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1. Introduction

In this paper we study the existence of scattering solutimnssome dissipative
systems which contain elastic wave with dissipative bomndzonditions in a half
space ofR® (cf. Dermenjian-Guillot [1]). First we give a framework mason the idea
of Simon [18] and apply it to elastic wave mentioned aboveapplying the abstract
framework, we shall use the Mellin transformation (cf. Reit4]) as a key tool.

Let H be separable Hilbert space with innér ). The norm is denoted by
| - ||~ Let {V(#)},>0 and {Uo(r)};cr be a contraction semi- group iK and a uni-
tary group inHo, respectively. We denote the generatorlofi () dngr) by A and
Ao, respectively ¥ { ) =4 and Ug(t) = e~*40). We make the following assumptions
on A andAg.

(A1) 0(Ao) = 0ac(Ao) = R or [0, c0).

(A2) (A —i)"t— (Ao —i)~ ! defined as a form is extended to a compact operator  in
H.

(A3) There exist non-zero projection operatorsify P, and P_, such thatP, + P_ =

1, and

(A3.1) | Ikustystaopas < o
(A3.2) /0 K Uo()i(Ag) Py | di < oo,
(A3.3) /0 T K Us(—t)(AQ) P || df < oo,
(A3.4) W lm_Uo(-0(A)P- f, =0

for eachy € C3°(R\0) and{f;};cr satisfying sup.g || fi|[« < oo, where|| - || is the
operator norm of bounded operatorsh

(A3.1), (A3.3) and (A3.4) will imply the existence of the wawoperator. It will
follow from (A3.2) that the wave operator is not zero as anrafme in . The frame-
work of [18] is due to Enss’s method [2]. In order to cheak tippleability of the
framework of [18] to dissipative systems (see also StefaBewrgiev [20] or [15]), we
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have to show the following type limit:
(LD im [ 1ROV Sl =0
n—oo O

for some one parameter compact operat@l%(t)},e[o,oo), in H, wherer, is as in (F2)
below. This follows from Lebesgue’s theorem and

(1.2) /0 K (2)] dt < oo

(A3.1)~(A3.3) mean (1.2) (for details, seg).
Let H, be the space generated by the eigenvectord of  with real\ailyes. We
use the following facts (see Simon [18] and Petkov [15]):

(F1) {(A —i)2Af € H: f € D(A)N'H;+} is dense inH;-.
(F2) There exists a sequengg, } such that
lim 7, =

n—oo

and

w— lim v(,)f =0, forany feHj.

In this abstract framework, we shall show

Theorem 1. Assume tha{Al) ~ (A3). Then for anyf € H;-, the wave opera-
tor

Wf = lim Us(—)V(t) f
1—00
exists. Moreove” is not zero as an operator frégf to H.

As a corollary of Theorem 1, we can find scattering solutiohs/(@/(z) f)/dt =
—iAV(t)f, f € D(A).

Corollary 2. Assume tha{Al) ~ (A3). Then there exist non-trivial initial data
f € H and f. € H such that for anyk =0, 1, 2..., and (o € C satisfyingR¢p, > 0

Jim [[V)(A = @) = Vo) (Ao = Go) ™ Fillw = 0.

We can also obtain the standard result concerning real wgess of A as fol-
lows.



SCATTERING FOR DISSIPATIVE SYSTEMS 247

Theorem 3. Any non-zero eigenvalues df  has finite multiplicity. Moegothe
possible finite accumulation point of the real eigenvalugésids zero.

In §2 we shall give the proof of Theorem 1, Corollary 2 and Theo@m

In §3 we shall apply our framework to (1.3) as below, which ddssielastic
wave with dissipative boundary conditions in a half spaceRéf It seems that there
is no work concerning dissipative elastic wave in a half spéaf. Theorem 3.1).

Let x = (x1, x2, x3) = (v, x3) € R?xRy, po > 0, o > 0 and\g € R satisfying 3\o+
2up > 0. We useOsx3 and Iz3x3 as zero and unit matrix of 8 3 type, respectively.

We set
1/0u, Ou;
enj(ux)) = 3 (ax( * 3_)62)
J

and
opnj((x)) = Xo(Vy - u)dnj + 2u0en (1)

whereh ,j =1, 2, 3u X ) = ua(x), uz(x), us(x)) € C® andV, = (9/01,0/2. 0/ 03).
We define operatoré,y as

3

(Zou)h:—ZiW (h=1 2 3)
o 9%

We consider two elastic wave equations as follows:

13) { O2u(x, 1)+ Lou(x, 1) =0, (x,t)€ RS x [0, 00),
' “(013(u), o23(11), 033(1)) |xs=0= B()Ortt |ss=0
and
L.4) { 82u(x, 1)+ Lou(x,1) =0, (r,1)€ R xR,
0i3(u) |;=0=0 (=1 2 3)

To state assumptions fox(x), u(x) and B (¢ ) we introduce a function spa@ Q ( ) as
follows:

BY(Q) = {u e ckQ); Z |0%u]| Lo () < oo} ,
o <k

whereQ C R”.
Assume that

(1.5) B(y) belongs toB*(R?, M3y3) and satisfies
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O3x3 = B(y) = ©(|y|) 133,

where (r) is a non-increasing function and belongs t&(R.), and M3,z is the to-
tality of 3 x 3 matrix.
The following operatorLq in G = L?(R3, C3; po dx):

Lou = Zou
with
D(Lo) = {u € HY(RS, C3); Lou € G, o43(u) |x=0=0(h =1 2 3}

is a non-negative and self-adjoint. In the Appendix we skateic results orig

Remark 1.1. We can also deal with the perturbation)gf 1o and pg as follows:
A(x) and u(x) belong to BY(R3). p(x) belongs toL>°(R3). Moreover these func-
tions satisfy

0 <m = 3\x) +2u(x), p(x), plx) =M

for someM ,m > 0 and
IAGX) = Xol,  [u(x) — pols  [p(x) — pol = w(|x]).

