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1. Introduction

In this paper we study the existence of scattering solutionsfor some dissipative
systems which contain elastic wave with dissipative boundary conditions in a half
space ofR3 (cf. Dermenjian-Guillot [1]). First we give a framework based on the idea
of Simon [18] and apply it to elastic wave mentioned above. Inapplying the abstract
framework, we shall use the Mellin transformation (cf. Perry [14]) as a key tool.

Let H be separable Hilbert space with inner〈· ·〉H. The norm is denoted by
‖ · ‖H. Let { ( )} ≧0 and { 0( )} ∈R be a contraction semi- group inH and a uni-
tary group inH0, respectively. We denote the generator of ( ) and0( ) by and

0, respectively ( ( ) = − and 0( ) = − 0). We make the following assumptions
on and 0.
(A1) σ( 0) = σ ( 0) = R or [0 ∞).
(A2) ( − )−1− ( 0− )−1 defined as a form is extended to a compact operator in
H.
(A3) There exist non-zero projection operators inH, + and −, such that + + − =

and

∫ ∞

0
‖ 0( )ψ( 0) +‖ <∞(A3.1)

∫ ∞

0
‖ ∗

0( )ψ( 0) +‖ <∞(A3.2)
∫ ∞

0
‖ ∗

0(− )ψ( 0) −‖ <∞(A3.3)

w− lim
→+∞ 0(− )ψ( 0) − = 0(A3.4)

for eachψ ∈ ∞
0 (R\0) and { } ∈R satisfying sup∈R ‖ ‖H < ∞, where‖ · ‖ is the

operator norm of bounded operators inH.
(A3.1), (A3.3) and (A3.4) will imply the existence of the wave operator. It will

follow from (A3.2) that the wave operator is not zero as an operator inH. The frame-
work of [18] is due to Enss’s method [2]. In order to cheak the applicability of the
framework of [18] to dissipative systems (see also Stefanov-Georgiev [20] or [15]), we
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have to show the following type limit:

(1.1) lim
→∞

∫ ∞

0
‖ ˜ ( ) ( ) ‖H = 0

for some one parameter compact operators,{ ˜ ( )} ∈[0 ∞), in H, where is as in (F2)
below. This follows from Lebesgue’s theorem and

(1.2)
∫ ∞

0
‖ ˜ ( )‖ <∞

(A3.1)∼(A3.3) mean (1.2) (for details, see§2).
Let H be the space generated by the eigenvectors of with real eigenvalues. We

use the following facts (see Simon [18] and Petkov [15]):

(F1) {( − )−2 ∈ H : ∈ ( ) ∩ H⊥} is dense inH⊥.
(F2) There exists a sequence{ } such that

lim
→∞

=∞

and

w− lim
→∞

( ) = 0 for any ∈ H⊥

In this abstract framework, we shall show

Theorem 1. Assume that(A1) ∼ (A3). Then for any ∈ H⊥, the wave opera-
tor

= lim
→∞ 0(− ) ( )

exists. Moreover is not zero as an operator fromH⊥ to H.

As a corollary of Theorem 1, we can find scattering solutions of ( ( ) )/ =
− ( ) , ∈ ( ).

Corollary 2. Assume that(A1) ∼ (A3). Then there exist non-trivial initial data
∈ H and + ∈ H such that for any = 0, 1, 2 . . . and ζ0 ∈ C satisfyingℜζ0 > 0

lim
→∞
‖ ( )( − ζ0)− − 0( )( 0− ζ0)− +‖H = 0

We can also obtain the standard result concerning real eigenvalues of as fol-
lows.
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Theorem 3. Any non-zero eigenvalues of has finite multiplicity. Moreover the
possible finite accumulation point of the real eigenvalues of is zero.

In §2 we shall give the proof of Theorem 1, Corollary 2 and Theorem3.
In §3 we shall apply our framework to (1.3) as below, which describes elastic

wave with dissipative boundary conditions in a half space ofR3. It seems that there
is no work concerning dissipative elastic wave in a half space (cf. Theorem 3.1).

Let = ( 1 2 3) = ( 3) ∈ R2×R+, ρ0 > 0, µ0 > 0 andλ0 ∈ R satisfying 3λ0+
2µ0 > 0. We use 3×3 and 3×3 as zero and unit matrix of 3× 3 type, respectively.

We set

ε ( ( )) =
1
2

(
∂

∂
+
∂

∂

)

and

σ ( ( )) = λ0(∇ · )δ + 2µ0ε ( )

where , = 1, 2, 3, ( ) = (1( ) 2( ) 3( )) ∈ C3 and∇ = (∂/∂1 ∂/∂2 ∂/∂3).
We define operators̃ 0 as

( ˜ 0 ) = −
3∑

=1

1
ρ0

∂σ ( ( ))
∂

( = 1 2 3)

We consider two elastic wave equations as follows:

(1.3)

{

∂2 ( ) + ˜ 0 ( ) = 0 ( ) ∈ R3
+ × [0 ∞)

(σ13( ) σ23( ) σ33( )) | 3=0= ( )∂ | 3=0

and

(1.4)

{

∂2 ( ) + ˜ 0 ( ) = 0 ( ) ∈ R3
+ × R

σ 3( ) | 3=0= 0 ( = 1 2 3)

To state assumptions forλ( ), µ( ) and ( ) we introduce a function space ( ) as
follows:

( ) =






∈ ( );

∑

|α|≦
‖∂α ‖ ∞( ) <∞







where ⊂ R .
Assume that

( ) belongs to 1(R2 M3×3) and satisfies(1.5)
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3×3 ≦ ( ) ≦ ϕ(| |) 3×3

whereϕ( ) is a non-increasing function and belongs to1(R+), and M3×3 is the to-
tality of 3× 3 matrix.

