KNOTTED KLEIN BOTTLES WITH ONLY DOUBLE POINTS

Акіко SHIMA

(Received September 27, 1999)

1. Introduction

If an embedded 2-sphere in 4 -space \mathbf{R}^{4} has the singular set of the projection in 3 -space \mathbf{R}^{3} consisting of double points, then the 2 -sphere is ambient isotopic to a ribbon 2-sphere (see [19]). Similarly, if an embedded torus in \mathbf{R}^{4} has the singular set of the projection in \mathbf{R}^{3} consisting only of double points, then the torus is ambient isotopic to either a ribbon torus or a torus obtained from a symmetry-spun torus by m-fusion (see [15]). In this paper we will show a similar theorem for an embedded Klein bottle in \mathbf{R}^{4}. The following is the main results in this paper.

Theorem 1.1. Let F be an embedded Klein bottle in \mathbf{R}^{4}. If the singular set $\Gamma^{*}(F)$ of the projection of F in \mathbf{R}^{3} consists only of double points, then F is ambient isotopic to either a ribbon Klein bottle or a Klein bottle obtained from a spun Klein bottle by m-fusion.

Corollary 1.2. Let F be an embedded Klein bottle in \mathbf{R}^{4}. Suppose that the singular set $\Gamma^{*}(F)$ of the projection of F in \mathbf{R}^{3} consists of double points, and every component of the singular set $\Gamma(F)$ on F is not homotopic to zero. If the fundamental group of the complement of F is isomorphic to \mathbf{Z}_{2}, then F is trivial, i.e., F bounds a solid Klein bottle in \mathbf{R}^{4}.

Let F be an oriented closed surface in \mathbf{R}^{4}. Is F trivial if the fundamental group of the complement of F is isomorphic to \mathbf{Z} ? In the topological category, the question is affirmatively soloved when if it is a 2 -sphere (see [3]). In the PL or smooth category, this is an open question, it is affirmatively soloved when F is one of the following:
(i) F is a 1 -fusion ribbon 2-knot ([8]).
(ii) F is a 2 -sphere with four critical points ([11]).
(iii) F is a symmetry-spun torus ([17]).
(iv) F is a torus whose singular set on the torus consists only of disjoint simple closed curves with non-homotopic to zero in the torus ([15]).

All homology groups are taken with coefficients in \mathbf{Z}, and all submanifolds are

[^0]assumed to be locally flat, thourghout in this papar. We will work in the PL category, thourghout in this papar. Let \mathbf{R}^{n} be the n-dimensional Euclidean space. Moreover, we regard 3-space \mathbf{R}^{3} as the subset $\mathbf{R}^{3} \times\{0\}$ of \mathbf{R}^{4}.

The paper is organized as follows. In Section 2, we define a ribbon surface, and a Klein bottle obtained from a spun Klein bottle by m-fusion. In Section 3, we study certain types of 2-complexes in \mathbf{R}^{3}. In Section 4, we define diagrams for embedded surfaces. In Section 5, we consider spun Klein bottles in \mathbf{R}^{4}. In Section 6, we prove the main theorem.

Acknowledgement. I would like to thank Akio Kawauchi and Kazuo Habiro for useful comments and advice.

2. Preliminaries and definitions

In this section, we define an m-fusion, a ribbon surface, and a spun Klein bottle.
Let F be a closed surface. A map f from F to \mathbf{R}^{3} is a generic map if for at every point x of F, there exists a regular neigborhood N of $f(x)$ in \mathbf{R}^{3} such that $(N, f(F) \cap N)$ is homeomorphic to $\left(B^{3}, Z_{1}\right),\left(B^{3}, Z_{1} \cup Z_{2}\right),\left(B^{3}, Z_{1} \cup Z_{2} \cup Z_{3}\right)$ or (B^{3}, the cone on a figure 8), where B^{3} is the unit 3-ball in \mathbf{R}^{3}, Z_{i} is the intersection of B^{3} and $x_{j} x_{k}$-plane $(\{1,2,3\}=\{i, j, k\})$. If $(N, f(F) \cap N)$ is homeomorphic to (B^{3}, the cone on a figure 8), then the point $f(x)$ is called a branch point. The point is also known as "Whitney's umbrella" or "a pinch point". A point $x \in f(F)$ is called a double point if $f^{-1}(x)$ consists of two points, and a triple point if $f^{-1}(x)$ consists of three points.

Let F be an embedded surface in \mathbf{R}^{4}, and let p be the projection defined by $p\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(x_{1}, x_{2}, x_{3}\right)$. If $p \mid F$ is a generic map, then we associate the subset $F^{*}=p(F)$, and we denote by $\Gamma^{*}(F)$ the set of all double points, triple points and branch points. And put $\Gamma(F)=p^{-1}\left(\Gamma^{*}(F)\right) \cap F$. In this paper we assume that $p \mid F$ is a generic map.

An oriented closed surface in \mathbf{R}^{4} is said to be trivial if it is the boundary of the disjoint union of handlebodies in \mathbf{R}^{4}. Note that the boundary of a handlebody is unique up to ambient isotopies of \mathbf{R}^{4} (see [5]). An embedded Klein bottle in \mathbf{R}^{4} is said to be trivial if it is the boundary of a solid Klein bottle in \mathbf{R}^{4}. Here the solid Klein bottle is homemorphic to the 3-manifold by attaching $B^{2} \times\{0\}$ and $B^{2} \times\{1\}$ from $B^{2} \times[0,1]$ via the map $q(x, 0)=(-x, 1)$, where B^{2} is the unit 2 -ball. In other word, the trivial Klein bottle is ambient isotopic to the surface with projection in \mathbf{R}^{3} as illustrated in Fig. 1.

Let G be an embedded closed surface in $\mathbf{R}^{4}, I=[0,1], B^{2}$ the unit 2-ball. An embedded surface F in \mathbf{R}^{4} is a surface obtained from G by m-fusion if there exists a collection of embeddings $h_{i}: B^{2} \times I \longrightarrow \mathbf{R}^{4}, i=1,2, \ldots, m$, satisfying the following three conditions:
(i) The images of any two maps h_{i}, h_{j} are disjoint for any distinct i, j.

Fig. 1.
(ii) $h_{i}\left(B^{2} \times I\right) \cap G=h_{i}\left(B^{2} \times \partial I\right)$ for all i.
(iii) $F=\left(G \backslash \bigcup_{i=1}^{m}\left(h_{i}\left(B^{2} \times \partial I\right)\right)\right) \cup\left(\bigcup_{i=1}^{m} h_{i}\left(\partial B^{2} \times I\right)\right)$.

An embedded surface in \mathbf{R}^{4} is a ribbon surface if it is obtained from a trivial 2 -spheres by m-fusion.

Next, we define a spun Klein bottle in \mathbf{R}^{4}. For $\theta \in[0,2 \pi]$, let $\mathbf{R}_{\theta}^{3}=$ $\{(x, y \cos \theta, y \sin \theta, z) \mid y \geq 0\}$, and

$$
B_{0}=\left\{(x, y, 0, z) \mid x^{2}+(y-2)^{2}+z^{2} \leq 1\right\} .
$$

Then B_{0} is the 3-ball in \mathbf{R}_{0}^{3}, and the union of \mathbf{R}_{θ}^{3} for all $\theta \in[0,2 \pi]$ is \mathbf{R}^{4}. Let $r_{\theta}: B_{0} \rightarrow B_{0}$ be the θ-rotation map through the axis $(0,2,0) \times[-1,1]$ for $\theta \in[0,2 \pi]$. An embedded Klein bottle F in \mathbf{R}^{4} is called a spun Klein bottle if there exist an integer a and a knot K in the 3-ball B_{0} as shown in Fig. 2 (1) such that
(i) $\quad K$ intersects two points to the axis $(0,2,0) \times[-1,1]$,
(ii) $r_{\pi}(K)=K$, and
(iii) $F=\left\{(x, y \cos \theta, y \sin \theta, z) \mid(x, y, 0, z) \in r_{(a+(1 / 2)) \theta}(K), \theta \in[0,2 \pi]\right\}$.