The projectionsPy in (A3) are considered by using the generalized Fourierstran
formation for Lo and the negative (or positive) spectral projections of gatioes of
dilation of R? and R2. To make a check on (A3.4fA3.3) we use the Mellin trans-
formation of R? (resp.R?) in the range space of the generalized Fourier transfoomati
of free waves (resp. Rayleigh wave). Perry [14] is the firsapply the Mellin trans-
formation to show asymptotic completeness for Schrodingguation. Kadowaki [6]
has also used the Mellin transformation with the generdligggenfunction expansion
theorem of Wilcox [22] or Weder [21]. Recently, Soga [19] lmsidered the scatter-
ing theory of Lax-Phillips (cf. Lax-Phillips [11]) for (1)4 However (1.3) has not been
dealt with.

[18], [20] and [15] have directly showed (1.1) by using psewlifferential opera-
tor and the relation

(1.6) F(u * v) =Fu x v,
where
* = — d
o)) = [ ae =) dy

and § is the Fourier transformation. If we directly apply the framork of [18] to dis-
sipative elastic wave in a half space, we have to require) tb.6hold for the general-
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ized Fourier transformation for elastic wave in a half spdat it is not clear. There-
fore it seems difficult to directly apply the framework of [1i® elastic wave with dis-
sipative boundary conditions in a half space. We can alsd with dissipative elastic
wave equation in stratified (two layered) media (cf. Shimjzid]) by our framework.
As other applications (cf§3) of our framework, we consider Schodinger equation with
complex valued potential (cf. [18]) and acoustic wave eiguatvith dissipative term
in inhomogeneous media (cf. Mochizuki [13]). These appiices are essentially the
same results as in [18] and [13]. Although we do not pick up éxéerior domain
problem (for instance [11] and [20]), we can also treat theitlhh \wwome modifications.

Kadowaki [7] has considered the existence of scatteringtisol for acoustic wave
equation with dissipative term in special stratified medihis equation is not included
in our example. The reason is that, since the generalizednkigction of acous-
tic wave operator has singular points due to the threshadée (22] or [21]), the
key estimate (cf. Lemma 3.2) of the neighborhood of eachstiole (for detail, see
[6, Lemma 2.1]) is hard to prove. In [7], Mochizuki’'s work [[L3vas used instead.
His framework is based on resolvent estimates and Kato'sodmperturbation theory
(cf. Kato [9]). In Kadowaki [8], we extended Mochizuki's freework and apply that
to dissipative wave equations in stratified media which waistreated by [7].

Finally we give brief comments concerning energy decaytemis:

rim V(@) f =0.

In the proof of W # 0, we have to note the existence of energy decay solutioms, fo
details se€2 (cf. Georgiev [3], Majda [12], [15] and [20]).

2. Proof of Theorem 1, Corollary 2 and Theorem 3

In this section we deal with the cas€Ag) = 0,.(Ag) =R only. In the same way,
another case can be dealt with. We get\) £ (A —i)~2\ and W ¢ ) =Uo(—1)V(z). In
this sectionC is used as positive constants.

Below we shall give the proof of Theorem 1. First we prove théstence of
W by referring to Enss [2], Simon [18], Kuroda [10], Perry [14%0zaki-Kitada [4],
Stefanov-Georgiev [20] and Petkov [15]. But we sometimed déonnote the above ref-
erences.

Proof of the existence oW . For an§ € H;- N D(A) andt,s > t,, note (F1)
and

IOW () = WD F (A |1
SNW () = W) F(A) fllae + (W (s) = W (@) F(A)f |3
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Thus the existence oV  follows from
(2.1) lim fﬁ [(W(t) = W(ta))F(A) fllre = 0

(cf. [4])
We estimatel|(W () — W(t,))F(A)?f || as follows (cf. [18]):

||(W(t) - W(tn))F(A)ZfHH
:”UO(_t)(V(t - tn) - UO(t - tn))F(A)ZV(tn)f”H

5
<D Tl
=

where

Ty = (V(t — 1) — Uo(t — t))(F(A)? = F(A0))V (1) -

Ty = (V(t — 1) = Uo(t — t))(Ls — Yu(A0)) F(A0)V () f

T3 = (V(t — t,) — Uo(t — 1)) (s F)(A0) P+ F (Ao) V (1) f

Ty = (V(t —ta) — Uo(t — 1)) (Wm F)(Ao) P— F(A0)(1a — Ym(Ad))V (1) f,
Ts = (V(t — ta) — Uo(t — 1)) (0 F)(A0) P (vm F)(Ao) V (ta) f

and ¢ (A\) € C§°(R) satisfies 0 vy () = 1, Y (N) = 0N < 1/2M, |A| > 2M) and
Yu(N) = 1(1/M < [N < M).
First, we note that for any, there existsM > 0 such that

