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ON THE SINGULARITIES OF THE SCATTERING KERNEL
FOR THE ELASTIC WAVE EQUATION
IN THE CASE OF MODE-CONVERSION
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Abstract
For the elastic wave, there are waves of different modes aménzarkable
phenomenon called “mode-conversion” which causes seruifficulties in the
analysis of singularities of the scattering kernel. In thespnt paper, by considering
the case of a non back-scattering, we examine singuladfighe scattering kernel
for the elastic wave equation in the case of mode-conversion

1. Introduction
Let @ be an exterior domain ilR® with smooth and compact boundary. We con-
sider the isotropic elastic wave equation with the Dirittdeundary condition

(82 — L)u(t,x)=0 in Rxg,
(1.1) u(t,x)=0 on R xdQ,
u(0, x) = f1(x), du(0,x) = f(x) on €,

where u(t, x) = t(uy, Up, u3) and fi(x) =(fi1, fio, fiz) (i =1, 2). Recall thatL has the
following form:

3
L = Zaijaxiaxja
ij=1

where g are 3x 3 matrices of which §§, g)-entry is expressed bg;pjq. We say that
the elastic mediunf2 is isotropic, if ajpjq is given by

aipjq = Adipdjq + 14(8ij 6pq * Siqdjp).
where i, u are Lame’s constants satisfying the following inequaditie

2
A+§u>0, u > 0.
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Under the assumption that the elastic medif@mis isotropic, Yamamoto [14] and
Shibata-Soga [8] have formulated the scattering theorychvig analogous to the the-
ory of Lax-Phillips [5]. Letk_(s, w) and k.(s, w) € L?(R x S?) denote the incoming
and outgoing translation representations of an initiahdat t(fy, f,) respectively (see
[5]). Recall that the scattering operat8ris the mapping

S: k_(s, w) > ki(s, w).

The scattering operatds admits a representation of the form with a distribution lkeérn
(s, 0, w) called the scattering kernel:

(Sk)(s, 6) = //R , S(5-5.0,0)k (8, ) dS do.

Majda [6] has obtained the representation formula of thetegat) kernel (s, 6, w)
for the scalar-valued case. This representation formuleery effective to investigate
inverse scattering problems (cf. Majda [6], Soga [9], Petkdy. For the elastic case,
Soga [10] and Kawashita [3] have derived the representdtiomula of the scattering
kernel.

The characteristic matrist. (¢) of the operatorL(dx) has the eigenvalue€2|¢|?
and C3|¢|2, where

Ci=(+2w)"2, Cp=pu*2

Let P,(¢) be the eigenprojector for the eigenvalu@8&|? (i = 1, 2), where

Pi§) =6 @&, PaA5) =1 — Pu(§).

Then Py(§)R® is the space spaned Wy and P,(£)R3 is the orthogonal complement
of Py(£)R3. Associated with the eigenvalu&¥’ || (i = 1, 2), there are waves of two
different types (modes). The one propagates with the spggedand the other with
C,. Furthermore their amplitudes are longitudinal and trens¥ to the propagation di-
rection respectively, and therefore these waves are cédlegitudinal and transverse
waves respectively. For elastic waves there is a remarkatid@omenon called “mode-
conversion,” that is, when longitudinal or transverse decit wave hits the boundary
32, both longitudinal reflected wave and transverse reflectadewappear. This phe-
nomenon causes serious difficulties in the analysis of &amigies of the scattering ker-
nel for the elastic wave equation.

In view of results concerning mode-conversion (cf. Chafeof Achenbach [1]
and Theorem 2.1 of Soga [12]), we can expect that correspgnghenomenon oc-
curs for the scattering kerne¥(s, 6, ), because in the asymptotic sense the kernel
P.(G)S(Ci_l/ %0 . x —t,0, w) P (w) expresses th€;-mode component of the scattered
wave in the direction for the C;-mode incident plane wave in the directian In
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the back-scattering case (i.€.= —w), by Soga [10, 11] and Yamamoto [14] we can
obtain results of the same type as in Majda [6]:

0) suppP (-w)X( -, —, w)R(w)] C (—oo, —rii(w)],
(ii) P (—w)S(s, —w, w)P(w) is singular (notC*®) at s= —rjj (w),

whererj (@) = (A (—w) Y2 + 4 (w)"?) minyesq X - @. In Soga [11], he has derived an
asymptotic expansion oP, (—w)S( -, —w, w) B (w) which is valid near the right end
point of the singular support fos € R (i.e. s = —rj (w)):

