|;:k) — H*(Q, 9Q; k)

is an isomorphism in degree, and thus is injective in all degrees. Therefore (an ex-
tended version of) the 5-lemma (see [16, p.185]) applied8td)(with k coefficient
shows thatd*: Hf(Mp; k) — H{(M;K) is injective. Here,H{(M) = Z[Q] = H¥(Mp)

by Corollary 7.6 (or Proposition 3.4 in [13]) and Propositis.13 (or Theorem 4.8
of [6]), so Hf(Mp;k) and Hy(M;k) have the same dimension ovkrin each de-
gree. Therefore, the monomorphisiri: Hf(Mp; k) — Hf(M;K) is actually an iso-
morphism. Again, the 5-lemma applied to (8.1) withcoefficients implies that the
map (8.4) is an isomorphism, d6*(Q, 3Q; k) = H*(D", S"1;k) for anyk and hence
H*(Q, dQ) = H*(D", S"1). This together with (8.2) (or the Poinéatefschetz dual-
ity) gives the acyclicity ofQ, thus finishing the proof of the theorem. ]

The following statement gives a characterisation of sioig@licomplexes associ-
ated with torus manifolds with cohomology generated in degmwo.

Theorem 8.4. A simplicial complexP is associated with a torus manifold M
whose cohomology is generated by its degree-two part if ang ib P is Gorenstein*
and Z[P] admits an Is.o.p.

Proof. If H*(M) is generated by its degree-two part, thBnis Gorenstein*, in
particularZ[P] is Cohen-Macaulay by Lemma 8.2. Moreovd§ (M) = Z[P] by Corol-
lary 7.6 (or Proposition 3.4 in [13]). Sincd+(M) = H*(BT)®QH*(M) as anH*(BT)-
module by Lemma 2.1Z[P] admits an |.s.0.p.

Now we prove the “if” part. According to Theorem 12.2 of [Shetre exists a
homology polytopeQ whose nerve isP. Since the face rindZ[P] admits an l.s.0.p.,
it is a free module over a polynomial rirg[t, ..., ty] in n variables. We can express
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any element € H(BT) = Z[ty, ..., t,] as

t=Y a(t,
=1

where g (t) € Z. Clearly, a(t) is linear ont, so g can be viewed as an element of
the dual spaceH,(BT) (see Proposition 3.3). Now define a map(4.1) by sending
Qi to &. Then M := Mg(A) (see (4.2)) is a torus manifold, and its cohomology is
generated in degree two by Theorem 8.3, which finishes thef.pro ]

9. Orbit spaces of torus manifolds with vanishing odd degreeceohomology

Let F be a face ofQ. The facial submanifoloMg = 7~1(F) is a connected com-
ponent of an intersection of finitely many characteristibraanifolds. The Whitney
sum of their normal bundles restricted ke gives the normal bundleg of Mg. The
orientations forM and characteristic submanifolds determineT @nvariant complex
structure onvg, so that the complex projective bundi®(vg) of vg can be considered.
ReplacingMg in M by P(vg), we obtain a new torus manifolt¥l. The passage from
M to M is called theblowing-upof M at Mg. (Remark: the normal bundle- admits
many invariant complex structures and the following argnmeorks once we choose
one.) The orbit spacéNQ of M is then the result of “cutting off” the fac& from Q,
and the simplicial cell complex dual tQ is obtained from that dual t@ by applying
a stellar subdivision of the face dual fe.

Lemma 9.1. The orbit spaceé is face-acyclic if and only if so is Q

Proof. By cutting the face= off Q we obtain a new faceE c Q, and all other
new faces ofQ are contained in this facet. The projection m@p—> Q coIIapsesE
back to F. The faceF is a deformation retract oF. Hence,F is acyclic if and only
if F is acyclic. The same is true for any other new faceQ@flt is also clear from
the construction thaf is a deformation retract o). Therefore,Q is acyclic if and
only if so is Q. U

Lemma 9.2. H°%(M) =0 if H°¥(M) = 0.