We denote it by $K l^{a}(K)$. In particular, if K is a connected sum $L \#(-L)$ of a knot L as shown in Fig. 2 (2), then $K l^{a}(K)$ is called a simple spun Klein bottle, where $-L$ is the knot with the reverse orientation of L. The symbol L in Fig. 2 (2) is the 1 -string tangle so that the tangle sum of L and the trivial tangle is the knot L. In particular, a Klein bottle obtained from a split union of a trivial 2 -spheres and a spun Klein bottle by m-fusion is simply called a Klein bottle obtained from a spun Klein bottle by m-fusion.

Remark 2.1. (1) Let $K l^{a}(L \#(-L))$ be a simple spun Klein bottle. Then, the fundamental group of the complement of $K l^{a}(L \#(-L))$ is isomorphic to $\pi_{1}\left(S^{3} \backslash L\right) /\left\langle m^{2}=\right.$ $1\rangle$ where m is a meridian curve of L (see [18]).
(2) The Klein bottle $K l^{a}(K)$ is ambient isotopic to $K l^{a \pm 2}(K)$ (cf. [17]).

(1)

(2)

Fig. 2. The center of each figure is z-axis.

Fig. 3.

3. 2-complexes in \mathbf{R}^{3}

3.1. Embedded Klein bottles in \mathbf{R}^{4}. Let F be an embedded Klein bottle in \mathbf{R}^{4} such that $p \mid F$ is a generic map. In this section, we assume that $\Gamma^{*}(F)$ consists only of double points. First, we consider the singular set $\Gamma(F)$ on F. Let $c_{1}=0 \times I$, $c_{2}=(1 / 2) \times I, c_{i}=i /(2 n+1) \times I \cup(2 n+1-i) /(2 n+1) \times I$, and $d_{j}=I \times j /(2 n)$ where $i=3, \ldots, 2 n$ and $j=1,2, \ldots, 2 n-1$. Let $\Gamma_{1}=c_{1} \cup c_{2} \cup \cdots \cup c_{n} / \sim, \Gamma_{2}=$ $d_{1} \cup d_{2} \cup \cdots \cup d_{2 n-1} / \sim$ where \sim is the relation on $I \times I$ with $(0, t) \sim(1, t)$ and $(t, 0) \sim(1-t, 1)$ for all $t \in I$. Then each of Γ_{1} and Γ_{2} is a union of disjoint simple closed curves on a Klein bottle (see Fig. 3). Note that Γ_{2} consists of an odd number of disjoint simple closed curves.

Lemma 3.1 ([16, Lemma 1.4]). Let F be a Klein bottle in \mathbf{R}^{4} such that $\Gamma^{*}(F)$ consists only of double points. Let Γ be the union of the components of $\Gamma(F)$ each of

Fig. 4.
which is not homotopic to zero in F. Then the pair (Γ, F) is homeomorphic to $\left(\Gamma_{1}, F\right)$ or $\left(\Gamma_{2}, F\right)$.
3.2. Certain types of $\mathbf{2}$-complexes in $\mathbf{R}^{\mathbf{3}}$. In this subsection, we define certain types of 2-complexes in \mathbf{R}^{3}. For $\theta \in[0,2 \pi]$, let $\mathbf{R}_{\theta}^{2}=\{(x, y \cos \theta, y \sin \theta) \mid y \geq 0\}$, and

$$
\bar{B}_{0}=\left\{(x, y, 0) \mid x^{2}+(y-2)^{2} \leq 1\right\} .
$$

Then \bar{B}_{0} is the 2-ball in \mathbf{R}_{0}^{2}, and the union of \mathbf{R}_{θ}^{2} for all $\theta \in[0,2 \pi]$ is \mathbf{R}^{3}. Let $\overline{r_{\theta}}: \bar{B}_{0} \rightarrow \bar{B}_{0}$ be the θ-rotation map through the point $(0,2,0)$ for $\theta \in[0,2 \pi]$. Let α be a 1 -complex in \bar{B}_{0} such that each vertex is a vertex of degree four or three. A 2-complex K in \mathbf{R}^{3} is called a 2-complex obtained from α if there exist integers b, c with $c \neq 0$ such that
(i) If α intersects the point $(0,2,0)$, then the point $(0,2,0)$ is the vertex of degree four and $c=2$.
(ii) $\bar{r}_{2 \pi / c}(\alpha)=\alpha$, and
(iii) $K=\left\{(x, y \cos \theta, y \sin \theta) \mid(x, y, 0) \in \bar{r}_{(b / c) \theta}(\alpha), \theta \in[0,2 \pi]\right\}$,

We denote the 2-complex K by $\alpha(b, c)$, and the above 1 -complex α is called a c-symmetric 1-complex.

Example 3.2. (i) Let α_{1} be the 2 -symmetric 1 -complex in \bar{B}_{0} as shown in Fig. 4 (1) such that the vertex of α_{1} is the point $(0,2,0)$. Then if b is an odd integer (resp. even integer), then the 2-complex $\alpha_{1}(b, 2)$ is an immersed Klein bottle (resp. torus) in \mathbf{R}^{3}.
(ii) Let c be an integer with $c \neq 0$, and α_{i} the c-symmetric 1-complex in \bar{B}_{0} as shown in Fig. 4 (i) such that α_{i} does not intersect the point $(0,2,0)$ for $i=2$, 3. Then c is the number of vertices of α_{i}, and then the 2-complex $\alpha_{i}(b, c)$ is immersed tori for any integer b.

Lemma 3.3. Let α be a c-symmetric 1-complex, and $\alpha(b, c)$ a 2 -complex in \mathbf{R}^{3} obtained from α.
(1) Let C be a component of $S(\alpha(b, c))$. Then, a regular neighborhood of C in $\alpha(b, c)$ is two immersed annuli, two immersed Möbius bands. Moreover, there is at most one regular neighborhood consisting of two immersed Möbius bands.
(2) Removing $S(\alpha(b, c)$), we obtain open annuli.

Here $S(\alpha(b, c))$ is the set of all point whose neighborhood in $\alpha(b, c)$ is the intersection of two sheets or $Y \times[0,1]$, where Y is the cone on three points.

Proof. (1) If $c=2$, if b is odd, and if α intersects the point $(0,2,0)$ in \bar{B}_{0}, then we have the component with $(0,2,0)$ in $S(\alpha(b, c))$ whose regular neighborhood in $\alpha(b, c)$ consists of two immersed Möbius bands. Conversely, such a component can be obtained only as above, which yields the result.
(2) From the condition (ii) of the definition of symmetric 1 -complexes, we can show (2).

From Lemma 3.3, we have the following remark:
Remark 3.4. (1) Let b, c be integers with $c \neq 0$, and α a c-symmetric 1-complex in \bar{B}_{0}. If $\alpha(b, c)$ is an immersed Klein bottle, then b is odd, $c=2$ and there exists a knot K in B_{0} with $\left(K l^{(b-1) / 2}(K)\right)^{*}=\alpha(b, 2)$.
(2) Let K be a knot in B_{0} satisfying (i) and (ii) in the definition of spun Klein bottles. Then for any integer a, the projection $\left(K l^{a}(K)\right)^{*}$ in \mathbf{R}^{3} is the 2-complex obtained from $p(K)$, i.e., $\left(K l^{a}(K)\right)^{*}=p(K)(2 a+1,2)$.

