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Introduction

This work started as an attempt to understand the processnkrs the local
slice construction. Introduced by Freudenburg in [4], tisi® method for modifying a
nonzero locally nilpotent derivation &[X, Y, Z] so as to obtain another one (wheke
is a field of characteristic zero). Near the end of the citepepaFreudenburg defines
a graphI' whose vertices are the kernels of the nonzero loadpwtent derivations
of k[X, Y, Z] and where vertices keff ) and ké¥) are joined by an edge whenever
D’ can be obtained fronD by a local slice construction (in on@)ste

Over the years, it has become clear that the local slice mat&n is an inter-
esting idea for studying the locally nilpotent derivatiook k[ X, Y, Z]. In particular,
one would like to know ifl" is connected. Connectedness woumthat every lo-
cally nilpotent derivation can be obtained from one of thesay(from0/0X) by a
finite sequence of local slice constructions. In unpublishrk, we have shown that
this is indeed the case for derivations which are homogeneoth respect to positive
weights.

In the hope of clarifying the local slice construction, wengralize it. LetB be
an arbitrary integral domain of characteristic zero. Int®ec3 of the present paper,
we define a graptkLND(B) which generalizes Freudenburg’s graph : The vertices
of KLND(B) are the kernels of the nonzero locally nilpotent deriwasgi of B and the
edges, one might say, capture the essence of the local fitgtraction. Also, the
graph KLND(B) is an invariant of the ringB and the group of automorphismsBo
acts on it in a natural way. In the special caBe K[X,Y, Z], the two graphsI’ and
KLND(B) have the same vertices and every edgel'of is an edgeLeb(B); we
don’t know if every edge okLND(B) is an edge ofl" .

This generalization produces new insight into the locatesigonstruction. In par-
ticular, we find that that process is essentially a two-disi@mal affair and that it is
intimately related to Danielewski surfaceX¥ PZ( )"

We believe thatkLND(B) is a suitable tool for studying polynomial ring8( =

Research supported by a grant from NSERC Canada.
2000 Mathematics Subject ClassificatiorPrimary: 14R10. Secondary: 14R20, 13N15, 14J26.



38 D. DAIGLE

k). For these rings, the graptLND (B) seems to have just the right amount of edges
to be interesting. This is not the case for all rings: One cad &xamples of rings
B for which KLND(B) is the empty graph; okLND(B) has only one vertex and no
edges; or (see 6.RLND(B) has infinitely many vertices but no edges.

In a subsequent paper, we intend to use the methods devehgpedo investigate
the locally nilpotent derivations df[X, Y, Z].

The material is organized as follows.

Section 1 gives the basic definitions and results that ardatkeen this paper.

Section 2 gives some algebraic properties of Danielewskiases. Note in par-
ticular results 2.5, 2.6 and 2.6.2, which characterize Blaniski surfaces in terms of
locally nilpotent derivations.

Section 3 defines the graptLND(B), where B is any integral domain of char-
acteristic zero. In addition t&LND(B), two other graphsKLND ,(B) and R(B)) are
defined in that section.

Section 4 describes the grapghND(B) in the case wher is a two-dimensional
ring.

Section 5 focuses on the subgraghnD,(B) of KLND(B) obtained by deleting
all isolated vertices. IfB is a factorial affine domain (of asiynension), Theorem 5.1
states thakLND,(B) is a union of connected subgraptis such that: (i) E@eh is
isomorphic toKLND(B;) for some two-dimensional ring; (in fact a Danielewski sur-
face); (ii) every edge okLND,(B) is an edge of exactly on€; ; and (iii) if# j then
G; andG; have at most one vertex in common. So the local strucfurep , (B) is
well understood, thanks to the thorough description of the-dimensional case given
in Section 4.

Section 6 gathers some remarks which conclude the paper.

1. Generalities

1.1. Conventions.

¢ All fields and rings are tacitly assumed to be of characieriztro.

e Throughout,k denotes an arbitrary field (of characteristic zero).

e The set of units of a ringk is denotekl*.

e If Ais a subring of a ringB and € N, the notationB =Al'l means thatB is
A-isomorphic to the polynomial ring im  variables ovdr .Af/K is a field exten-
sion, L =K means that. is a purely transcendental extensiok of , of desms
dence degree

o If Ais a domain then Frag s its field of fractions. #f C B are domains then
trdeg, 8 ) is the transcendence degree of Brac over &rac

e By a k-domain of transcendence degrde we mean an integral domaiB  con-
taining k and satisfying trdedB) = d.

e If R is a subring of a domaind , then we writég as an abbreviation the
localized ringS—*A, whereS =R\ {0}; in particular,A, =Fracd ); ifD :A — A is
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a derivation,S1D: S~1A4 — S~1A is abbreviatedDy Az — Ag.
olf ac AthenA, =S5"1A whereS ={1,a,a?,...}.

Derinmion 1.2, Aninert subringof a domainB is a subrinkk oB  satisfying:

Viyes xy € R\ {0} = x,y€R.

1.3. If Ris an inert subring ofB then the following hold.
(1) R* =B*
(2) R is algebraically closed iB
(3) If Bis a UFD then so isk .
(4) SR is an inert subring ofS—!B, for any multiplicative subses C R\ {0}.

1.4. A subring R of an integral domaiB is inert if and only Bz* = Rz"
and BN R =R.

Derinimions 1.5, Let B be a ring.
(1) A derivationD :B — B is
e irreducible if the only principal ideal ofB which contain® B( ) i8 ;
e locally nilpotentif V,cp >0 D*(x) = 0.
(2) Notations:

LND(B) = set of nonzero locally nilpotent derivatiod¥ B:— B
KLND(B) ={kerD | D € LND(B)}.

If Eis a subset ofB ,

LNDg(B) ={D € LND(B) | D(E) = {0}}
KLND g(B) = {kerD | D € LNDg(B)}.

1.6. Basic properties of locally nilpotent derivations. Let B be an integral
domain, letD :B — B be a nonzero derivation oB , and lét = Kar . The fol-
lowing facts are well-known.

(1) If D is locally nilpotent thenA is an inert subring & . In padlar: B* = A*,
BnNFracA =A and ifB is a UFD then so id . Note, also, thatkif is any field
contained inB thenk* C B* = A*, so D is aK -derivation.

(2) Let S be a multiplicatively closed subset &f\ {0}, and consider the derivation
S™D: S7'B — S7'B. Then:

(@ S~D is locally nilpotent if and only ifD is locally nilpotent and C A.

(b) If S C A then kerS~1D = S~'A; consequentlyB N S~1A = A.

(3) Assume thatQ C B. If D is locally nilpotent, and ifs € B satisfiesD { )e B*,
then B =A [y] = Al



40 D. DAIGLE

(4) Assume thatQ C B. If D is locally nilpotent, choose any € B such that
Ds # 0 and D% = 0 (such ans exists, and is calledpeeslice of D), and letS =
{1, Ds, (Ds)?,...} C A. ThenS™ID(s) € (S71B)* so, by (3),S71B = (5~*A)[s] =

(S~1A)H,

(5) If D is locally nilpotent, letS =A\ {0}, then (4) impliesS—*B = (FracA 4.

(6) Leta € B\ {0}. The derivationaD :B — B is locally nilpotent if and only ifD

is locally nilpotent andz € A.

Note in particular the following consequence of part (5) @:1

1.7. If Bis a domain andA € KLND(B) then trdeg B = 1.

Rentschler's Theorem 1.8(see [6]). Let B = k?l, wherek is a field of charac-
teristic zerg and let D: B — B be a nonzero locally nilpotent derivation. Then there
existu, v such thatB = k[u, v] and kerD =Kk[u]. Moreover given any suchi, v we
have D = f(u)(0/0v) for some f(u) € K[u].

1.9. Simple derivations. Let B be ak-domain of transcendence degree two.

Derinimion 1.9.1. A derivationD :B — B is k-simpleif it is locally nilpotent,
irreducible and satisfies

dy € B kerD =K[Dy].

Note that if this is the case then kbr k&!. Consequently:
1.9.2. If B admits ak-simple derivation therB* = k*.

Lemma 1.9.3. Suppose thatA € LND(B) is k-simple. If D € LND(B) is irre-
ducible andker(D) = ker(A ),then D = XA for someX € k*. ConsequentlyD is
k-simple.

Proof. LetA = kerD = ke and choose y, € B such thatA ¢ ) =x and
A = K[x]. Note that FradB =K(x, y) (by 1.7) and consider the partial derivatize=
d/dy: k(x,y) — k(x, y). ExtendingA andD to derivationa and D of k(x, y),

A=xd and D =D(y)d.

It follows that D (y)A =xD . SinceD is locally nilpotent and € kerD, xD is locally
nilpotent; soD § N\ is locally nilpotent and it follows thd? y (9 kerA by part (6)
of 1.6. Hencex and y( ) are two elements of the ideal

I={a e Al|ad(B)C B}

of A. Observe that 1¢ I, for otherwised(B) C B, sO A(B) C xB, sox € B*
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(becauseA s irreducible), soc A*, but this is false becaus¢ kfx] = k[,
Sincex is a prime element of ande I # A, we havel =xA , soc | D(y)

in A. ThenD =)A whereX = D(y)/x € A. Now D(B) C AB, so A € B* by

irreducibility of D. SinceB* = k*, K[ Dy] = k[ Ax] = Kk[x] and we are done. U

On the number of kernels

Regarding the cardinality of the setLND(B), we have the following elementary
fact:

Proposition 1.10. Let B be a domain of characteristic zero and suppose that
k C B is a field such thatrdeg(B) < co. Then the cardinality okLND(B) is ei-
ther 0, 1 or [K|.

Proof. As a first step, we show:

Let B be aQ-domain and suppose that A’ are distinct elements

@) of KLND(B). Then|KLND(B)| > |[AN A'|.

Let A and A’ be distinct elements okKLND(B). Let D, D' € LND(B) be such that
kerD =A and ke’ = A’. We first consider the case where:

(2 D(AYC A" and D'(A) C A.
Then it follows that
(3) DoD' =D"oD.

Indeed, letd: B — B denote the derivatioD o D’ — D’ o D. Then by assumption (2),
we haveAUA’ C keré. Since each ofA A’ is algebraically closed iB , and sinag
has transcendence degree one over each of’, jt follows that B is algebraic over
kerd, sod =0 and (3) is true.

For each)\ € A, let Ay: B — B denote the derivatiod’ + A\D. Then (3) imme-
diately implies thatA € LND(B), so we have a map

A — KLND(B)

“) A — ker(Ay).

We claim that the map (4) is injective. Indeed, considerimtistelements\;, A, of A.
Then for eachy € ker(Ay,) Nker(A,,) we have

D'(x) + M\1D(x) = 0=D'(x) + \2D(x),

from which we deduce thaD x( ) = 0 D’(x), i.e., x € AN A’. So kerr,,) N
ker(Ay,) € AN A’ and consequently the transcendence degre8 of  oveAkgr(
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ker(A,,) is strictly greater than one. It follows that kev(,) # ker(A,,), so the
map (4) is injective. Thus (1) holds under extra assumptn (

There remains the case where (2) does not hold; without lbgemerality, let us
assume that

) D(A) ¢ A'.
For each\ € A, letey: B — B be the automorphism oB defined by
N Di(x)
EA(X)—;T ()C S B)
i.e., €, is the exponential oAD. As is well-known,
(6) EXL O €N, T EN+Nn for all A1, Ao € A.

Sinceey(A’) = ker(ey o D' o3 t) € KLND(B), the assignmenh — e,(A’) is a map
from A to KLND(B). We claim that the restriction

ANA" — KLND(B)

(7 A s x(A))

is an injective map. We begin by showing that (5) implies:
(8) If A€ An A’ satisfiese)(A") C A’, then X = 0.

To see this, considek € A N A’ satisfyinge,(A’) C A’. By (5), we may pick an
x € A’ such thatD £ )¢ A’. Fix such anx and let be such that x ( ) = 0 for all
i > n; consider the polynomiaf 7T( ¢ B[T] defined by

o0 n

() = ZD <D(x)) Ti = ZD (D (x)) Ti

and note thatf X ) is not the zero polynomial since the coefficef 7 in f(T') is
D'(D(x)) #0. Then for eactk € N

£ = ZD (Z8) o = (Z (29 (m> = D () = O,

i=0

where the last equality follows fromy,(x) = &5 (x) € €4(A’) € A’. Now f(T') cannot
have infinitely many roots, sa =0 and (8) is proved.