Proof. The facial submanifoldr Cc M is blown up to a codimension-two facial
submanifold Mz ¢ M, namely, Mgz = P(vg). Since Mg is the total space of a bundle
with baseMg and fibre a complex projective space, its cohomology is a HéeMg)-
module on even-dimensional generators by Dold’s theoress, (8.g., [19, Ch. V]). If
Ho%(M) = 0, thenH¥(Mg) = 0 by Lemma 2.2 and hendd°®(Mg) = 0. Let M —
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M be the collapse map and consider the diagram

H*Y(Mg) —— H¥(M, Mg) —— H¥(M) —— HX(ME)

l T

HI () — (R, f) — HE() — HE(Fiz)

where the second vertical arrow is an isomorphism by extiskssume thak is odd.
If H°dd(M) = 0 then H*}(Mg) — HX(M, Mg) is onto. Therefore, it follows from
the above commutative diagram theit*(Mg) — H¥(M, Mg) is also onto. Since
Hk(I\N/Ig) =0, this impliesHk(l\W) =0. O

The following main result of this section is an analogue okdiem 8.3.

Theorem 9.3. The odd-degree cohomology of M vanishes if and only if M is lo-
cally standard and the orbit space Q is face-acyclic

Proof. The idea is to reduce to Theorem 8.3 by blowing up seffitty many fa-
cial submanifoldsMg = 7~1(F). Since the barycentric subdivision is a sequence of
stellar subdivisions, by applying sufficiently many blopsuwe get a torus manifold
M with orbit spaceQ such that the face poset @ is the barycentric subdivision of
the face poset ofQ. The collapse map\/l — M is decomposed into a sequence of
collapse maps for single blow-ups:

(9.1) M = Mo Ml Mk = M

Assume thatH°%(M) = 0. ThenM is locally standard by Theorem 4.1. By ap-
plying Lemma 9.2 several times we get°®(M) = 0. By construction, all the inter-
sections of faces oﬁ are connected, sdai*(ﬂ) is generated by its degree-two part
by Theorem 7.7 and) is a homology polytope by Theorem 8.3. In particul@, is
face-acyclic. Finally, by applying Lemma 9.1 inductivelyeveonclude thalQ is also
face-acyclic.

The scheme of the proof of the “if” part is same as that of Theor8.3. But
there are two things to be checked. These are
(1) |P| has the homology of am(— 1)-sphere,

(2) Z[P] is Cohen-Macaulay.
Let P be the face poset 0. Since Q is face-acyclic,Q is a homology polytope.
Therefore,|P| has the homology of am(- 1)-sphere by Lemma 8.2. Howevd®| =

|P|, so the first statement above follows. Sin@eis a homology pontopeZ[ﬁ] is

Cohen-Macaulay by Lemma 8.2. This implies tt#tP] itself is Cohen-Macaulay by
Corollary 3.7 of [17], proving the second statement above. ]
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REMARK. As one can easily observe, the argument in the “only if” pErthe
above theorem is independent of Theorem 7.1 and Coroll&y Now, given thatQ
is face-acyclic, one readily deduces that the 1-skeleto@ @ connected. Indeed, oth-
erwise the smallest face containing vertices from two diffé connected components
of the 1-skeleton would be a manifold with at least two boupdeomponents and
thereby non-acyclic. Thus, our reference to Theorem 7.1 aasally irrelevant, al-
though it made the arguments more straightforward.

Finally, we note that the proof of the “if” part of Theorem 9c8uld have been
identical to that of the “only if” part if the converse of Lenan®.2 was true. It is in-
deed the case, however the only proof we have so far uses cuitplicated analysis
of Cohen-Macaulay simplicial posets. We are going to writddtvn elsewhere.

10. Gorenstein simplical posets and Betti numbers of torus amifolds

The barycentric subdivisio® of a simplicial posetP is (the face poset of) a
simplicial complex andP is called Gorenstein* if P is Gorenstein* ([271, [18)]). If
P is the simplicial poset associated with a torus manifbldwith H°(M) = 0, then
the torus manifoldvi corresponding t® has cohomology generated by its degree-two
part as remarked in the proof of Theorem 9.3. Herfdds Gorenstein* by Lemma 8.2
and P is Gorenstein* by definition. In [17] Stanley proved that arsctor satisfying
the conditions in Theorem 10.1 below is brvector of a Gorenstein* simplicial poset.
He also conjectured that those conditions are necessatpidrsection we prove this
conjecture for Gorenstein* simplicial posefsassociated with torus manifoldd with
vanishing odd degree cohomology, and charactdrizectors of those Gorenstein* sim-
plicial posets. The Stanley conjecture was proved in fullegality by the first author
in [14].