Definition 3.5. Let α_{1} be the 2 -symmetric 1 -complex as shown in Fig. 4 (1) with $\alpha_{1} \subset \bar{B}_{0}$. Then there exist two 2-balls D_{1}, D_{2} in \bar{B}_{0} such that $D_{1} \cap D_{2}$ is the point $(0,2,0)$ and $\alpha_{1}=\partial D_{1} \cup \partial D_{2}$. For an integer b, the 3-complex X_{b} is defined by $X_{b}=\left\{(x, y \cos \theta, y \sin \theta) \mid(x, y, 0) \in \bar{r}_{\{(2 b+1) / 2\} \theta}\left(D_{1} \cup D_{2}\right), \theta \in[0,2 \pi]\right\}$.
Note that the closure of one component of $\mathbf{R}^{3} \backslash\left\{\alpha_{1}(b, 2)\right\}$ is X_{b}. Let S^{1} be the unit 1 -sphere. Then, the 1 -sphere S^{1} is identified with $[0,2 \pi] / 0 \sim 2 \pi$. We have a natural embedding ψ of the solid torus $\bar{B}_{0} \times S^{1}$ in \mathbf{R}^{3} defined by $\psi(x, y, \theta)=$ $(x, y \cos \theta, y \sin \theta)$. Let $g: \bar{B}_{0} \times S^{1} \rightarrow \mathbf{R}^{3}$ be an embedding. Then $g\left(\psi^{-1}\left(X_{b}\right)\right)$ is also a 3 -complex in \mathbf{R}^{3}. We call it a coiled solid torus. Let α be a c-symmetric 1 -complex. Then we also call $g\left(\psi^{-1}(\alpha(b, c))\right)$ a 2-complex obtained from α for any integer b.

Let F be an embedded surface in \mathbf{R}^{4} such that
(K0) F is the disjoint union of one Klein bottle and tori, or the disjoint union of tori, (K1) $\Gamma^{*}(F)$ consists only of double points, and
(K2) each component of $\Gamma(F)$ is not homotopic to zero in F, and F^{*} is connected. From Lemma 3.1, we have the following lemma.

Lemma 3.6. Let F be as above. Then we have the following.
(1) $F^{*} \backslash \Gamma^{*}(F)$ consists of open annuli.
(2) Let C be a component of $\Gamma^{*}(F)$, and $N(C)$ a regular neighborhood of C in \mathbf{R}^{3}. Then $N(C) \cap F^{*}$ consists of two immersed annuli or two immersed Möbius bands.

A curve C is an A-curve if $N(C) \cap F^{*}$ is two immersed annuli, and is an M-curve if $N(C) \cap F^{*}$ is two immersed Möbius bands.

In the case of classical knots, any knot diagram in \mathbf{R}^{2} can be considered in the 2 -sphere. Because, by ambient isotopies the bounded region of $\mathbf{R}^{2} \backslash\{$ a knot projection $\}$ can be changed. Similarly, without loss of generality we may consider that the projection of knotted surfaces is in the 3 -sphere S^{3}. Here, we consider the 3 -sphere S^{3} as a one point compactification of \mathbf{R}^{3}. We discuss about a 2 -complex which is the projection into \mathbf{R}^{3} of an embedded surface in \mathbf{R}^{4} satisfying (K0), (K1) and (K2). Note that the above 2-complex is called a 2 -complex consisting of annuli in [14]. From now on, we assume that such a projection is in the 3 -sphere S^{3} in this section.

Lemma 3.7 ([16, Lemma 2.1]). Let F be an embedded Klein bottle in \mathbf{R}^{4} such that $\Gamma^{*}(F)$ consists only of one simple closed curve, and each component of $\Gamma(F)$ has a Möbius band neighborhood. Then there exists an odd integer b and an embedding $g: \bar{B}_{0} \times S^{1} \rightarrow S^{3}$ such that F^{*} can be moved to the 2-complex $g\left(\psi^{-1}\left(\alpha_{1}(b, 2)\right)\right)$ by an ambient isotopy of S^{3}, where α_{1} is the 2 -symmetric 1-complex as shown in Fig. 4 (1).
3.3. Good solid tori sequences. Let F be an embedded surface in \mathbf{R}^{4} satisfying the conditions (K0), (K1) and (K2). Then $\Gamma^{*}(F)$ consists only of A-curves and at most one M-curve. Let $V_{1}, V_{2}, \ldots, V_{k}$ be solid tori in S^{3}, and $\mathfrak{V}=\left\{V_{1}, V_{2}, \ldots, V_{k}\right\}$. We say that \mathfrak{V} is a solid tori sequence for F^{*} if \mathfrak{V} satisfies the following two conditions:
(i) $\partial V_{i} \subset F^{*}$ for all i.
(ii) If $i \neq j$, then $V_{i} \cap V_{j}=\partial V_{i} \cap \partial V_{j}$ is one simple closed curve, an annulus or empty. Let X be a coiled solid torus, and \mathfrak{V} as above. We say that $\mathfrak{V} \cup\{X\}$ is an almost solid tori sequence for F^{*} if $\mathfrak{V} \cup\{X\}$ satisfies the above conditions (i), (ii), and
(iii) the intersection of X and $\overline{S^{3} \backslash X}$ is contained in F^{*}, and
(iv) $X \cap V_{i}$ is one simple closed curve, an annulus or empty for all i.

Example 3.8. Let α_{3} be a c-symmetric 1 -complex as shown in Fig. 4 (3), and let D_{1}, D_{2} be 2-balls in \bar{B}_{0} such that $D_{1} \subset D_{2}$ and $\alpha_{3}=\partial D_{1} \cup \partial D_{2}$. For an integer b with $(b, c)=1$, let $W_{i}=\left\{(x, y \cos \theta, y \sin \theta) \mid(x, y, 0) \in \bar{r}_{(b / c) \theta}\left(D_{i}\right), \theta \in[0,2 \pi]\right\}$. Then W_{1}, W_{2} are the solid tori in S^{3} with $W_{1} \subset W_{2}$ and $\partial W_{1} \cup \partial W_{2}=\alpha_{3}(b, c)$. We see that $\left\{W_{2}\right\}$ is a solid tori sequence for the 2-complex $\alpha_{3}(b, c)$. Let $V_{2}=\overline{S^{3} \backslash W_{2}}$. Then V_{2} is a solid torus, $\partial W_{1} \cup \partial V_{2}=\alpha_{3}(b, c)$, and $W_{1} \cap V_{2}=\partial W_{1} \cap \partial V_{2}$ is one simple closed curve, say L. The set $\left\{W_{1}, V_{2}\right\}$ is a solid tori sequence for $\alpha_{3}(a, b)$. Let N be a

(1)

(2)

Fig. 5. (1) the 2-complex K_{1} (2) the 2-complex K_{2}.
regular neighborhood of L in S^{3}. Note that if L is not a trivial knot, then $W_{1} \cup V_{2} \cup N$ is not a solid torus. Because, $W_{1} \cup V_{2} \cup N$ is homeomorphic to the complement of an open regular neighborhood of L.

Let F be an embedded surface in \mathbf{R}^{4} satisfying (K0), (K1) and (K2). Let $\mathfrak{V}=$ $\left\{V_{1}, V_{2}, \ldots, V_{k}\right\}$ be a solid tori sequence for the 2 -complex F^{*}. Let c_{i} be a component of $\Gamma^{*}(F)$ with $c_{i} \subset \partial V_{i}$. Let n be the minimal number of intersection points of c_{i} and a meridian disk of the solid torus V_{i}. For the solid torus V_{i} we define $n\left(V_{i}\right)$ as follows:

$$
n\left(V_{i}\right)= \begin{cases}n & \text { if } n \geq 1 \\ 0 & \text { if } n=0, V_{i} \text { is non-standard } \\ \infty & \text { if } n=0, V_{i} \text { is standard }\end{cases}
$$

Here, a standard solid torus means a regular neighborhood of a trivial knot in S^{3}. We would like to distinguish standard and non-standard solid tori. Let T_{1}, T_{2}, T be tori in S^{3} such that

- T bounds a standard solid torus V,
- $T_{1}, T_{2} \subset V$,
- $T_{i} \cap T$ is a simple closed curve for $i=1,2$,
- T_{1} bounds the complement of an open regular neighborhood of a trefoil knot in V, and
- T_{2} bounds a solid torus V_{2} in V so that V_{2} has a 2-ball D in V with $D \cap V_{2}=\partial D$. See Fig. 5. For the torus T_{1}, there exists a solid torus V_{3} with $\partial V_{3}=T_{1}$. Let $K_{i}=$ $T_{i} \cup T$ for $i=1,2$. Then $\{V\}$ is a solid tori sequence for K_{i} with $K_{i} \subset V$ and $n(V)=$ 0 , and $\left\{V_{3}\right\}$ is a solid torus sequence for K_{1} with $n\left(V_{3}\right)=\infty$. However, K_{1} is not a 2-complex $\alpha(b, c)$ obtained from any symmetric 1 -complex α. If an embedded torus in \mathbf{R}^{4} has such a projection K_{1} into S^{3}, then by an ambient isotopy of \mathbf{R}^{4} we can assume that its projection in S^{3} is K_{2}. Let $W=\overline{S^{3} \backslash V}$. Note that K_{2} has a solid tori sequence

Fig. 6.
$\mathfrak{W}=\left\{V_{2}, W\right\}$ with $K_{2} \subset \cup \mathfrak{W}, n\left(V_{2}\right)=1$ and $n(W)=1$. By Proposition 3.18, we see that K_{2} is a 2 -complex obtained from some symmetric 1 -complex. In this paper we discuss about immersed Klein bottles. It is not important a solid torus V with $n(V)=0$ or $n(V)=\infty$.