Now (6) and (8) imply that the map (7) is injective, so (1) t®lith this case as
well. So (1) is proved.
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To complete the proof of the proposition, suppose that B is a field such that
trdeg (B) < co. Assuming that KLND(B)| > 1, we show that KLND(B)| = |K|.

Consider distinct elementd  amtf of KLND(B). Sincek C AN A’ by part (1)
of 1.6, we havel KLND(B)| > |k| by (1).

Consider a finite subsef{xi,...,x,} of B such that B is algebraic over
K[x1,...,x,]. The map

LND(B) — B"
D — (Dxy, ..., Dx,)

is injective, so|LND(B)| < |B"| = |B| = |k|. Since D — kerD is a surjection from
LND(B) to KLND(B), we have|KLND(B)| < |LND(B)|, so we are done. [l

Remark. It is possible to haveKLND(B)| > |B] if we don’t assume thaB has
finite transcendence degree over some field. For instancg, be a field of character-
istic zero and letB  %K[V] be a polynomial ring, where/ is a set of indeterminates
satisfying|V| > |K| (thus |V| = |B]). Fix a well-order on the se¥ . For each subSet
of V other thang and V , define &-derivation Dg :B — B by

0, if Xes
Ds(X) =19 . .

mins, if X ¢&S.
Then one can verify thaDs € LND(B). Since kerDg )NV = §, it follows that
|KLND(B)| = |2B|.

2. Danielewski surfaces

DeriniTion 2.1.  Given ak-algebraB , letl'y(B) denote the (possibly empty) set
of ordered triples X1, x2, y) € B x B x B satisfying:
The k-homomorphisnk[ X4, X, Y] — B defined by

Xi1+—x1, Xo—xpandY —y

is surjective and has kernel equal (p— X1X2)k[X1, X2, Y] for some non-
constant polynomial in one variable € k[Y].
If T'k(B) # @ then we say thatK, k) is a Danielewski surfacelf this is the case then
B is ak-domain and trdggB) = 2.

Remark. The term “Danielewski surface” usually refers to hypefaces of A3
given by an equation of the formy  =(z), or sometimesx”y =p(z), because
such surfaces were studied by Danielewski in connectioh wie cancellation prob-
lem (see [3]).
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RemaRrks. Suppose that K, k) is a Danielewski surface and lek(x,, y) €
I'k(B).
(1) Any two elements ofx1, x2, y} are algebraically independent over
(2) Once {1, x2,¥) € Tk(B) is chosen,p € k[Y] \ k is uniquely determined by the
condition p(y) = x1x2.

Lemma 2.2. Let X1, X,, Y be indeterminates ovek, let L be a field con-
taining k and let 7: k[X1, X5, Y] — L be a k-homomorphism with kernely —
X1X2)k[X1, X2, Y], wherep is some element & Y] \k. Write x1 = 7(X1), x2 = 7(X2)
and y = n(Y), then the following hold
(@) For each elements of the subringk[xi, x2, y] of L, there exists a unique” €
k[ X1, X, Y] satisfying F(x1, x2, y) = 5 and deg, F )< deg, ().

(b) K(x1)[y] Nk(x2)[y] = K[x1, x2, y].

Proof. If we view® = ¢ — X1X, as a polynomial inY with coefficients in
k[ X1, X2], then the leading coefficient o  belongs kd. Thus assertion (a) follows
from a straightforward application of the division algbrit in K[ X1, X2][ Y].

To prove (b), it suffices to show that(x1)[y] N K(x2)[y] € Kk[x1, x2, y]. Let B €
k(x2)[y] N k(x2)[y], then

g= F(x1,x2,y) _ G(x1,x2, )

f(xa) 8(x2)

for someF, G € k[X1, X2, Y], f € k[X1]\ {0} andg € k[X>] \ {O}. By (a), we may
arrange that dggH X deg, (p) and deg G )< deg, (p). Then g (2) F(x1, x2, y) =
f(x1)G(x1, x2, y) and the uniqueness part of (a) imply thek f€ kX1, X2, Y],
so f | F in K[X1, X2, Y]. Let Q € Kk[X3, X, Y] be such thatF =Qf , therg =
O(x1, x2, y) € K[x1, x2, y]. U

The following result gathers the most basic properties ohiBlawski surfaces.
See 1.9.1 fok-simple derivations.

Proposition 2.3. Let (B,k) be a Danielewski surfacefix an elementy =
(x1, x2, ¥) of ['k(B) and lety be the unique element &fY]\k satisfyingo(y) = x1x2.
(a) B is a normalk-domain andB* = k*.

(b) B =kl — deg ()=1

(c) Bisa UFD <« ¢ is irreducible ink[Y].

(d) For eachi = 1, 2, there exists a uniqué-derivation D;: B — B satisfying
D] (x;) =0 and D/ (y) = x;. Moreover kerD; = k[x;] and D;' is a k-simple derivation
of B.
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Proof. We shall prove assertions (a), (d), (c) and (b), is trider. It is immedi-
ate thatB is a&-domain and that

(9) Any two elements of x3, x», y} are algebraically independent ovier
By 2.2, there holds

K[x1, x2, y] = K(x1)[y] N k(x2)[y]

where eachk(x;)[y] = k(x;)™ is a normal domain, so
(20) B is normal.

Let us also record thaB,, = K[x1, 1/x1, x2, y] = K[x1, 1/x1, y] = K[x1, 1/x1]® and
similarly for B,,, i.e.,

(12) Foreach =1 2, B, * [x,-, x_,-’ y} =k [x,-, x_,} .

Suppose thai € B*. Thenu is a unit of each oB,, and B,,, so (11) implies
that u € k[x1, 1/x1] N K[xz, 1/x2]. Since x;, x, are algebraically independent ovir
by (9), we havek(x;) N k(x2) = k andu € k. This shows thatB* = k*. Together
with (10), this proves assertion (a).

We shall now prove assertion (d). Let { ) =(1 2) or, (2 1). bBetk[X1, X2, Y]
— Kk[X1, X2, Y] be the k-derivation given byé;(X;) = 0, &(Y) = X; and §;(X;) =
©'(Y). Then §; is triangular, hence locally nilpotent, and cleady(®) = 0, where
® = ¢ — XX, So we may define a locally nilpotent derivati@n B:— B by taking
0; (mod®). ThenD; & ) =0 and; ¥ ) = , thus proving the existence partsses
tion (d). If D: B — B is any k-derivation satisfyingD X; ) = 0 and y( ) = , then
xiD(x;) = D(x1x2) = D(p(y)) = ¢’ (y)xi, SO D ;) =¢'(y), which proves uniqueness
of D;.

It is easy to see that the kernel of the localizat®n — By, of D is k[x1, 1/x1],
so kerD; = B Nk[x1,1/x1]. Consider an element of B Nk[x1, 1/x1]. By 2.2,

B = F(x1,x2,y), forsomeF € Kk[X1, Xp, Y] such that deg ¥ X deg, ().
Since § € K[x1, 1/x1], there existsn > 0 such thatx]' F(x1, x2, y) € K[x1], i.e.,
x7' F(x1, x2,y) = f(x1), for somef € k[X1].
Then 2.2 implies thaX]'F = f, so X]'F € k[X31], so F € k[X1] and 3 € K[x1]. This
shows that keD; = k[x1] = kM (and by symmetry keb, = k[x,] = k).

Next, we show thatD; is irreducible. Letg € B be such thatD B X gB. Since
D1(y) = x1, we haveg | x1 in B, so g € k[x;] becausek[x;] = kerD; is inert in B.
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Hence,g =G 1) for someG € k[X;]. On the other handDi(x2) = ¢'(y), SO G (x1) |
¢'(y) in B and 2.2 allows us to write

G(x1)F(x1, x2,y) = ¢'(y).

where F € K[X1, X2, Y] and deg € )< deg, (). Now 2.2 implies thatGF =’ €
k[Y] \ {0}, so G € k[X1] nk[¥Y] = k. Hence D, is irreducible (and so i, by
symmetry). Thus assertion (d) is true.

Next, we prove assertion (c). Sincg is an irreducible element ok[xi] and
k[x1] = kerD; is an inert subring ofB x; is an irreducible element oB . On the
other hand,

(12) B/xlB > k[Xl, Xz, Y]/(Xl, Y — X1X2) =~ k[Xl, Xz, Y]/(X]_, Lp)
= K[Xz, Y1/(9)  (kIY1/()"

shows thatx; is a prime element o8 if and only ip is a prime element ok[Y].
In particular, if B is a UFD therx; is prime in B, sop is prime ink[Y].

Conversely, ife is prime in K[Y] then x; is prime in B and, by (11)B,, is a
UFD; so B is a UFD and assertion (c) is true.

For (b), note that if deg¢) = 1 then it is obvious thaB =[xy, xp] = k2.
Conversely, assume th& k. By Rentschler's Theorem 1.8 A1 for any A €
KLND(B); in particular B =k[x1]™], so B/x1B = k[l. By (12), deg ¢) = 1.

This completes the proof of 2.3. U

We also record the following simple fact:

Lemma 2.4. Suppose thatB, k) is a Danielewski surface and l€kq, x2, y) €
I'k(B). Thenxix, is a generator of the ideak[y] N x1B of K[y].

Proof. We havexix, = ¢(y) for some nonconstant polynomial € k[Y]. Let
n = deg, (). Given¢ € k[y] N x1B, we may write = v(y), wherevy € k[Y]; by the
division algorithm,y = gy + p, with ¢, p € k[Y] and deg < n. We have

(13) p(Y) = () — q()e(y) =& — q(y)x1x2 € x1B,

S0 p(y) = x1F(x1,x2,y) for some F € K[Xy, Xp, Y] such that deg ¥ )< n. Then
p=X1F by 2.2, soX1 | p in kK[X1, X», Y], which implies thatp = 0. Then (13) yields
€ = g(y)x1x2 € x1x2k[y] and we are done. O

RemArRk. Applying 2.4 to {2, x1,y) € TI'k(B) implies thatxix, generates the
ideal k[y] Nx2B of k[y]. So: The idealsk[y] Nx1B and k[y] Nx2B of k[y] are equal.
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Two characterizations of Danielewski surfaces

Results 2.5, 2.6 and 2.6.2 characterize Danielewski sesfac terms of locally
nilpotent derivations.

Theorem 2.5. Let B be ak-domain let y € B and let D;, D,: B — B be
locally nilpotent derivations. Suppose th@gt, D1, D;) satisfies
(i) kerD; # kerD,
(i) for eachi =1, 2, kerD; =k[M and D;(y) € ker(D;)\ {0}.
Then (B, k) is a Danielewski surface. Moreoveif D; and D, are irreducible then
exactly one of the following holds
(2.5-1)For eachi =1, 2, D; (y) € k* and B = (kerD; Y = k2.
(2.5-2)Let x; = D;(y) (i =1, 2),then

kerD; =K[x1], kerDy=K[x2] and (x1,x2,y) € I'k(B).

For the proof of 2.5 we need the following simple observatiafnose proof we
leave to the reader:

25.1. Let X, Y be indeterminates over the figkdand let f € k[¥] \ k. Then
k(X)[Y] Nk(X + f)[Y]T= K[X, Y],
where the intersection is taken k{X, Y).

Proof of 2.5. Note that assumption (ii) and 1.7 imply that k@smscendence
degree two ovek. More precisely, write ked; ) k[z;] for eachi =1, 2. Sincey is
a preslice ofD;

(14) B C k() @iy B = k()] = k()M

In particulark(y, 1) = FracB =k(y, t2), so (for eachi }; y are algebraically indepen-
dent overk. Sincek(y, t1) = Kk(y, t2),

f = axt1+b

15
( ) ct1tay

whereas, az, b, ¢ € K(y) andaiaz — be # 0; in fact, we may arrange that
(16) ai, az b, c € K[y], aiaz—bc #0 and gCQM (a1, az,b,c) =1
Consider the subrint  k[r1, y] of B and note thatR *[2. We claim:

a7) axt1+b andcty +ap are relatively prime inR.
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Indeed, leté = gcd, @at1 + b, ¢ty +az). If deg, (9) > O then we easily obtain a contra-
diction with the conditiona;az — be # 0. So deg(d) =0, i.e.,d € k[y]. It follows that
6 is a common divisor ofi;, az, b, ¢, so (17) is a consequence of (16).

