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1. Introduction

We considered in [3] ergodic properties of one-dimensional piecewise linear map-
pings, and solve the spectral problem of the Perron-Frobenius operator associated with
these mappings. The main tool to solve it is a renewal equation on a signed symbolic
dynamics. By this renewal equation, we define a matrix which we call the Fredholm
matrix, and the spectral problem of the Perron-Frobenius operator and also the dynam-
ical zeta function are characterized by this matrix.

Extending this idea to Cantor sets in the unit interval, we considered in [5] and
[6] the ergodic properties of the dynamical systems on them. Also extending the idea
of signed symbolic dynamics in one-dimensional dynamical system, which express the
orbits of endpoints of subintervals of monotonicity, we introduced signed symbolic dy-
namics on a plane in [4], which corresponds to vertices and edges of polygons, and
studied dynamical systems on it.

In this article, combining these ideas, we will study the Hausdorff dimension of
Cantor sets in a plane. We will consider two types of Cantor sets which is generated
by Koch-like mappings and Sierpinskii-like mappings (definition will be given in§3).
As in 1-dimensional mappings, we construct theα-Fredholm matrix ( :α), and take
α0 the maximal solution of det(− (1 : α)) = 0, and put = 2α0. The theorem
which we will prove in this paper is the following:

Theorem 1. Let be a Koch-like mapping or a Sierpinskii-like mapping. As-
sume that /2 is the simple zero ofdet( − (1 : α)), and ξ /2− ν > 0. Then the
Hausdorff dimension of the Cantor set generated by equals .

The numbersξ, which we call the lower Lyapunov number, andν are defined by

ξ = lim inf
→∞

ess inf
∈

1
log | det ( )( )|

and

ν = lim sup
→∞

sup
1

log #{ : | | = 〈 〉 ∩ 6= ∅}
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Fig. 1. Koch curve

where ( ) is the Jacobian matrix of , and sup is the supremum over all seg-
ments . The definion of words ,| | and 〈 〉 will be given in §2. We also define

ξ = lim sup
→∞

1
ess sup

∈
log
[
maximum of |the eigenvalue of ( )( )|

]

ξ = lim inf
→∞

1
ess inf

∈
log
[
minimum of |the eigenvalue of ( )( )|

]

We call expanding ifξ > 0.

2. Bernoulli type

In this section, we will consider two simple examples and explain the aim of this
paper. First examples are Bernoulli Koch curves. See Fig. 1. We will denote the trian-
gle △ by , △ = 〈 〉, △ = 〈 〉 and△ = 0. A mapping from
〈 〉 ∪ 〈 〉 to is defined as follows: the triangle△ is mapped to the triangle
△ , and the triangle△ is mapped to the triangle△ . More precisely,
take

=

(
0
0

)
=

(
1
0

)
=

(
1
1

)
=

(
λ

λ

)
and =

(
1− λ
1− λ

)

whereλ λ > 0 andλ + λ < 1. The mapping is expressed as

( ) =





( ) = if ∈ 〈 〉

( ) =

(
−
(

1

1

))
+

(
1

1

)
if ∈ 〈 〉



DYNAMICAL SYSTEMS ON FRACTALS 323

�
�

�
�

�
�

�
�

�
�

��

�
�

�
�

�
�

Fig. 2. Sierpinskii gasket

where

=

(
1 1/λ − 1
1 −1

)

=

( −1 1
1/λ − 1 1

)

Moreover, we assume the eigenvalues of are complex conjugates. Set

C = { ∈ : ( ) 6∈ 0 for all n}

where is the -th iteration of . Namely,C is the set of points whose orbit always
stay in 〈 〉 or 〈 〉. This C becomes a fractal, and it becomes the usual Koch curve
when λ = λ = 1/3, which satisfies all the above assumptions.