ITilln = Cll(L—yYm)Fli=ry <e (j=2 4)
Therefore once the limits

(2.2) lim fm |Tjl» =0, (=1 3 5)

are proved, we obtain (2.1). Below we shall show (2.2). For ,=ndte F \) =
i(A—1i)72+ () —i)"L. Therefore (A2) implies thaF A ?)— F(Ag)? is also a compact
operator inH. Using (F2) we have
IT1ll7 < CI(F(A)? = F(AA)V (1) fllne — 0 (2 — o0)
For j = 3, we decompos#&s as follows:
T3="Ts1 + T3+ T3,

where

T31 = V(t — 1t2)(F(Ao) — F(A)(Wnu F)(A0) P+ F(AQ)V (1) f
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T32 = (F(A) — F(A0))Uo(t — ta)(m F)(Ao0) P+ F(Ao) V (ta) f
Tsz = F(A)(V(t — 1,) — Uo(t — 1,))¢m(Ao) P+ F(A0) V (1) f-

The argument as in the proof @h implies
lim t@o | 731/ = 0.
Since we have by (Al)
W — ,'LTO Uo(t —t,)f =0,
(A2) implies
Nim |72/ = 0.

To estimateTzs, we use Cook-Kuroda method. Note that

(T33, &)1 =(m(A0) P+ F(Ao) fu, V(1 — 12)F(A™)g) 1
- <U0(t - t/1)¢M(A0)P+F(A0)f;l’ F(A*)g>7'(’

wherege Hand f, =V ¢ )f .
Then we have by (A2)

(T33, 8)H
= / T (AoUo(s)omr (Ao Po F(Ao) o VAt — tn — ) F(A) )
0
— (U5 (Aa) P F(A0) f AV (t = 1, — 5)F(A")g) ) ds

=i /O UV 1y — S)A(A — i) K Uo(s)daa(Ao) P F(Ao) fo. §)2 ds.

where () = (A — i)u ().
Therefore we obtain

| Tl < € / K Uo(s) 0 (Ao) P F(Ao) fu 12 ds
0
< £l / | K Uo(s)dn (Ao) Pu| ds.
0
For eachs > 0 we have by (F2) and (A2) ,

/1”—>m00 ||KUO(S)’[ZM(AO)P+F(AO)ﬁl ||H =0.

251
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Therefore (A3.1) and Lebesgue’s theorem imply
lim Tim ||T33||H =0.
n—o00 [—o00
Now we obtain
lim Tim || T3]+ = 0.
n—o0 [—00

We estimatels as follows:

17512, < ClIP—(Fm)(AQV () 1%,
3
=C_Ts)
j=1
where

Ts1 = (Y (A0) P—hn, (F(Ao) — F(A)V(ta) f)n
Ts2 = (Ym(A0) P—hy, (V(t.) — Uo(ta)) F(A) f )1
Ts3 = (Uo(—t2)tm(A0) P—hy, F(A) f)n

andh, = Fu)(Ag)V (1) f-
Note that

|T51| = CI|(F(Ao) — F(A)V (tn) f |7
Thus (A2) and (F2) imply
nILmoo Ts1 = 0.
(A3.4) implies
nILmoo Ts3=0.

To estimateTs,, again we use Cook-Kuroda method. Note that

Ts2 =i /011(<U0(—S)¢M(AO)P—hm AV (tn = s)F(A) f)n
— (AoUo(—5)Ym(A0) P—hy, V(tn — 5)F(A) f)n) ds
= /0 (V¥ (10 — $)A* (A" +i) 72K *Uo(—5)0 3y (A0) P, f )¢ ds.

Thus we have

ITsal < C[1f |1 /O K Uo(—5) (Ac) Py | 3¢ ds.
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Using (A2), (F2) and (A3.2) we have by Lebesgue’s theorem

lim T, =0.

n—oo

Now we obtain
lim Tim ||T5||H =0.

n—oot—0o0

Therefore the proof of the existence ¥f  is completed. O
To show W # 0, we introduce a subspace ®f, D, as follows:
D={f eH:tirgOV(t)f:O}.
Since
Af=Af,LAER, feH= A"f=)\f

(see Petkov [15, Lemma 1.1.5]), we can easily show

D C Hi.
We prepare
Proposition 2.1. Assume that
Hi- © D = {0}.
Then one has
(2.3) W—IimOO Up(—)V(@)f =0

for any f € H.

Proof. Now we can decompose afyc H as f =f1 + f», where f; € D = Hj
and f> € H,. Then it is clear that

(2.4) W— tILngo Up(—t)V() f1=0.