The following operator 0 in G = 2(R3
+ C3; ρ0 ):

0 = ˜ 0

with

( 0) = { ∈ 1(R3
+ C3); ˜ 0 ∈ G σ 3( ) | 3=0= 0( = 1 2 3)}

is a non-negative and self-adjoint. In the Appendix we statebasic results on 0

REMARK 1.1. We can also deal with the perturbation ofλ0, µ0 andρ0 as follows:
λ( ) and µ( ) belong to 1(R3

+). ρ( ) belongs to ∞(R3
+). Moreover these func-

tions satisfy

0< ≦ 3λ( ) + 2µ( ) µ( ) ρ( ) ≦

for some , > 0 and

|λ( )− λ0| |µ( )− µ0| |ρ( )− ρ0| ≦ ϕ(| |)

The projections ± in (A3) are considered by using the generalized Fourier trans-
formation for 0 and the negative (or positive) spectral projections of generators of
dilation of R3

+ and R2. To make a check on (A3.1)∼(A3.3) we use the Mellin trans-
formation ofR3

+ (resp.R2) in the range space of the generalized Fourier transformation
of free waves (resp. Rayleigh wave). Perry [14] is the first toapply the Mellin trans-
formation to show asymptotic completeness for Schrödinger equation. Kadowaki [6]
has also used the Mellin transformation with the generalized eigenfunction expansion
theorem of Wilcox [22] or Weder [21]. Recently, Soga [19] hasconsidered the scatter-
ing theory of Lax-Phillips (cf. Lax-Phillips [11]) for (1.4). However (1.3) has not been
dealt with.

[18], [20] and [15] have directly showed (1.1) by using pseudo-differential opera-
tor and the relation

(1.6) F( ∗ ) = F × F

where

( ∗ )( ) =
∫

R
( − ) ( )

and F is the Fourier transformation. If we directly apply the framework of [18] to dis-
sipative elastic wave in a half space, we have to require (1.6) to hold for the general-
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ized Fourier transformation for elastic wave in a half space. But it is not clear. There-
fore it seems difficult to directly apply the framework of [18] to elastic wave with dis-
sipative boundary conditions in a half space. We can also deal with dissipative elastic
wave equation in stratified (two layered) media (cf. Shimizu[17]) by our framework.
As other applications (cf.§3) of our framework, we consider Schödinger equation with
complex valued potential (cf. [18]) and acoustic wave equation with dissipative term
in inhomogeneous media (cf. Mochizuki [13]). These applications are essentially the
same results as in [18] and [13]. Although we do not pick up theexterior domain
problem (for instance [11] and [20]), we can also treat them with some modifications.

Kadowaki [7] has considered the existence of scattering solution for acoustic wave
equation with dissipative term in special stratified media.This equation is not included
in our example. The reason is that, since the generalized eigenfunction of acous-
tic wave operator has singular points due to the thresholds (see [22] or [21]), the
key estimate (cf. Lemma 3.2) of the neighborhood of each threshold (for detail, see
[6, Lemma 2.1]) is hard to prove. In [7], Mochizuki’s work [13] was used instead.
His framework is based on resolvent estimates and Kato’s smooth perturbation theory
(cf. Kato [9]). In Kadowaki [8], we extended Mochizuki’s framework and apply that
to dissipative wave equations in stratified media which was not treated by [7].

Finally we give brief comments concerning energy decay solutions:

lim
→∞

( ) = 0

In the proof of 6≡ 0, we have to note the existence of energy decay solutions, for
details see§2 (cf. Georgiev [3], Majda [12], [15] and [20]).

2. Proof of Theorem 1, Corollary 2 and Theorem 3

In this section we deal with the caseσ( 0) = σ ( 0) = R only. In the same way,
another case can be dealt with. We set (λ) = (λ− )−2λ and ( ) = 0(− ) ( ). In
this section is used as positive constants.

Below we shall give the proof of Theorem 1. First we prove the existence of
by referring to Enss [2], Simon [18], Kuroda [10], Perry [14], Isozaki-Kitada [4],

Stefanov-Georgiev [20] and Petkov [15]. But we sometimes omit to note the above ref-
erences.

Proof of the existence of . For any ∈ H⊥ ∩ ( ) and , > , note (F1)
and

‖( ( )− ( )) ( )2 ‖H
≦‖( ( )− ( )) ( )2 ‖H + ‖( ( )− ( )) ( )2 ‖H
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Thus the existence of follows from

(2.1) lim
→∞

lim
→∞
‖( ( ) − ( )) ( )2 ‖H = 0

(cf. [4])
We estimate‖( ( ) − ( )) ( )2 ‖H as follows (cf. [18]):

‖( ( )− ( )) ( )2 ‖H
=‖ 0(− )( ( − )− 0( − )) ( )2 ( ) ‖H

≦

5∑

=1

‖ ‖H

where

1 = ( ( − )− 0( − ))( ( )2 − ( 0)2) ( )

2 = ( ( − )− 0( − ))( − ψ ( 0)) ( 0)2 ( )

3 = ( ( − )− 0( − ))(ψ )( 0) + ( 0) ( )

4 = ( ( − )− 0( − ))(ψ )( 0) − ( 0)( − ψ ( 0)) ( )

5 = ( ( − )− 0( − ))(ψ )( 0) −(ψ )( 0) ( )

andψ (λ) ∈ ∞
0 (R) satisfies 0≦ ψ (λ) ≦ 1, ψ (λ) = 0(|λ| < 1/2 |λ| > 2 ) and

ψ (λ) = 1(1/ < |λ| < ).
First, we note that for anyε, there exists > 0 such that

‖ ‖H ≦ ‖(1− ψ ) ‖ ∞(R) < ε ( = 2 4)