Since B C k(#1)[y] by (14), we haver, € k(t1)[y] so

2= f/¢, where f € R and ¢ € k[r] \ {0}.
This and (15) give:
(agt1+ D) =(ct1+ @) f (equation inR )
SO (ct1 +a1) | (azta +D)C in R; in view of (17), we obtain dr1 +a;1) | ¢ in R. Since

¢ €K[n] \ {0} andk[r] is inert in R (becausek k[r;]MM), it follows thatcty +a; €
k[r1]. Hence,

ai, c € k.
Solving (15) forz#; gives
— +
(15/) = 76111‘2 b
Ccltr — ap

so, by symmetry, the proof that, ¢ € k shows that—ay, ¢ € k. Hence,
(18) ai, az, c € k.

Casec = 0. Sinceaiaz — bec # 0, it follows thata;a; # 0, soa, az € k*
by (18). Taking this into account, (15) gives

(29) tp=at1+3, wherea € k* and 3 € k[y].

Note that assumption (i) can be written kf1] # k[ar + 5], so 3 € k. By (14)
and (19) we have

K[t1, y] € B C k(t1)[y] Nk(aty + B)[y],

so 2.5.1 yieldsB ]r, y]. In particular, B, k) is a Danielewski surface.

Sincek|r1, y] = K[z, ¥] by (19), we also haveB K[r,, y]. Now D; is a derivation
of K[z, y] with kernel k[#;], so D; = (D;y)d/0y and in particularD; 8 )C (D;y)B.
Now if (for eachi ) D; is assumed to be irreducible, we havge < k* and condi-
tion (2.5-1) holds.

Case c #0. Then (18) implies that € k* anday, a; € k.

Define x; = cty+a; andxz = ct,—az (SO x1, x2 are not defined as in the statement).
We now show thatr;, x, satisfy the following three conditions:
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(2.5-2-a) ketD; = K[x1] and kerD; = K[x3]
(2.5-2-b) Thek-homomorphismk[ X1, X, Y] — B defined byX; — x1, X2 — xj,
Y — y is surjective and has kerneb{ X1 X2)k[ X1, X2, Y] for some nonconstant poly-
nomial ¢ € K[Y].
(2.5-2-c) If D; is irreducible themD; y( ) A;x; for some\; € k*.

From the definition ofx;, x, together withc € k* and a;, az € k, we getk[x;] =
K[#], so (2.5-2-a) holds. Clearly, we hawg, x; £ k, so

(20) x1x2 € K,

for otherwisex;, xo € B* = (kerDi1)* = k[x1]* = k*, which is not the case. Us-
ing (15), we get

—aity +b
Cly — ap

) + al:| (ct2 — a2)

= c(—aytz + b) + ai(ctz — az) = bc — azay,

x1x2 = (ct1 + a1)(cty — ap) = [c (

s0 x1x2 € K[y]; thus x1x, € k[y] \ k by (20) and consequently:
(21) For some nonconstant polynomiale k[Y], we haveo(y) = x1x2.

Let 7: K[X31, X2, Y] — B be the k-homomorphism defined byr(X1) = xi,
m(X2) = x2 and w(Y) = y. The image ofr is the affinek-domaink][xy, x2, y], whose
transcendence degree oueris 2; consequently ker is a height one prime ideal of
K[X1, X2, Y]; since (p— X1X2)K[ X1, X2, Y] is a prime ideal and, by (21), is contained
in kerw, we have:

(22) kerm = (p — X1 X2)k[ X1, X2, Y].
Since we have
K[x1, x2, y] € B C k(x1)[y] Nk(x2)[y]
by (14), and since

k(x1)[y] Mk(x2)[y] = K[x1, x2, y]

by 2.2, we obtain:
(23) B = k[xlv x27 y]'

Thus7: K[ X1, X2, Y] — B is surjective. Together with (22), this implies that (25@
holds.
Hence, B, k) is a Danielewski surface and( x2, y) € I'k(B).
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Assume thatD; and D, are irreducible. Writey = (x1, x2, y) and consider theD;
of 2.3. For eachi € {1, 2}, applying 1.9.3 to D;, D]) gives D; =\;D] for some
Ai € k*. Thus D; ) =\ D] (y) = A\ix;, so (2.5-2-c) holds and the condition (2.5-2) of
the theorem is satisfied.

In the two casesc( =0 or #0), we proved that &, k) is a Danielewski surface.
Assuming thatD; and D, are irreducible, we also proved the two implications =
0 = (2.5-1) andc # 0 = (2.5-2); so exactly one of (2.5-1), (2.5-2) is true and the
proof of 2.5 is complete. [l

In the special case wher8 is factorial, we have another ctaization of
Danielewski surfaces (compare with 2.5 and 4.6):

Theorem 2.6. Let B be a factorialk-domain of transcendence degr@e If B
admits ak-simple derivationthen (B, k) is a Danielewski surface.

ExampLe 2.6.1. LetB =K[x,y, y?/x,y3/x?] wherex ,y are indeterminates over
k. ThenD =x 9/dy: B — B is ak-simple derivation but B, k) is not a Danielewski
surface. Note thaB is normal but not factorial. (We leaveoittte reader to verify
that kerD =k[x], that D is irreducible and thaB is not a Danielewski surface

Proof of 2.6. Consider &-simple derivationD1: B — B, i.e., an irreducible
D; € LND(B) satisfyingk[D1(y)] = ker D1 for somey € B. Let x; = Di(y), then

ker D1 = k[x1] = k.

In particular,x; is a prime element of kdp;; since B is factorial and kap; is inert
in B,

(24) x1 IS a prime element oB.

Observe thatDi(y) = x1 € ker(D;) \ {0} implies that B,, = (kerDi),[y] =
K[x1,1/x1, y], so

(25) B Ck [xl, i, y} .
X1
It follows from (24) thatm = k[y]Nx1B is a prime ideal ok[y]. We claim thatm
is nonzero. To see this, choogec B such thatD;(8) € x1B (this is possible because
D1 is irreducible). It is clear thaiD; mapsk[xy, y] in x1B, so 3 & K[x1, y]. In view
of (25), we may write

5= F(x%; y)
X1

, forsomeF € Kk[X1,Y] andn > 0.
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Note that we must have > 0, because3 ¢ k[xi, y]. Assume that: is minimal,
e, F(QY)Z 0. ThenF f1,y) = x{8 € x1B, so F(Qy) € x1B and consequently
F(0,y) e m. SinceF (QY )# 0, we haveF (Qy } O (because, by (25)y is transcen-
dental overk), som # {0}. Thusk[y] Nx1B is a maximal ideal ok[y] and

(26) k[y] N x1B = (y)k[y] for some irreducible elemenp of k[Y].

Let x, = p(y)/x1 € B. Let 7: k[X31, X2, Y] — B be the homomorphism of
k-algebras defined by (X1) = x1, 7(X2) =x2 and«(Y) = y. Since im{) = K[x1, x2, y]
containsk[x1, y], which is birational toB by (25), imf) has transcendence degree 2
over k. It follows that kerr is a height one prime ideal df[X1, X, Y]. It is clear
that ® =¢ — X1X, is an irreducible element df[ X4, X», Y] and that® < kerr, so

kerm = q)k[Xl, Xo, Y].
Let us observe that
Any two elements of{x1, x2, y} are algebraically independent over

In fact, (25) implies thatx;, y are algebraically independent overand, fromxix, =
©(y), one easily deduces that each paij, y andx;, x2, is algebraically independent.

Let K = K(xz) and Bx =K ®x[x,) B. Note thatx; € K[y], since x» € K* and
x1x2 € K[y] € K[y]. We claim:

(27) x1 is a prime element oBx and also & y[ ].

Begin with the observation thabi(xz) = ¢'(y) € ¢()k[y] = k[y] N x1B; since
Di(x2) € K[y], we get Di(xp) ¢ x1B. So, if D;: B/x1;B — B/x1B denotesD;
(modx1B), we havex, + x1B ¢ ker(D1), SO x, + x1B is transcendental ovek and
consequenthk[x,] \ {0} Nx;B = @. This implies that

(28) x1 ¢ B} andx; & K[y]".

Sincex; is prime in B andx; € B}, x1 is a prime element oBg

On the other handp(y) is prime ink[y] = ¢(y) is prime ink[x2, y] = k[y]™
= (y) is either prime or a unit irk(x2)[y] = K[y] = x1 is either prime or
a unit in K [y] (becausex; and ¢(y) are associates ik y[ ]). By (28); is prime in
K[y] and (27) is proved.

Next, we show that

(29) Bk :K[y]
In fact, (25) implies thatBx C K[y]y,, SO

(30) KD’] g BK g K[y]xl'
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By (27), K[y] N x1Bk is a prime ideal ofK } ] andx;1K[y] is a maximal ideal of
K[y]; since x1K[y] € K[y] Nx1Bk, we havekK § Nx1Bx = x1K[y] and by induction
on n we deduce:

(31) VneN, K[ylNnxiBx =x{K[y].

Then (29) follows from (30) and (31).
In particular, (29) implies thaB C K[y] = k(x2)[y], so (25) gives

K[x1, x2, y] € B C k(x1)[y] NK(x2)[y]

and we obtainB  k[x1, x2, y] by 2.2, i.e.,w is surjective. We showed thaB(k) is a
Danielewski surface, which completes the proof of 2.6. U

Note the following reformulation of 2.6:

Corollary 2.6.2. Let B be a factorialk-domain and suppose thd? € LND(B)
and y € B satisfy

kerD =k[Dy] = k.

Then(B, k) is a Danielewski surface and the following hold
(1) If D is irreducible then there exists € B such that(Dy, x, y) € I'k(B).
(2) If D is not irreducible thenB = Kk[y, Dy] = k2.

Proof. The hypotheses imply that trgje® = 2. If D is irreducible then it is
k-simple, so the hypothesis of 2.6 is satisfied; then the pofoR.6 actually shows
that (Dy, x2, y) € I'k(B) for somex, € B, so assertion (1) is true. 1D is not irre-
ducible thenD =D { Do for some Dy € LND(B), becauseD ) is a prime element
of B; thus Do(y) =1 and assertion (2) follows from part (3) of 1.6 U

The Transitivity Theorem and some consequences

2.7. Assume that B, k) is a Danielewski surface, fix an element= (x1, x2, y)
of T'x(B) and lety be the unique element &fY] \ k satisfying ©(y) = x1x2. Thus

B = k[Xl, Xz, Y]/((p — X]_Xz).

Notarions 2.7.1. ([1]-2.2).
e Define 7 € Autc(B) by 7(x1) = x2, 7(x2) =x1 and 7(y) = y.
e For eachf € k[x1], define Ay € Autc(B) by Ar(x1) =xy and Ay () =y +x1f.
(Then Ay (2) = x1 Mo(y +x1£).)
e Let G, be the subgroup of AufB) generated by{7} U {A | f € k[x1]}.
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e Given f € Kk[x1], also defined; = Ay o7 € G. Note thatdp = 7 and thatG, is
generated by the sdt; | f € k[x1]}.

The assignmenta(, A) — «(A), wherea € Autx(B) and A € KLND(B), is a
left-action of the group Aw(B) on the setkLND(B). We restrict this action to the
subgroupG ., of Aut(B) defined in 2.7.1. Then the main result of [1] is:

Transitivity Theorem 2.7.2. The action ofG., on KLND(B) is transitive.
Results 2.8, 2.9 and 2.10 are consequences of the Tratysifiaeorem.

Lemma 2.8. Suppose tha({B, k) is a Danielewski surface and consider an irre-
ducible D € LND(B). ThenD isk-simple i.e, 3(x, y) € B x B such thatDy = x and
ker D =Kk[x]. Moreover for each such pair(x, y) we have(x, x2, y) € I'k(B) for some
X2 € B.

Proof.

Case 1. B =k, Rentschler's Theorem 1.8 gives a pair,(s) such thatB =
K[x’, s], kerD =k[x'] and D =u §/0s for someu € k[x']. Since D is irreducible, we
haveu € k* and in fact we may choose in such a way tiiat =1. Théem x's
satisfiesD (') = x’, showing thatD isk-simple.