Note the definition ofH,. Then for anye > 0O, there existV € N, ¢; € C, A\; € R
andg; e H(j =1, 2...,N) such thatAg; =\;g; and

N
‘ fo— chgj
j=1

< E.
H
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Hence we have for any € H,
N
[{Uo(=0)V(0) fa: )| S Cellhll+ Y lej || (Uo(=1)g;, k).
J=1
Since (A1) implies
w— Ilim Uo(—1)g; =0,
we have
(2.5) ,@O [{Uo(=2)V (1) f2. h) | = Cellh||n.
Hence we obtain (2.3) by (2.4) and (2.5).

Below we shall showw # 0 (cf. Mochizuki [13] §3).
Proof of W £ 0. For anyf € H and g € Hp, note that
(26)  (Uo(—n)V()(A = i)~ f, (Ao+i) tg)n
= (A=) (Ao +i) g)p +i /O (VG K Uolr)g.
We assume thaW = 0, i.e., for any f € Hj,
(27) Wl = lim V() Il = 0.
(2.7) means
H;- © D = {0}.
Hence Proposition 2.1 and (2.6) imply
(A= Lo+ ) S =1 [ (VL K Vol
Putting
f = (A0 — )Uo(s)¥m(Ao)P+h  and g = (Ao +i)Uo(s)¥m(Ao) Prh
for any h € H, we have

(A = )7L = (Ao — ) "YUo(s) P (Ao) Prh, Uo(s)tha(Ao) Puh)
+ [1vha (Ao) P+h| 3,
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= /0 (V) Uo(s)Dm(Ao) Pu, K* Un(r + )dm(Ao) Puh, )¢ .
It follows from the above identity that
143 (Ao) Peh[3 <||hlln{||((A — i)™ = (Ao — i) ) Uo(s)Pm(Ao) Psh |13
wCu [ 1K Ut #s)imtan) Pl
0

(A1) and (A2) imply

lim 1A = )7 = (Ao — ) ") Uo(s)da (A0) P2 = .
(A3.2) implies

lim / ||K*U0(T+S)1ZM(A0)P+||dT =0.
0

§—00

Therefore we have

(2.8) 1¥m(Ao) Pshll7 = O,

for any h € Hp and anyM > 0.
(2.8) implies P, = 0. This is a contradiction with (A3). Now the proof ¢¥ # 0
is completed. O

In the remainder of this section we show Corollary 2 and Téaeo8.

Proof of Corollary 2. First we consider the case = 0. Sibkér) is unitary in
‘H, it follows from Theorem 1 that there exist non-trivial iait data f € H such that
Wf #0 and

Nim [V (@) f = Uo(t)Wf [ = 0.

Setting f+ = W we have Corollary 2 fok = 0. Next we consider = 1. Corollary 2
for k =0 and (Al) imply

(2.9) wW— Ilim V() f =0.
Noting

[V()(A = Co) ™ f — Uo(t)(Ao — Co) il
<A = )™ = (Ao — o) HV(E) fllz + 11(Ao — Co) MV () f — Uo(t) £)|n,
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we have Corollary 2 fok =1 by (A2), (2.9) and Corollary 2 for =0
The cases > 2 can be proved by induction, which is omittied. [l

The proof of Theorem 3 is similar to that of Theorem 1. So wdldliae a brief
sketch of the proof only.

Proof of Theorem 3. Assume that there exjste D(A), \,, A€ R\O (n = 1, 2,
3,...) such that

Afy =X fus | fullk=1 and  lim A, = A,
The argument as in [15] (see the proof of Theorem 3.6.4) &spli

w— lim f,=0.

n—oo

Noting V (¢)f, =e " f,, we have
[F(AY full# = VO F(AY full.
In a similar decomposition and proof as in the estimate of)(%e can obtain
lim | F(A) full = O.

But this yields a contradiction with

2

Jim EAY fullre = g 70

Therefore the proof is complete. O

3. Applications

In this section we apply our framework to elastic wave equmtvith dissipative
boundary condition in a half space &%, Schrodinger equation with complex valued
potential and acoustic wave equation with dissipative téive also useC as positive
constants.

Application 1 (Elastic wave equation with dissipative boumlary condition in a
half space of F)

Let H be the Hilbert space with inner product:

3
(f. 8)n :/R3 ( > anjk/sk/(fl)shj(gl)+f2§/)o> dx,

hj.k,1=1
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where apjii = Aodnjdu + po(0ndji + 0dji) and f =" (f1, f2), g = '(g1, g2). Korn's
inequality (cf. Ito [5]) implies that is equivalent toH*(R3, C3) x L?(R3, C®) as Ba-
nach space.

We setf =" &,t)u, &,t)), whereu x(,¢ ) is the solution to (1.3) (resp. (L.4)
with initial data fo =’ (u(x, 0), u,(x, 0)) € H. Then (1.3) (resp. (1.4)) can be written as

o f =—iAf  (resp. 0,f = —iAof),

where
_ [ 0 Iz3 _.( O I3x3
(3.1 A—l(_zo O), AO_l(—Zo 0)’
D(A) ={f ="(f1. f2) € Hi Lof1 € L%R3,CP), f € H'(R3, C?),
"(013(f1), 023(f1), 033(f1)) |xs=0= B(Y) f2 |xs=0}
and

D(Ao) ={f ="(f1, f2) € H; Lof1 € L*(R,C3), o € HY(RS, C?),
o13(f1) |x=0=0h =1, 2 3}

According to Lax-Phillips [11, P210—P211] or Petkov [15, r@tary 1.1.4] we can
show thatA (respAp) generates a contraction semi-gro{ig(s)},>o (resp. a unitary
group {Uo(t) }ier) in H. Using {V(#)},>0 (resp.{Uo(t)}cr) we solved, f = —iAf
(resp.d, f = —iApf) as follows:

f=v)fo (resp.f =Uo(t)fo)-
Moreover we have the following.