Another examples are Bernoulli Sierpinskiis gasket shown in Fig. 2. Here =
. We will denote the triangle△ by , △ = 〈 〉, △ = 〈 〉, △ =

〈 〉 and △ = 0. A mapping on〈 〉 ∪ 〈 〉 ∪ 〈 〉 is defined as follows: the
triangle△ is mapped to the triangle△ , the triangle△ is mapped to
the triangle△ , and the triangle△ is mapped the triangle△ . More
precisely, take same as Koch curves and

=

(
λ

0

)
=

(
λ

λ

)
=

(
1

1− λ

)
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where 0< λ λ < 1. Then is defined as

( ) =





( ) = if ∈ 〈 〉

( ) =

(
−
(

1

0

))
+

(
1

0

)
if ∈ 〈 〉

( ) =

(
−
(

1

1

))
+

(
1

1

)
if ∈ 〈 〉

where

=

(
1/λ 1/λ − 1/λ
1/λ −1/λ

)

=

(
1/(1− λ ) 0

0 1/(1− λ )

)

=

( −1/λ 1/λ
1/(1− λ )− 1/λ 1/λ

)

We assume the eigenvalues of are complex conjugates. Set also

C = { ∈ : ( ) 6∈ 0 for all n}

The usual Sierpinskii gasket is the case whenλ = λ = 1/2, and this also satisfies all
the assumptions in the above.

First note that the eigenvalues of matrices are
1. ±

√
1/λ for , and±

√
1/λ for in Koch curves,

2. ±
√

1/(λ λ ) for , 1/(1− λ ) for and±
√

1/{λ (1− λ )} for in
Sierpinskii gaskets.

Namely, two eigenvalues of each matrix equal in modulus. This is one of the key point
of these examples to show the argument in this section rigorously.

Moreover, note that

=

(
1/(λ λ )− 1/λ − 1/λ 1/λ

−1/λ 0

)
for Koch curves,

=

(
(1− λ )/(−λ λ + λ λ2) 1/(λ λ )
−1/(λ − λ λ ) 0

)
for Sierpinskii gaskets.

Therefore, forλ andλ which satisfies

1− 2(λ + λ ) + (λ − λ )2 < 0 for Koch curves,

(1− λ )2− 4(1− λ )λ < 0 for Sierpinskii gaskets,

the assumptions are satisfied. Thus, ifλ = λ , then the assumptions are satisfied for
Koch curves ifλ > 1/4 and for Sierpinskii gaskets ifλ > 1/5.
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Now we will consider dynamical systems onC for both Koch curves and Sierpin-
skii gaskets. We can express them as symbolic dynamics with alphabetA = { } for
Koch curves andA = { } for Sierpinskii gaskets. We define here notations about
symbolic dynamics. A finite sequence of symbols =1 · · · ( ∈ A) is called a
word, and we define

| | = (the length of a word),

〈 〉 = ∩ −1
=0 ( )−1(〈 +1〉) (the region corresponding to a word),

[ ] = for 1 ≤ ≤
[ ] = +1 · · · for 1≤ ≤ ≤ ,

θ = [2 | |] = 2 · · ·
= · · · 1

η( ) = η( 1) · · · η( )

where η( ) = | det |−1 is the reciprocal of the Jacobian of restricted to〈 〉. We
consider the empty wordǫ with length 0. For simplicity, we consider〈ǫ〉 = , and
〈ǫ[1]〉 = . We call a word admissible if〈 〉 6= ∅, and define byW the set of all
admissible words. Note that the empty wordǫ ∈ W . For an integer , we denote by
W the set of admissible words with length . Namely,W0 = {ǫ}, W1 = A and
W = ∪∞=0W .

We can extend as a mapping from2 into itself. Thus, for any word ∈ W ,
we can extend ( )−1 as a mapping from into 2. For ∈ , we denote by ∈

2 a point which satisfies ( ) = . We call exists (we sometimes denote∃ )
if ∈ 〈 〉. Namely, if = exists, then

( ) ∈ 〈θ 〉 (0≤ ≤ | | − 1)
| |( ) =

Take 0≤ α ≤ 1. Define for a Koch curve

( : α) =

(
λα λα

λα λα

)

and for a Sierpinskii gasket

( : α) =




(λ λ )α (λ λ )α (λ λ )α

(1− λ )2α (1− λ )2α (1− λ )2α

(λ (1− λ ))α (λ (1− λ ))α (λ (1− λ ))α




where is a complex number. We call these matricesα-Fredholm matrices. For ex-
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ample, ( ) and ( ) components of ( :α) of Koch curves are determined as
times the reciprocal of| det |α, and ( ) and ( ) components of ( :α) are
determined as times the reciprocal of (det )α. Note that (〈 〉) ⊃ 〈 〉 〈 〉, and

(〈 〉) ⊃ 〈 〉 〈 〉. The α-Fredholm matrices are intrinsically structure matrices with
weight.