Now consider anyx ,y € B such thatDy =x and k&P K[x]. Since B =
k[x’,s] and k[x] = k[x'], B = k[x, s] (where Ds =1, as before). TheP y xs) =0,
SO we may writey — xs = a + xf(x) for somea € k and f () € k[x]. Define a
k-homomorphismr: kK[ X1, X2, Y] — B by n(X1) =x, n(X2) =s + f(x) andn(Y) = y.
Then is surjective and¥ — a — X1X, belongs to kefr, so (,s +f ) y)e I'k(B).

Case 2. B #kP. Pick any (x{, x{P, y®) € I'(B).

Given (x, {7, y) € T«(B), let DY) € LND(B) be thek-simple derivation
given by 2.3, i.e., keb{) = k[x{"] and DY (y) = x{7),

By the Transitivity Theorem, there exists € Autc(B) such thatdy (k[x{"]) =
kerD. Let (x, x2, y@) = (9:(x{), 02(x5Y), 61(y®)) € Tw(B), then keD =k[x{]
= kerD{. By 1.9.3 applied to the paib®, D,

D is k-simple andD =\,D? for some\; € k*.

For the second assertion, considery € B such thatD ¢ )=x and k&b Kk[x].
Thenk[x] = k[x{] and consequently =\'x® + 1 for some X' € k* and ;i € k.
Define 0, € Auty(B) by

0y xiz) N )\’xf), x;z) . (/\/)71X§2) and y(z) — y(Z)

and define(x?, x, y®) = (0,(xP), 62(x$), 62(y@)) € T (B). Thenx =x{P + 1 and
D =D for some) € k*. Lets = \y — y®, then DP(s) = (ADP)(y) — DPy® =



54 D. DAIGLE

X — xig) = L.

We must havey = 0 for otherwiseD(s) € k* would imply B =K[x, s] = k2,
which is not the case. Thus &> and, sinceD{I(s) = 0, Ay — y® = a +xf (x) for
somea € k and f () € k[x]. As we know, there is an automorphism € Aut(B)
satisfying

A xf’) — xig) and y®r— y®+ xig)f(xig)).
Let (xfl), xg‘), y@) = (A(xf’)), A(xé?’)), A(y®)) € Tk(B), then
x£4) =x and y®=\y—a.
For eachj € {1, 2 3 4}, let 7;: kK[X31, X», Y] — B be thek-homomorphism defined
bv 7:(X1) = x¥ 1.(x5) = ¥ and 7:(Y) = v
y7Tj( 1) X1 17"—/( 2) X5 an 7TJ( )=V
Finally, consider¥ € Aut, (k[X1, X2, Y]) defined by

v X1 — X3, Xo— X, and Y+— \Y —a

and definers = m40 W1: K[ X1, X2, Y] — B, i.e., we have constructed a commutative
diagram (where we writR k[ X1, X», Y]):

R id R id R id R v R
@ ol el e e
B B B B —— B

01 02 A id

Then s is surjective and kers = \I/(kerm;) is of the required form, i.e., if we define
(x, 28, yO) = (ms(X1), m5(X2), m5(Y))

then (x®, x§), y®) € I'(B). Sincens(X1) = x andws(Y) = y, we are done. O

Lemma 2.9. Suppose that(B,k) is a Danielewski surface. If(x1, x2, y),
(%7, x5, ") € T'k(B) then there existd € Aut,(B) satisfying

0(x1) = x1, 0(x3) = cxa, for somec € k*, and  6(k[y']) =K[y].

Proof. If B =k!@ then an element of'\(B) is a triple (1, x2, ax1xz + ) such
that B =Kk[x1, x2], « € k* and 5 € k. In this case, the assertion is trivial and we may
even arrange = 1.

The caseB # kPPl is in fact a corollary of the proof of 2.8. We know that there
exists an irreducibleD € LND(B) such thatDy =x; and kerD =K[xi] (D is the
“D]" of 2.3, wherey = (x1, x2, y)); so the pair £1, y) satisfies the hypothesis of 2.8.
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Start the proof of 2.8 with(x{", x{V, y®) = (x], x5, y’) instead of picking an arbi-
trary (x{", x$V, y@®) € I'(B). Going through the proof, we obtain the commutative
diagram (32).

Now let 0 = A o 0 0 01; then 8 mapsx! = x on x™ (for i = 1, 2) andy’ = y®
on y®. Recall that thex in the proof of 2.8 correspondsriohere, so

(33) 0(x1) = x§4) =x = x1.
We also haved(y’) = y*® = Ay —a (where X € k* anda € k), so

(34) 0(k[y']) =KIyl.

By 2.4, xjx5 generates the idedi[y’] N x1B of k[y']; applying ¢ and taking (33)
and (34) into account, we obtain:

x160(x5) generates the ide&[y] Nx1B of K[y].
But 2.4 implies thatvix, is another generator of the same idealkdf]. Thus x16(x5)
and x1x, are associates iB , $(x3) = cx, for somec € k*. O

Lemma 2.10. Suppose thafB, k) is a Danielewski surface. Then the polynomial
@ € K[Y] in a representation

B > K[X1, X2, Y]/(¢ — X1X2)

is uniquely determined b, up to ak-automorphism ok[Y] and multiplication by a
unit. In particular, the degree ofp is uniquely determined bg

Proof. Consider X1, x2, y), (x1,x5,y") € T'k(B) and the corresponding, ¢ €
k[Y] satisfying x1x2 = ¢(y) and x1x5 = ¥(y’). By 2.9, there exist® € Auty(B) such
that 6(x1) = x1, 6(x35) = cxp and 6(y’) = Ay — a, for somec ,\ € k* anda € k. Thus

cp(y) = x1(ex) = 0(x1x3) = 0 () = »(\y — a),
S0 cp = Y(\Y —a) and in particular degy = deg, ¢, as claimed. ]

3. Definition of KLND (B) and R(B)

Given an arbitrary integral domaiB  (of characteristic 2etbe graph<LND (B)
and R(B) are defined in 3.3 and 3.8 respectively. These graphs &eziamts of the
ring B and the group of automorphisms 8f acts on each one of.them

See 1.1 for the notationdg Rg , etc.

3.1. Terminology of graphs. By a graph we mean an undirected graph such
that no edge connects a vertex to itself and at most one edagge gmy given pair
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of vertices. In such a graph, the edge joining vertises and refgesented by the
set {u, v}. Two vertices are calledeighborsif they are joined by an edge. f is a
vertex in a graplg, the set of neighbors af i§ is denotedN («) or NVg(u). A path

in G is a sequence® =, ..., u;) of vertices satisfyingc > 0 and:
If k>1then e = {Lto, ul}, ex = {ul, uz}, e, € = {uk_l, uk} are edges irg.
If the edgesey, ..., e of P are distinct, we callP aimple path; if P satisfies the

weaker condition:
e Zeyp for 1<i<k (or equivalently u; 1 Zu;+1 for 1 <i <k),

we say thatP idocally simple

A spanning treeof a graphg is a subgraph of; which is a tree and whose vertex
set is equal to that of.

Let G and H be graphs with vertex set6 ard respectively. Biramomor-
phism of graphsf: G — H we mean a set may G — H satisfying:

for every edge{u, v} of G, {f(u), f(v)} is an edge ofH

(note that this condition implies, in particular, thatu &)/ (v)).
3.2. Definitions. Let R C B be domains such that trdeg ( ) = 2.

3.2.1. If A € KLNDg(B), define

Qgr(A) ={y € B| 3 an irreducibleD € LND4(B) such thatAg =Rr Dy }.

Remarks. (1) If A € KLND(B), then LND4(B) is the set of locally nilpotent
derivations of B with kernekqualto A.
[This is becaused is algebraically closedBn  and trdéy ( ) =y110.]
(2) If AcKLNDR(B) andQr (A)# @, thenAr = Rz }Y.
[Indeed, Ax =Ry Dy] for someD and> , andy must be transcendental &er
since trdeg B ) =2 and (by 1.7) trdegp( ) =1.]

3.2.2. Let KLND x(B) be the graph with vertex se{LND g(B) and whose edges
are defined as follows: Given distingt A’ € KLND z(B),

{A, A’} is an edge OKLNDR(B) <= Qr(A)NQx(A) # 2.

Derinimion 3.3. Given an integral domaiB , ledLND(B) be the graph with
vertex setkLND(B) and where distincd A’ € KLND(B) are neighbors if:

{A, A’} is an edge ofkLND ,(B), for some subringk of3 with trdggB )=2.
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We also define:

KLND,(B) = the subgraph okLND(B) obtained by deleting all isolated vertices

Lemma 3.4. Let R C B be domains such thatdeg, 8 ) = 2and suppose that
A and A’ are distinct elements cfLND g(B). If R is inert in B, thenR=AN A’.

Proof. Note that one of the inclusions in
(35) RCANA ' CA

must be an algebraic extension of rings, because jrdeg ( )sinte each ofR A ,
A’, An A’ is an inert subring ofB , and hence is algebraically closedBinone of
the inclusions in (35) must actually be an equality. Naw# A’ and trdeg B ) =1 =
trdeg,, (B) imply that A ZANA’, sOoR =AN A’ [l

Lemma 3.5. Let B be a domain and lefA, A’} be an edge okLND(B). Then
there exists a uniquénert subring R of B satisfying

trdeg;, B) =2and {A, A’} is an edge oKLND 4(B).

Moreover R = AN A’ and (Bg, Ry) is a Danielewski surface.

Proof. The assumption implies that the set
E ={R| R is a subring ofB , trdeg £ ) =2 anflA, A’} is an edge ofKLND (B)}
is nonempty. Consider anR; € ¥ and defineR =B n FracRy). ThenR;y C R
and FracR;) = FracR ); it follows thatQg,(A) = Qr(A) and Qg,(A’) = Qg(A4’), so
Qr(A)NQr(A’) # @ and R € . Since A is inert inB ,Ag is inert inBBg and con-
sequently Br ) = (Ag)*. On the other hand, the fact th&z A (A o implies that
Ag = (Rr)H, so Br ) = (Ar)* = (Rg)*. Thus the first part of

(Bg)" = (Rg)* and BnNFracR)=R

holds, and so does the second part by definitionRof . By 1.4olibis that R is
an inert subring ofB . This proves that at least one element o6 ani inert subring
of B. Then 3.4 gives:

{R € X | R is an inert subring ofB} = {A N A’}.

To complete the proof, we show that K is any element3dbf  thBpR, Rz is )
a Danielewski surface. Pick € Qg(A) N Qr(A’). Then there exisD, D’ € LND(B)
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satisfying ketD =A , keD’ = A’, Ag = Rg[Dy] and A%, = Rg[D’y]. Then the lo-
calized derivationsDg, D}, € LND(By) satisfy kerDx ) =Ax = Rz ¥ and kerp}) =

. = (Rg)M. Since Dy andD), are extensions oD an®’ respectively, we have
A = Bnker(Dg) andA’ = B N ker(D%); so Dg andD}, have distinct kernels. Since
y is a preslice of bothD; and%, 2.5 applied to the tripley Dg, D}) gives that
(Bg, Rg) is a Danielewski surface. Ol

Derinimion 3.6.  Given an integral domai® , I&®(B) denote the following set
of subrings ofB :

R(B)={R | R is an inert subring ofB andBx, Rz ) is a Danielewski surface
Note that if R € R(B) then trdeg B ) = 2.

The following result will be improved later (see 5.1). In p4a) of 3.7, ‘C”
means‘is a subgraph of”.

Corollary 3.7. If B is an integral domain then
(8) KLND,(B) C URGR(B) KLND r(B) C KLND(B)
(b) If Ry, R> are distinct elements oR(B), the graphskLND; (B) and KLND . (B)
have at most one vertex in common.

Proof. Assertion (a) follows from 3.5 and (b) from 3.4. [l
Result 3.7 suggests a natural way to tR(B) into a graph:

Derinimion 3.8.  Given an integral domaiB , I8t(B) be the graph with vertex
setR(B) and where distinciRy, R» € R(B) are neighbors if and only iKLNDg,(B) N
KLNDg,(B) # @.

Equivalently, R;, R, € R(B) are neighbors irR(B) if and only if there exists a
nonzero locally nilpotent derivatio® B — B satisfying D R, U R) = {0}.

The structures of the grapha.ND (B) and R(B) are closely related and (as can be
inferred from 5.1, below) this is particularly true wheéh  icforial and affine over
some field. However, we will not elaborate on this point. Letsimply say that the
graphskLND(B) and R(B) are two invariants of the rin@@ , and th&(B) should be
thought of as a simplified version &fLND (B).