R (—w)S(s, —o, ) R(w)
(1.2) , N
~ s, 1, ) Y K(a) Y28 (=s —rii(@)) P (@)R(w) +- -,
k=1
where c3(i, |, ®) is a constant{x; o - x = r(w)} N 02 = {&}i=1..n and K(&) is
the Gaussian curvature of2 at a;. For the detailed proof, see Theorem 6.1 in [11].
Since the leading term of the above expansion vanishes inmitee-conversion case
(i.,e.i #1), in the analysis of the singularity we can use it only wher |. In the
mode-conversion case, by Kawashita-Soga [4], it is necggsaexamine the lower
term of the asymptotic expansion of the scattering kernewéver, considering the
case of non-back scattering (i#.# ) and making more precise studies of oscillatory
integrals than those in [11], we shall show that the first tefmP, (0)S(s, 0, @) P (w)
does not vanish, if #| and |0 + w| is different from zero and sufficiently small.
The main theorem is stated precisely in Section 2. The préafuo theorem is
based on methods in Soga [11]. In Section 3, we derive the ptsyin expansion of
P (0)S(s, 0, w) B (w) which is valid not only for the case = | but also for the case
i #1. Using the results of Section 3, we prove our theorem in Secti

2. Main results

Before giving the main results in the present paper, we gidefmition for stating
those.

We setr;| (0, ®) = Minze X - Mi (0, ), wheren (9, ») = —(C70 — Clw).
Next, we denote the first hitting points a2 by Nj (@, ) = {x; @, w) - X =
ri (6, w)} N 9. Furthermore, we arbitrarily pick a poirsz € N; (0, w) and choose a
system of orthogonal local coordinatgs= (y', ys), with Y’ = (y1, y»), in R® such that
ya = (i1 (0, @) — mi (0, ») - X)|Mi (8, )| 1, and thaty = 0 expresses the reference point
a&. Then Q is represented bys; > ¥ (y') in a neighborhoodJ of &, wherey (y') is
a C* function defined in a neighborhood ¢f = 0.

If the Hessian matrixH, ) of ¥(y') is negative definite ay’ = O for every such
picked point, we say that;; (0, ) is a regular direction fo0$2, which does not de-
pend on the choice of the coordinatgs= (Y, y3). If nj (0, ») is a regular direction,
the setN;j (0, w) consists of a finite number of isolated points.
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For a distributionf (s) on R we use the notation
f(s) ~ fo(s) + fa(s) +---  at s,

which means that there exists an integerand aC> function ¢(s) with ¢(s) # 0
such that for every integeN > 0

P(S)(f(s) = (fo(8) +--- + fn(9))} € H™N(R).

Then we have

Theorem 2.1. Let w,0 € S%. Assume thaté + w| is different from zero and suf-
ficiently small and n, (0, w) is a regular direction fora2. Then we have

) suppR(O)(- . 0, w)Pi(w)] C (—00, —ri1(6, ®)] (i =1,2),
@iy PSS, 0, w)Pi(w) is singular (not C*) at s=-ri1(0,w) (i =12).

3. Asymptotic expansion of the scattering kernel

In order to examine the singularities & (0)S(s, 6, w)P (w), it is useful to know
the asymptotic behavior of the scattering kernel. In thistisa we shall derive an as-
ymptotic expansion of the scattering kernel which plays ssestial role in the proof
of Theorem 2.1.

In order to derive an expansion & (0)S(s, 0, w) R (w), we review some results in
[11]. Let vy (t, X; w) be the solution of the following boundary value problem:

(32— L)u(t,x;w) =0 in RxQ
(3.1) u(t, x;0) = (2v/27) °C7¥%5(t — Cw - x)R(w) on R x aQ
u(t,X;w) =0 for t < C'r(w)

wherer(w) = minkeyo X - w. Namely v (t, X; w) is the scattered wave for the inci-
dent wave

(3.2) (2v/27) 727 25(t — G Yo - X) R (w).
The scattering kernel is represented by means, @f X; w):
(3.3)
2
Ss.0,0)= Y C(3/2/ [P(6)@Nv))(C0 - x —s, X; w)
i =1 Q

— CTHRI(O)' (N - X)) (870;) (C0 - x — 5. X 0) }d S

where N = Zﬁjzla” vidy, andv = (v1, vz, v3) is the unit outer normal te.
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By the Hamilton-Jacobi method we have a real-val@d function (plk(X) kI =
1, 2) satisfying

1
[Vei(x)|= = in @nU,,
Cx
. 1
(3.4) o (x) = Ew -X on aNuU,,
|
9 k
—8“" (x) <0 on aQnU,.
v

whereU, = {x; |nj (0, w) - X —rj; (0, w)| < €} with a smalle > 0.

