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Introduction

Let X be a non-singular threefold defined over an algebrgicellbsed field
of characteristicy > 0. We consider a proper morphisth X: — C, whereC is
a non-singular curve ang.Ox = O is satisfied. If the characteristic & is zero,
it follows that a general fiber off is non-singular, which isokm as Sard’'s lemma.
In positive characteristic it happens that is not gendsicainooth, and our aim is
to understand such phenomena explicitly. Our main concerthé cases wher& s
either a Calabi-Yau threefold or a Fano threefold. Exampliesuch fibrations can be
found in [8] and [12].

In this article, we have two main results. One states thatetige a tendency that
Sard’s lemma continues to hold except for some srpatt 0.

Theorem 5.1. Consider a fibrationf: X — C from a non-singular threefold to
a curve We suppose that a general fiber 6f is a normal surfadeen the following
hold:
i) There does not appear a simple elliptic singularity on a gehéber if p > 5.
i) Under the assumption that the anti-canonical divisor of &fils ample a general
fiber is non-singular ifp > 11, i.e, it is a Del Pezzo surface
iii) Under the assumption that a general fiber has a trivial duagizsheaf and has
only rational singularities it is non-singular if p > 23, i.e, it is either an abelian
surface or ak 3 surface

The other concerns the local behavior of the fibratibpn X — C along the singu-
lar locus of general fibers. We have Theorem 3.4 in which mali@ouble points are
treated. We use the notation of Artin in [3].

Theorem 3.4. Supposep > 3. Let f: X — C be a fibration from a non-singular
threefold to a non-singular curve
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i) The following are all the types of rational double points g@rhican appear as sin-
gularities of a general fiber off:

Eg, Eg, Asze_q in p= 3;
E, As_1 in p=5;
Ape_l in P Z 7,

wheree is a positive integer

i) We assume that a general fiber f has a rational double pdiet  be a pa-
rameter of the base curve at a general poifiben its pull-backf*r € Ox , at the sin-
gular point in questiont € Sing f~1(r) can be put into a normal form in the complete
ting Oy = k[[x, y, ] as follows

EY:  r=72+x%+)5 p=35;

Eg: t=z2+x3+y4, p=3 or
t=2+x3+y )% p=3 Y exk[[A], dy #0;

Ape_1:t=xy+z", p any prime e > 1.

However, there remain questions we could not settle: One iextend the re-
sults of Theorem 3.4 to the case where a general fibef o - C has rational
double points of typeD E inp = 2. Another is, as in i), Theorem, Sahether
a general fiber off X — C can have simple elliptic singularities ip 5 2 3. Also,
when considering Calabi-Yau threefolds or Fano threefadi® encounters the follow-
ing situations which we did not treat in this article; f) X: — C is a fibration from
a non-singular threefold to a non-singular curve and theeg@rfiber has either irra-
tional singularities other than simple elliptic singutea$ or non-normal singularities,
i) f: X — Y is a fibration from a non-singular threefold to a normal stefand
the general fiber is singular or non-reduced. We note thaetlggiestions are consid-
ered as a three dimensional generalization of what is knasvguasi-elliptic fibrations
of surfaces (cf. [4]).

1. Preliminaries

Let (R, m) be a two-dimensional local ring essentially of finite typeeioan al-
gebraically closed fieldk of arbitrary characteristic. Thmbedding dimension and
the multiplicity of (R, m) are defined as emb dif  := dimn/m? and e fn, R) :=
lim,—so 2/n2dimk R/m" respectively. Assume furthermore thar,(m) is normal.
The space of first order infinitesimal deformations df, ) is defined as7! :=
Exth (Q}e/k,R). If (R, m) has its embedding dimension three, we have the isomor-
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phism

dp Op Oy
1~
T _k[[-xvyaz]]/<axaay5 8Zv<p)v

under an identificatior® = k[[x, y, ] /(¢) (cf. [2]).