Therefore once the limits

(2.2) lim
→∞

lim
→∞
‖ ‖H = 0 ( = 1 3 5)

are proved, we obtain (2.1). Below we shall show (2.2). For = 1, note (λ) =
(λ− )−2 + (λ− )−1. Therefore (A2) implies that ( )2− ( 0)2 is also a compact

operator inH. Using (F2) we have

‖ 1‖H ≦ ‖( ( )2− ( 0)2) ( ) ‖H → 0 ( →∞)

For = 3, we decompose3 as follows:

3 = 31 + 32 + 33

where

31 = ( − )( ( 0)− ( ))(ψ )( 0) + ( 0) ( )
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32 = ( ( )− ( 0)) 0( − )(ψ )( 0) + ( 0) ( )

33 = ( )( ( − )− 0( − ))ψ ( 0) + ( 0) ( )

The argument as in the proof of1 implies

lim
→∞

lim
→∞
‖ 31‖H = 0

Since we have by (A1)

w− lim
→∞ 0( − ) = 0

(A2) implies

lim
→∞
‖ 32‖H = 0

To estimate 33, we use Cook-Kuroda method. Note that

〈 33 〉H =〈ψ ( 0) + ( 0) ∗( − ) ( ∗) 〉H
− 〈 0( − )ψ ( 0) + ( 0) ( ∗) 〉H

where ∈ H and = ( ) .

Then we have by (A2)

〈 33 〉H

=
∫ −

0
(〈 0 0( )ψ ( 0) + ( 0) ∗( − − ) ( ∗) 〉H

− 〈 0( )ψ ( 0) + ( 0) ∗ ∗( − − ) ( ∗) 〉H)

=−
∫ −

0
〈 ( − − ) ( − )−1

0( )ψ̃ ( 0) + ( 0) 〉H

where ψ̃ (λ) = (λ− )ψ (λ).
Therefore we obtain

‖ 33‖H ≦

∫ ∞

0
‖ 0( )ψ̃ ( 0) + ( 0) ‖H

≦ ‖ ‖H
∫ ∞

0
‖ 0( )ψ̃ ( 0) +‖

For each ≧ 0 we have by (F2) and (A2) ,

lim
→∞
‖ 0( )ψ̃ ( 0) + ( 0) ‖H = 0
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Therefore (A3.1) and Lebesgue’s theorem imply

lim
→∞

lim
→∞
‖ 33‖H = 0

Now we obtain

lim
→∞

lim
→∞
‖ 3‖H = 0

We estimate 5 as follows:

‖ 5‖2
H0

≦ ‖ −( ψ )( 0) ( ) ‖2
H

=
3∑

=1

5

where

51 = 〈ψ ( 0) − ( ( 0)− ( )) ( ) 〉H
52 = 〈ψ ( 0) − ( ( )− 0( )) ( ) 〉H
53 = 〈 0(− )ψ ( 0) − ( ) 〉H

and = ( ψ )( 0) ( )
Note that

| 51| ≦ ‖( ( 0)− ( )) ( ) ‖H

Thus (A2) and (F2) imply

lim
→∞ 51 = 0

(A3.4) implies

lim
→∞ 53 = 0

To estimate 52, again we use Cook-Kuroda method. Note that

52 =
∫

0
(〈 0(− )ψ ( 0) − ( − ) ( ) 〉H

− 〈 0 0(− )ψ ( 0) − ( − ) ( ) 〉H)

=
∫

0
〈 ∗( − ) ∗( ∗ + )−1 ∗

0(− )ψ̃ ( 0) − 〉H

Thus we have

| 52| ≦ ‖ ‖H
∫ ∞

0
‖ ∗

0(− )ψ̃ ( 0) − ‖H
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Using (A2), (F2) and (A3.2) we have by Lebesgue’s theorem

lim
→∞ 52 = 0

Now we obtain

lim
→∞

lim
→∞
‖ 5‖H = 0

Therefore the proof of the existence of is completed.

To show 6≡ 0, we introduce a subspace ofH, , as follows:

= { ∈ H : lim
→∞

( ) = 0}

Since

= λ λ ∈ R ∈ H =⇒ ∗ = λ

(see Petkov [15, Lemma 1.1.5]), we can easily show

⊂ H⊥

We prepare

Proposition 2.1. Assume that

H⊥ ⊖ = {0}

Then one has

(2.3) w− lim
→∞ 0(− ) ( ) = 0

for any ∈ H.

Proof. Now we can decompose any∈ H as = 1 + 2, where 1 ∈ = H⊥

and 2 ∈ H . Then it is clear that

(2.4) w− lim
→∞ 0(− ) ( ) 1 = 0

Note the definition ofH . Then for anyε > 0, there exist ∈ N, ∈ C, λ ∈ R
and ∈ H( = 1, 2 . . . ) such that =λ and

∥
∥
∥
∥ 2 −

∑

=1

∥
∥
∥
∥
H
< ε
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Hence we have for any ∈ H,

|〈 0(− ) ( ) 2 〉H| ≦ ε‖ ‖H +
∑

=1

| ||〈 0(− ) 〉H|

Since (A1) implies

w− lim
→∞ 0(− ) = 0

we have

(2.5) lim
→∞
|〈 0(− ) ( ) 2 〉H| ≦ ε‖ ‖H

Hence we obtain (2.3) by (2.4) and (2.5).

Below we shall show 6≡ 0 (cf. Mochizuki [13] §3).