We will calculate the Hausdorff dimensions of Koch curves and Sierpinskii gas-
kets in terms of theα-Fredholm matrices. In this section, we will show only a heuris-
tic argument. So, we will consider coverings by words{〈 〉}| |= of C with same
length ( ∈ W ). Roughly speaking, the total Hausdoff measure with coefficient
2α is the limit of

(1)
∑

| |=

(
Lebes〈 〉

)α

where Lebes〈 〉 is the Lebesgue measure of a set〈 〉. We can express (1) in terms
of the α-Fredholm matrices.

(2) (1) =





(1 1) (1:α) −1

((
Lebes〈 〉)α(
Lebes〈 〉

)α

)
for Koch curves,

(1 1 1) (1:α) −1




(
Lebes〈 〉

)α
(
Lebes〈 〉

)α
(
Lebes〈 〉

)α


 for Sierpinskii gaskets.

As a heuristic argument, since the diameter of a set〈 〉 is proportionate to the square
root of the Lebes〈 〉, the Hausdorff dimension is the value 2α0 such that (1) con-
verges to 0 for anyα > α0 and diverges for anyα < α0. Namely forα < α0 at least
one eigenvalue of (1:α) is greater than 1 in modulus, and forα > α0 every eigen-
value of (1:α) is less than 1 in modulus. Noticing the fact that (1:α) are positive
matrices and by (2),α0 is the maximalα such that (1:α) has eigenvalue 1, that is,
α0 is the maximal solution of det(− (1 : α)) = 0. More precisely,

λα0 + λα0 = 1 for Koch curves
1

(λ λ )α0
+

1
(1− λ )2α0

+
1

(λ (1− λ ))α0
= 1

for Sierpinskii gaskets.

Particularly. for a Koch curve withλ = λ = 1/3, α0 is the solution of 2(1/3)α0 = 1,
that is, 2α0 = 2 log 2/ log 3. And for a Sierpinskii gasket withλ = λ = 1/2, α0 is the
solution of 3(1/2)2α0 = 1, that is, 2α0 = log 3/ log 2.

We will construct another transformation̂ associated with . See Fig. 3. Take
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〈 ˆ〉 〈ˆ〉 〈ˆ〉

Fig. 3. Mapping ˆ for Koch curves and Sierpinskii gaskets

λ̂ = λα0 = 1− λα0. Let 〈 ˆ〉 =△ ˆ ˆ ˆ and 〈ˆ〉 =△ ˆ ˆ ˆ , and define

ˆ ( ) =





ˆ if ∈ 〈 ˆ〉

ˆ

(
−
(

1

1

))
+

(
1

1

)
if ∈ 〈ˆ〉

where

ˆ =

(
1 1/λ̂ − 1
1 −1

)

ˆ =

( −1 1
1/(1− λ̂ )− 1 1

)

Note that the Fredholm matrix (1-Fredholm matrix) associated withˆ equals

( : α0), and

(
λ̂

1− λ̂

)
(the vector with the area corresponding to each symbol) is

an eigenvector of (1:α0) associated with eigenvalue 1. For Sierpinskii gaskets, we
can not expresŝ as a mapping on a plane. So we express it on [0 1]. Define the
length of eachˆ ˆ and ˆ by

Lebes〈 ˆ〉 =
1

(λ λ )α0

Lebes〈ˆ〉 =
1

(1− λ )2α0

Lebes〈ˆ〉 =
1

(λ (1− λ ))α0

and

〈 ˆ〉 = [0 Lebes〈 ˆ〉)
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〈ˆ〉 = [Lebes〈 ˆ〉 Lebes〈 ˆ〉 + Lebes〈ˆ〉)
〈ˆ〉 = [Lebes〈ˆ〉 + Lebes〈ˆ〉 1]

Then we define

ˆ ( ) =





1
Lebes〈 ˆ〉 if ∈ 〈 ˆ〉

1

Lebes〈ˆ〉
( − Lebes〈 ˆ〉) if ∈ 〈ˆ〉

1
Lebes〈ˆ〉 ( − Lebes〈 ˆ〉 − Lebes〈ˆ〉) if ∈ 〈ˆ〉

Note also the Fredholm matrix of̂ equals ( :α0), and the vector




Lebes〈 ˆ〉
Lebes〈ˆ〉
Lebes〈ˆ〉


 is

an eigenvector of (1:α0) associated with eigenvalue 1. This mappingˆ will help to
prove the calculation of the Hausdorff dimension ofC rigorously.