Theorem 3.1. For Ap and A as in(3.1), one has the conclusions as iFheo-
rem 1, Corollary 2and Theorem 3

To show this theorem, we prove (Al), (A2) and (A3) in Lemma, 3323 and
Proposition 3.4, respectively.

Lemma 3.2. Ag from (3.1) satisfies(Al).

Proof. Lemma A of the Appendix implies(Ag) = 0..(Ap) = R (see also [1]).
O

Lemma 3.3. Ag and A from(3.1) satisfy (A2).
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Proof. Note that
(A== (40— D) f &)
=(Ao(do — i) THf (A" i) g — (Ao — i) ML AT(AT ) g
for f, g € H. By easy calculation we have
(3:2) (A=) = (A0 —)"Df 8w

=i [ BOIa((40 - ) Lo ¥ ) Tghady.
R
whereTg is a trace operator defined by

(Cou)(y) = u(y, 0).

For any s € (1/2,1), Korn's inequality implies thatlo((Ao — i)~1f), and
To((A* +i)~1f), belong to H**(R3,C3) . Since B ¢ Yolla(49 — i)~! is a com-
pact operator fromH to L?(R? C3) by Rellich’s theorem, wherd1;’ f{, f2) = f;
(j =1, 2), the form A4 — i)~ — (Ao — i)~* can be extended to a compact operator,
(Toll2(A* +i)1)*B(y)ToIla(Ao — i) 1, in H.

]

Finally we show (A3). UsingF; { ® S SH R ) (see the Appendix), we con
struct P+ as follows:

FsPO . oF; 0
(3.3) po=7t N [TiTEESh s
j=b 5 SH O3x3 F7 P I3y 3F;

F;-‘,‘PJ(FZ)ngsFR O3x3
+ « p@ r
O3x3 FrP{I3x3Fg
where
L[ i
V2 L(l)/2 —il3x3

and P® (resp. P®) and P (resp. P?) are negative (resp. positive) spectral projec-
tions of

1 1 .
D® = ?(k Vi+Vi-k) and D@ = ?(p -V, +V,-p), respectively
) )

wherek =, p3) € R? x R,.
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Using the representation of the generalized eigenfunctibriy and the Mellin
transformation we show (A3.2)A3.4) (cf. Perry [14] and Kadowaki [6]). The Mellin
transformations forD®, DA are given as

+o0
(MODu)(\, w) = (277)_1/2/ rY2 2y (rw) dr
0
and
+00 .
(MPv)(\, v) = (271')_1/2/ r~2u(rv)dr,
0
whereu )& C5°(RI\{0}), v(p) € C5°(RA\{0}), w € S} = {(w1, w2, wa) = (@, wa) €
S w3 >0} andv € St
Then M® (resp. M@) is extended to a unitary operator from?(R3) (resp.
L?(R?) to LR x S?) (resp.L?(R x SY)) (cf. [14, Lemma 2]).
Proposition 3.4. P, from (3.3) satisfy (A3).
To show Proposition 3.4 we prepare
Lemma 3.5. Let(\) be as in(A3) and 0 < § < cx (for cg, see the Appendix

Then for any positive integeN  and € R, there exists a positive constaty
which is independent aof such that

—i x|<8 _
(34) ”vx(e IAO'Q[}(AO)Pif)l”‘LZ‘(_RQQS) g CN.ilJ(l + |t|) N”fHH’
—i x|<6 _
(3.5) (e 40p(A0) P a2y S Covan(L+ 1) ™1 f 1
and
—i |S6 —_
(3.6) ITo(e™""42u(A0) P f)oll e ey < Cvun( +[t)) |1 £l

for any f € Ho, where

1/2 1/2
||”||52(R§,c3):( / |u|2dx) and ||v||fz<Rz,c3)=( / |v|2dy) .

Proof. For the sake of simplicity, we shall restrict ourgsivo the case € R:
and supp) C R+ only. Moreover we prove the case (3.5) only. Other cases areep
in the same way as below.

Concerning new notations, for instandg j ( P=S,SH R, ), see the Agpe
By Lemma A of the Appendix, we have

(e 41h(Ao) Ps f)2
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i
=—3 { > Ij(x,t)+IR(x,t)+ISH(x,t)},
j=P.S
where

(e 1) = 5 /R exp(ite; ke k)W, (. PO F (Lo f1 +if2) dk.

1) = 5 [ expleiteal pucal pDUatr. p) PO FR(LE? o+ if) dp
R2

and
Isn(x.0)= 5 / exp(-ites|kl)(cs k) Us (v, PO Fs (Lo * fu +if2) dk.
R$
If we show
3.7) [, ) S Cp@+ey ™Y flle (=P, S, SH, R)

for any positive integerN’, we can obtain (3.5). Here we deal with x,¢ ) and
Iz(x, t) only. Other terms can be dealt with in the same way.