We set
ti-1
——— for t>0
pit)y=14 (i —1) when j=12...,
0 for t<O
pj(t) = p}ﬂ(t) when j=0,-1,-2,....
Let us note that
po(t) = 4(t), Pi+(t) = pj(t) for any integerj.

Lemma 3.1. Assume that there exists a sufficiently smalk 0 such that
|Vg0|ktan| < 4. Then the solutiony of (3.1) admits the following asymptotic expansion
for t € R sufficiently close toif(6, w)

2
(35) u(t, ;) ~ " pj (t — ¢ () uff (%),

k=1 j>0

where L,H‘j(x) are some C°functions defined i2NU, and Vg an denotes the tangen-
tial part to 9Q of Vgf.

Proof. Combining Theorem 2.1 in Soga [11] and Theorem 1.11{,[we can
derive the above asymptotic expansion in this case. ]

Let v (t, X; w) be the solution of (3.1). Them = v R (w) satisfies the equation
(82 — L)u =0 in R x € and verifying the same boundary condition @s Hence, by
the uniqueness of the solutions, we obtain thdt, x; w) = v (t, X; w) P (w). Moreover
combining the representation of the scattering kernel)(ar8l the asymptotic expan-
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sion (3.5), we have

(3.6)
R (0)S(s,0,0) R (w)

2
~ é Ci_3/2|: > /mpjfl(—s— nii (6,) - X)

j=-1

3
X P(6) S apqrp(0) [ (— i @ ) U 12 (x) + 8, U ()} R () d S

p.g=1
3
—Cle/ Pj—z(—S—nn(@,w)-X)Pl(@)Ztapq‘)p(x)equlkj ()P (@) dS|.
j>0v 0% p.g=1
For a regular directiom;; (6, w) we haveN; (0, ) = {as, ..., an}. By using a par-

tition of unity, it is enough to examine the terms whose iregls are supported on
a small neighborhood of the reference poate N; (0, w). Then we can rewrite the
above integrals (3.6) agt'\ﬂl I(0, w). Since the analysis of above integrals near each
point & is same, it is sufficient to study the leading termly¢, ) for only one &,
where we may assumg = 0.

We take an orthonormal framig:, p», ps} where pz = —n; (60, w)|ni (8, )| 7%, and
choose the local coordinate systen¥ (yi1, Yo, y3) such thatx = y; py+yopo+ysps. Let
us denote byl the 3x3 orthogonal matrixT = (t,q) such thatT (ej) = p; (j = 1,2, 3),
where {ey, &, €3} is the canonical basis iR3. Then dQ is represented bysz = ¥ (y)
near 0. Since the equation is isotropic, we have the follgwigsult.

Lemma 3.2. Assume that the elastic mediumis isotropic then we have

3
TLITE)'T=L(E) and T apgtptsg'T = as.
p.g=1

Proof. By the isotropicity of the equation,

3
TLOTE' T =T{(+w)' TEQ TE+uITEPI}'T = (4 )E QE +plEP) = ) askrés.

r,s=1
On the other hand, a direct computation shows

3

Z timapmqntrptsqtjn = Adyi 5qj + Hv(arsaij + 8rj 3si) = Qs -
p.g,m,n=1

Thus the proof is complete. O
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By Lemma 3.2 and an easy computation, we have the followiegtitles:

(3.7) L(@y)uly=ttx = "TL@)Tu('Tx) for any xe Q,
(3.8) (Nyu)('Tx) ='"TNgTu('Tx) for any x € 9%,

where Ny = 33 apqupde,, Ny = Y0 apquidy, and vi(y) = 'Tu(Ty). Then
from (3.7), it follows thatv(t, y;®) := 'Tu(t, Ty, )T satisfies the same boundary
value problem (3.1) ir2 ='TQ wherew is replaced byw™='Tw. Moreoveri(t, y; ®)
admits the following asymptotic expansion:

2
(3.9) Gt y; @) ~ D> pj(t—3K(Y))TK (v)-

k=1 j>=0
Here (i u,] ) —tTulj(Ty)T and ¢¥(y) := ¢f(Ty) which satisfies

V@ (Y)|—— in &nU.,
K 1 ..