3.9. Actions of AutB). Let B be an integral domain an@ an automorphism
of B. Then the following claims are trivial.
(1) If D € LND(B) and D’ =0 o Dof~1, then D’ € LND(B) and kerD’ = d(kerD); if
D is irreducible then so i®’'.
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(2) If R € R(B) and A € KLNDg(B) then:
O(R) € R(B), 0(A) € KLNDg(g)(B) and 6(Qr(A)) = Qo) (6(A)).
(3) If R € R(B) and A1, A, are distinct elements afLND g(B), then:
{A1, Az} is an edge ofKLND z(B) < {6(A1), 0(A2)} is an edge OfKLND y . (B).
Consequently,

3.9.1. Let Aut(B) denote the group of ring automorphisms ®f
e There is a left-action of Au ) on the grapdLnD (B), given by

0, A) — 6A = 6(A).
e There is a left-action of Au ) on the gragR(B), given by
(6, R) — OR = 6(R).

3.10. The one-dimensional case.Suppose thatB is a domain containing a
field over whichB has transcendence degree one or less.
Then it is well-known that if 0 D: B — B is a locally nilpotent derivation then
B is a polynomial ring in one variable over some field, and thé&dfiis in fact the
kernel of D . This simple fact can be phrased as follows:
e KLND(B) is either the empty graph or the graph with one verferd no edge
e KLND(B) is nonempty if and only il8 = k[ for some fieldk, in which case
KLND (B) = {k}.
e R(B) is the empty grapljthis is becauser € R(B) implies trdeg 8 ) = 2 and
B* = R*].

4. Description of the graph KLND , (B) in the two-dimensional case

The beginning of this section considers the problem of deisgy the graph
KLND(B) where B is an integral domain which has transcendence defyve over
some field (of characteristic zero). However 4.3 shows thiat pproblem reduces to the
following: Describe the graplkLND,(B) wherek is a field, B is an integral domain
containingk as a subring andB has transcendence ded?eaver k. Solving this re-
formulated problem then becomes the aim of this sectiors (#réwpoint is adopted
in 4.4).

In 4.6 (but see also 4.3) we show thatND, (B) is non-discrete (i.e., has at least
one edge) if and only if B, k) is a Danielewski surface. From 4.7 to the end of the
section, we restrict our attention to the case whetsD, (B) is non-discrete and give
a quite satisfactory description of that graph. In partcuwe show that it is con-
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nected, we identify in which cases it is a tree and, in all sage describe a spanning
tree of KLND, (B).

Result 5.1, below, is the motivation for giving such a detdildescription of
KLND, (B) in the non-discrete case.

The case wher&LND(B) is a discrete graph deserves to be investigated, but this
is not done in this paper. In particular, one would like to wnehich two-dimensional
rings B are such thakLND(B) has many vertices but no edges (see 6.2 for an inter-
esting example).

We begin by showing that the gragR(B) has at most one vertex in the two-
dimensional case:

Proposition 4.1. Let B be an integral domain which has transcendence degree
over some field. Thef®(B) is the set of field& contained inB and satisfying B, k)
is a Danielewski surface. In particulatR(B) has at most one element.

Proof. Consider an arbitrary elemektof R(B) (a priori, k is not necessarely
a field). Note thatB* = k*, sincek is an inert subring ofB . By assumption, there
exists a fieldk C B such that trdegK ) = 2. Thekh* C B* = k*, sok C k. Since
trdeg. B) = 2 = trdeg(B), k is integral overk , sdk is a field. It follows thatk =
{0}uk* = {0}UB* is uniquely determined by , s&(B) = {k}. Obviously,k € R(B)
implies that B, k) is a Danielewski surface.

Conversely, suppose thatC B is a field such that &, k) is a Danielewski sur-
face. We haveB* = k* by 2.3, sok is an inert subring ofB an#t € R(B). ]

Next we point out that there are edges in the graphD(B) of a Danielewski
surface:

ExavmpLE 4.2. Suppose that Bl k) is a Danielewski surface and consider
(x1,x2,y) € Tk(B). Let A; =K[x;] € KLND(B) (i =1, 2). Then

{A1, A2} is an edge iIrKLND,(B).
Proof. For each € {1, 2}, consider the derivatiodD]: B — B of 2.3, where

v = (x1,x2, ¥). Then D] is an irreducible derivation, belongs toiD 4,(B), and satis-
fies kerD; = k[ D] (y)]. So

¥ € (A1) NQ(A2)
and {A1, Ap} is an edge irKLND,(B). O
Corollary 4.3. Let B be an integral domain which has transcendence de@ree

over some field. Then the following three conditions are \exjeit
(1) R(B) # @
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(2) There exists a fiel&k C B such that(B, k) is a Danielewski surface.

(3) KLND(B) has at least one edge.

Moreover we have

(*) KLND(B) = KLND,(B)

for some fieldk C B satisfyingtrdeg,(B) = 2. More precisely

(4) If conditions(1-3) hold then the unique elemehtof R(B) satisfies(x).

(5) If conditions (1-3) do not hold then(x) holds for any fieldk C B satisfying
trdeg (B) = 2.

Proof. We have (l)é (2 22 3 2L (2).

To prove (4), assume that (1-3) hold and consider the unitgreemtk of R(B).
Sincek is a field contained inB , we haveLND(B) = KLNDg(B) by 1.6. So 3.7 and
R(B) = {k} give KLND(B) = KLND,(B).

To prove (5), assume that (1-3) do not hold and consider aly Kie- B satis-
fying trdeg (B) = 2. Again, we haveKLND(B) = KLND(B) by 1.6. This immediately
implies thatkLND(B) = KLND,(B), sinceKLND(B) has no edges. O

Result 4.3 implies, in particular, that the study wiND(B) reduces to that of
KLND,(B). Until the end of this section, our aim is to describe thepirkLND, (B)
where (B, k) is a pair satisfying:

4.4. Global assumptions. kis a field, B is an integral domain containitkgas
a subring andB has transcendence degree 2 kover

4.5. Let (B, k) be a pair satisfying 4.4. Recall the following facts fron2:3.
(1) For eachA € KLND(B) we define

Qu(A) ={y € B | 3 an irreducibleD € LND,(B) such that k[ Dy]= A}.

Regarding the seR(A), note the following.
@) If y € @(A) thenk[ Dy] = A holds for everyirreducible D € LND4(B),
by 1.9.3.
(i) If Qu(A) # 2 thenA =k,
(i) If Qu(A) # @ for someA , thenB* = k* [becauseB* = A* and A =k[1].
(2) KLND,(B) is the graph with vertex setLNDy(B) = KLND(B) and whose edges
are defined as follows: Given distinct verticds A’, € KLNDk(B),

{A, A’} is an edge if and only if2x(A) N Qk(A") # @.

Recall that a graph ison-discreteif it has at least one edge.



62 D. DAIGLE

Corollary 4.6. Let (B,k) be a pair satisfying4.4. Then KLND,(B) is non-
discrete if and only if(B, k) is a Danielewski surface.

Moreover if {A1, A} is any edge ofkLND,(B) then there existgxi, x2, y) €
I'k(B) satisfying A1 = k[x1] and Az = Kk[x2].

Proof. By 4.2, if B, k) is a Danielewski surface thexiLND, (B) is non-discrete.

Conversely, suppose thdtd;, A,} is an edge ofkLND,(B) (where A;, A, are
distinct elements okLND(B)). Then Q«(A1) N Qk(A2) # &, SO we may pick an ele-
menty of that intersection. For eacke {1, 2} we havey € Q(4;) and consequently
there exists an irreducibl®; € LND,4,(B) satisfying A; =K[D:(y)]. Let x; = D;(y),
then

kerD; =k[x;] = k!l (for eachi € {1, 2}).

Thus (v, D1, D) satisfies the hypothesis of 2.5. Since it is clear that 3.5 false,
(2.5-2) must hold. SoK, k) is a Danielewski surface andi( x», y) € T'k(B). ]

The graph of a Danielewski surface of degree

In view of 2.10, the following is well-defined:

4.7. Terminology. Let n be a positive integer. The phraseB;k) is a
Danielewski surface of degree ” means tha&t K) is a Danielewski surface and that
the polynomialy € k[Y] satisfying B =~ k[ X1, X2, Y]/(¢ — X1X>) has degree: .

Until the end of this section, we consider a Danielewski acef B, k) of de-
green and our aim is to describeND,(B). This is an important problem because
of 5.1, below.

Theorem 4.8. If (B, k) is a Danielewski surface then the grapliND,(B) is
connected.

Proof. Choosey = (x1, x2, y) € I'k(B) and write A; = K[x3] and Az = K[x2].
By 4.2, A; and A, belong to the same connected componerdf KLND, (B).

Consider the subgrougr &, of Autc(B) generated by the sef &} U{A/ |
f € K[x1]} (see 2.7.1). Ifg € G then, by 3.9.1,¢C is a connected component of
KLND, (B). It is immediate that ifg € E thengA; € {A1, A2}, sogA, € C, sogC =
C; it follows that gC = C for all g € G. SinceG acts transitively on the setND(B)
(by 2.7.2), we conclude thatLND,(B) is connected. ]

The main result of this subsection is 4.10.4, but we also tpmirt

Theorem 4.9. Suppose tha{B, k) is a Danielewski surface of degree . Then
KLND,(B) is a tree if and only ifn > 2.



LocALLY NILPOTENT DERIVATIONS AND DANIELEWSKI SURFACES 63

The proof of 4.9 consists of 4.9.1, 4.9.2 and part (4) of 410.

We begin by showing (in 4.9.1 and 4.9.2) that B,k) is a Danielewski surface
of degree 1 or 2, themLND,(B) is very far from being a treeEach vertex belongs
to a subgraph ofkLND, (B) isomorphic to the complete graph on the &et

ExavpLE 4.9.1. Suppose thatB( k) is a Danielewski surface of degree 1 (which
is equivalent toB [ by 2.3). We first note that:

(36) The edge set okLND, (B) is {{k[u],k[v]} | B = K[u, v]}.

Indeed, ifu ,v € B are such thatB K[u, v], then it is immediate thatu(, v, uv ¥
[k(B); so 4.2 implies thatk[u], k[v] } is an edge. Conversely, suppose that, Ao}
is an edge. Then, by 4.6, there exists, (2, y) € I'k(B) such thatA; = Kk[x]
and A, = K[x2]. Since p(y) = x1xp for somey € k[Y] of degree one, we have
y € K[x1, x2], so B =K[x1, xp]. This proves (36).

Let A € KLND(B). By Rentschler's Theorem 1.8 we may choose x; such that
B =K[x1, x2] and A =k[x1]. For eachA = (\1: A\p) € IP’%, let Ay = Kk[A1x1+A2x2]. Then
U ={A, | X € P{} is a subset okLND(B) of cardinality |k|, A € U and, by (36),
{A), Ay} is an edge ofkLND,(B) whenever), )\ are distinct elements oIPﬁ. In
other words, the complete graph on the &et is a subgraptLieb, (B). O

ExavpLE 4.9.2. Suppose thatB( k) is a Danielewski surface of degree 2. Let
A € KLND(B). By the Transitivity Theorem (or by 2.8), there exists,(x2, y) €
I'k(B) such thatA =k[x;]. Consider the polynomiap € k[Y] which satisfiesxix, =
©(y). Theny has degree two and depends on our choicex@fxy, y). In fact we may
choose £, x2, ¥) in T'k(B) in such a way thatd K[x1] and:

(37) © = Y2+ for somec € k.

[To see this, it suffices to observe that i (x2, y) € Tk(B), v € k* and i € k, then
(x1, vx2, y+pu) € Tk(B).] For eachh = (A\1: \p) € P&, let Ay = k[/\fx1+2)\1/\2y+)\%x2].
Observe thatA =A1.0.. We claim:
(38)

{A\, Ay} is an edge okLND, (B) whenever), \' are distinct elements d?ﬁ.