Proof of 6≡ 0. For any ∈ H and ∈ H0, note that

〈 0(− ) ( )( − )−1 ( 0 + )−1 〉H(2.6)

= 〈( − )−1 ( 0 + )−1 〉H +
∫

0
〈 (τ ) ∗

0(τ ) 〉H τ

We assume that ≡ 0, i.e., for any ∈ H⊥,

(2.7) ‖ ‖H = lim
→∞
‖ ( ) ‖H = 0

(2.7) means

H⊥ ⊖ = {0}

Hence Proposition 2.1 and (2.6) imply

〈( − )−1 ( 0 + )−1 〉H = −
∫ ∞

0
〈 (τ ) ∗

0(τ ) 〉H τ

Putting

= ( 0− ) 0( )ψ ( 0) + and = ( 0 + ) 0( )ψ ( 0) +

for any ∈ H, we have

〈(( − )−1− ( 0 − )−1) 0( )ψ̃ ( 0) + 0( )ψ ( 0) + 〉H
+ ‖ψ ( 0) + ‖2

H
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=−
∫ ∞

0
〈 (τ ) 0( )ψ̃ ( 0) +

∗
0(τ + )ψ̃ ( 0) + 〉H τ

It follows from the above identity that

‖ψ ( 0) + ‖2
H ≦‖ ‖H

{

‖(( − )−1− ( 0 − )−1) 0( )ψ̃ ( 0) + ‖H

+
∫ ∞

0
‖ ∗

0(τ + )ψ̃ ( 0) + ‖H τ

}

(A1) and (A2) imply

lim
→∞
‖(( − )−1− ( 0 − )−1) 0( )ψ̃ ( 0) + ‖H = 0

(A3.2) implies

lim
→∞

∫ ∞

0
‖ ∗

0(τ + )ψ̃ ( 0) +‖ τ = 0

Therefore we have

(2.8) ‖ψ ( 0) + ‖H = 0

for any ∈ H0 and any > 0.
(2.8) implies + ≡ 0. This is a contradiction with (A3). Now the proof of 6≡ 0

is completed.

In the remainder of this section we show Corollary 2 and Theorem 3.

Proof of Corollary 2. First we consider the case = 0. Since0( ) is unitary in
H, it follows from Theorem 1 that there exist non-trivial initial data ∈ H such that
6= 0 and

lim
→∞
‖ ( ) − 0( ) ‖H = 0

Setting + = we have Corollary 2 for = 0. Next we consider = 1. Corollary 2
for = 0 and (A1) imply

(2.9) w− lim
→∞

( ) = 0

Noting

‖ ( )( − ζ0)−1 − 0( )( 0− ζ0)−1
+‖H

≦‖(( − ζ0)−1− ( 0 − ζ0)−1) ( ) ‖H + ‖( 0 − ζ0)−1( ( ) − 0( ) +)‖H
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we have Corollary 2 for = 1 by (A2), (2.9) and Corollary 2 for = 0.
The cases ≧ 2 can be proved by induction, which is omittied.

The proof of Theorem 3 is similar to that of Theorem 1. So we shall give a brief
sketch of the proof only.

Proof of Theorem 3. Assume that there exist∈ ( ), λ , λ ∈ R\0 ( = 1, 2,
3 . . .) such that

= λ ‖ ‖H = 1 and lim
→∞

λ = λ

The argument as in [15] (see the proof of Theorem 3.6.4) implies

w− lim
→∞

= 0

Noting ( ) = − λ , we have

‖ ( )2 ‖H = ‖ ( ) ( )2 ‖H

In a similar decomposition and proof as in the estimate of (2.1) we can obtain

lim
→∞
‖ ( )2 ‖H = 0

But this yields a contradiction with

lim
→∞
‖ ( )2 ‖H =

λ2

(λ2 + 1)2
6= 0

Therefore the proof is complete.

3. Applications

In this section we apply our framework to elastic wave equation with dissipative
boundary condition in a half space ofR3, Schrödinger equation with complex valued
potential and acoustic wave equation with dissipative term. We also use as positive
constants.

Application 1 (Elastic wave equation with dissipative boundary condition in a
half space of R3)

Let H be the Hilbert space with inner product:

〈 〉H =
∫

R3
+





3∑

=1

ε ( 1)ε ( 1) + 2 2ρ0




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where = λ0δ δ + µ0(δ δ + δ δ ) and = ( 1 2), = ( 1 2). Korn’s
inequality (cf. Ito [5]) implies thatH is equivalent to ˙ 1(R3

+ C3)× 2(R3
+ C3) as Ba-

nach space.
We set = ( ( ) ( )), where ( ) is the solution to (1.3) (resp. (1.4))

with initial data 0 = ( ( 0) ( 0))∈ H. Then (1.3) (resp. (1.4)) can be written as

∂ = − (resp. ∂ = − 0 )

where

=

(
0 3×3

− ˜ 0 0

)

0 =

(
0 3×3

− ˜ 0 0

)

(3.1)

( ) = { = ( 1 2) ∈ H; ˜ 0 1 ∈ 2(R3
+ C3) 2 ∈ 1(R3

+ C3)

(σ13( 1) σ23( 1) σ33( 1)) | 3=0= ( ) 2 | 3=0}

and

( 0) = { = ( 1 2) ∈ H; ˜ 0 1 ∈ 2(R3
+ C3) 2 ∈ 1(R3

+ C3)

σ 3( 1) | 3=0= 0( = 1 2 3)}

According to Lax-Phillips [11, P210–P211] or Petkov [15, Corollary 1.1.4] we can
show that (resp. 0) generates a contraction semi-group{ ( )} ≧0 (resp. a unitary
group { 0( )} ∈R) in H. Using { ( )} ≧0 (resp. { 0( )} ∈R) we solve∂ = −
(resp.∂ = − 0 ) as follows:

= ( ) 0 (resp. = 0( ) 0)

Moreover we have the following.

Theorem 3.1. For 0 and as in (3.1), one has the conclusions as inTheo-
rem 1, Corollary 2and Theorem 3.