3. Models

We also consider two types of transformations. One is mappings essentially with
two symbols like Koch curves, and the other is mappings essentially with three sym-
bols like Sierpinskii gaskets.

We will explain Koch-like mappings first. Let be a triangle△ . Take two
points and on such that , and are disjoint segments. Take1 =
△ , 2 = △ and 0 = △ as in the previous section. Denote byA an
alphabet with finite symbols. We divideA into two setsA1 and A2 (A = A1 ∪ A2

and A1 ∩ A2 = ∅). For each ∈ A ( = 1 2), 〈 〉 is a convex polygon and =
∪ ∈A 〈 〉 ∪ is a partition of ( is an empty set or a union of polygons). Let a
transformation : 1 ∪ 2→ satisfy

( ) =

{
1( − ) + if ∈ 1

2( − ) + if ∈ 2

and the eigenvalues of 1 and 2 equal±λ1 and±λ2, respectively andλ1 λ2 > 1.
We assume that the eigenvalues of1 2 are complex conjugates. Then the Cantor set
which we consider is

C = { ∈ : ( ) ∈ ∪ ∈A〈 〉 for all n}

Moreover, we assume that is irreducible, that is, for any ∈ C and a neighbor-
hood of there exists such that ( )∈ . We denote =∪2

=0 . For ∈ A,
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we denote by〈̃ 〉 the maximal connected set which contains〈 〉 and does not intersect

other 〈 〉 ( 6= ). Note that〈̃ 〉\〈 〉 ⊂ .
Another examples, Sierpinskii-like mappings can be defined almost the same. Let

be a triangle△ . , and are points on edges , and , respec-
tively. Take 1 = △ , 2 = △ , 3 = △ and 0 = △ also as in the
previous section. An alphabetA with finite symbols is divided into three setsA1, A2

andA3 (A = ∪3
=1A and they are mutually disjoint). For each∈ A ( = 1 2 3), 〈 〉

is a convex polygon and =∪ ∈A 〈 〉 ∪ is a partition of ( is an empty set or
a union of polygons). Let a transformation :∪3

=1 → satisfy

( ) =





1( − ) + if ∈ 1

2( − ) + if ∈ 2

3( − ) + if ∈ 3

The eigenvalues of 1 and 3 equal±λ1 and±λ3, respectively andλ1 λ3 > 1, and

2 =

(
λ2 0
0 λ2

)
λ2 > 1

We assume the eigenvalues of1 3 are complex conjugates. Then the Cantor set
which we consider is the same as before

C = { ∈ : ( ) ∈ ∪ ∈A〈 〉 for all n}

We also assume that is irreducible. We denote =∪3
=0 , and define〈̃ 〉 ( ∈ A)

as in the Koch-like mappings.
Every eigenvalues of the matrices appeared in our models is greater than 1 in

modulus. Therefore, our model is expanding. When we extend the domain of to
∪ using suitable map from to ∪ , the map becomes an extending map from
∪ onto itself. Thus{〈 〉 : ∈ A} ∪ { } is a generator, that is,

{ 〈 〉 : = ( ) ( ∈ A) or = (∃ ) = 0 1 2 . . .}

generates the usual Borelσ-algebra on ∪ .
From the definition, we get

ξ ≤
{

log max{λ1 λ2} if F is Koch-like mapping,

log max{λ1 λ2 λ3} if F is Sierpinskii-like mapping.

ξ ≥
{

log min{λ1 λ2} if F is Koch-like mapping,

log min{λ1 λ2 λ3} if F is Sierpinskii-like mapping,
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Moreover, from the definition,

2ξ ≤ ξ ≤ 2ξ

Thus, if λ1 = λ2 = λ for Koch-like mapping orλ1 = λ2 = λ3 = λ for Sierpinskii-like
mapping,ξ = ξ = logλ, and ξ = 2ξ = 2ξ = 2 logλ.

For simplicity, we use the notation

= if ∈ A

4. Hausdorff dimensions

We will define several ‘Hausdorff dimensions’.