Clearly, if this is true thenA belongs to a subgraphkeiD, (B) isomorphic to the
complete graph on the s&t To prove (38), leto, 5 € k and consider the element
6 = Ay oTo Ag of Aute(B) (see 2.7.1). Note that, givene k, A,(x1) = x1, A,(y) =

y +1x; and (taking (37) into account), x£) = t2x, + 2ty +xy. It follows that §(x;) =

alxy + 2ay + x2, SO

O(k[x1]) = Ay
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Also, 0(x2) = (1 +aB)%x1 + 2(1 +aB)By + (%x2, SO
O(K[x2]) = A@+ap:s)-

Since {k[x1], k[x2]} is an edge irkLND,(B) by 4.2, so is{A(.:1), Aq+es:p)} by 3.9.1.
The claim (38) follows from this. ]

4.10. Statement of the main result. Suppose thatK, k) is a Danielewski sur-
face of degreen and fix an element = (x1, x2, y) of T'k(B). Consider the sub-
group G =G, of Aut(B) and its generating sefd; | f € K[x1]}, as in 2.7.1. Let
A1 = K[x1] € KLND(B).

We now define a tree_]-"w, a subtreef;’ of 2—"7 and homomorphisms of graphs
Py F, — KLND(B) and PJ: F? — KLND,(B).

K[x4], if n>1

Derinimion 4.10.1. &, = .
xiK[x1], if n=1.

Derinimion 4.10.2.  LetF, be the set of finite sequenceg (..., fi) of elements
of &, satisfying:

fi #0 for all i # 1.

Let 77 be the subset of~, whose elements are the finite sequencgs.( ., fi) in &,
satisfying:

deg,(fi) >3—n forall i #1.

Note that the empty sequeneeis an element of botl¥, and 7.
Let (res;p.g-“7 °) be the tree with vertex-sef, (resp.F;) and where the edges
are the pairs of the form

{(flv RN} fk)7 (flv RN} fkv fk+1)}‘

It is clear that is a tree, that”” is a subtree ofF, and that%? = 7. whenever
n > 3.

Derinimion 4.10.3.  Define a maf®., : 7, — KLNDg(B) by declaring that the ele-
ment (f1, ..., fi) of F, is mapped to the elemeni/ o ---od5)(A1) of KLNDk(B).
Let PJ: F5 — KLNDk(B) be the restriction ofP, to FJ.

Theorem 4.10.4. The mapsP, and P; have the following properties
1) Py F, = KLND,(B) and P53: fj — KLND,(B) are homomorphisms of graphs
(see 3.1for definition).
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(2) P, is surjective both as a map of vertices and as a map of edges.

(3) P7 is bijective, as a map of vertices. Consequery defines an isomorphism of
trees fromfj to some spanning tree &fLND, (B).

(4) If n > 2 then P,: fv — KLND,(B) is an isomorphism and consequently
KLND,(B) is a tree.

4.11. Preliminaries to the proof of 4.10.4. Throughout 4.11, we suppose that
(B, k) is a Danielewski surface of degree and we fix an element (x1, x2, y) of
[k(B). Let ¢ be the unique element &[Y] \ k such thatx;x, = ¢(y). Consider the
subgroupG =G. of Autx(B) and its elements, Ay andd; (where f € K[x1]), as
in 2.7.1. LetA; =k[x;] € KLND(B) for i € {1, 2}.

Bidegree. Some of the material on bidegree is reproduced from [1], hetet are
also some additions.

Since~ = (x1, x2, y) € I'k(B) is fixed, we may embed irk[xl,xfl, y]. Each
elementg ofk[x1, x; %, y] is a sum

8= Z gij x1y’

(i./)EZXN

whereg;; € k for all (i, j) and where the set supfz) = {(i,j) € Z x N | g;; # 0} is
finite. As in [1]-2.7, we define the bidegree map determinedyby

bideg, : K[x1, xfl, y] — Nx N
g — (u,v)

by declaring that: p are the following integers:

u=max[{0} U{i € N[ (i,0)  supp,(g)}]
v=max[{0} U{j € N| (-1 n) e suppg)}].

Since~ is fixed throughout 4.11, we may simply write sypp and bigleg .
4.11.1([1]-2.7.2). Letg € k[x1,1/x1,y] and @, b) = bideg . Then:
a>0 = (a,0) € suppg and b >0 = (—b, bn) € suppg.
Given g € Kk[x1,1/x1,y], (a,b) = bidegg, letC ¢ ) be the unique subset Bf
which is closed, convex and has boundd#fyU E U H,, whereE is the line segment

joining (=b, bn) to (a, 0), H, ={(s,0) | s <a} and H, ={(s, bn) | s < —b}.

4.11.2([1]-2.7.3). GivenA € KLND(B) andg € A, suppg )C C(g).
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4.11.3([1]-2.7.6). GivenA € KLND(B) andg € A,

bidegg =@, b) = bidegr(g) = (b, a).
As in [1]-3.6.6, letN x N be endowed with the reverse lexicographic order:
(a,b) < (d',b) < b<b or (b=0b" anda < a’)
and define for eacd € KLND(B)
bideg (A) = min{bideg, f | f € A\k} e Nx N
[which makes sense becauSex N is well-ordered]. So we have a well-defined map
bideg,: KLND(B) — N x N.

Recall thatA =[; it is a straightforward exercise to prove:

4.11.4. Given A € KLND(B) and f € A, bidegf = bidegd Y= A =K[f].

So applying 4.11.3 (resp. [1]-3.6.4) to a generatordof Weddl1l.5 (resp. 4.11.6):

4.11.5. Given A € KLND(B), bideg(A)=@,b )= bidegfA) = (b, a).

4.11.6. Let A € KLND(B) and @, b) = bidegd . Then

a=0 < A=K[x;] and b =0<= A =K[xq].

Finally we quote:

4.11.7 ([1]-3.9). Let A € KLND(B) \ {K[xi]}, let (a,b) = bideg@d ) and sup-
pose thata > b. Then there existsA(s) € k* x N such that if we sett =\x]
then the ringA’ = A,(A) satisfies bideg{’) = (a’,b) and a’ < a. Moreover,s =
(a+Db)/gcd@b,a +b)— 1.

Remark. The last assertion of 4.11.7 implies, in particular, that £,. To see
this, we may assume that =1 (otherwiSe=K[x1]); thens =@ +b )/ gcdp,a +b)—

1 = (a +b)/gcd@, b)— 1, and if this is not positive them =0 dr = 0. However,
A # A and 4.11.6 giveb # 0, anda # O follows froma > b; sos > 0 andu €

xlk[xl] = 57.

We continue to prepare for the proof of 4.10.4. See the bégjnaf 4.11 for the
notation.
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Lemma 4.11.8. Suppose that > 1 (resp.n = 1). Then for f € k[x1] we have
Ap(A2)=A2 <= f=0 (resp.f k).

Proof. LetF € k[X1] be such thatF X;) = f, let o® < k[Y] be thek -th deriva-
tive of ¢, define

n 0
G=Xz+Y (pk—'X’{’lF(Xl)k € K[X1, X2, Y]
k=1

and note thatA ; () = G(x1, x2, ¥). Then we have

Ar(A2) = A2 = T As(x2) =Axa+p

nek

< ek Glx1,x2,y) = Axa+p
pek

< dyexr G =AXp+p (equality ink[X1, Xo, Y]),
pek

where the last equivalence is a consequence of 2.2 and

[0, if f=0
deg/G—{n_l’ iff;éo}<n and deg AXo+p) <n.

The desired result follows. O

In the next result, M (A;) denotes the set of neighbors of the vertéx in the
graphKLND (B).

Lemma 4.11.9. Let A; =K[x3] € KLND(B). Then

£, — N(A1)
f = d7(A1)

is a well-defined bijection.

Proof. SinceA; is a neighbor ofA> = K[x7], it follows from 3.9.1 thatd (A1)
is a neighbor of§;(A2) = Ay for every f € K[x1]. Thus n: k[x1] — N(A1), n(f) =
d7(Aq), is a well-defined map.

We show thaty is surjective.

Casen =1 Let A € N(A;). Definea € k* by the conditiony = aY +5b (for
someb € k); note thatA ; £2) = x +af, for every f € K[x1].

By (36), A =Kk[v] for some v satisfyingB =[x1, v]. Then Kk[x1, x2] = K[x1, v],
SO Av = x2 +af for someX € k* and f € K[x1]. Now Af(x2) = x2 +af = Av, so
n(f) = 37(A1) = Ag(A2) =K[v] = A,
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Casen > 1. [ie, B # kP] Let A € N(A1). By 4.6, there existsy’ =
(%7, x5, ") € Tk(B) such thatA; = k[x;] and A =K[x3]. Applying 4.2 to~' gives
v € Q(Ay); thus Ay = K[D1(y')], where Dy = D] € LND4,(B) is such that
D1(y) = x1 (see 2.3 and remark (i) in part (1) of 4.5). 8pD1(y")] = k[x1], which im-
plies thatD1(y’) = Ax1 + u for some\ € k* and i1 € k. Since {1, x5, A~1y") € T'k(B),
we may in fact arrange tha®i(y’) = x1 +u for somep € k. Since D1(y’ —y) = and
B #KkM, 11=0; so Dy(y") = x1 = D1(y).

Note that there is an irreducibl®] € LND4,(B) such thatD;(y’) = x; (namely,
Dy = Df/). By 1.9.3, we haveD; = AD] (some\ € k*), sox; = D1(y") = AD1(y') =
Ax; and consequentlyx(, x5, y') = (Ax1, x5, ¥') € T'k(B). To summarize,

(x1,x2.)') € TW(B), A =K[xz] and Dy(y') =x1 = Da(y).

Since D1(y’) = D1(y), y' —y € K[x1]. Noting that 1, x5, y' +c) € T'k(B) for every
c € k, we may also arrange that — y € x1k[x1]. Then for somef € k[x1] we have
Yy =y+xuf =Ap()

Since (1, x2, ¥) € I'k(B), it follows that

(x1, Ap(x2), ") = (Af(x1), Ap(x2), Ap(y)) € Tk(B).

Hence, both X1, x5, y') and (c1, A ¢(x2), y') belong toI'x(B). By 2.4, each ofr1x; and
x1A ¢(x2) generates the ided[y’] N x1B of k[y']. It follows that x5 and A (v») are
associates, so

n(f) = 07(A1) = Ay(A2) = K[A f(x2)] = K[x3] = A.

So n: k[x1] — N(A4) is a surjective map.
Consider agaim € N (A1) and pick fo € k[x1] such thatn(fo) = A. Then, for
g € kK[x1] we have

ng)=A <= n(g) =n(fo) < Ag(A2) = Ap(A2) <= Ag—f(A2) = Az

and, in view of 4.11.8, the last condition is equivalentgto fs(resp.g — fo € k)
if n > 1 (resp. ifn = 1). Thusy is bijective if n > 1; and ifn = 1 then exactly one
elementg ofx;k[x;] satisfiesn(g) = A. O

Proposition 4.11.10. Leth € B\ k, let f € £, \ {0} and assume the following
(i) h e A for someA € KLND(B)
(i) a > b, where (a, b) = bidegh.
Thenbidegd;(h) = (ea, a) wheree = n[1 + deg, (f)] — 1. Moreover

e>1 and [e>1<sn+deg (f)>3].
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line ni+j =0

(=i/n. j)

«—— this number> nb;;

AN

(—a, an)

"—_<—Iine “i + jd = constarit

\.

(i+j,0)  (i+jd 0) (b, 0)
Fig. 1 Fig. 2
Proof. Letd =1+deg(f) > 1, thene =nd — 12> 0. If e =0, thennd =1,

son =1 andf € k*, which contradicts the assumption thate £,. Hence,e > 1.
The equivalence > 1 < n+deg, (f) > 3 is trivial if n > 3, and is easily verified for
eachn € {1, 2}.

Note thata > 1, becaused,b» ¥ Nx N anda > b; also,h € A and 4.11.3 imply

(39) bidegth) = (b, ).

We haveB C R, whereR =k[xi, xl‘l, y], and observe thah ; € Autc(B) extends
to A € Autg,(R), where Ry = K[x1, x; 1]. Given (, j)€ Z x N, consider

Sij = supp[A f(x1y/)] = supp[xi(y +x1f)/].

Direct calculation shows thati,(j )i ( /d, ®S;; C T;;, whereT;; C R? denotes the
triangular region with verticesi,(j )i ( £ 0) and (j#, 0).

Thus bidedAs(xiy/)] = (i + jd,b;;), for someb;; . By definition of bidegree,
bij(—1,n) € supplAs (ciy’)] C T;;, sonb;; < j [because any pointi( j’) of T;
satisfiesj’ < j]; we record:

(40) b < L,
n

where equality holds if and only iti # =0 of =0 (see Fig. 1).