(3.10) HWlympy = g @y on 920U,
dpF L.
(p'*(y) <0 on a&nU,,
dv Y= (Y)

whereU, = {y; [mi (6, &) -y —ri (8, ®)| < €} with a smalle > 0.
Since P(w) = TR@)'T, R(®) = TR(H)'T, by Lemma 3.2,1¢(d, w) takes the
following form:

2
> ¢ ¥%R0) / p_a(=5+ M 0. YY) — 11 6. )
k=1 R?

3
[ Z apgVp(TY)(— 3xq§0lk(TY) - Z ‘apqvp(T ¥)bg

p.g=1 p.g=1

x US(TY)B-2(y) P (@) dy
+) /PJ( s+ M (6, @)Y (Y) — 1 (6, @) B (Y) dy

j=-1
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=367 [ pa(-s+Im (.3)v) ~ 1 (0.5)

r,s=1 p.g=1

3 3
x T {P. 6) Z {tT Z apqtprtqu] V7 (V) (— 9y, 21(Y))
3 3
-c Z {tT Z tapqtpr'qu-r] Vr*(y)és}

rs=1 p.g=1
x {{TUYTY)T}B 2Y)R(@)'T dy

- /pJ —s+ |y (3. )| ¥ (y) - i1 (8. &)) i () dy

j=-1

2
=30 [ palos+ m 6.2 v ) i 6.)

xT |:P [Z arsV*(Y) ays(pl (y) -~ Z sV, (Y)es]

r,s=1 r,s=1

x ﬁro(Y)ﬂz(Y’)H(J))} T dy
3 [ oies+ @)l - 1 @.5)8 6 dy.
=1

where g;(y’) are someC* functions supported neay’ = 0 and_»(0) = 1
Sincen; (9, w) is a regular direction, by the Morse lemma we can take a new sys
tem of local coordinatey’ so thaty’ = 0 meansy’ =0 and that

vy (Y) =

= K(a) 2

We can determine the phase functiopé and the amplitudesif; by the methods in

Kawashita [2]. Applying the Taylor expansions 6(y), va,k(y)|y3: G alko(y)|y3: v
vi(9) = [ (B.&) | (8, &) +

VO yymy () = C (@1, o2, )+,

ulo(y)|y () = (2\/57'[) 2C|_3/2 IBLOH(@) +o.,

- < A - - - -1
where § = (V,y3), & = \/w§+C|2-Ck2— 1 and (Vgo,1|y3:¢(y,) . V(p|2|y3:w(y,))
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~1 ~2 — Pl & _ (unsl RRvY -1
V‘pll‘yamp(y’) ® V‘”I2|y3=¢<y/) = Pio+ OUYI) and | (V8 ypmy) - V¥ lympi5)
- - _ o : . .
& ‘y3:1//(§/’) ® Vi |y3:w(§/’) = Pyo + O(IY]). We can rewrite the integral&(6, w) in

the following way:

(3.11)
(2\/§7T) _ZCi_3/2C|_3/2

x 'TK (@) ™2B-2(y) dy

o I S T a2

jHel=-1

where B (y') are someC™ functions supported near = 0 andB_»(0) = 1. By using
Lemma 6.3 and Lemma 6.4 in Soga [11], we show that the leading of (3.11) is
the following form:

(2v/2r) "G (0.6)|*8 (~s—ri (0.8))K (@) 7|

2
XT{P Z[Z agq(C ™ dq) +'asq (C;0g) } +aas(C i +C; 193)}F~’|'<.0F’l(5))}tT-

k=1

Summing over all points;, we arrive at the following proposition.

Proposition 3.3. Let w,6 € S°. Assume thatf + o| is sufficiently smajl and
N (9, w) is a regular direction foraQ2. Then we have

R(0)S(s.0,0) R ()

< (2V2r) PG (6.5) 25V (—s—ra (.3)) S K (@) V2|8
t=1

><T|:P|(§)22:

{ > {aaq(Cisg) +'asq (C0g) } +aas(Ci & + C*03) } PioP (5))} T

+...