DEFINITION 1. Let C, and so on be as above. We will define 5 types of ‘Haus-
dorff measures’ with coefficientα, and their difference except the last one mainly de-
pends only on families of covers ofC.
1. (usual) Hausdoff dimension: let

να(C) = lim
δ→0

inf
∑

(diameter of )α

where inf is taken over all covers{ } of C by compact sets with their diameter less
than δ. The Hausdorff dimension ofC is the critical point ofα whereνα(C) con-
verges or diverges.
2. Hausdorff dimension using only covers by words: let

να (C) = lim
δ→0

inf
∑

(Lebes〈 〉)α

where inf is taken over all covers{ } of C by words with their Lebesgue measure
less thanδ. The Hausdorff dimension ofC using only covers by words satisfies

να (C) =





∞ if α <
2

0 if α >
2

3. Hausdorff dimension using only covers by words with same length: let

να
′(C) = lim

→∞
inf
∑

(Lebes〈 〉)α

where inf is taken over all covers{ } of C by words with their length equal . The
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Hausdorff dimension ′ of C using covers by words with same length satisfies

να
′(C) =





∞ if α <
′

2

0 if α >
′

2

4. Hausdorff dimension with respect to a probability measureµ on I: Let

νµα(C) = lim
δ→0

inf
∑

(µ(〈 〉))α

where inf is taken over all covers{ } of C by words with their measureµ(〈 〉) < δ.
The Hausdorff dimensionµ of C with respect toµ satisfies

νµα(C) =





∞ if α < µ

2

0 if α > µ

2

Note that equals the Hausdorff dimension with respect to the Lebesgue measure on
( = Lebes).

5. Hausdorff dimension defined by Fredholm determinant: This is a bit different from
other definitions. Let ( :α) be theα-Fredholm matrix. Then determineα0 as the
maximal solution in modulus of

det( − (1 : α)) = 0

Then we call = 2α0 the Hausdorff dimension defined by Fredholm determinant.
The α-Fredholm matrix for general mappings will be given later.

From the definition, it is trivial that ≤ ≤ ′ . The heuristic discussions in
§2 for Bernoulli cases shows′ = .

5. Markov cases

In this section, we only treat the Markov mappings.

DEFINITION 2. A Koch-like mapping or a Sierpinskii-like mapping described
above is called Markov if (〈 〉) ∩ 〈 〉 6= ∅ for ∈ A, then (〈 〉) ⊃ 〈 〉, where

and is the interior and the closure of a set , respectively.

REMARK 1. The Markov property means for any ∈ A

(〈 〉)\
⋃

: (〈 〉)⊃〈 〉

〈 〉 ⊂
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Now we define anα-Fredholm matrix ( :α) by

( : α) =

{
η( )α if (〈 〉) ⊃ 〈 〉

0 otherwise.

Note again thatη( ) = | det |−1 and = if ∈ A .
We will prove Theorem 1 for Markov cases, that is, the theorem which we will

prove in this section is the following:

Theorem 2. Let be a Markov Koch-like mapping or a Markov Sierpinskii-like
mapping. Assume thatξ /2−ν > 0. Then the Hausdorff dimension of the Cantor set
C generated by equals ( = ).

Lemma 1. For a Markov mapping , ′ ≤ .

Proof. Since is Markov, the area of〈 〉 ( = 1 · · · ) is greater than or
equal to

η( −1) · · · η( 1)× Lebes〈 〉

and less than or equal to

η( −1) · · · η( 1)× Lebes〈̃ 〉

Therefore,να
′(C) is greater than or equal to

(1 · · · 1) (1: α) −1((Lebes〈 〉)α) ∈A

and less than or equal to

(1 · · · 1) (1: α) −1((Lebes〈̃ 〉)α) ∈A

Note that (1:α) is a non-negative matrix. Therefore, the maximal eigenvalue in
modulus is non-negative real and simple. This shows that ifα < α0 then (1:α)
diverges, and ifα > α0 then it converges to 0. Therefore forα > α0, να

′(C) = 0. This
shows ′ ≤ .