To show this theorem, we prove (A1), (A2) and (A3) in Lemma 3.2, 3.3 and
Proposition 3.4, respectively.

Lemma 3.2. 0 from (3.1) satisfies(A1).

Proof. Lemma A of the Appendix impliesσ( 0) = σ ( 0) = R (see also [1]).

Lemma 3.3. 0 and from (3.1) satisfy (A2).
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Proof. Note that

〈(( − )−1− ( 0− )−1) 〉H
=〈 0( 0 − )−1 ( ∗ + )−1 〉H − 〈( 0− )−1 ∗( ∗ + )−1 〉H

for , ∈ H. By easy calculation we have

〈(( − )−1 − ( 0− )−1) 〉H(3.2)

=
∫

R2

( ) 0(( 0− )−1 )2 0(( ∗ + )−1 )2

where 0 is a trace operator defined by

( 0 )( ) = ( 0)

For any ∈ (1/2 1), Korn’s inequality implies that 0(( 0 − )−1 )2 and

0(( ∗ + )−1 )2 belong to 1− (R3
+ C3) . Since ( ) 0 2( 0 − )−1 is a com-

pact operator fromH to 2(R2 C3) by Rellich’s theorem, where (1 2) =
( = 1, 2), the form ( − )−1 − ( 0 − )−1 can be extended to a compact operator,
( 0 2( ∗ + )−1)∗ ( ) 0 2( 0 − )−1, in H.

Finally we show (A3). Using ( = , , , ) (see the Appendix), we con-
struct ± as follows:

± = −1

{
∑

=

(
∗ (3)

∓ 3×3 3×3

3×3
∗ (3)

± 3×3

)

(3.3)

+

(
∗ (2)

∓ 3×3 3×3

3×3
∗ (2)

± 3×3

)}

where

=
1√
2

(
1/2
0 3×3
1/2
0 − 3×3

)

and (3)
− (resp. (3)

+ ) and (2)
− (resp. (2)

+ ) are negative (resp. positive) spectral projec-
tions of

(3) =
1
2

( · ∇ +∇ · ) and (2) =
1
2

( · ∇ +∇ · ) respectively

where = ( 3) ∈ R2× R+.
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Using the representation of the generalized eigenfunctionof 0 and the Mellin
transformation we show (A3.1)∼(A3.4) (cf. Perry [14] and Kadowaki [6]). The Mellin
transformations for (3), (2) are given as

( (3) )(λ ω) = (2π)−1/2
∫ +∞

0

1/2− λ ( ω)

and

( (2) )(λ ν) = (2π)−1/2
∫ +∞

0

− λ ( ν)

where ( )∈ ∞
0 (R3

+\{0}), ( ) ∈ ∞
0 (R2\{0}), ω ∈ S2

+ = {(ω1 ω2 ω3) = (ω ω3) ∈
S2 : ω3 > 0} and ν ∈ S1

Then (3) (resp. (2)) is extended to a unitary operator from2(R3
+) (resp.

2(R2)) to 2(R× S2
+) (resp. 2(R× S1)) (cf. [14, Lemma 2]).

Proposition 3.4. ± from (3.3) satisfy (A3).

To show Proposition 3.4 we prepare

Lemma 3.5. Let ψ(λ) be as in(A3) and 0< δ < (for , see the Appendix).
Then for any positive integer and ∈ R±, there exists a positive constant ψ

which is independent of such that

‖∇ ( − 0ψ( 0) ± )1‖| |≦δ| |
2(R3

+ C3) ≦ ψ(1 + | |)− ‖ ‖H(3.4)

‖( − 0ψ( 0) ± )2‖| |≦δ| |
2(R3

+ C3) ≦ ψ(1 + | |)− ‖ ‖H(3.5)

and

(3.6) ‖ 0( − 0ψ( 0) ± )2‖| |≦δ| |
2(R2 C3) ≦ ψ(1 + | |)− ‖ ‖H

for any ∈ H0, where

‖ ‖ 2(R3
+ C3) =

(∫

| |2
)1/2

and ‖ ‖ 2(R2 C3) =

(∫

| |2
)1/2

Proof. For the sake of simplicity, we shall restrict ourselves to the case ∈ R+

and suppψ ⊂ R+ only. Moreover we prove the case (3.5) only. Other cases are proven
in the same way as below.

Concerning new notations, for instance ( = , , , ), see the Appendix.
By Lemma A of the Appendix, we have

( − 0ψ( 0) + )2
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= −
2







∑

=

( ) + ( ) + ( )







where

( ) =
2

∫

R3
+

exp(− | |)ψ( | |) ( ) (3)
− ( 1/2

0 1 + 2)

( ) =
2

∫

R2

exp(− | |)ψ( | |) ( ) (2)
− ( 1/2

0 1 + 2)

and

( ) =
2

∫

R3
+

exp(− | |)ψ( | |) ( ) (3)
− ( 1/2

0 1 + 2)

If we show

(3.7) | ( )| ≦ ψ(1 + )−
′‖ ‖H ( = )

for any positive integer ′, we can obtain (3.5). Here we deal with ( ) and
( ) only. Other terms can be dealt with in the same way.