We set
K (k) = explre; K[y (eslkD) Ws(x, k)
and
KX, (p) = exprcg|p))v(ck|p) ¥k (x, p).
Note that
Is(x, 1) = <FS(L(1)/2fl +if2), PSS)KS>L2(R§.C3)
and

1/2 .
Ie(x, 1) = (Fr(LY? fr + if2), PPKR) 2o co)-

Noting the partially isometric property afs anBlr  (cf. the Apix) we have

(3.8) [Is(x, )] = Clix(oo.opMPKS |l 2rusz) % |1 f 11
and
(3.9) [Ix(x, 1)) £ ClixX(o0)MPKE || 2rxsty X |1 134,

Where x(—co.0) = X(~o0.0)(A)-
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©) ) @ xR .
MPK? (N, w) and MUK, (A, v) are represented as follows:

MOKS,(\, w)

1 e
:W /O expi (~r@ - y + tesr — Aogrrt/2(esr)xegy (@)
T)°Pg
1

t——n / expi (—rw -y +tesr — Alog ")rl/zw(csr))@ov )
(2m)2pg’~ Jo S
{e”“mm . e—irwyg% + e—r’ﬁa,s(w)mm} dr,

and

M@KE (\v)

C > B N
= o372 / expi (—rv -y +irfg pxs+tcgr — Mogr)rt/2y(cgr) (2 — C—g Ri(v)dr
(2m) / 0 cs
+/ expi (—rv -y +irjgsxz+itcgr — A IOgr)rl/z@[)(cRr)(—ZﬁR,p)Rg(V) dr},
0
where

and

c2 1/2
&y = w682;0<w3<(c—’2’—1> @] ¢ .
S

Since Sy; (), SY;(w) (j =1, 2, 3) andR; %) (k = 1, 2) are bounded fow and v (see
the Appendix), respectively, we have

(3.10) [MOK, (A, w)|

<cf

+ / expi (—rw - y — rwaxs +tesr — Mogr )Y/ 2y (csr) dr
0

/ expi (—rw - y + rwsxs + tesr — Mogr )Y/ 2y (csr) dr
0

+

Xés (w)/ expi (—r@ - y — ryp s@)xs + tesr — Mogr)r2p(csr) dr
0

+

|

Xz9, (w)/ expi (—rw -y +irvyp g(w)xs +itcsr — Alog )Y 2(csr) dr
0
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and

B.11)|MOKE, (X, v)|

<cf

+

/ expi (—rv -y +irjyg pxs+ttcgr — A IOgr)rl/2¢(cRr) dr
0

/ expi (—rv -y +irdg sxs +tcgr — Mogr)rt/?(crr) dr
0

}

Therefore it is sufficient to estimate RHS of (3.10) and (3.11
Note that supp is compact and does not contain 0. Since< 0, 1 > 0, |y| <
|x] £ 0t andcg < ¢s < cp (cf. the Appendix) we have

AL
r
_ _ A A c c
|vs.p(@)x3 —w -y +cst — —| cht+u - —S|x| = (cs - —55>t+Cw|/\|
r r Ccp cp

A 9
PEZ 1 2 (s — a0+ Cul
4

Y[ 2 (cr =0t +Cy|Al (G =P, S)

A
| £ waxg—wW-y+est — —| 2 cst + |x| = (cs — 8)t + Cy| |
r

A
livs p@)xs =@ y+est — | Zest +
r

A

r

. A
[i¥s,jxs—v-y+cgrt —=| 2 cpt +
r

where Cy, is a positive constant which depends gnonly.
Thus the stationary phase method implies

(3.12) IMOKS (N w)| < Cl L+ +1)7"
and
(3.13) IMPKE ()| < Clu(L+A[+1)7"

for any positive integer. , where;,  is a positive constant which depends grand
m.

Thus (3.12) and (3.13) imply

(3.14) IX(-oc.)MOKS | 12mxsy < Clhp(L+2)™"*
and
(3.15) IX(—oo)MPKE | 2mxsy S Clu(L 41y,

respectively, Where’,‘l’b”m is a positive constant which depends ¢randm .
(3.8), (3.14) and (3.9), (3.15) imply (3.7) fgr & aml , redegy. ]
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Proof of Proposition 3.4. Lemma A of Appendix implies that and P_ are
projection operators and satis#; + P_ = I; in H. Below we show (A3.1)(A3.4).
For any f ,g € H we have by (3.2)

[(Ke "4y (Ag) Ps f, )|
< CI() x (A" (A" +i) tglla + I(A* +i) " g||n),

where
' 1/2
10 =( [ 1BOIae (0 — i) 001y )
(147" +0) Sl + 14" #0) el )

Decomposing! « ) as follows:
. 1/2
sc{(]f Fole™" Ao ~ 1) (A0 Pl )
R2N{|y|=6}

1/2
(/ BOIole 0~ Ssta0)P ey )
R2n{|y|2dt}
we have by (3.6) of Lemma 3.5 and (1.5)