Now, we will construct another mappinĝ from [0 1] into itself as we did in§2.
We consider an arbitrary order in∈ A. Let ( ( )) ∈A be an eigenvector of (1:α0)
associated with eigenvalue 1 such that

∑
∈A ( ) = 1. Note that ( )> 0, because we

assume irreducible. Divide the interval [0 1] by the subintervals with length ( ) in
an order. We ignore the endpoints, because they are unessential in our discussion. Let
us denote the interval corresponding to with length ( ) by〈 ˆ〉. From the definition



DYNAMICAL SYSTEMS ON FRACTALS 333

of (1: α0), we can construct a piecewise linear mappingˆ : [0 1] → [0 1] which
maps〈 ˆ〉 onto ∪ =1〈ˆ 〉 with slopeη( )−α0, where〈 〉 ⊂ (〈 〉) and

(〈 〉)\
⋃

=1

〈 〉 ⊂

for each ∈ A. Note that the Fredholm matrix of̂ equals ( :α0) (cf. [3]), and ˆ

is expanding and irreducible.
Now, we appeal to the following theorem:

Theorem 3 (Billingsley[1]). For probability measuresµ1 µ2,

C ⊂
{

: lim
→∞

logµ1(〈 [1 ]〉)
logµ2(〈 [1 ]〉) = α

}

for some0≤ α ≤ ∞, then

µ2 = α µ1

where [1 ] ∈ W is a word with length such that〈 [1 ]〉 ∋ .

Lemma 2. = ′ = .

Proof. Let µ1 be the probability measure onC which is induced through the
symbolic dynamics from the Lebesgue measure on [0 1] whereˆ acts, andµ2 be the
Lebesgue measure on . Then

C ⊂
{

: lim
→∞

logµ1(〈 [1 ]〉)
logµ2(〈 [1 ]〉) = α0

}

On the other hand, the Hausdorff dimension of [0 1] whereˆ acts equals 1, hence,
from the definition, µ1 = 2. Therefore, by the Billingsley theorem,Lebes = µ2 =
2α0(= ). As we remarked in the definition,Lebes= , and ′ ≥ . Therefore, by
Lemma 1, we get = ′ = 2α0.

It remains to prove = . To prove this, we need the following assumption.

ASSUMPTION 1. There exists a constant > 1 which satisfies:
1. For anyδ > 0 and ∈ C, there exists a word =1 · · · such that ∈ 〈 〉 and
δ2/ ≤ Lebes〈 〉 ≤ δ2.
2. For any word , the diameter of the circumcircle of〈 〉 is not greater than
times the diameter of the inscribed circle.
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We need a very simple lemma.

Lemma 3. Put 0< α < 1. Then for any 1 . . . > 0 such that 1+· · ·+ = ,
we get

α
1 + · · · + α ≤ 1−α α

The proof is easy, thus we omit it.

Lemma 4. Assume that Assumption1 holds for some > 1. Then = .

Proof. We only need to show ≥ . Take any compact set whose diameter
is shorter thanδ. We consider a rectangle with length of edges being equal toδ and
containing . We will cover it by words whose area are betweenδ2 and δ2/ . Every
word which intersects the rectangle must be contained in a rectangle with length of
edges equals (2 + 1)δ. Therefore, since the area of words are greater thanδ2/ , the
number of words which intersect with is at most (2 + 1)2 . Take anyα > .
Then for anyε > 0, there existsδ > 0 such that there exists a covering ofC by
compact sets{ } for which their diameters are less thanδ, and

∑
(the diameter of )2α < ε

For each , we can cover it by at most (2 + 1)2 words { } with their area be-
tweenδ2 and δ2/ , whereδ is the diameter of . Thus, using Lemma 3, we get

∑∑
(Lebes〈 〉)α ≤ ((2 + 1)2 )1−α

∑

∑Lebes〈 〉



α

≤ ((2 + 1)2 )1−α(2 + 1)2α
∑

δ2α

≤ (2 + 1)2 1−αε

This shows 2α ≥ for any 2α > . Thus ≥ .

Therefore, we only need to show our models satisfy Assumption 1.

Lemma 5. Markov Koch-like mappings and Markov Sierpinskii-like mappings
satisfyAssumption 1.

Proof. For Koch-like mappings, note that (1)2 and ( 2)2 are the identity ma-
trix times constants. Thus, for any word =1 · · · , · · · 1 can be expressed
in the form 1( 1 2) 2× constant with some , where1 is either 2 or the iden-
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tity matrix and 2 is either 1 or the identity matrix. From the assumption that the
eigenvalues of 1 2 are complex conjugates± ,

· · · 1 = 1
−1

2× constant

=

(
−
)

with some matrix . Since the matrix is the matrix which only rotates and expands,
it does not change forms of polygons. Therefore the matrices which deform polygons
are at most three matrices1, 2 and . We assume that mappings are Markov, that
is,

〈̃ 〉 ⊃ | |(〈 〉) ⊃ 〈 〉

with some ∈ A. This proves the lemma for Koch-like mappings, and the proof of
Sierpinskii-like mappings is almost the same.