We set

( ) = exp( | |)ψ( | |) ( )

and

( ) = exp( | |)ψ( | |) ( )

Note that

( ) = 〈 ( 1/2
0 1 + 2) (3)

− 〉 2(R3
+ C3)

and

( ) = 〈 ( 1/2
0 1 + 2) (2)

− 〉 2(R2 C3)

Noting the partially isometric property of and (cf. the Appendix) we have

(3.8) | ( )| ≦ ‖χ(−∞ 0)
(3) ‖ 2(R×S2

+) × ‖ ‖H

and

(3.9) | ( )| ≦ ‖χ(−∞ 0)
(2) ‖ 2(R×S1) × ‖ ‖H

whereχ(−∞ 0) = χ(−∞ 0)(λ).
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(3) (λ ω) and (2) (λ ν) are represented as follows:

(3) (λ ω)

=
1

(2π)2ρ
1/2
0

∫ ∞

0
exp (− ω · + − λ log ) 1/2ψ( )χ˜ (ω)

{ ω3 3
1(ω) + − ω3 3

2(ω) + − γ (ω) 3
3(ω)}

+
1

(2π)2ρ
1/2
0

∫ ∞

0
exp (− ω · + − λ log ) 1/2ψ( )χ˜0 (ω)

{ ω3 3 0
1(ω) + − ω3 3 0

2(ω) + − γ′ (ω) 3 0
3(ω)}

and

(2) (λ ν)

=
˜

(2π)3/2

{∫ ∞

0
exp (− ν · + γ̃ 3 + − λ log ) 1/2ψ( )

(

2−
2

2

)

1(ν)

+
∫ ∞

0
exp (− ν · + γ̃ 3 + − λ log ) 1/2ψ( )(−2γ̃ ) 2(ν)

}

where

˜ =

{

ω ∈ S2;ω3 >

( 2

2 − 1

)1/2

|ω|
}

and

˜0 =

{

ω ∈ S2; 0< ω3 <

( 2

2 − 1

)1/2

|ω|
}

Since (ω), 0 (ω) ( = 1, 2, 3) and (ν) ( = 1, 2) are bounded forω and ν (see
the Appendix), respectively, we have

| (3) (λ ω)|(3.10)

≦

{∣
∣
∣
∣

∫ ∞

0
exp (− ω · + ω3 3 + − λ log ) 1/2ψ( )

∣
∣
∣
∣

+

∣
∣
∣
∣

∫ ∞

0
exp (− ω · − ω3 3 + − λ log ) 1/2ψ( )

∣
∣
∣
∣

+

∣
∣
∣
∣
χ˜ (ω)

∫ ∞

0
exp (− ω · − γ (ω) 3 + − λ log ) 1/2ψ( )

∣
∣
∣
∣

+

∣
∣
∣
∣
χ˜0 (ω)

∫ ∞

0
exp (− ω · + γ′ (ω) 3 + − λ log ) 1/2ψ( )

∣
∣
∣
∣

}
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and

| (2) (λ ν)|(3.11)

≦

{∣
∣
∣
∣

∫ ∞

0
exp (− ν · + γ̃ 3 + − λ log ) 1/2ψ( )

∣
∣
∣
∣

+

∣
∣
∣
∣

∫ ∞

0
exp (− ν · + γ̃ 3 + − λ log ) 1/2ψ( )

∣
∣
∣
∣
}

Therefore it is sufficient to estimate RHS of (3.10) and (3.11).
Note that suppψ is compact and does not contain 0. Sinceλ < 0, > 0, | | ≦

| | ≦ δ and < < (cf. the Appendix) we have







| ± ω3 3− ω · + − λ | ≧ +
|λ| − | | ≧ ( − δ) + ψ|λ|

|γ (ω) 3 − ω · + − λ | ≧ +
|λ| − | | ≧

(

− δ

)

+ ψ |λ|

| γ′ (ω) 3− ω · + − λ | ≧ +
|λ| − | | ≧ ( − δ) + ψ|λ|

| γ̃ 3− ν · + − λ | ≧ +
|λ| − | | ≧ ( − δ) + ψ |λ| ( = )

where ψ is a positive constant which depends onψ only.
Thus the stationary phase method implies

(3.12) | (3) (λ ω)| ≦ ′
ψ (1 + |λ| + )−

and

(3.13) | (2) (λ ν)| ≦ ′
ψ (1 + |λ| + )−

for any positive integer , where ′
ψ is a positive constant which depends onψ and

.
Thus (3.12) and (3.13) imply

(3.14) ‖χ(−∞ 0)
(3) ‖ 2(R×S2

+) ≦ ′′
ψ (1 + )− +1

and

(3.15) ‖χ(−∞ 0)
(2) ‖ 2(R×S1) ≦ ′′

ψ (1 + )− +1

respectively, where ′′
ψ is a positive constant which depends onψ and .

(3.8), (3.14) and (3.9), (3.15) imply (3.7) for = and , receptively.
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Proof of Proposition 3.4. Lemma A of Appendix implies that+ and − are
projection operators and satisfy+ + − = in H. Below we show (A3.1)∼(A3.4).

For any , ∈ H we have by (3.2)

|〈 − 0ψ( 0) + 〉H|
≦ ( )× (‖ ∗( ∗ + )−1 ‖H + ‖( ∗ + )−1 ‖H)

where

( ) =

(∫

R2

| ( ) 0( − 0( 0− )−1ψ( 0) )2|2
)1/2

×
(

‖ ∗( ∗ + )−1 ‖H + ‖( ∗ + )−1 ‖H
)

Decomposing ( ) as follows:

( ) ≦

{(∫

R2∩{| |≦δ }
| 0( − 0( 0 − )−1ψ( 0) + )2|2

)1/2

+

(∫

R2∩{| |≧δ }
| ( ) 0( − 0( 0− )−1ψ( 0) + )2|2

)1/2}

we have by (3.6) of Lemma 3.5 and (1.5)

( ) ≦ ψ{(1 + )− + ϕ(δ )}‖ ‖H

Therefore (A3.1) is proven.
To prove (A3.2) and (A3.3) we note

〈 ∗ 〉H = 〈(( − )−1− ( 0− )−1) 〉H

for any , ∈ H.
By easy calculation we have

〈(( − )−1− ( 0 − )−1) 〉H0(3.16)

=
∫

R2
0(( − )−1 )2 ( ) 0(( 0 + )−1 )2

Then using (3.16) and arguing the same way as in the proof of (A3.1), we obtain
(A3.2) and (A3.3). Here we omit the detail.