1(r) = Cnp{@+0)™N + 0@} 1

Therefore (A3.1) is proven.
To prove (A3.2) and (A3.3) we note

(LK n=((A=i) "= (Ao—i)"Of g)m

forany f,g € H.
By easy calculation we have

(3.16) (A=) = (A0 =)D &)mo

:i/ To((A — i)t £)2B(»)To((Ao +i)~1g)2dy.
R2

Then using (3.16) and arguing the same way as in the proof Gf1)A we obtain
(A3.2) and (A3.3). Here we omit the detalil.
We show (A3.4). For anyg € ‘H and any positive integeN , we can estimate
(e o) (Ao) P_ f, g)1¢ as follows:

("4 (Ao) P_ f1, &)
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- <o
<c{||vx(e”Aow(Ao)P_f,)lngzmgcs) < Vgl oma

; 246
[ Vele ™ (A0 P il cora.cy * V81l o

+ [ (A0 P f)alldm o X 182l 2R
a0 P el e el b -
Thus Lemma 3.5 implies
("2 (A0) P_ fi, g) 1|
< Covp L@+ lgle + 981l s o + 182 S oy 117l
Thus, noting supg || fi|l# < oo, we have (A3.4). O

Remark 3.6. We can also include the elastic wave equation with phsisie
boundary condition in a half space &2 in our example by using the generalized
eigenfunction expansion theorem proved by [1].

Application 2 (Schrodinger equation with complex valued potential)

Let x € R" andH = L?(R"), wheren > 3. We assume thaB x( ) is a measurable
function which satisfies

(3.17) ImB(x) <0
(3.18) |B(x)| = 0(lx|™) (x| —0)
(3.19) |B(x)] = O(p(|x])) (|x| — o0)

where ¢(r) is a non-increasing function and belongst&R.).
Define Ag = —A\,, D(4g) = H3(R"), where A\, is the n-dimensional Laplacian.
Then Ap is a self-adjoint operator. Using

2
/ )] dx§C/ |qu(x)|2dx,

[x|?

whereV, =(9/b1,0/0s, ..., 0/0,), we have

(3.20) IBf 1= = allAof Il + bl f %

for somea , O< a <1 andb > 0.

Thus A =Ap+ B generates a contraction semi-gro{ig(¢)},>o in H and D (A ) =
D(Ap) (see Theorem X-50 in Reed-Simon [16]). Of courgk, generates a unitary
group {Uo(t) };er in H. Moreover we have the following.
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Theorem 3.7. For Ag and A as aboveone has the conclusions as ifheo-
rem 1, Corollary 2and Theorem 3

Proof. It suffices to make a check on (Al), (A2) and (A3).
It is well-known that

U(AO) = Uac(AO) = [07 OO)

Thus we have (Al).
Sobolev’s lemma,

Rellich’s theorem and (3.18), (3.19) imply that
(A—i)"t—(Ap—i)"! is a compact operator in.

Thus (A2) is satisfied.

Finally we give a brief sketch of the proof of (A3). Choosinget positive
(resp. negative) spectral projection &f  #(2i)(x - V, + V, - x) as P: (resp. P_)
of (A3) and using Perry’s lemma ([14, Lemma 1]) together w{$h20) we show
(A3.1)~(A3.4) in the same way as in the proof in Application 1. U

Application 3 (Acoustic wave equation with dissipative tem)

Let x € R", wheren = 1. We consider the following equation:
(3.21) 8,2u(x, t) — Nu(x, t) +b(x)Ou(x,t) =0, (x, 1) € R" x [0, c0).
We consider (3.21) as a perturbed system of
(3.22) DPu(x, 1) — Deu(x, 1) =0, (x,1) € R" x R.

We assume thak x( ) is a measurable function which satisfies
0< b(x) < p(|x)),

where o(r) is as in Application 2.

For (3.21) and (3.22) with a formulation similar to that in glication 1 (for the
details, see Mochizuki [13]), we can also derive the corichssin Theorem 1, Corol-
lary 2 and Theorem 3. We omit the details and content oursebye giving a brief
comment on (Al), (A2) and (A3).

Due to [13] the operators associated with (3.21) and (3.28%fg (Al) and (A2)
in suitable Hilbert spaces, and they generate a contrac@mi-group and unitary
group, respectively. MoreoveP. in (A3) are defined as follows.
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Let § be the Fourier transformation. Lét € R"” be the dual variable ofc
Then we write P (resp. P™) as the positive (resp. negative) spectral projection of
1/(20)(k - Vi + Vi - k). We set

B gflp(")g 0
P.=T1 F T
* < o gFtpz)
where

T = (_Ax)l/z i )

ﬁ ((_AX)l/Z —i
Then P, as above satisfy (A3). We omit to show that they satisfy (A3(A3.4).