We construct the graph $G(\mathfrak{V})$ obtained by a solid tori sequence \mathfrak{V} as follows. The vertices are in one to one correspondence with the solid tori $\left\{V_{i}\right\}$, and the edges are in one to one correspondence with the set $\left\{V_{i} \cap V_{j} \neq \emptyset\right\}$. If $V_{i} \cap V_{j} \neq \emptyset$, then we connect the vertices $v\left(V_{i}\right)$ and $v\left(V_{j}\right)$ by the edge $e_{i j}$.

Definition 3.9. Let F be an embedded surface in \mathbf{R}^{4} satisfying (K0), (K1) and (K2), and $\mathfrak{V}=\left\{V_{1}, V_{2}, \ldots, V_{k}\right\}$ a solid tori sequence for the 2-complex F^{*}. A solid tori sequence \mathfrak{V} is good, if \mathfrak{V} satisfies the following four conditions:
(i) $G(\mathfrak{V})$ is a connected tree.
(ii) If B is an annulus with $B \subset F^{*}$ and if $(\cup \mathfrak{V}) \cap B=\partial B$, then $\partial B \subset \partial V_{i}$ for some i. Namely, for any annulus B in F^{*} with $\partial B \cap(\cup \mathfrak{V})=\partial B$, the boundary of B is not contained in different two solid tori.
(iii) There exists a vertex $v\left(V_{1}\right)$ of $G(\mathfrak{V})$ such that if $V_{i} \neq V_{1}$ then $n\left(V_{i}\right)=1$.
(iv) If $i \neq j$, then $V_{i} \cap V_{j}$ is either one simple closed curve or empty.

The vertex $v\left(V_{1}\right)$ is called the special vertex.
Example 3.10. We give not good solid tori sequences as follows. Let M be the 1-complex in \bar{B}_{0} as shown in Fig. 6, and let $D_{1}, D_{2}, D_{3}, D_{4}$ be the closures of the bounded components of $\bar{B}_{0} \backslash M$ as shown in Fig. 6. We naturally embed the 2 -complex $M \times S^{1} \subset \bar{B}_{0} \times S^{1}$ in S^{3} via ψ.
(i) The solid tori sequence $\mathfrak{V}_{1}=\left\{D_{1} \times S^{1}, D_{2} \times S^{1}, D_{3} \times S^{1}\right\}$ is not a good solid tori for $M \times S^{1}$, because $G\left(\mathfrak{V}_{1}\right)$ is a circle.
(ii) Let A be the closure of a component of $M \backslash D_{1} \cup D_{2}$. Then A is an arc in ∂D_{3}. The solid tori sequence $\mathfrak{V}_{2}=\left\{D_{1} \times S^{1}, D_{2} \times S^{1}\right\}$ is not a good solid tori sequence for $M \times S^{1}$, because there exists the annulus $A \times S^{1}$ with $\left(\partial A \times S^{1}\right) \cap\left(\partial D_{i} \times S^{1}\right) \neq \emptyset$ for $i=1,2$.
(iii) Let $L, \alpha_{3}(b, c), W_{1}, V_{2}$ be as in Example 3.8. Suppose that b, c are integers with $b>1$ and $c>1$. Then the knot L wraps b times in the longitudinal direction of W_{1}, and then L wraps c times in the longitudinal direction of V_{2}. Moreover, $n\left(W_{1}\right)=b$
and $n\left(V_{2}\right)=c$. Since $b>1$ and $c>1,\left\{W_{1}, V_{2}\right\}$ is not a good solid tori sequence for $\alpha_{3}(b, c)$.
However, there exist good solid tori sequences \mathfrak{V} and \mathfrak{W} for $M \times S^{1}$ and $\alpha_{3}(b, c)$, respectively, such that $\alpha_{3}(b, c) \subset(\cup \mathfrak{V})$ and $M \times S^{1} \subset(\cup \mathfrak{W})$. In the case of $M \times S^{1}$, let $D=D_{1} \cup D_{2} \cup D_{3} \cup D_{4}$, then $\mathfrak{V}=\left\{D \times S^{1}\right\}$ is a desired solid tori sequence. In the case of $\alpha_{3}(b, c)$, since V_{2} is a standard solid torus, $W=\overline{S^{3} \backslash V_{2}}$ is a solid torus with $W_{1} \subset W$. Hence, $\mathfrak{W}=\{W\}$ is a desired solid tori sequence.

For a coiled solid torus X, we define $n(X)=2$. For an almost solid tori sequence \mathfrak{V}, we construct the graph $G(\mathfrak{V})$ in a similar way as above.

Definition 3.11. Let F be an embedded surface in \mathbf{R}^{4} satisfying (K0), (K1) and (K2). Let X be a coiled solid torus, and $\mathfrak{V}=\left\{X, V_{1}, V_{2}, \ldots, V_{k}\right\}$ an almost solid tori sequence for F^{*}. An almost solid tori sequence \mathfrak{V} is good, if \mathfrak{V} satisfies the following four conditions:
(i) $G(\mathfrak{V})$ is a connected tree.
(ii) If B is an annulus with $B \subset F^{*}$ and if $(\cup \mathfrak{V}) \cap B=\partial B$, then $\partial B \subset \partial V_{i}$ for some i or $\partial B \subset X \cap \overline{S^{3} \backslash X}$.
(iii) $n\left(V_{i}\right)=1$ for all solid tori V_{i}.
(iv) If $i \neq j$, then $V_{i} \cap V_{j}$ and $X \cap V_{i}$ are one simple closed curve or empty.

The vertex $v(X)$ is called the special vertex.
Let $\mathfrak{V}=\left\{V_{1}, \ldots, V_{k}\right\}$ be a (almost) solid tori sequence. If $V_{i} \cap V_{j}$ is one simple closed curve, let $N_{i j}$ be a regular neighborhood of $V_{i} \cap V_{j}$ in S^{3}. If $V_{i} \cap V_{j}=\emptyset$, let $N_{i j}=\emptyset$. If $V_{i} \cap V_{j}$ is an annulus, let $N_{i j}=V_{i} \cap V_{j}$. Then we say that $(\cup \mathfrak{V}) \cup\left(\cup N_{i j}\right)$ is a shape of \mathfrak{V}.

Lemma 3.12 ([15, Lemma 3.4]). Let $\left\{V_{1}, V_{2}\right\}$ be a solid tori sequence. Let V be a shape of \mathfrak{V}.
(1) If V is a solid torus, then $n\left(V_{1}\right)=1$ or $n\left(V_{2}\right)=1$.
(2) If V is not a solid torus, then $n\left(V_{1}\right)>1, n\left(V_{2}\right)>1$, and V_{1}, V_{2} are standard solid tori in S^{3}.
Here a standard solid torus means a regular neighborhood of a trivial knot in S^{3}.
Lemma 3.13. Let $\left\{V_{1}\right\},\left\{V_{2}\right\}$ be solid tori sequences such that $V_{2} \subset V_{1}$, and $\partial V_{1} \cap \partial V_{2}$ is one simple closed curve or an annulus. If $n\left(V_{2}\right)$ is not equal to 0,1 , and ∞, then $\partial V_{1} \cup \partial V_{2}$ can be moved a 2-complex obtained from one of Fig. 7 (1), (3) by an ambient isotopy of S^{3}. Hence V_{1} can be moved to V_{2} by an ambient isotopy of S^{3}.