We show (A3.4). For any ∈ H and any positive integer , we can estimate
〈 0ψ( 0) − 〉H as follows:

|〈 0ψ( 0) − 〉H|
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≦

{

‖∇ ( 0ψ( 0) − )1‖| |≦δ
2(R3

+ C3) × ‖∇ 1‖ 2(R3
+ C3)

+ ‖∇ ( 0ψ( 0) − )1‖ 2(R3
+ C3) × ‖∇ 1‖| |≧δ

2(R3
+ C3)

+ ‖( 0ψ( 0) − )2‖| |≦δ
2(R3

+ C3) × ‖ 2‖ 2(R3
+ C3)

+ ‖( 0ψ( 0) − )2‖ 2(R3
+ C3) × ‖ 2‖| |≧δ

2(R3
+ C3)

}

Thus Lemma 3.5 implies

|〈 0ψ( 0) − 〉H|

≦ ψ

{

(1 + )− ‖ ‖H + ‖∇ 1‖| |≧δ
2(R3

+ C3) + ‖ 2‖| |≧δ
2(R3

+ C3)

}

‖ ‖H

Thus, noting sup∈R ‖ ‖H <∞, we have (A3.4).

REMARK 3.6. We can also include the elastic wave equation with dissipative
boundary condition in a half space ofR2

+ in our example by using the generalized
eigenfunction expansion theorem proved by [1].

Application 2 (Schrödinger equation with complex valued potential)

Let ∈ R andH = 2(R ), where ≧ 3. We assume that ( ) is a measurable
function which satisfies

Im ( ) ≦ 0(3.17)

| ( )| = (| |−1) (| | → 0)(3.18)

| ( )| = (ϕ(| |)) (| | → ∞)(3.19)

whereϕ( ) is a non-increasing function and belongs to1(R+).
Define 0 = −△ , ( 0) = 2(R ), where△ is the n-dimensional Laplacian.

Then 0 is a self-adjoint operator. Using

∫

R

| ( )|2
| |2 ≦

∫

R
|∇ ( )|2

where∇ = (∂/∂1 ∂/∂2 . . . ∂/∂ ), we have

(3.20) ‖ ‖H ≦ ‖ 0 ‖H + ‖ ‖H

for some , 0< < 1 and > 0.

Thus = 0 + generates a contraction semi-group{ ( )} ≧0 in H and ( ) =
( 0) (see Theorem X-50 in Reed-Simon [16]). Of course,0 generates a unitary

group { 0( )} ∈R in H. Moreover we have the following.
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Theorem 3.7. For 0 and as above, one has the conclusions as inTheo-
rem 1, Corollary 2and Theorem 3.

Proof. It suffices to make a check on (A1), (A2) and (A3).
It is well-known that

σ( 0) = σ ( 0) = [0 ∞)

Thus we have (A1).
Sobolev’s lemma,

(R ) → (R )

(
1
2
− =

1
)

Rellich’s theorem and (3.18), (3.19) imply that

( − )−1− ( 0− )−1 is a compact operator inH

Thus (A2) is satisfied.
Finally we give a brief sketch of the proof of (A3). Choosing the positive

(resp. negative) spectral projection of = 1/(2 )( · ∇ + ∇ · ) as + (resp. −)
of (A3) and using Perry’s lemma ([14, Lemma 1]) together with(3.20) we show
(A3.1)∼(A3.4) in the same way as in the proof in Application 1.

Application 3 (Acoustic wave equation with dissipative term)

Let ∈ R , where ≧ 1. We consider the following equation:

(3.21) ∂2 ( )−△ ( ) + ( )∂ ( ) = 0 ( ) ∈ R × [0 ∞)

We consider (3.21) as a perturbed system of

(3.22) ∂2 ( )−△ ( ) = 0 ( ) ∈ R × R

We assume that ( ) is a measurable function which satisfies

0 ≦ ( ) ≦ ϕ(| |)

whereϕ( ) is as in Application 2.
For (3.21) and (3.22) with a formulation similar to that in Application 1 (for the

details, see Mochizuki [13]), we can also derive the conclusions in Theorem 1, Corol-
lary 2 and Theorem 3. We omit the details and content ourselves by giving a brief
comment on (A1), (A2) and (A3).

Due to [13] the operators associated with (3.21) and (3.22) satisfy (A1) and (A2)
in suitable Hilbert spaces, and they generate a contractionsemi-group and unitary
group, respectively. Moreover± in (A3) are defined as follows.
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Let F be the Fourier transformation. Let ∈ R be the dual variable of .
Then we write ( )

+ (resp. ( )
− ) as the positive (resp. negative) spectral projection of

1/(2 )( · ∇ +∇ · ). We set

± = −1

(

F−1 ( )
∓ F 0

0 F−1 ( )
± F

)

where

=
1√
2

(
(−△ )1/2

(−△ )1/2 −

)

Then ± as above satisfy (A3). We omit to show that they satisfy (A3.1)∼(A3.4).

Appendix

We state results which follow from Dermenjian-Guillot [1].
Let = ( 3) ∈ R2×R+ = R3

+ be the deal variable of = ( 3) ∈ R2×R+ = R3
+.