We call a proper birational morphism: X — SpecR from a non-singular sur-
face X a resolution of singularities #f induces an isomorphismy \ E = SpecR \ m,
where E :=n"(m) is the exceptional set. A proof of the existence of resohdi of
surface singularities can be found in [10]. If the exceploset E contains no excep-
tional curves of the first kind, we say that the resolution wigslarities = is min-
imal. The geometric genus ofR(m) is defined via a resolution of singularities as
pe(R, m) = dim; R, Oy, which is independent of the choice of resolutions.

We call a proper morphisnf X — S from a non-singular varietX to a normal
variety S a fibration whenf.Ox = Oy is satisfied. IfS has dimension one, any fiber
X; (t € S) is a Cartier divisor inX and the embedding dimension of a degpoint
of X, is equal to the dimension of

2. Two criteria

Let f: X — C be a fibration from a non-singulan ( +1)-fold to a non-singula
curve C . We study the singularities of a general fiber fof

Proposition 2.1. Let (R, m) be ann -dimensional normal local ring essentially of
finite type over an algebraically closed fietld We suppose thatmh dimR =n +1and
m € SpecR is an isolated singularityLet 7% := EXt}?(ije/k’ R) be the space of first
order infinitesimal deformationdf (R, m) is isomorphic to a singularity on a general
fiber of £, the dimension off! as ak -vector space is divisible by.

Proof. Letf :X — C be a fibration as above. We consider an idéat Oy
defined as the image of a natural couplifgQl x Tx — Oy, and denote byA
the closed subvariety of  defined By . By the assumption, tegigs an irreducible
curve A" in A such that the restricted morphisifi{,; : Ajq — C is surjective. Then
(Afeg X1)g > 1 atqg € AN X, becauseg € SingX, . This indicates thaf|,,  is
ramified at a general point, therefoil,,  is inseparable. It follows thatA(y, X:),
is divisible by p, and so is4’, X,),. On the other hand, by a local description, we
know

. of*t Of*t of*t
12 _ *
(A’X’)‘I‘d'm"OX"I/(axl’ FISRERR Bx"’ft)’

where x1,x2,...,x, (resp.t) are a regular system of parameters(df, (resp.
of OC,I)- O
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Proposition 2.2. Let (R, m) be ann -dimensional normal isolated singularity de-
fined by a quasi-homogeneous equatipfxo, x1, ..., x,,). Let w; be the weight ok;
and m be the degree op with respect to these weightd (R, m) is isomorphic to
a singularity on a general fiber of, the integerm is divisible byp.

Proof. Assume thats{, p ) =1 and suppose that there exists aifibrat: X —
C whose fiber X, has a singular point € X, which is isomorphic to R, m).
Choose a local coordinate € Oc¢, of the base curveC and pull it back by
Then under an appropriate identificati(@tx,x >~ k[[xo0, x1, - - -, x,]] we have the ex-
pressiont =up(xo, X1, - .-, X,), Whereu € @X‘x is a unit. By the coordinate change
(x0, X1, - -+, Xp) — (u_w"/"’xo, wmwmyy u‘w"/"’xn), we get rid of the unitx and
have the equation ®(xo, x1, ..., x,). Then consider the derivatioD  wpxod/0xo+
wi1x10/0x1 + - -+ + w,x,0/0x,, S0 that we haveD () = me. Thus there is an isomor-

phism
R 9o Op 09\ i dp dp Iy
o Oxo Ox1” " Ox, ) T axo’axl’“"axn’@ '
This indicates that the singularity of the fibere X, does not extend to singularities
of other fibers. Thus we have proved the proposition. O

3. Rational double points

DeriniTion 3.1, Let (R, m) be a two-dimensional normal local ring essentially of
finite type over an algebraically closed fietd . We say thatcRpbhas a rational dou-
ble point atm if (R, m) has multiplicity two, andR'7.Ox = 0 holds for a resolution
of singularitiesw: X — Specr .