For Markov cases, we can estimateν:

ν = lim sup
→∞

sup
1

log #{ : | | = 〈 〉 ∩ 6= ∅}

Note first any word with length satisfies 〈 〉 ⊃ 〈 〉 with at least one ∈ A.
Therefore, there exists a constant1 > 0 such that

(3) the diameter of〈 〉 ≥ 1
−ξ

Thus for any segment , the number of words with length which crosses is at most

2
ξ with some constant 2 > 0. This showsν ≤ ξ. Note that even for general

mapping, 〈 〉 ⊂ ∪ . Therefore there exists a constant3 > 0

the diameter of〈 〉 ≤ 3
−ξ

Thus we getν ≥ ξ.

REMARK 2. For non-Markov cases, the equation (3) does not necessarily holds.
This means it is not easy to calculateν in general.

6. Renewal equation for Markov case

In this section, we will explain a renewal equation for Markov Koch-like map-
pings and Markov Sierpinskii-like mappings, and using this we defineα-Fredholm ma-
trices, which has deep connection with the Perron-Frobenius operator associated with

on C.
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Assume that is a Markov mapping on . For∈ A and ∈ ∞, define a
formal power series

(4) 〈 〉( : α) =
∞∑

=0

∫ ∑

| |=

η( )α1〈 〉( ) ( ) ¯

where 1 is the indicator function of a set , and a measure¯ is the Lebesgue mea-
sure restricted to∪ ∈A〈 〉. Dividing into the first term and the rest of terms and then
changing ( ) to and to − 1, we get

〈 〉( : α) =
∫

1〈 〉( ) ( ) ¯+
∞∑

=1

∑

| |=

η( )α
∫

1〈 〉( ) ( ) ¯

=
∫

〈 〉

( ) ¯+ η( )α
∞∑

=0

∑

| |=

η( )α
∑

: 〈 〉⊂ (〈 〉)

∫
1〈 〉( ) ( ) ¯

=
∫

〈 〉

( ) ¯+ η( )α
∑

: 〈 〉⊂ (〈 〉)

〈 〉( : α)

Take vectors

( : α) = ( ( : α)) ∈A

χ ( : α) =

(∫

〈 〉

( ) ¯

)

∈A

Then we get

( : α) = χ ( : α) + ( : α) ( : α)

This is the renewal equation for Markov cases. Here,χ ( : α) does not depend on
both andα, but as we see later, for general cases it depends on them.

For any set ⊂ , we can define as before

( : α) =
∞∑

=0

∫ ∑

| |=

η( )α1 ( ) ( ) ¯

Note that from the definition, for a disjoint union of polygons =1 ∪ 2,

( : α) = 1( : α) + 2( : α)

We can construct severalα-Fredholm matrices. The smallest one can be constructed
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using

( : α) =
∞∑

=0

∫ ∑

| |=

η( )α
∑

∈A

1〈 〉( ) ( ) ¯

Then

( : α) =
∑

∈A

〈 〉( : α)

=
∑

∈A



∫

〈 〉

¯+ η( )α
∑

: 〈 〉⊂ (〈 〉)

〈 〉( : α)




=
∑

∈A

(∫

〈 〉

¯+ η( )α (〈 〉)( : α)

)

Renewing the last term repeatedly until (〈 〉) contains∪ , we get a renewal equa-
tion of the form

( : α) = χ ( : α) +
∑

φ ( : α) ( : α)

with some polynomialsχ ( : α) and φ ( : α). Define 0( : α) = (φ ( : α)). We
can also construct anotherα-Fredholm matrix ( :α) usingW the set of admis-
sible words with length as an alphabet.

Lemma 6. The α0-Fredholm determinantdet( − ( : α0)) equals theα0-
Fredholm determinant defined before. For any, the induced mappinĝ is the same.

Rough sketch of the proof. Theα0-Fredholm matrix is the Fredholm matrix of̂.
It expresses the eigenvalues of the Perron-Frobenius operator associated withˆ . Using
[3], we can prove the lemma (see [3] for detail).