Suppose now thati(j ¥ suppgh). Sincer(h) € TA € KLND(B), we may ap-
ply 4.11.2 tor(h) and conclude that suppf) C C(7h); since bidegth) = (b, a)
by (39), we havé

(b, 0), (—a, an) € supplh) C C(th).

In particular, (, j )€ C(rh) implies thatj < an, so

(41) <a.

S |~.

1In our caseC(rh) is the closed and convex subsetif with boundaryH U E U H’, whereE is
the line segment joining—a, an) to (b, 0), H = {(s,0) | s < b} and H' = {(s,an) | s < —a}.
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By (40) and (41) we have;; < a for all (i, j) € suppgh). If (i, j) € suppth)
satisfiesh;; =a , then equality must hold in both (40) and (41), is9)(= (—a, na).
Note that (-a,na) does belong to suppk) and b_, ., = a [because if we regard
Ap(xy “y™) = x; (v + x1f)* as a polynomial iny with coefficients iR[x1], then
the leading term isy; “y"“, which shows thab_, ,, = a]. So the second component
of bideg[A /(th)] is a, i.e.,

The second component of bidgEy (k)] is a.

Clearly, the slope of a linei* §d = constant” is equal +d/d, and the slope of
the line segmenE  joiningd( 0) toa, an) is —na/(a + b); thus
(slope of line T +jd = constant”}- (slope of E ) =
na 1_ nda—a—-b_ ea—D>

a+tb d da+b) da+n) °

becauser > 1 anda > b. Consequently,

“w

0 > slope of line i +jd = constant> slope of E.

Hence, the maximum value éf /#  on suppj is reached at the point{, an) and
at no other point (see Fig. 2). Since bidey, (xiy’/)| = (i +jd, b;;), it follows that the
first component of bidegA ;(rh)] is —a +and = (—1+nd)a =ea. So

bideg [5f(h)} = (ea, a),
as desired. O

Proposition 4.11.11. For each A € KLND(B) \ {A1}, there exists a uniqug <
&, satisfying the following conditian
If we define(a, b) = bideg@d ), A’ = 5;1(A) and (da’, b') = bideg@’), then
(@',b) < (a,b) anda’ > D'.
Moreover we havedeg (f) >3—-n < a>b.

Proof. We prove the existence of by induction on bideg( ). eNabat
bideg@d )> (0, 1), by 4.11.6.

If a < b then f =0¢€ &, satisfies the desired condition, by (4.11.5). In particular
this proves the case bideg( ) = (0 1), i.e., the base case aottion.

Assume thatz > b; by 4.11.7 and the remark following it, there existsc &,
such that, if we writeR =A, 4 ), then bide8( ) =4, b) with a1 < a, so bidegR )<
bideg(d ). Observe that iR =A; then A =A_,(A1) = A;, a contradiction; hence
R # Aj.
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Since R # A; and bidegR )< bideg(A ), we may assume by induction that there
existsg € &, such that, if we sett’ = 551(R)' then bidegd’) < bideg® ) anda’ > b’
where @', b') = bideg@d’). Then

A" =0, M R) = 6, A (A) = TA G AL(A) = TA,4(A) = 6,2, (A).

Note that&, is closed under addition, sg —u € &,. Thus f =g — u satisfies the
desired condition, which proves the existencefof

We now prove uniqueness of . Suppose tlifatg ¢ £, satisfy the conditions
a’' >0 anda” > D", where:

A'=574), (a.b) =bideg@), A" =6,Y(4), (",b") = bideg”).

Since §;(A’) = §,(A”), it follows that A ;7(A’) = Ag7T(A”), so Ap_,m(A") = T(A”),
ie.,

(42) Sp_g(A') = TA".

By (4.11.5), TA” has bidegree (', a”); since b’ < a”, the bidegree of the ring
dr—4(A") =TA” cannot be of the formeg@’, a’), wheree is a positive integer.

If f—g #Z0thenf —g e & \ {0} (anda’ > b’), so 4.11.10 implies that
bideg[A s_,7(A")] = (ed’, a’) for some positive integee . This contradicts the preced-
ing paragraph, s — g =0, i.e., f is unique.

Finally, we prove the last assertion of 4.11.11. ket n[i +deg, (f)] — 1.

Suppose that > b. If f =0 then A’ = 55 %(A) = 7(A), so @', ") = bideg(’) =
(b, a) by 4.11.5, and since’ > b’ we geta < b, a contradiction. Hencef € &, \ {0}.
Since we also have’ > b/, 4.11.10 implies that bideg,(A")] = (eda’,a’), where
e>1.5S0@,b)="¢d,a'); now the assumptiom > b implies thate > 1, which gives
deg,(f) >3 —n.

Conversely, suppose that degf) > 3—n. Then f # 0, so f € &, \ {0}; together
with ¢’ > b’ and 4.11.10, this implies that (b ) =d’,a’) wheree > 1. But in fact
the condition deg(f) > 3 —n implies thate > 1, soa > b. O

Lemma 4.11.12. Let(f1,.-., fx) € F3 and define
Ri =@, 67)(A) and (a,b;) =bidegR;)  (0<i < k).
Then (1, 0) = (@, by) < - - - < (ao, bo) and for eachi > 0, a; > b;. Moreover

ap > by < deq,(f1) >3—n.

Proof. SinceR, =A1, (1, 0) = @, by) anda, > b, are clear. Suppose that for
somej € {1,...,k} we have

(1,0) = (., bx)< --- <(aj,b;) and, for each € {j,....k}, a; > b;.
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Proceding by descending induction, it suffices to prove:
(43) (aj, bj) < (aj_l, bj_l) and [] =1 Ooraj_—1 > bj_l].

We consider two cases. If > 1 then the definition of7; gives f; € ¢,
and deg (f;) > 3 — n; together witha; > b; and 4.11.10, this implies that
bideg[ds,(R;)] = (ea;,a;) for somee > 1. Sinceé,(R;) = R;_1, this gives
(Clj,]_, bj,]_) = (eaj, aj), SO @j, bj )< (Clj,]_, bj,]_) and aj_1> bj,]_, i.e., (43) holds.

If j=1 then we still havef; € £, anday > by. If f1 =0 thenRg = doR1=7R1
has bidegreelf, a;) by 4.11.5, so 41, b1) < (ao, bg); if f1 # O then 4.11.10 implies
that Ro = 05, R1 has bidegreeef, a1) for somee > 1, so again 4y, b1) < (ao, bo).
Hence, (43) holds in all cases.

To prove thatag > b < deg, (f1) > 3 —n, observe that the conditions

fieé&, Ri1= 5;11(]30), (a1, b1) < (a0, bo) and ag > b1

show that f; is the unique element of, determined byRy € KLND(B) \ {A1}
(see 4.11.11); then the last assertion of 4.11.11 is theatksesult. O

Proof of 4.10.4. Consider an edd¢ '} of F.,» where

f=0f..... i) and ' =(fr..... fi. fird);

write 6 = dp0---0d5, A = Py(f) = 6(A1) and A’ = P(f') = 6 o d4,,(A1). Since
5 HA") = §4.,(A1) is a neighbor of6~1(A) = A; by 4.11.9, it follows thatd’ is a
neighbor of A . This proves (1).

Observe that the connectednesskaiND, (B) (4.8) implies that every vertex of
KLND, (B) is an endpoint of some edge; so, in order to prove (2), ificeg to prove
surjectivity on the edges. Now, again by connectednessLab, (B), if e is any edge
of KLND,(B) then there exists a simple path  with initial poiay and which tra-
versese . So it suffices to prove:

(44) Suppose thatP = (Ro,...,Ry) is a locally simple path inKLND,(B)
such thatRy = Ai. Then there exist§ = (fi,..., fkx) € F, such that
{0+ 0p)(AD}o = P.

If k=0 thenf = @ (empty sequence) satisfies (44). Assume that 0 and that
(f1, ..., fic1) € F, is such that

(@ 0 ADYy = (Ro, - ., Ria).

Write § = &4 0 -+ 0 84 ,. Thend~Y(Ry) is a neighbor of6~1(Ry_1) = A1 so,
by 4.11.9, there is a uniqug € &, such thatd; (A1) = 6-1(Ry); this implies that
(04 ---67)(A1) = Ry so there remains only to check that (..., fi) € F,.
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Assume that fi, ..., fi) € F,, then we must havé > 1 and f; = 0; writing
§'=dp0---005 ,, We have

Ry =000y, 000(A1) =6 o Ay, o 7%(A1) = §'(A1) = Re—z,

contradicting the hypothesis th& is locally simple. So)(#4proved and so is as-
sertion (2).

Let A € KLND(B). By induction on &, b ) = bideg{ ), we show that is in the
image of PJ: 75 — KLNDk(B). If (a,b) = (1,0) thenA =A; by 4.11.6, soP;(2) =
A.

Suppose thata( b ) (1, 0); thenA € KLND(B) \ {A1}. By 4.11.11, there exists
f € &, such that, if we define

A'=6744)  and @, D)= bideg@),

thena’ > b’ and @', b') < (a, b). By induction, we may assume that = P3(j) for
some verte’ = (f1,..., fx) of fv". We claim that

(49) f=(f fi..... fi) is & vertex of £,

To see this, it suffices to show that, fif # @, then deg (f1) > 3 — n. Assume that
f # o and apply 4.11.11 tofi, ..., fi); then the last assertion of 4.11.11 reads
deg,(f1) > 3—n < a > b'. Sincea’ > b’ does hold, (45) follows. Clearly,
P3(f) = 67(A") = A. ThusP; is surjective on vertices.

Notice the following consequence of 4.11.12:flfs a vertex off;’ other thang,
then PJ(f) has bidegree strictly greater than, (1 0); in other words, ¢hly element
of P;‘l(Al) is the empty sequence.

Suppose thaf; is not injective (on vertices). Then we may choose distinat v
ticesf, { of f;’ such thatP3(f) = P(f'). Write f = (f1, ..., fi) andf = (g1, ..., gm)
and assume that we have chogerf’ such thatk +n is minimal. Writed  =P5(f) =
P3(f'). Sincef # f, at least one of, §' is nonempty, soA # A; by the preceding
paragraph, so both and{ are nonempty.

Result 4.11.12 implies that each element {gi, g1} satisfies:

If we define(a, b) = bidegd ) A’ = 5;1(A) and (¢’, b") = bideg@’), then
(@',b") < (a,b) anda’ > b'.
So the uniqueness part of 4.11.11 implies thiat g;.

Notice thatf. = (f2,..., fi) and f, = (g2, ..., gn) belong toF7. Since f1 = g1,
P5(f.) = P5(f.); by minimality of k +m we obtainf. = f, which implies thatf = ', a
contradiction. This proves assertion (3).

If n > 2 thenF, = 77 and P, = PJ. By (1-3), P, is a homomorphism of
graphs which is bijective on vertices and surjective on sfdgefollows that it is an
isomorphism, so (4) is true.

This completes the proof of 4.10.4. ]
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5. Factorial affine domains

By a factorial affine domain we mean a UFD which is affine over some field
(of characteristic zero, as always in this paper). The masult of this section is 5.1,
which improves 3.7.

Theorem 5.1. If B is a factorial affine domain then
(1) KLND,(B) = URejz(B) KLND (B)
(2) For eachR € R(B), KLND (B) is isomorphic toKLND  (Bg) and (Bg, Rg) is a
Danielewski surface. In particulalKLND ,(B) is infinite and connected.
(3) If R, R are distinct elements oR(B), the graphsSKLND (B) and KLND /(B)
have at most one vertex in common.

REMARKS.
e Assertion 5.1(3) simply repeats 3.7(b).
e In 5.1(2), the fact thatEg, Rr ) is a Danielewski surface followsnh the defini-
tion of R(B), and we know by Section 4 that the graph of a Danielewskiaser is
infinite and connected.

The proof of 5.1 requires some preparation. First, we defiset&k™(B) of sub-
rings of B which is larger thaiR(B):

Derinimion 5.2.  Given an integral domaiB
R"(B) = {R | R is an inert subring ofB and trdggB( )32

Lemma 5.3. Let B be a factorial affine domain ant € R"(B). Then
(&) The mapA: KLNDg(B) — KLNDg,(Bg), A — Ag, is well-defined and bijective.
Its inverse is given byl — A N B.
(b) The bijectionA is an isomorphism of grapheLND z(B) — KLND ; (Bg).