The classification of rational double points in positive ratderistic is given by
Lipman-Artin ([3], [9]). In characteristic 2, 3 and 5, thergtture of the singularity is
no longer determined uniquely from the configuration diagran the minimal desin-
gularization.

Theorem 3.2 (Artin [3]). The following assertions hald
i) In the classification of rational double points in charadstic p, the equation is
uniquely determined from its configuration diagram excéyet following cases

p=2 DY.: zZ%+x%y+xy" dn n>2
Dy, : ZHx’y+xy" +xy" 'z n —2r r=21...,n—1
DS 22+ x%y+y'z 4n n>2
Dy q: 22+ X2y +y'z+xy" 'z dn — 2r r=1...,n-1

EQ:  2+xP+y% 8
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Eé: 22+x3+y2z +xyz 6
E%:  22+x%+xy® 14
E%: 22 +xs +xy3 +x2yZ 12
E3:  Z2+x3+xy3+y% 10
E;’: 2+ x3+xy3 +xyz 8
EY:  z2+x3+)y° 16
Eé: 2+ x3+y5+xy¥; 14
E2:  Z2+x3+yS+xy%z 12
Eg: 2+x3+y°+y3% 10
Eg: 2+ x3+yS +xyz 8
p=3 Eg: 2+x3+yt 9
Eé: 2+ x3+ yt+x2y2 7
EY: 22+x3+x)® 9
E%: 22+ x3 + xy% + x2y? 7
EY:  22+x3+y° 12
Eé: 22+ x3+y5 4423 10
Eg: 2+ x3+ 5 +x2y2 8
p=5 Eg: 22+ x3+y° 10
Eé: 2+ 33+ S +xy? 8

The number to the right of each equation is the dimensioff ‘of
i) In a family of the singularityX, (X = A, D or E, respectivel}, the indexn is
upper-semicontinuousvhile the co-index is lower semi-continuous

Remark 3.3. The equations of rational double points other than thesostated
in the previous theorem are identical to the classical forms

Ay " xy n if pf(n+1), n>1
D" xy n+lifp|(n+1), n>1
Dy 2 +y(x®+y""%)  n n> 4
Eg: 22+x3+y* 6
E;: zz+)53+)cy3 7
8

Eg: 72+ x%+ y5
The number to the right of each equation is the dimensiof ‘of

We have our main theorem.
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Theorem 3.4. Supposep > 3. Let f: X — C be a fibration from a non-singular
threefold to a non-singular curve
i) The following are all the types of rational double points g@fhican appear as sin-
gularities of a general fiber off:

ES, EQ Asz_1 inp=3;
Eg, Ase_q in p= 5;
Ape_l in P Z 7,

wheree is a positive integer

i) We assume that a general fiber ¢f has a rational double pdiet r be a pa-
rameter of the base curve at a general poifiben its pull-backf*r € Ox , at the sin-
gular point in questionx € Sing f~%(r) can be put into a normal form in the complete
ting Ox.. = k[[x, y, ] as follows

EY: =2+ x3+y°, p=375;
Eg: =22+ x3+y4 p=3 or

t=22+x3+y* +y3, p=34 € xk[[A]],dy #0;
Ap_1: t=xy+z", p any prime e > 1.

Proof. By using the criteria in Proposition 2.1 and Proposit2.2, we see that
the remaining cases are

Ap p | (n+1),

E p=375
E?  p=3
E p=3

In order to determine the normal forms, we use the followingditions: i) There is
an irreducible componenh C X of the locus of singular points of fibers so thAeq

is a non-singular curve at the point in questiore Sing f ~*(¢). ii) Consider the mor-
phism f|a.,: Area — C and the extension of the function fieldsA{q)/k(C). Then
the normalizationC’ — C of C in the relative separable closure bfC ( ) kinAq)

is not ramified at a general point. iii) For each singularifytiwe fiber Ox . /(f*t) we

have dim T* = dim k[[x, v, z]] /(O.f*t/Ox, O f*t /Dy, O f*t/Dz, f*1).