Proof. In the case that $\partial V_{1} \cap \partial V_{2}$ is an annulus, by [12, Lemma 2.1] the annulus $B=\overline{\text { Int } V_{1} \cap \partial V_{2}}$ is parallel to a boundary annulus in ∂V_{2}. The annulus B is decom-

Fig. 7. Cutting a meridian disk.
posed V_{1} into two solid tori V_{2} and $\overline{V_{2} \backslash V_{1}}$. Note that cutting a meridian disk of V_{2}, then we have Fig. 7 (1) which is the intersection of the meridian disk and ∂V_{2}. Since $n\left(V_{2}\right) \neq 0,1, \infty, V_{1}$ can be moved to V_{2} by an ambient isotopy of S^{3}.

In the case that $\partial V_{1} \cap \partial V_{2}$ is one simple closed curve C, let N be a regular neighborhood of C in V_{1}. Let $K=\overline{\left(\partial V_{1} \cup \partial V_{2}\right) \backslash N} \cup \overline{\operatorname{Int} V_{1} \cap \partial N}$. Then, the solid tori sequence $\left\{\overline{V_{1} \backslash N}, \overline{V_{2} \backslash N}\right\}$ for K satisfies the above condition. Cutting a meridian disk of V_{1}, then we have Fig. 7 (2) or (3) which is the intersection of the meridian disk and ∂V_{2}. If $\partial V_{2} \cap \partial V_{1}$ is a longitude curve of V_{2}, i.e., $n\left(V_{2}\right)=1$, then we see Fig. 7 (2). We have that V_{2} can be moved to V_{1} by an ambient isotopy of S^{3} if and only if we see Fig. 7 (3). Since $n\left(V_{2}\right) \neq 0,1, \infty, V_{1}$ can be moved to V_{2} by an ambient isotopy of S^{3}.

Remark 3.14. Let F be an embedded Klein bottle in \mathbf{R}^{4} satisfying (K1) and (K2). Let \mathfrak{V} be a good almost solid tori sequence for F^{*}, C the M-curve in the coiled solid torus X. Let N be a regular neighborhood of C in $S^{3}, X^{\prime}=X \cup N$, $K=\left(F^{*} \backslash N\right) \cup\left(\partial N \cap \partial X^{\prime}\right)$. Then X^{\prime} is a solid torus, $\mathfrak{V}^{\prime}=\left\{X^{\prime}\right\} \cup(\mathfrak{V} \backslash\{X\})$ is a good solid tori sequence for K with $n\left(X^{\prime}\right)=2$.

Lemma 3.15. Let F be an embedded surface satisfying (K0), (K1) and (K2). Let \mathfrak{V} be a good (almost) solid tori sequence for F^{*} such that $n\left(V_{1}\right)=2$, where $v\left(V_{1}\right)$ is the special vertex. Let C be an A-curve in $\cup \mathfrak{V}$, and V a shape of \mathfrak{V}. Then V is a coiled solid torus if \mathfrak{V} is almost, and V is a solid torus otherwise. Moreover, $[C]=$ $\pm 2 \in H_{1}(V)$.

Proof. In the case of a solid tori sequence, we showed in [14, Lemma 7.5]. So, we may assume that \mathfrak{V} is almost. By Remark $3.14, \mathfrak{V}$ can be changed a solid tori sequence. Given that N is a regular neighborhood of the M-curve in S^{3}, we have $V \cup$ N is a solid torus, and $[C]= \pm 2 \in H_{1}(V \cup N) \cong H_{1}(V)$. This and Lemma 3.13 imply
that V can be moved to the coiled solid torus X in \mathfrak{V} by an ambient isotopy of S^{3}.

Lemma 3.16. Let F be an embedded surface satisfying (K0), (K1) and (K2). Let \mathfrak{V} be a good (almost) solid tori sequence for F^{*} with $\cup \mathfrak{V} \not \supset F^{*}$, and $n\left(V_{1}\right)=2$, where $v\left(V_{1}\right)$ is the special vertex. Then, there exists a solid torus V such that $\partial V \subset F^{*}$ and $\partial V \cap(\cup \mathfrak{V})$ is a simple closed curve or an annulus, $n(V)=2$ if V contains V_{1}, and $n(V)=1$ otherwise. Moreover, if the M-curve is a trivial knot in S^{3}, then there exists a coiled solid torus X with $X \cap\left(\overline{S^{3} \backslash X}\right) \subset F^{*}$ such that X can be moved to the 3-complex X_{b} for some integer b of an ambient isotopy of S^{3}, where X_{b} is the set in Definition 3.5. In paticular, if $b=0$ or -1 , then we can take a solid torus V with $n(V)=1$.

Proof. By Remark 3.14, it suffices to prove for a solid tori sequence. Let $\mathfrak{V}=$ $\left\{V_{1}, \ldots, V_{k}\right\}$ be a good solid tori sequence. Since $\cup \mathfrak{V} \not \supset F^{*}$, by the definition of good, there exists a torus or an annulus, B, in F^{*} such that

$$
B \cap(\cup \mathfrak{V})= \begin{cases}\text { one simple closed curve, } & \text { if } B \text { is a torus } \\ B \cap \partial V_{i}=\partial B, & \text { if } B \text { is an annulus }\end{cases}
$$

By the solid torus theorem in [10], there exists a solid torus V with $B \subset \partial V \subset F^{*}$. We see that $\partial V \cap(\cup \mathfrak{V})$ is a simple closed curve or an annulus. Let C be a component of $\Gamma^{*}(F)$ in $\partial V \cap(\cup \mathfrak{V})$.

CASE $1 . \quad V$ contains V_{1}.
Let $\mathfrak{V}^{\prime}=\left\{V_{i} \in \mathfrak{V} \mid V_{i} \subset V\right\}$. Then \mathfrak{V}^{\prime} is a good solid tori sequence for F^{*}. By Lemma 3.15, a shape V^{\prime} of \mathfrak{V}^{\prime} is a solid torus and $V_{1} \subset V^{\prime}$. By $[C]= \pm 2 \in$ $H_{1}\left(V^{\prime}\right)$ and Lemma 3.13, we can show that V^{\prime} can be moved to V by an ambient isotopy of S^{3}. This implies $n(V)=2$.

Case 2. V does not contain V_{1}.
Let $\mathfrak{V}^{\prime}=\left\{V_{i} \in \mathfrak{V} \mid V_{i} \not \subset V\right\}$, then \mathfrak{V}^{\prime} is a good solid tori sequence for F^{*}. By Lemma 3.15, a shape V^{\prime} of \mathfrak{V}^{\prime} is a solid torus. Since $V^{\prime} \cap V=\partial V^{\prime} \cap \partial V$ is a simple closed curve or an annulus, by Lemma 3.12, $n(V)=1$ or V is standard. If V is standard, then this case can be proved in a similar way to Case 1 by replacing V by $\overline{S^{3} \backslash V}$. If $n(V)=1$, then there is nothing to do.

Moreover, we assume that \mathfrak{V} is a good almost solid tori sequence and the M-curve is a trivial knot in S^{3}. Then there exists a 2 -complex $K \subset F^{*}$ such that K is a projection of an embedded Klein bottle satisfying (K1) and (K2), K contains only one M-curve and no A-curve. By Lemma 3.7, there exists a coiled solid torus X. Since the M-curve is a trivial knot, we can easily prove that X can be moved to the 3-complex X_{b} for some b of an ambient isotopy of S^{3}. Suppose that $b=0$ or -1 . In the case of $n(V)=1$, there is nothing to do. Suppose $n(V)=2$. Let $\mathfrak{V}^{\prime}=\left\{V_{i} \in \mathfrak{V} \mid V_{i} \subset V\right\}$ and let V^{\prime} be a shape of \mathfrak{V}^{\prime}. Then $V^{\prime} \subset V, \partial V^{\prime} \cap \partial V$ is an
annulus or a simple closed curve, and V^{\prime} is the coiled solid torus by Lemma 3.13. So we may assume $V^{\prime}=X_{b}$. Since the M-curve is a trivial knot, V is a standard solid torus. Let $W=\overline{S^{3} \backslash V}$. Since $b=0$ or -1 , a simple closed curve of $\partial V^{\prime} \cap \partial V$ is homologous to $\pm 2 l \pm m \in H_{1}(\partial V)$, where m is a meridian curve of V, l is a preferred longitude of V. This implies $n(W)=1$, and W is a desired solid torus.