’
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where T = (tpq) is 3 x 3 orthogonal matrix and x= Ty, & = Tw, § = T and
~1 L vs2 -1 g1 ~2 - pl & _

(Y& ey - VO ooy ) . Vtlymyiy ® VOl ypmygy = Pro+ OF1) and |
~1 ~2 - ~1 ~2 — pl &

(Vé |y3=1//(§/’) Vo ‘y3:¢(§/’)) Vo |y3:¢(y/) ® Vo |y3=¢,(y/) = Pao + O(IY').

4. Proof of Theorem 2.1

In this section, using Proposition 3.3, we investigate thppsrt and singularities
of the scattering kerne¥(s, 6, w) for the non-back scattering, and prove Theorem 2.1.

Proof of Theorem 2.1. (i) By using the method of the proof ie first half in
Proposition 3.3, we obtain

R (G)S(S’ 0, CU) Pl(a))

:c.‘3/2P9/ &Nv (C710 - x — s, X; 0
(4_1) i |() . t 1( i )

—Ci_5/2P.(0)/ {(N6 - x)82v1 (C720 - x — 8, X; @) d S
02

Since due to the finite propagation speed for solutions toisb&opic elastic wave
equationv(t, x;») = 0 if t < C{'w - x, it follows that vi(C7'0 - X — s, X;w) = 0
if Ci'w-x > C'0-x —s. Therefore since the right-hand side of (4.1) is equal to 0
if s> —(C'w-x—C'0-x), by taking a supremum with respect xoe 32, which
proves (i) of Theorem 2.1.

(i) Note that P1(§) = £ ®E&, P(§) =1 — £ ® £ and eachﬁﬁOPl(c?)) k=12
takes the following form:

~2 ~ ~ ~ ~
~ w w12 w13
= - _ Al®) . L ~ .
(42) PZI:!-O Pl(a)) = K(g)_) ( w21 0)5 wow3 s
o3l |@w3|l@z  |@3]@3
~2 ~ ~ ~ ~
~ o~ w w12 w13
~ o _ —203K21 L - -
(4.3) Py oPu(®) = AG) 201 @3 2003 ,
|w3|@125, |@3|@w2Zs, 03|32,

where A(®) = @2+@2+@aiia1, A@) = @2 +@3+|dsliz1 and zz, = (1—&3) /dsicz1. Recall
that ni1(8, &) /|ni1 (8. ®)| = (0.0, —1), we can rewriteP} (8) Y1 [>7-1{asq(C; *@q) +
tagq(C 0q) } + ass(Cy e + C163) | PLoPu(@) in the following form:

2 Pe 2

) ) ) o . PcoPu(®)

(4.4) PR(9) Z{(a31 +'ag1)@1 + (as2 + '802) @2 + aga(@s + K + Calfiia])) Kgii‘l
k=1 '
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Then, calculating each term in (4.4) more carefully, we chtaio

2 0 0 r+u
P (0) Z 0O 0 O i PgoPu(®)
k=t \ A+u O 0

A@)(@ ® &) +2|as|kz1(a ® @)

= (A + )i ) ,

. /0 0 0

PEY [0 0 x+u |@PLPi®)
k=1 \ 0 A+pu 0

A@)b® &)+ 2isin(D® )

= (A + pu)ar B ,

2 /L 0 0
@)>° 0 | (@s+Ra+Culfial)PeoPu(®)

k=1 O O A+2u
_ Cilfia [A(@)(C ® @) + 2| @s|i21(3 + K21 + Ca|fija [)(C ® &)
A(®) ’
where
a="(@1p*V(8) +|@s| p*V (), @1 p2(0) + 1l pV(8), 1P (B) + 151 Y (D),
a=! (a1 p(0) +1s12a, BV (8), i1 D (B) + 13|25, PV (8), 1. 0 (B) + |3l 23, PCV(B)),
b=!(@2p{"(6) +13al (7). 32P* (6) +1531 P2 6). 52 (B) + 12l P 6).
b="(2p*%(8) +|3| 23, pT2(0). 02 pE(B) + sz, 2 (B) 020 (6) +13312, 62D,
c="(ie{ PV (@) + pM2(8)@a) + (. +2u) P (B) 3,
| pBV(B)an+ pP2(8) @2 ) + (1 +2u) pP2(6) s,
] pPY(0) s+ pP2(8)@) +(n+210) PV (6) @3,
c=!(ie{ p (@) o+ p12(0) 2} + (1 +20) @3l 25, pTO(6),
1| pBV(B)an+ pP2(8) @2 ) + (1 +2u) @3125, PPV (),
u{ pEV(@)ar+ pEA(B) @2} + 0.+ 200) @312, PV (B),

each p(pq)( ) denotes p, g)-entry of P() and fi; = ni1(d, ®). Hence, applying the
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asymptotic expansion derived in the Proposition 3.3, weiabt