In caseA, withp | (n+1), we start froms =uo(xy +z9°) with some unitug €
k[[x, y, 7]] and integersq, e > 1 with n+1 =¢p° andp t ¢q. By appropriate coordinate
changes, we have fuz?")? +xy, whereu € k[[2]] *. This one parameter deformation
has a rational double point of typ&,,._; at+ = 0. Its general fiber has the singularity
of the same type if and only i =1 ande k[[z*']]™. Indeed, the if part is obvious.
For the only if part,A given above is defined by the idéaly,z‘“’ydu/dz). Then
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condition i) implies thatdu/dz = 0. The morphismf|a: A — C is given locally by
t = (uz?")?. Then we have, from condition ii), that = 1 and € k[[z*']]" as
required. The normal form is given by 2" xy .

In caseE§ in p =3, 5, we start front =uo(z? + x3 + y°) with ug € k[[x, y, 2] *.
After coordinate changes, we have z%+ (ag+ayy + azy® + azy®)x3 + y® with ag €
k[[xX] *, a1, az az € k[x]] in p=3; and t =z2+x3 + (bo + byx)y® with bg € k[[]] ¥,
b1 € k[[H]] in p = 5 respectively. Now the locusA is locally defined byethdeal
I = (z, (ah + aly + ahy? + afy®)x®, (a1 + 2a2y)x> + 2y%) in p =3, andl = ¢, 3%+
b1y®, (by +bix)y®) in p =5. From condition i), we know that there is an element
(x,¥) \ (x, y)? such thatl = (z, ¢") with somen > 0. Then condition iii) implies that
n=4inp =3 andn =2 inp =5, from which it follows that; =a, =aj =a3 =0
in p =3 andb1 = by = 0 in p = 5. Then after a coordinate change, we obtain the
normal forms =z2 + x3+ y°.

In caseEQ in p =3, we haver =2+ (ap +ary +azy?)x3+ y* with ag € k[[x]] ¥,
ai, az € k[[x]]. Then the locusA as above is given by the iddal = ¢, tajy +
aby?)x3, (a1 + 2a2y)x® + y3), which can be put, by condition i), as > (z, ¢") with
someo € (x,y)\ (x,y)? andn > 0. Then condition iii) implies that = 3 and, =
ah=a, = 0. Then replacing by —a}*x givest =z2+agx®+y*—ay’°xy® and we put
this ast =z2+x3+y*+4y3 with ¢ € xk[[x]]. We divide this case into two according
as diy vanishes or not. The former corresponds to the normal formz? «x3 + y4,
and the latter ta =2+ x3+ y* +4y3 with ¢ € xk[[x]], dv #O.

In caseE? in p = 3, the one parameter family mo(z? + x> + xy®) with uo €
k[[x,y, )] * can be transformed into 2+ (ag+a1y+azy?)x3+xy® with ag € k[[]] %,
a1, az € k[[x]]. The locus A is defined byl =z d+ ajy + aby?)x® + y3, (a1 +
2a,y)x%). Then condition i) implies that there existsc (x, y) \ (x, y)? such that/ =
(z, ¢") for somen > 0. From condition iii) we haves = 3 and = a1 = a» = 0.
Performing a coordinate change— y—\-’/%x, we may assumej = 0, then replacing
x by 1/Jagx, we gett =z2+x3+1/Jagxy>. A general fiber has a&?-singularity.

O

When considering rational double points in characteristio, we find the criteria
in Proposition 2.1 and Proposition 2.2 useless exegpt  -type

Proposition 3.5. Supposep = 2. Let f: X — C be as inTheorem 3.4.Suppose
that a general fiber has a rational double point of tyde, then we have: = 2¢ — 1
with an integere > 1 and the normal form off along this singularity is given as

Ap_1:t=xy +77.