Since

(10.1) h; (P) = rank, HZ (M),

by (7.2), we need to characterise the Betti numbers of torasifsids with vanishing
odd degree cohomology. We note that

hi(P) >0, hi(P)=h,i(P) forall i, and ho(P)=1

Theorem 10.1. Leth =(hg, hy, ..., hy) be a vector of non-negative integers with
hi = h,_; for all i and hy = 1. Any of the following(mutually exclusiveconditions is
sufficient for the existence of a rank n Gorenstein* simaligioset” that is associ-
ated with a2n-dimensional torus manifold with vanishing odd degreeotoblogy and
has h-vectorh:

(1) nis odd
(2) nis even and k. is even
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(3) nis evenhy is odd and h > 0 for all i.
Moreover if h is the h-vector of a simplicial poset of the above describguk tthen
it satisfies one of the above three conditions

Proof. For a torus manifoldM, we seth;(M) = rank; H#(M). Thanks to (10.1),
we may useh; (M) instead ofh;(P) to prove the theorem.

We shall prove the sufficiency first. Examples 3.1 and 3.2 peedorus manifolds
CP", " and % x S* with 1 < k < n— 1. In all three cases the odd-degree
cohomology is zero. IM; and M, are torus manifolds (of same dimension) with van-
ishing odd degree cohomology, then their equivariant cortesumM; # M, at two
fixed points with isomorphic tangential representationsdpces a torus manifold with
vanishing odd degree cohomology. We have

hi(My# M) = h(Mg) + hi(Mp) for 1<i<n-—L1.

Using this identity, one easily gets any vector satisfyihg tonditions in the theorem
by taking equivariant connected sum @P", S and S~ x S,

Now we prove the necessity. L&l be a torus manifold of dimensiom2It suf-
fices to prove thahn2(M) is even ifn is even andh; (M) = 0 for somei > 0.

Let G be the 2-torus subgroup of of rank n (that is, G = (Z/2)"). Then the
equivariant total Stiefel-Whitney class &fi with the restrictedG-action is defined to
be the ordinary total Stiefel-Whitney class of the vectondle EGxg7M — EGxg
M, and is denoted byw®(M). By definition, w®(M) lies in H5(M;Z/2). We denote
by 7 the image of the identity under the equivariant Gysin rT‘ra@(Mi;Z/Z) —
HE(M;Z/2), whereM; (i =1,...,m) are characteristic submanifolds df.

Claim. wS(M) = [T, (1 +7).

The proof of the claim is similar to that of Theorem 3.1 in [18}here the same for-
mula was proved for the total equivariant Chern class. SIHE&Y(M;Z/2) = 0 and
M€ = MT is isolated, we have

dimH*(M;Z/2) = x(M) = x(MT) = x(M®) = dimH*(M®; Z/2).

Therefore,HE(M; Z/2) is a freeH*(BG; Z/2)-module (see [1, Theorem VII.1.6]). It
follows from the localisation theorem that the restrictio@p

(10.2) HE(M;Z/2) — HE(MC;Z/2)

is injective. Givenp € M® = MT, setI(p) :={i: p € M;}. The cardinality ofl (p) is
n and the tangentiaG-representatiory,M decomposes as

TpM = @ vi|p

iel(p)
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where v; is the normal bundle ofM; to M and v;|, is its restriction top. It fol-
lows that

(10.3) weM)lp= [T w®ilp)

iel(p)

Sincev; is orientable of real dimension tway$(v) = 0 andw$ () is the mod 2 re-
duction of the equivariant Euler class of. Therefore, we haveuf(mp) = 1|p for

i € I(p). Moreover, |, = 0 for i ¢ I(p) by a property of equivariant Gysin homo-
morphism. Thus, the identity (10.3) gives

weM)lp= [T @+a)lp =] J@ +u)lp.

iel(p) i=1

This together with the injectivity of the restriction map (h0.2) proves the claim.
The forgetful map HE(M;Z/2) — H*(M;Z/2) takes the equivariant Stiefel-
Whitney classw®(M) to the (ordinary) Stiefel-Whitney class(M) of M. Since T
is of degree two, the above claim shows that,(M) is a polynomial in degree two
elements. Assumé;(M) = 0 for somei > 0. Thenwy(M) = 0. The mod 2 re-
duction of the Euler characteristig(M) of M agrees withw,,(M) evaluated on the
mod 2 fundamental class d¥l. Hence,w,,(M) = 0 implies thaty(M) is even. Here
x(M) =YL hi(M) and hj(M) = hn_i(M) by the Poinca duality, thushn/2(M) must
be even for evem. O
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