By the polar coordinates we write and as

= | |ω = | |(ω ω3) = | |(ω1 ω2 ω3)

and

= | |ν = | |(ν1 ν2)

whereω ∈ S2
+ = {(ω1 ω2 ω3) = (ω ω3) ∈ S2 : ω3 > 0} and ν ∈ S1 We prepare some

notations as follows:

2 =
λ0 + 2µ0

ρ0

2 =
µ0

ρ0

ξ ( ) =

(
2

2 | |
2 − | |2

)1/2

γ (ω) =

(
2

2 − |ω|
2

)1/2

for =

ξ′ ( ) =

(

| |2 −
2

2 | |
2

)1/2

γ′ (ω) =

(

|ω|2−
2

2

)1/2

for =

γ̃ =

(

1−
2

2

)

for =

and

˜ =

{

∈ R3
+; 3 >

( 2

2 − 1

)1/2

| |
}
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˜ 0 =

{

∈ R3
+; 0< 3 <

( 2

2 − 1

)1/2

| |
}

where 2 is the unique solution in (0µ0/ρ0) of the following equation with respect to
α:

(

1− α2ρ0

2µ0

)1/2

−
(

1− α2ρ0

µ0

)1/2(
α2ρ0

λ0 + 2µ0

)1/2

= 0

Using the above notations we define functions as follows.
(1) For every ∈ R3

+ let

( ) =
1

(2π)3/2ρ
1/2
0

· { − 3 3
1(ω) + ξ ( ) 3

2(ω)− 3 3
3(ω)}

where

1(ω) = (ω1 ω2 −ω3)

2(ω) =
4|ω|

( 2

2 − 2|ω|2
)
ω3

( 2

2 − 2|ω|2
)2

+ 4|ω|2ω3γ (ω)

(
ω1γ (ω)
|ω|

ω2γ (ω)
|ω| |ω|

)

3(ω) =

( 2

2 − 2|ω|2
)2− 4|ω|2ω3γ (ω)

( 2

2 − 2|ω|2
)2

+ 4|ω|2ω3γ (ω)
(ω1 ω2 ω3)

(2) For every ∈ ˜ let

( ) =
1

(2π)3/2ρ
1/2
0

· { − 3 3
1(ω) + 3 3

2(ω) + ξ ( ) 3
3(ω)}

where

1(ω) =

(
ω1ω3

|ω|
ω2ω3

|ω| |ω|
)

2(ω) =
(1− 2|ω|2)2− 4|ω|2ω3γ (ω)
(1− 2|ω|2)2 + 4|ω|2ω3γ (ω)

(
ω1ω3

|ω|
ω2ω3

|ω| −|ω|
)

3(ω) =
4|ω|(1− 2|ω|2)ω3

(1− 2|ω|2)2 + 4|ω|2ω3γ (ω)

(
ω1 ω2 γ (ω)

)

(3) For every ∈ ˜ 0 let

0 ( ) =
1

(2π)3/2ρ
1/2
0

· { − 3 3 0
1(ω) + 3 3 0

2(ω) + −ξ′ ( ) 3 0
3(ω)}
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where

0
1(ω) =

(
ω1ω3

|ω|
ω2ω3

|ω| |ω|
)

0
2(ω) =

(1− 2|ω|2)2− 4 |ω|2ω3γ
′ (ω)

(1− 2|ω|2)2 + 4 |ω|2ω3γ′ (ω)

(
ω1ω3

|ω|
ω2ω3

|ω| −|ω|
)

0
3(ω) =

4|ω|(1− 2|ω|2)ω3

(1− 2|ω|2)2 + 4 |ω|2ω3γ′ (ω)

(
ω1 ω2 γ′ (ω)

)

(4) For every ∈ R3
+ let

( ) =
1

(2π)3/2ρ
1/2
0

· ( 3 3 + − 3 3) (ω)

where

(ω) =

(

− ω2

|ω| −
ω1

|ω| 0

)

(5) For every ∈ R2 let

( ) =
˜

2π
| |1/2 ·

{(

2−
2

2

)

−| |γ̃ 3
1(ν)− 2γ̃ −| |γ̃ 3

2(ν)

}

where

1(ν) =

(

− ν1

|ν|
ν2

|ν| γ̃
)

2(ν) =

(

− ν1

|ν| γ̃
ν2

|ν| γ̃ −1

)

and ˜ is a strictly positive constant such that

4π2
∫ ∞

0
| ( )|2ρ0 3 = 1

The relation between the above functions and the generalized eigenfunctions
(ψ , ψ , ψ0 , ψ andψ ) of [1] is the following

( ) =

(

3

| |

)1/2

ψ ( ; | |) ( ) =

(

3

| |

)1/2

ψ ( ; | |)

0 ( ) =

(

3

| |

)1/2

ψ0 ( ; | |) ( ) =

(

3

| |

)1/2

ψ ( ; | |)

and ( ) =ψ ( ; )
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By [1, Theorem 3.6], the following operators, , , and ,

( ) = 2(R3
+ C3)− lim

→∞

∫

R3
+∩{| |≦ }

( ) ( )ρ0

( ) = 2(R3
+ C3)− lim

→∞

∫

R3
+∩{| |≦ }

{χ ˜ ( ) ( )

+ χ ˜ 0 ( ) 0 ( )} ( )ρ0

( ) = 2(R3
+ C3)− lim

→∞

∫

R3
+∩{| |≦ }

( ) ( )ρ0

and

( ) = 2(R2 C3)− lim
→∞

∫

R3
+∩{| |≦ }

( ) ( )ρ0

are partially isometric fromG = 2(R3
+ C3; ρ0 ) onto 2(R3

+ C3) and
2(R2 C3), respectively. Defining the operator as follows:

= ( ) for ∈ G

we have by [1, Theorem 3.6]

Lemma A. is unitary fromG to

Ĥ =
3⊕

=1

2(R3
+ C3)

⊕
2(R2 C3)

and for every ∈ ( 0)

0 = ( 2 | |2 2| |2 2| |2 2 | |2 )
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