Since we know the local description of deformations, théofwing corollary can
easily be verified.
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Corollary 3.6. Suppose that a fibratiorf: X — C from a non-singular threefold
X to a non-singular curveC  has a general fiber with rational dlgupoints inp > 3
(resp rational double points of typet, ip = 2), then there exists an integefy >
0 such that the family of rational double point§ x- C™ — C* obtained by base
change by the: -iterated Frobenius morphigin C™ — C is locally trivial for n >
ng. To be more precise, the integeg is given asng = ¢ for a rational double point
of type A,c_1, no = 2 for that of typeEQ in p=3 andng=1for EJ in p=3,5.

Remark 3.7. i) We could not solve the question in rational doublenfsiof
type D, E in characteristip= = 2. Direct calculation seems tb ifaithese cases.
ii) Suppose that a rational double point is given by a polyi@m(x, y, z) = 0. Then
we have the family

Sped ﬁf,y,z,ll,lz,-~-,ld]/<<ﬂ+zpilf> — Speck f1, 12, . .., 1a],

i=1

where P; € k[x, y, z] induces a bases of the -vector spacex, [[,z /(#lp/0x, /Dy,
0p/0z, ). The formal completion of this family along the fiber at thegm gives
a formal versal deformation of the given rational doublenpoirhe family whose fiber
has still the same rational double point as the closed fibegitteer the closed fiber
only or given as:

p=3 E: 23+ ey
E?: 2+ a3+ xy3 +nx
EQ: 2+ x3+y 1+ 1oy
Eé: 22+)63+1‘1yg+y4+xzy2
p=5 Eg: 2+x3+y% 4+

. m
pany Apy_1i xy+ (ZP +tl) (p,m)=1

This is an analogue to the calculation for quasi-ellipticfates given in [4].

iii) We find the following theorem by Wahl interesting in cawttion with our main
theorem. Here,S is a locally free rank two subsheaflin , whiah nefer to his
paper for definition.

Theorem (Wahl [15]). Let X — SpecR be the minimal resolution of an RDP
Then H(S) = 0, and in particular the resolution is equivarianexcept in the follow-
ing cases

Al‘l p|n+17
D, p =2
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Eg p=23
E7 P=273
Eg p:2,3,5

4. Simple elliptic singularities

Derinmion 4.1 (K. Saito [11]). Let R, m) be a two dimensional normal local
ring, essentially of finite type over an algebraically clbdeeld k. We say that £, m)
is a simple elliptic singularity if its minimal resolution: X — Spe® has a single
non-singular elliptic curveE  as its exceptional set.

A simple elliptic singularity whose exceptional curve hadf-intersection number
E? = -3, E?2 = —2, E? = —1 are calledEg-type, E;-type, Eg-type, respectively.
The following is known, ifk is the field of complex numbers, de tGrauert’s the-
orem. His assertion can be extended to arbitrary charatiteri

Theorem 4.2 (Grauert [5]). We consider a normal surface singularity whose ex-
ceptional set of the minimal resolution consists of a namglar curve E of genug.
If £2 < 4(1— g), the singularity is defined by quasi-homogeneous equations

Proof. We denote the minimal resolution by X — SpecR with the maximal
ideal m C R and the exceptional curve b¥ . Consider the exact sequernhtedn
from the inclusionm” C R with n > 1

m"'®0x — Ox — Ox ® R/m" — 0.
We have another exact sequence
0— Ox(—nE) — Ox — O, — 0.
First we show the equality

R > lim H(X,, Ox,) = lim H(E, O,z),
n n

where X,, is the fiber produck ®x R/m". The first equality is a consequence of
the formal function theorem. The second follows from thet fdmat, since their sup-
ports coincide, the inverse systems of sheay@s/m"Ox} and{Ox/Ox(—nE)} give
the same limit.

Secondly, we consider the filtration d?x by sheaves of ideals

Ox(—E) C Ox(—2E) C Ox(—3E) C --- C Oy.
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The hypothesisE? < 4(1— g) guarantees the following vanishing in any- 0
HYE, Tr @ Ox(—iE)) = HY(E, O @ Ox(—iE)) = 0.