Proof. It is clear thatBy has transcendence degree two &yer it s@kes
sense to consider the graphND . (Bg). Note thatKLND g, (Bg) = KLND(Bg), by 1.6
and the fact thatR; is a field contained By

We prove (a) now, and (b) will be proved after 5.3.3, below.

The fact thatA :KLNDg(B) — KLNDg,(Bg) is well-defined and injective is a
consequence of part (2) of 1.6.

Before proving thatA is surjective, we first note that is affowver R . Indeed,
we have B* = R* becauseR is an inert subring & . LktC B be a field over
which B is affine. Therk* C B* = R*, sok C R C B and it follows thatB is affine
over R.

To show thatA is surjective, consideér € KLND g, (Bg). ChooseD € LNDg, (Bg)
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such that ke = A. Since B is affine ovelR , we may considgy, ..., b, such that
B = R[b1,...,b,). For eachi € {1,...,n}, we haveD(b;) € Bg; so there exists
r € R\ {0} satisfying

Vi rD(b,-) € B.

Since the derivationD: B — Bz mapsR to 0 and maps each m it maps
B into itself; also,rD is locally nilpotent, sincer € kerD. Let D: B — B be the
restriction of rD, then D € LNDg(B) and kerD =A , where we definda B8N A.
Since D has aunique extension to a derivation 0By , we haw; D; by 1.6,
the kernel of Dy isAg , SO we obtairl = Ax = A(A). SO A is surjective and (a) is
proved. [l

The next three facts are needed for the proof of 5.3(b). Tt &ne is well-
known and easy to prove.

5.3.1. Let B be a UFD andA € KLND(B). Then:
(1) There exists an irreducibl® € LND 4(B).
(2) If D1, D, € LND4(B) are irreducible, therD, = AD; for some\ € B*.

Lemma 5.3.2. Let B be a UFDQ R an inert subring ofB andD: B — B an
irreducible R -derivation. ThenDg: Br — By is irreducible.

Proof. Assume the contrary; then there exists Bg \ Bg* such thatDr Br X<
bBg. In fact, such an elemerit may be chosenBin . Then some printerfacc B
of b satisfiesp ¢ Bg*.

Since D is irreducible ang ¢ B*, we may chooser € B such thatDx ¢ pB.
Since D ) =Dk & )€ pBg, there exists € R\ {0} such thatp | rD(x) in B. Then
p | rin B; sincer € R\ {0} and R is an inert subring oB p € R\ {0}. Thus
p € Bg*, a contradiction. O

Lemma 5.3.3. Let B be a UFQ R € R"(B) and K = Rg. Then for eachA ¢
KLND g(B),

QR(A) =BN QK(AR)

Remark. Since K is a field contained iy , we haveg ¢ ) Az . So the defi-
nition of Qg (Ag) reads:

Qk(Ag) ={C € Bg | 3 an irreducibleA € LND 4,(Bg) such thatAr =K A(l}.

Proof of 5.3.3. Lety € Qg(A). Then there exists an irreducibl® € LND 4(B)
such thatAg =K Dy ]. By 1.6,Dr Br — Bg belongs toLND 4,(Bg); moreover,Dg
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is irreducible by 5.3.2. Sincely X Oy ] X Dr y( )], we have € Qk(Ag). This
proves thatQz A X B N Qg (Ag).

Conversely, suppose thate B N Qk(Ag). Then there exists an irreducible €
LND4,(Bg) such thatAg =K Ay ]. On the other hand, 5.3.1 allows us to comsife
irreducible D € LND4(B) and, by 5.3.2,D; is irreducible. Thubg ans are two
irreducible derivations belonging toND4,(Bg); using 5.3.1 again, we gebz XA
for some\ € Bg*. SinceR isinertinB K isinertimB; , sBz* = K* and\ € K*.

So

K[Dyl = K[D(y)] = K[AA(Y)] = K[A(Y)] = Ag,

showing thaty € Qz(A). This proves thatB N Qk(Ag) C Qg (A). ]

Proof of 5.3(b). WriteK =Ry . We have to verify that, given distilrd, A’ ¢
KLND g(B),

By 5.3.3, we have in particulaf2g Al £ Qx(Ag) and Qg @A) C Qk(A%), soO
“ =" holds in (46).

Conversely, suppose thate Qk(Ag) N Qk(A%). For any € K*, we havelw €
Qk(Ag) N Qk(A%); choose) € R\ {0} such that\w € B, then 5.3.3 gives

Aw € BN QK(AR) n QK(A%) = QR(A) n QR(A/),

so “<" holds in (46). This proves 5.3(b). ]

Proof of 5.1.  Assertion (3) (of 5.1) is given in 3.7, so only) @nd (2) need
proof.

If R € R(B) then (by definition) Bg, Rz ) is a Danielewski surface; so
KLND . (Bg) is connected by 4.8, and contains infinitely many vertioggsay) 4.11.9.
Now R € R(B) also implies thatR € R"(B), so KLND x(B) = KLND  (Bg) by 5.3;
this proves assertion (2).

For eachR € R(B), assertion (2) implies thatLND ,(B) has no isolated vertex;
thus URGR(B) KLND ,(B) € KLND,(B). This and 3.7 imply assertion (1).

This completes the proof of 5.1. O

6. Some philosophical remarks

Given any integral domaiB (of characteristic zero) we hagfneéd three graphs,
KLND(B), KLND (B) and R(B), which are invariants o8B up to isomorphism. More-
over, the structures okLND,(B) and R(B) are closely related an®(B) should be
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thought of as a “simplified version” okLND (B): If B is factorial and affine R(B)
is isomorphic to the graph obtained froruND , (B) by shrinking each connected sub-
graphKLND z(B) (whereR € R(B)) to a single vertex.

To illustrate the claim thakLND , (B) and R(B) have closely related structures we
mention the following easy consequence of 5.1:

If B is a factorial affine domain themLND,(B) and R(B) have the same number
of connected components. In particular,

KLND, (B) is connected<—= R(B) is connected.

Consider the problem of describing.ND(B). In view of 5.1 and of the fact that
the graphskLND ;(B) = KLND, (Bg) are described in Section 4, we are justified to
state the following:

6.1. Aphorism. Let B be a factorial affine domain. To achieve a satisfactory

description ofKLND(B), it suffices to solve the following problems:

(1) Describe the kerneld € KLND(B) which are isolated vertices gfLND(B).

(2) Describe the grapt(B).

A particularly interesting factorial affine domain & kEX, Y, Z] = kBl. For this ring,

the above problems (1) and (2) are still open but there aree quertial results that we

intend to give in a subsequent paper. Let us mention that eiatreble is played by

the polynomialsf € k[X, Y, Z] whose generic fiber is a Danielewski surface, i.e.,
the pair (k(f)[X, Y, Z], k(f)) is a Danielewski surface.

In fact, it is not too difficult to show thaR(B) is precisely the set of ringk[ f] such

that f € B is a polynomial whose generic fiber is a Danielewski surface.

It seems to this author that, in order to understand the lipc@potent derivations
(and the automorphisms) &3, it will be necessary to better understand the polyno-
mials whose generic fiber is a Danielewski surface. It may lgoad idea to think of
those polynomials as generalized variables.

Isolated vertices

This paper made some progress in the understandina.iob , (B), but essentially
nothing has been said about isolated verticexigfiD (B). In particular, it would be
interesting to classify two-dimensional rindgs  such tkanD(B) is a discrete graph
with many vertices. The smooth surfacks, ; which are studield]igive examples
of such rings?

ExampLE 6.2. Fix two integers O< j < m such that gcd{,m ) = 1. Consider
the Danielewski surfac® €[xy, x2, y] defined byx;xo = y" — 1. Let( € C be a
primitive m-th root of unity and defind € Autc(B) by 6(x1) = (x1, 0(x2) = (~1x; and
6(y) = ¢/y. Finally, let B,,; ={b € B | 6(b) = b}. Then Theorem 2.9 of [5] shows,

2See also [2] for more information on such rings.
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among other things, that the smooth surfatg ; = SBeg( )@sheomology plane
with | Pic(X,,, ;) =m. We claim:

(47) KLND(B,, ;) is a discrete graph whose vertex set has the cardinalit{ of

Proof of (47). Assume th&LND(B,,, ;) is non-discrete. Then, by 4.3, there ex-
ists a fieldk C B, ; such that B, ;, k) is a Danielewski surface; sinde must satisfy
B, ; =k*, and since it is clear tha, ;= C* (becauseC C B,,; C B and B* = C~),
we must then hav&k = C. However, it is known (see 2.8 of [5]) that any smooth
Danielewski surface (ove€) of degreen has a Picard group isomorphic Zb—1;
since X,, ; is smooth and has a Picard group of omder , it cannot barge@wski
surface overC. This contradiction shows thadLND (B,,, ;) is discrete.

Theorem 2.9 of [5] also implies thatLND(B,,, ;) has at least two elements. In

view of 1.10, it follows that| KLND (B, ;)| = |C|. O

Local slice construction

As mentioned in the introduction, the present work startedma attempt to under-
stand [4]. In that paper, Freudenburg presents a method éalifying a given kernel
A € KLND(B), where B =kBl, so as to obtain another one, sdy € KLND(B); in
that case he says that is obtained fromA by local slice construction

To conclude this paper, we show that the grapiND(B) can be interpreted as
method for modifying kernels, in the same spirit as [4]. Thigrks best whemB is a
factorial affine domain:

Proposition 6.3. Let B be a factorial affine domain and consider a triple
(R, A,y) whereR € R(B), A € KLNDg(B) and y € Q(A). Then there exists exactly
one A’ € KLNDg(B) such that

y € Qr(A") and A’ #A.

DeriniTion 6.3.1. In the situation of 6.3, we say:
A’ is obtained from(R, A, y) by local slice construction.

RemarRk. There is a method for computing’ from (R, A, y), similar to the
method described in [4], but we leave this aspect to the reade

The first step in the proof of 6.3 is:
Lemma 6.3.2. Let (B, k) be a Danielewski surface ang < B. Then the set

E={A €KLND(B) | y € Q«(A)}
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has cardinality zero or two.

Proof. Suppose that € E. Theny € Qx(A), so there exists an irreducible
LND4(B) satisfyingA =k[Dy]. Write x = Dy, then 2.8 implies thatx( xz, y) € T'k(B)
for somex, € B. Write A’ = Kk[x], then A’ € KLND(B), A’ # A and 4.2 gives
y € Q(A) N Q(A’); so A’ € E. This shows that ifE # & then |E| > 2.

To finish the proof of 6.3.2, it suffices to show thatAf, A,, A3 € E satisfy

(48) A]_ ?f A2 and Al ?f A3,

then Ar = As.

Suppose that (48) holds. For eache {1, 2 3} we havey € Qy(A;) and con-
sequently there exists an irreducibl®, € LNDy,(B) satisfying A; =K[D;(y)]. Let
x; = D;(y), then kemD; =A; =[x;]= k[t (for eachi € {1,2 3}).

Let j € {2, 3}. SinceA: # A, (v, D1, D) satisfies the hypothesis of 2.5; since
(2.5-1) is false, (2.5-2) must hold, sai(x;,y) € T'k(B). This and 2.4 imply that
k[y] Nx1B is the principal ideal ok[y] generated byxix;.

So x1x2 and x;x3 are associates ik[y] and consequentlys = Ax, for some\ €
k*. So A, = A3 and 6.3.2 is proved. O

Proof of 6.3. LetB be a factorial affine domain, I8t R(B) and lety € B.
We have to show that the set

E@.ry) ={A €KLND(B) | y € Qr(A)}

has cardinality zero or two. Sinck € R(B), the pair Bg, Rr ) is a Danielewski sur-
face so the set

E ={A € KLND(Bg) | y € Qg,(A)}
has cardinality zero or two by 6.3.2. By 5.3,

A KLNDg(B) — KLND(Bg)
A+— Ap

is a well-defined bijection and, in view of 5.3.3, for eaghc KLND z(B) we have
A€ E(B,R.y) =yeE QR(A) Sye BN QRR(AR) S ye QRR(AR) = AR € E,

i.e., Eg.ry = AYE). So Es ) has cardinality zero or two and 6.3 is proved.
U
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