Appendix
We state results which follow from Dermenijian-Guillot [1].
Let k = (p, p3) € R2x R, =R? be the deal variable of =(x3) € R?xRs =R3.
By the polar coordinates we write and as
= [k|w = [k|(@, w3) = [k|(w1, w2, wa)
and
p=|plv = |p|(v1, 12),

wherew € S = {(w1, w2, w3) = (@, ws) € & : w3 > 0} andv € S'. We prepare some
notations as follows:

Aot 2
62 0 /1«0 62_@

2
&alk) = (%Wz |P|2) Y. (@) = (
i

2 1/2
& k) = <|p|2 |k|2) @) = <|w|2——’2) for j, I=P, S,

\“NIJ‘N

1/2
lez) , for j, 1=P, s,

3}

]

AR.j = <1—?> for j=pP, S
J
c2 1/2
ESV:{kERf;P3><C—§—1) |P|},
S

and
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) 2 1/2
E(S)V:{keRf;O<p3<(c—g—1) |p|},
S

wherec? is the unique solution in (Quo/po) of the following equation with respect to

o
1/2 1/2 1/2
o2po / a?po / o?po / _
1-— —(1-— —_— =0.
2110 Ho Ao + 2u0
Using the above notations we define functions as follows.
(1) For everyk € R? let

267

1 I . . .
Wp(x, k) = Wem-} {e™ P33 py(w) + gl €s.pk)xs Pa(w) — €'¥2 Py(w)},
)" Po

where

Pi(w) = (w1, w2, —w3)

Po(w) = — P S —
& - 2[w]?)” + 4w Pwsyp.s(@)

o™

4o|(% - 2@P)ws - -
cs (wl’YP.S(W) WZ’YP.S(W) |w|

[ I 77/ R
Fi
Pa(w) = — 3
3 - 2[w[?)” + 4lw|2wayp, 5 (@)

NN

2 _ _
— 2|w|2) — 45| 2wsyp. s (@)

(w1, w2, wa).

N
o™

(2) For everyk € Egy let

= ip-y [ ,—ip3x3 ip3x3 i&p s(k)xs
Wy (x, k) (277)3/2,0(1)/26 {e Sy1(w) + e Sya(w) +e Sya(w)},

where

@l " @l

t
Sy1w) = <w1w3 wz_ws’ |w|>

_ (1 2[@)3)? — Ao Pwsys p@) ([ wiws wows
Sya(w) = — — — —, —, —[&]
(1 - 2/w]?)2 + 4w |2wsvs, p (@) o] * |o
45|(1 - 2[@]?)ws , B
S = .
V3(w) (1 IR 2|w|2)2 + 4|w|2w3’}/sp(w) (wlv w2, ’YSP(W))

(3) For everyk ¢ E9, let

1

WO (x, k)= ———
sV (271')3/2/)(1)/2

el'17:“{e*i173x3581(w) + efﬁsxssgz(w) + e*f}‘s(k)xs 533(‘*})},
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where

Wiws3 waw3z _
Sgl(w) =! (W, Hy |W|)
SO (w) = (1 - 2[@[*)? - 4i|w[*wsvs p (@) I(Wlw?: wows3 _|_|>
v2 (1 - 2[@[)2 + 4i[@|2wsvs @) [~
4w|(1 - 2/zDw . .
Spa(w) = il & ) (w1, w2, iv5 p@)).

(1 - 2[5[3)2 + 4i [w[2wsys, » (@)
(4) For everyk € RS let

1

(27)3/2,%/2 e (P + ¢TI Sy (w),
0

lIISH(Xv k) =

where

Su(w) = I<—ﬂ w1 o).

@l @l
(5) For everyp € R? let
C - 2 . . .
Wr(x, p) = 2_|p|1/261p»> { <2 _ C_12?) e*|[7|’YR.px3R1(V) _ Z,VR’PePVR.SJBRZ(V)} ,
us for:

where

t t
.1 V2 . . V1. V2 .
Ri(v) = (—lm, lm, 7R.P> s Ro(v) = <—lm7R.s, IT=YR.S> —1>

|
and C is a strictly positive constant such that
4772/ [We(x, p)|*podxs = 1.
0

The relation between the above functions and the genedaémgenfunctions
(e, Ysv, ¥y, sy andipg) of [1] is the following

N N
Wp(ka):( ) Yp(x; p, cplkl), ‘-Ifsv(x,k):( ) Ysyv(x; p, cs|kl|)

k| ||
cspa\ cspa\ 2
‘I’gv(x’k):( ] ) WOy (x; pyeslk]),  Wsp(x, k) = ( ] ) Ysu(x; p, cs|kl)

and Wi, p) =vr(x; p).
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By [1, Theorem 3.6], the following operatorg, Fs Fsy ang

N—o0

Fpu(k) = L?(R3,C% — Iim / Wp(x, k)u(x)podx,
RIN{|x|SN}

Fu(k) = LR%.C¥) — lim / (i, Ty (B
R3N{|x|SN} ;

N—o0

+ Xgo, ()W, (x. k) hu(x)pod,
Fsnu(k) = L2(R3,C3) — lim / s G u(x)podx
N=oo JR3n{|x|<N}

and
Fru(p) = L*(R%, C%) — lim / Ve, Pulx)podx
RIN{[x|<N}

N—oo

are partially isometric frong = L2(R3, C3; podx) onto L?(R3, C®) and
L?(R?, C3), respectively. Defining the operatdt  as follows:

Fu = (Fpu, Fsu, Fsgu, FRM) for ue g,
we have by [1, Theorem 3.6]

Lemma A. F is unitary fromgG to
R 3
H=EP L*R}. C) P LR C?)
Jj=1

and for everyu € D(Lo)

FLou= (C%|k|2FpI/t, c§|k|2F5u, c§|k|2F5Hu, c§|p|2FRu).
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