From the vanishing of the first term we deduce tliag has the structure o®. al-
gebra for anyi > 0 (cf. [6, Chapter II, Exercise 8.6]). The second vanishireg
the splitting of the following exact sequence @f;-modules fori > 0

0— Op ® Ox(—iE) — Og+1)e — Oig — 0.

So we haveO+1yr = @Bi-y Op(—iE) for n >0, and

lim Ox /m" Ox = lim Ox /Ox(—nE) = im @) Op(—iE) |/ €D Or(—iE).

T i>0 i>n

Thus them-adic completion ofR is obtained as the completion of a figitgénerated
graded ring@, ..o HU(E, Op(—i E)). O

Corollary 4.3. A simple elliptic singularity of the embedding dimensiore¢his
given by one of the following

p>3 Ee x(x—2)x—A)—2y°=0,
E7i zx(x —2)(x — A7) — y2 =0,

Eg: x(x —z9)(x — \z?) —y? =0, where A€k, A #0,1

p=2 Esg: yzz +ayjxyz + a3yz2 +x3+ azxzz + a4x22 + an3 =0,

3 2,2 3

E7I y2+a1xyz+a3yz2+x z+taxx“z°+tasxz +a624:O’

Eg: y2 +ayxyz + agyz3 +x3 + aox?z% + agxz* + agz® = 0,

where a; € k, aSag + adasas + afaxas + afai + a5 + alad # 0.

Proof. The normal forms are determined as in the case of cleaistic zero
from the Riemann-Roch theorem; diH®(E, Op(—mE)) = m(—E?) for m > O.
Ol

Theorem 4.4. Simple elliptic singularities of the following types do rejipear
on a general fiber of a one-parameter deformation whose tgpalce is non-singular

Eg inp23,
E7 inp>3,
Es inp25,p:2
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Proof. The dimension of'! is calculated as follows

Eg dlmk Tl =10,
E‘7 dlmk Tl = 95 (p # 2)5
Es  dimT'=8 (p #3).

The deviating cases arg; in p = 2 with dim, 7! = 10, andEs in p = 3 with
dim, 7t = 9. By Proposition 2.1, and Proposition 2.2, we fild in p = 3, E7
in p=2 andEg in p =2 as the remaining cases. [l

5. An application

In this section we consider applying our results to CaladirYhreefolds and Fano
threefolds.

Theorem 5.1. Consider a fibrationf: X — C from a non-singular threefold to
a curve We suppose that a general fiber 6f is a normal surfadeen the following
hold:
i) There does not appear a simple elliptic singularity on a gehéber if p > 5.
i) Under the assumption that the anti-canonical divisor of &ifils ample a general
fiber is non-singular ifp > 11, i.e., it is a Del Pezzo surface
iii) Under the assumption that a general fiber has a trivial duatizsheaf and has
only rational singularities it is non-singular if p > 23, i.e,, it is either an abelian
surface or aK3 surface

Proof. i) This assertion follows from Theorem 4.4.
i) Let X, be a general fiber off and consider its minimal resolutbdf singularities
m: X7 — X,. Then by [7, Theorem 2.2] and Theorem 4.4, we know tkiat is ia-rat
nal surface and has only rational double points. Then by tieenBnn-Roch theorem,
we have the upper-bound of the Picard numpgx?) = 10— K§7 < 9. Then the asser-
tion follows from Theorem 3.4.
iii) We also consider the minimal resolution of singula#ti of a general fiber
n: X; — X,. Since the singularities ok, have the embedding dimensioeeththey
are rational double points and we only need to consider tise @éhereX,” is aK 3
surface. The Picard number satisfigsX;) < 22 (cf. [1]), so we have the assertion
again by Theorem 3.4. O

Remark 5.2. Umezu studied projective normal surfaces which havelkrdualiz-
ing sheaves ([13], [14]). Unlike normal Gorenstein surfaggth ample anti-canonical
sheaves, irrational singularities other than simple &dligingularities can appear on
such surfaces.
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