(4.5)
Fll (G)S(Sv 97 a)) Pl(a))

’

~ (2v2r) 2C ¥7C 8D (=s — 1in (B, & ZK(at) V2| SHT My (6, @)'T +- -
t=1

where Mg(é,(b) is a 3x 3-matrix whose f, q)-entry is expressed bynpq(é,cb). As
shown above, it is represented in the following form:

M3(, &)
= [( + W {A@)(a ® &) + 2@slk21(@ @ &)}
+ (0 + Wa{ A@)(b ® &) + 23|21 (b ® @)}
+{Calfii1| A@)(C ® &) + 2\@3lka1(@3 + Ro1 + Colfi1])([C® @)} ]/ A@).

(4.6)

To show that ttle leading term of the right—hand~side of (4&«not vanish, we shall
prove thatmas(6, &) # 0. According to (4.6)mg3(6, @) is expressed as follows:
ms3(6, &)

= [(x + wan{ A@) (@1 B+ @s p(31)) + 2|21 (@1 POV + |@g) 22, (31))}

+ (h+ 1)in ] A@) (2B + @ BE?) + 2laralar (@2 B2 + @312, PP) V] 03 ) A@®)

+[Culfii sl A@) {1t (B + pi2) + (0 + 2u) BV sl )
+2/@3|R21(@3 + Ra1+ Calfi 1) {1 (BEVi1 + BEP0) + (0 + 21) | 03125, B} |03/ A@)

= [0+ W) (@F B + @35°7) (A@) + 2\l 21)

+ 0% 1)1 @3] (B0 + PE202) (A@) + 2dslf12a,)

+ M(p(al) @2){C1|fii1| A(@) + 2|@3|R21(@3 + K21+ Calfiia]))

+ (n + 21) POV @3l (Culfii 1| A@) + 213l Ro1(@3 + Ro1 + Calfii1])Zas ) @03/ A@),

w1+

iy + P

where pP? = p(pq)( ) andfiiy = i1 (6, &).

By Lemma 4.1 below, we can proves(d, @) # O, that is, we show that the
leading term of the right-hand side of (4.5) does not vaniltus the proof is com-
pleted. O

Lemma 4.1. Assume that\é + £>| is different from zero and sufficiently small
Then we have g0, w) # 0.

Proof. (i) Leti = 1. Since, in the case of back-scattering,="(0, 0, —1) and
6 =(0,0,1), we can derive thatss(d, &) = 2(1+2u)+O(|0+d|). Therefore, by using
our assumption thald +&| is sufficiently small, we can prove thatss(6, &) # 0.
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(i) Leti=2. Byfin(d,d)/|fu(d, )| =(0,0,—1), that is,
Cilop=Cy%0p (p=12), C;'@3=C,"%5— |fxu(f. @) and |8]=1
we can expressngs(f, @) as a function in(fy, 6,):

F (él, 52)5)3(51, 52)

Mas (61, 02) = A(@ (61, 62))

where

F (51, 52) = G+ ) (2 +53) (330) +330) A3 (9))
+ % 1)CaC3™ (7 +53) | 3(9) B A 0
— HC1C5 (B +63)Ba{ Calial A(@(5)) +
— 4 20) (324 73) () Calnl A (0
= (67 +65) F (61, 62).

)

Here we note tha{d + &| # O is equivalent to(61,82) # (0,0). In order to show
ms3(@, &) # 0, it suffices to show thaF (61, 62) # 0.
Since F (1, 6,) is a C™ function near(fs, 6,) = (0, 0) and

F(0,0) = —{( + 2u)a1 + uC1C, "1 (C1C, * + 21)} < O,
we can obtain thaf (f1, 6,) # 0 provided|d+&| is different from zero and sufficiently
small.
Thus the proof is completed. Ul
REMARK 4.2. If § = —& (i.e. back-scattering case), thems(d, @) = 0.
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