Proposition 3.17. Let F be an embedded surface satisfying (K0), (K1) and (K2). Then there exists a good (almost) solid tori sequence \mathfrak{V} for F^{*} with $\cup \mathfrak{V} \supset F^{*}$. Moreover, suppose that the M-curve in F^{*} is a trivial knot in S^{3}, and suppose that there exists a good almost solid tori sequence $\{X\}$ for F^{*} such that X can be moved to the 3-complexes X_{0} or X_{-1} of an ambient isotopy of S^{3}. Then we can take that \mathfrak{V} is almost.

Proof. We only prove for the case that F^{*} contains an M-curve. There exists a good almost solid tori sequence $\{X\}$ for F^{*} such that X is maximal, i.e., X is not contained in another coiled solid torus. We prove by induction on the number of the components of $F^{*} \backslash \Gamma^{*}(F)$ in a good (almost) solid tori sequence. Let \mathfrak{V} be a good (almost) solid tori sequence for F^{*}. If $\cup \mathfrak{V} \not \supset F^{*}$, then by Lemma 3.16 there exists a solid torus V satisfying the condition in Lemma 3.16. By Lemma 3.16, there exists only one solid torus $V_{j} \in \mathfrak{V}$ such that $(\cup \mathfrak{V}) \cap \partial V=V_{j} \cap \partial V$ is an annulus or a simple closed curve. Let $\tilde{V}=V \cup V_{j}$ if $V_{j} \cap \partial V$ is an annulus, let $\tilde{V}=V$ otherwise. Since $n\left(V_{j}\right)=1, \tilde{V}$ is a solid torus. We have a good solid tori sequence $\mathfrak{W J}=\left\{V_{i} \in \mathfrak{V} \mid V_{i} \not \subset\right.$ $\tilde{V}\} \cup\{\tilde{V}\}$ for F^{*} with $\cup \mathfrak{V} \subset \cup \mathfrak{W J}$. In particular, if the M-curve is trivial, and if the coiled solid torus $X \in \mathfrak{V}$ can be moved to the 3-complexs X_{0} or X_{-1} of an ambient isotopy of S^{3}, by Lemma 3.16, then $n(V)=1$, and \mathfrak{W} contains the coiled solid torus X. Inductively, this completes the proof of Proposition 3.17.

Proposition 3.18. Let F be an embedded surface satisfying (K0), (K1) and (K2). Let \mathfrak{V} be a good (almost) solid tori sequence for F^{*} with $\cup \mathfrak{V} \supset F^{*}, n\left(V_{1}\right) \neq 0$ and $n\left(V_{1}\right) \neq \infty$, where $v\left(V_{1}\right)$ is the special vertex. Then F^{*} can be moved to a 2-complex obtained by a c-symmetirc 1-complex by an ambient isotopy of S^{3}, where $b=n\left(V_{1}\right)$, $(b, c)=1$. In particular, if \mathfrak{V} is almost, then $b=2$.

Proof. In the case that $\Gamma^{*}(F)$ consists only A-curves, we showed in [14, Proposition 7.15].

Assume that $\Gamma^{*}(F)$ contains one M -curve. Let C be the M -curve, N a regular neighborhood of C in $S^{3}, V=V_{1} \cup N$ and $K=\left(F^{*} \backslash N\right) \cup(\partial N \cap \partial V)$. By Remark 3.14, $\left(\mathfrak{V} \backslash\left\{V_{1}\right\}\right) \cup\{V\}$ is a good solid tori sequence for K. Since it is true for the case of only A-curves, we see that K is a 2 -complex obtained from some symmetric 1 -complex. Hence, F^{*} is also a 2-complex obtained from some symmetric 1-complex.

4. Spun Klein bottles

Proposition 4.1. Let F be an embedded Klein bottle in \mathbf{R}^{4} such that $\Gamma^{*}(F)$ consists only of double points, and each component of $\Gamma(F)$ is not homotopic to zero in $\pi_{1}(F)$. Then F^{*} is the projection into \mathbf{R}^{3} of a spun Klein bottle in \mathbf{R}^{4}. In particular, F is ambient isotopic to a simple spun Klein bottle in \mathbf{R}^{4}.

Proof. By [16, Remark 1.5], the number of components of $\Gamma(F)$ is even. Hence, by Lemma 3.1, $(\Gamma(F), F)$ is homeomorphic to $\left(\Gamma_{1}, F\right)$. We see that $\Gamma^{*}(F)$ consists only of A-curves and one M-curve. By Proposition 3.17, there exists a good (almost) solid tori sequence \mathfrak{V} for F^{*} with $F^{*} \subset \cup \mathfrak{V}$. By Proposition 3.18 and Remark 3.4, there exists a spun Klein bottle $K l^{a}(K)$ in \mathbf{R}^{4} such that F is ambient isotopic to $K l^{a}(K)$.

If $a \neq 0$ and $a \neq-1$, by Remark 2.1 (2), then we may assume that $a=0$ or -1 , and the M-curve of F^{*} is a trivial knot. Applying Proposition 3.18 again, we obtain a good almost solid tori sequence \mathfrak{V} for F^{*} with $F^{*} \subset \cup \mathfrak{V}$. Hence F is simple.

5. Diagrams for embedded surfaces

For an embedded surface, we define a 'diagram' in \mathbf{R}^{3}. In classical knots, it is convenient to represent by a diagram, i.e., an immersed closed curve in the plane that has crossing information indicated at its double points. A 'diagram' for an embedded surface is like a diagram of classical knots.

Let $\varphi: F \rightarrow \mathbf{R}^{3}$ be an immersion of a closed surface F (possibly disconnected, non-orientable) such that the singular set of φ has only transverse double points; each component of its is a circle. Such a circle is called a crossing circle. A diagram D is an immersion of a union of 2 -spheres and a Klein bottle with a mark at each crossing circle satisfying the two conditions:
(i) For any crossing circle C, let N be a regular neighborhood of C in \mathbf{R}^{3}. Then $N \cap$ Im D consists of two annuli or two Möbius bands, say A_{1}, A_{2}.
(ii) One of A_{1}, A_{2} is marked either by ' a ' (for 'above') or by ' b ' (for 'below').

We define that there is a mark ' a ' on A_{i} if and only if there is a mark 'b' on A_{j} ($i \neq j$).

We usually place a mark ' a ' or ' b ' on only one A_{i}. A surface A_{i} with mark 'a' (resp. 'b') is called an a-tube (resp. a b-tube). We define the associated embedded surface L_{D} of a diagram D by the following properties.
(i) $p\left(L_{D}\right)=\operatorname{Im} D$, where $p: \mathbf{R}^{4}=\mathbf{R}^{3} \times \mathbf{R} \rightarrow \mathbf{R}^{3}$ is the projection onto \mathbf{R}^{3}.
(ii) $L_{D} \cap\left(\mathbf{R}^{3} \times\{0\}\right)=(\operatorname{Im} D \backslash \operatorname{Int}($ a-tubes in $D)) \times\{0\}$, and $L_{D} \subset \mathbf{R}^{3} \times[0, \infty)$.

These conditions determine an embedded surface up to ambient isotopy.
The mark 'a' and 'b' are used in [6] and [7]. Yajima [19] uses an arrow. Giller [4, p. 629] uses ' + ' for our ' a '. Carter and Saito $[2,3]$ define a broken surface diagram.

Fig. 8. Type ($\Omega 1$) move.
5.1. 1-handles for diagrams. In this subsection, we define a 1-handle for a diagram.

Let D be a diagram. Let $h_{i}: B^{2} \times I \rightarrow \mathbf{R}^{3}, i=1,2, \ldots, m$, be a collection of embeddings with mutually disjoint images such that

$$
h_{i}\left(B^{2} \times I\right) \cap \operatorname{Im} D=h_{i}\left(B^{2} \times\left\{0, t_{1}, \ldots, t_{i_{k}}, 1\right\}\right)
$$

for some $t_{i_{1}}, t_{i_{2}}, \ldots, t_{i_{k}}$ with $0<t_{i_{1}}<t_{i_{2}}<\cdots<t_{i_{k}}<1$, where B^{2} is a 2 -ball and $I=[0,1]$. Define the immersed surface $D+\sum_{i=1}^{m} h_{i}$ to be

$$
\left(\operatorname{Im} D \backslash \bigcup_{i=1}^{m} h_{i}\left(B^{2} \times \partial I\right)\right) \cup\left(\bigcup_{i=1}^{m} h_{i}\left(\partial B^{2} \times I\right)\right)
$$

We call the embedding h_{i} 1-handle on the diagram D, and the diagram with $D+$ $\sum_{i=1}^{m} h_{i}$ a diagram obtained from D by attaching 1-handles. For a 1-handle h_{i}, we call the disks $h_{i}\left(B^{2} \times 0\right)$ and $h_{i}\left(B^{2} \times 1\right)$, attaching disks, the disk $h_{i}\left(B^{2} \times t\right), 0<t<1$, a cocore of h_{i}, and the arc $h_{i}(x \times I), x \in \operatorname{Int} B^{2}$, a core; see [7, Fig. 1].
5.2. Local moves. Local moves between diagrams are defined in [7]. They do not change the ambient isotopy classes of associated embedded surfaces of diagrams. Now, we define three of them.
($\Omega 1$) Moving a 1-handle through a sheet as shown in Fig. 8, where $c_{1}, c_{2} \in\{\mathrm{a}, \mathrm{b}\}$ and

$$
c_{3}=c_{4}= \begin{cases}c_{1} & \text { if } c_{1}=c_{2} \\ \text { either a or b } & \text { if } c_{1} \neq c_{2}\end{cases}
$$

This move adds two crossing circles. (cf. Fig. 4 in [19])
($\Omega 2$) Sliding a 1-handle through a sheet as shown in Fig. 9, where $c_{1}=c_{2} \in$ $\{a, b\}$. This move adds one crossing circle.

Fig. 9. Type ($\Omega 2$) move.

Fig. 10. Type ($\Omega 6$) move.
($\Omega 6$) Pulling out a 2 -sphere with 1 -handles across a sheet as shown in Fig. 10, where S is a 2 -sphere bounding a 3 -ball B, and $h_{i}, 1 \leq i \leq p+q+r$, are 1 -handles such that
(i) h_{1}, \ldots, h_{p} are passing through S,
(ii) $h_{p+1}, \ldots, h_{p+q+r}$ are attached on S whose one attaching disks are in S,
(iii) the pair $\left(B, B \cap\left(\bigcup_{i=1}^{p+q} \alpha_{i}\right)\right)$, where α_{i} is a core of h_{i}, is a trivial tangle, meaning that it is homeomorphic to the pair $\left(D^{2},\left\{x_{1}, \ldots, x_{p+q}\right\}\right) \times[0,1]$, where x_{i} are interior points of the 2-ball D^{2}, and

Fig. 11. Type $(\Omega 6)^{\prime}$ move.
(iv) $c_{i}, c_{j}^{\prime}, d \in\{\mathrm{a}, \mathrm{b}\}$, where $1 \leq i \leq p+q, 1 \leq j \leq p$.

The following move is a generalization of the move ($\Omega 6$).
$(\Omega 6)^{\prime}$ Pulling out a 2 -sphere S across a sheet as shown in Fig. 11, where S is bounding a 3-ball B, and $h_{i}, 1 \leq i \leq p+q$, are 1-handles such that
(i) h_{1}, \ldots, h_{p+q} are passing through S or are attached on S, and
(ii) $d \in\{\mathrm{a}, \mathrm{b}\}$.
(cf. Lemma 4.6 in [19])
A diagram D is with good position, if it is obtained by attaching 1-handles from 2-spheres S_{1}, \ldots, S_{m} and an immersed Klein bottle K in \mathbf{R}^{3} such that
(i) K is the projection of an embedded Klein bottle in \mathbf{R}^{3} satisfying (K1) and (K2), and
(ii) there exist disjoint 3-balls B_{1}, \ldots, B_{m+1} in \mathbf{R}^{3} with $S_{i} \subset \operatorname{Int} B_{i}$ and $K \subset \operatorname{Int} B_{m+1}$. Observe that an associated surface as above is a Klein bottle obtained from a spun Klein bottle by m-fusion. Also, a diagram obtained by attaching 1-handles from only 2 -spheres S_{1}, \ldots, S_{m} is called a diagram with good position. Observe that an associated surface of its diagram is a ribbon surface.

Proposition 5.1. Any diagram can be transformed into a diagram with good position by a sequence of moves $(\Omega 1),(\Omega 2)$ and $(\Omega 6)^{\prime}$.

Proof. First of all, we show that any diagram can be transformed into a diagram by attaching 1 -handles from disjoint 2 -spheres in \mathbf{R}^{3}, or a diagram by attaching 1 -handles from disjoint 2 -spheres and the projection of a spun Klein bottle. Let D be a diagram obtained from a diagram D_{0} by attaching 1 -handles h_{1}, \ldots, h_{m}, where D_{0} is the image of an immersion of a surface F. Let $R\left(D_{0}\right)$ be the components in the
singular set of D_{0} in \mathbf{R}^{3} such that one of the preimage bounds a disk in F. We use induction on the number of the components in $R\left(D_{0}\right)$, say n.

In case of $n=0$, i.e., $R\left(D_{0}\right)=\emptyset$, by Proposition 4.1, D_{0} is disjoint 2 -spheres in \mathbf{R}^{3}, or disjoint 2-spheres and the projection of a spun Klein bottle in \mathbf{R}^{3}. This implies the desired result.

Assume it is true for less than n, and the number of the components in $R\left(D_{0}\right)$ is n. Choose the disk E in D_{0} such that ∂E is a component of $R\left(D_{0}\right)$, and E is a non-singular disk in \mathbf{R}^{3}. If E intersects a cocore of a 1-handle, perform the 1-handle by the move ($\Omega 1$) in Fig. 8. See the first move in Fig. 12. By the move ($\Omega 1$), two crossing circles appear, but the number of the components in $R\left(D_{0}\right)$ does not change. If E intersects an attaching disk of a 1 -handle, then perform the 1 -handle by the move $(\Omega 2)$ in Fig. 9. See the second move in Fig. 12. Similarly, we see that the number of the components in $R\left(D_{0}\right)$ does not change. Hence, we may assume that E does not intersect 1-handles. A regular neighborhood of E in \mathbf{R}^{3} consists of an annulus A and a disk E^{\prime} containing E. By replacing the annulus A with two disks, each of which is parallel to E. Then we obtain a diagram D_{1} such that D_{0} is obtained from D_{1} by attaching a 1 -handle h such that $h\left(\partial B^{2} \times I\right)=A$. Thus, D is obtained from D_{1} by attaching 1-handles h_{1}, \ldots, h_{m}, h. The number of the components of $R\left(D_{1}\right)$ is less than that of $R\left(D_{0}\right)$, which yields the result.

Next, we consider a diagram obtained by attaching 1-handles h_{1}, \ldots, h_{n} on 2-spheres S_{1}, \ldots, S_{m} and immersed Klein bottle K such that K is a 2-complex consisting of annuli. If the 2 -spheres and K are contained in the interior of disjoint 3-balls, respectively, then the diagram is a desired diagram. Otherwise, take a 2 -sphere, say S_{i}, such that S_{i} does not contain any other 2 -sphere in \mathbf{R}^{3}. Let B, B_{i} be 3-balls in \mathbf{R}^{3} such that the interior of B contains $K, \partial B \cap S_{i}=\emptyset$ for all i, and $\partial B_{i}=S_{i}$. If B_{i} does not contain K, by a sequence of the move $(\Omega 6)^{\prime}$, then we pull out S_{i} from the 2 -sphere that contains S_{i}. If not, by a sequence of the move $(\Omega 6)^{\prime}$, then we pull K, and then we pull out S_{i} from the 2 -sphere that contains S_{i}. Inductively, we have a diagram with good position. Similarly, we can prove for the case of a diagram obtained by attaching 1 -handles on 2 -spheres.

The technique in Proposition 5.1 was used in [7] and [19].

6. Proof of the main theorem

From Proposition 5.1, we have:
Theorem 6.1 (Theorem 1.1). Let F be an embedded Klein bottle in \mathbf{R}^{4}. If $\Gamma^{*}(F)$ consists of double points, then F is ambient isotopic to either a ribbon Klein bottle, or a Klein bottle obtained from a spun Klein bottle by m-fusion.

Fig. 12. A transformation for the case that E intersects one cocore and one attaching disk.

Lemma 6.2. Let L be a knot in S^{3}. If $\pi_{1}\left(S^{3} \backslash L\right) /\left\langle m^{2}=1\right\rangle$ is isomorphic to \mathbf{Z}_{2}, then L is trivial.

Proof. Let N be a regular neighborhood of L in $S^{3}, E=\overline{S^{3} \backslash N}, E_{2}$ the 2-fold cover, X_{2} the 2 -fold branch cover. Then we obtain the following exact sequences:

$$
\begin{aligned}
& 1 \rightarrow \pi_{1}\left(E_{2}\right) \xrightarrow[\tilde{m}=m^{2}]{ } \quad \pi_{1}(E) \longrightarrow \mathbf{Z}_{2} \rightarrow 1 \\
& \begin{array}{c}
\tilde{m}=1 \\
m^{2}=1 \\
1 \rightarrow \pi_{1}\left(X_{2}\right) \longrightarrow \\
\pi_{1}(E) /\left\langle m^{2}=1\right\rangle \longrightarrow \\
\cong
\end{array} \mathbf{Z}_{2} \rightarrow 1
\end{aligned}
$$

where m is a meridian curve of L. By the above diagram, we have $\pi_{1}\left(X_{2}\right) \cong 1$. By the Smith Conjecture [9], if $\pi_{1}\left(X_{2}\right) \cong 1$, then the branch set of X_{2} is a trivial knot. And we can show that L is trivial.

Corollary 6.3 (Corollary 1.2). Let F be an embedded Klein bottle in \mathbf{R}^{4}. Suppose that $\Gamma^{*}(F)$ consists only of double points, and all components of the singular set $\Gamma(F)$ are not homotopic to zero in $\pi_{1}(F)$. If $\pi_{1}\left(\mathbf{R}^{4} \backslash F\right)$ is isomorphic to \mathbf{Z}_{2}, then F
is trivial.

Proof. By assumption, F^{*} consists only of A-curves and one M-curve. By Proposition 4.1, F is ambient isotopic to a simple spun Klein bottle $K l^{a}(L \#(-L))$. By Lemma 6.2 and Remark 2.1 (2), if the fundamental group of the complement of $K l^{a}(L \#(-L))$ is isomorphic to \mathbf{Z}_{2}, then the knot L is trivial in S^{3}. Hence $K l^{a}(L \#(-L))$ is ambient isotopic to a Klein bottle F^{\prime} such that $\Gamma^{*}\left(F^{\prime}\right)$ consists only of one simple closed curve. Hence F^{\prime} is a boundary of a solid Klein bottle in \mathbf{R}^{4}. Therefore F is trivial.
6.1. Example of a non-ribbon surface. In [12], [13], and [14], we classified for an embedded torus T whose singular set $\Gamma^{*}(T)$ consists of at most three disjoint simple closed curves. The twist spun torus of the trefoil knot has the projection into \mathbf{R}^{3} with the singular set consisting three disjoint simple closed curves. This example is given in [1] or [14].

Proposition 6.4. The twist spun torus F is not a ribbon surface.

Proof. Suppose that F is a ribbon surface. Let N be a regular neighborhood of F in \mathbf{R}^{4}. Boyle [1] defined the \mathbf{Z}_{2}-invariant q for a curve c in ∂N which is homologous to zero in $\overline{\mathbf{R}^{4} \backslash N}$, this is modulo 2 to the intersection number of a surface with boundary c in $\overline{\mathbf{R}^{4} \backslash N}$. Then, there exists a unique simple closed curve C on the boundary of N such that C is homotopic to zero in $\overline{\mathbf{R}^{4} \backslash N}$. We see that $q(C)=1$. However, a ribbon torus has a curve C^{\prime} on ∂N such that C^{\prime} is homotopic to zero in $\overline{\mathbf{R}^{4} \backslash N}$, and $q\left(C^{\prime}\right)=0$. This is a contradiction. Hence, F is not a ribbon surface.

Question 6.5. For a trefoil knot L, is the spun Klein bottle $K l^{a}(L \#(-L))$ a nonribbon surface?

References

[1] J. Boyle: The turned torus knot in S^{4}, J. Knot Theory Ramifications, 2, (1993), 239-249.
[2] J.S. Carter and M. Saito: Knotted surfaces and their diagrams, Mathematical Surverys and Monographs, 55, Amer. Math Soc., Providence, RI, 1998.
[3] M.H. Freedman: The topology of four-dimensional manifolds, J. Differential Geom. 17 (1982), 357-435.
[4] C.A. Giller: Towards a classical knot theory for surfaces in R^{4}, Illinois J. Math. 26 (1982), 591-631.
[5] F. Hosokawa and A. Kawauchi: Proposals for unknotted surfaces in four-space, Osaka J. Math. 17, (1979), 233-248.
[6] K. Habiro, T. Kanenobu and A. Shima: Finite type invariants of ribbon 2-knots, Contemporary Math. 233, (1999), 187-196.
[7] T. Kanenobu and A. Shima: Two filtrations of ribbon 2-knots, Topology Appl. 121 (2002), 143168.
[8] Y. Marumoto: On ribbon 2-knots of 1-Fusion, Math. Sem. Notes, Kobe Univ. 5, (1977), 59-68.
[9] J.W. Morgan and H. Bass: The Smith conjecture, Academic Press, 1984.
[10] D. Rolfsen: Knots and Links, Publish or Perish, Berkeley, Calif., 1976.
[11] M. Scharemann: Smooth spheres in \mathbf{R}^{4} with four critical points are standard, Invent. Math. 79 (1985), 125-141.
[12] A. Shima: An unknotting theorem for tori in S^{4}, Rev. Math. Univ. Compute. Madrid, 11 (1998), 299-309.
[13] A. Shima: An unknotting theorem for tori in S^{4} II, Kobe J. Math. 13 (1996), 9-25.
[14] A. Shima: On simply knotted tori in S^{4}, J. Math. Sci. Univ. Tokyo, 4 (1997), 279-339.
[15] A. Shima: On simply knotted tori in S^{4} II, Proceedings of Knots 96, 551-568.
[16] A. Shima: Klein bottles in the 4-sphere whose singular set consists of disjoint three simple closed curves, Proceedings of the Conference on KNOTS IN HELLAS '98., 411-435, World Sci. Publishing.
[17] M. Teragaito: Symmetry-spun tori in the four-sphere, Proceedings of Knots 90, 163-171. (1962), 63-71.
[18] T. Yajima: On the fundamental groups of knotted 2-manifolds in the 4-space, Osaka Math. J. 13, (1962), 63-71.
[19] T. Yajima: On simply knotted spheres in \mathbf{R}^{4}, Osaka J. Math. 1, (1964), 133-152.

Department of Mathematics
Tokai University
1117 Kitakaname, Hiratuka, Kanagawa 259-1292
Japan
e-mail: shima@keyaki.cc.u-tokai.ac.jp

[^0]: 2000 Mathematics Subject Classification : Primary 57Q45; Secondary 57Q35.