We can express theα-Fredholm matrix with 2× 2 matrix for Koch-like mappings
and 3× 3 matrix for Sierpinskii-like mappings. For example, let us consider a Koch
curve withA1 = { }, A2 = { }, and (〈 〉)\(〈 〉 ∪ 〈 〉), (〈 〉)\〈 〉 and (〈 〉)\〈 〉
are contained in . Then theα-Fredholm matrix using alphabet{ }, or in other
words, using 〈 〉( : α), 〈 〉( : α) and 〈 〉( : α), equals




ηα1 ηα1 0
0 0 ηα1
ηα2 0 0



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On the other hand, theα-Fredholm matrix using 〈 〉∪〈 〉( : α) and 〈 〉( : α) equals

(
ηα1 ηα1

2(η2η1)α 0

)

where η1 η2 are | det 1|−1 | det 2|−1, respectively. Note here 2(〈 〉) ⊃ 〈 〉 ∪ 〈 〉.
Now we will consider det(− ( : α)) for both first and secondα-Fredholm matrices.
Multiplying the third row of the first one byη2, then add to the first row. Then we
can erase the third row and column, and we get the second one. In a similar way, we
can show theα-Fredholm determinant det(− ( : α)) is invariant whatever partition
we take.

REMARK 3. Note that ˆ is expanding. We can construct an invariant probability
measure ˆµ absolutely continuous with respect to the Lebesgue measure(cf. [3]). Since

on C and ˆ on [0 1] can be expressed on a same symbolic dynamics, we can in-
duce µ̂ to a probability measureµ on C which is invariant under .

REMARK 4. In the definition of ( :α), if we take integrals by the Hausdorff
measureν2α instead of the Lebesgue measurē restricted to∪ ∈A〈 〉, we get

∞∑

=0

∫ ∑

| |=

η( )α1 ( ) ( ) ν2α =
∞∑

=0

∫
α1 ( ) ( ) ν2α

=
∞∑

=0

∫
1 ( ) ( ( )) ν2α

where α is the Perron-Frobenius operator associated with the mapping on (C ν2α).

7. Signed Symbolic Dynamics

To construct theα-Fredholm matrix for non-Markov cases, we need to use signed
symbolic dynamics.

Let be a polygon. We denote by0 and 1 the set of vertices and the set of
edges of , respectively. Set =0 ∪ 1 . For each vertex ∈ 0 , there exists two
edges ∈ 1 . Take two half lines (∞) and (∞) through or
as in Fig. 4, that is, and lie on (∞) and (∞), respectively. We call the
union of two half lines (∞) and (∞) a 0-dimensional screen associated with
the vertex . It divide the plane into two parts. We call the part which contains an
interior part of this screen. For each edge ∈ 1 , we can take a line (∞) (∞)
on which both and lie. We call this line 1-dimensional screen associated with the
edge . It also divide the plane into two parts. We call the part which contains
an interior part of this screen. For∂ ∈ , we denote the screen associated with it
by ∂ . For ∈ A or ∈ W , abbreviating brackets, we denote screens by∂ or ∂
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∞ ∞

1–dimensional screen∞

∞

0–dimensional screen
Fig. 4.

instead of〈 〉∂ or 〈 〉∂ , respectively. We denote the set of∂ ( ∈ A ∂ ∈ 〈 〉) and
∂ ( ∈ W ∂ ∈ 〈 〉) by Ã and W̃ , respectively.

As we described in the introduction, we will use the results in [4]. We will review
its outline without proof.

Set for a screen ∂

σ( ∂ ) =

{
+1 if belongs to the interior part of ∂

−1 otherwise.

( ∂) =





+
1
2

if ∂ ∈ 0 ,

−1
2

if ∂ ∈ 1 .

Lemma 7. For a polygon ,
∑

∂∈

(
∂
)
σ
(

∂
)
+1 = 1 ( ) a.e.

The proof is quite easy. But this is a key lemma to construct renewal equations.
Now we will construct renewal equations. However, it is almost impossible to con-

struct it for ( : α) defined in§6. So we divide them into several generating func-
tions. Define for a polygon ⊂ 〈 〉 ( ∈ A) and ∈ ∞

∂

( : α) =
∫

¯ ( )
∑

〈 [1]〉⊃〈 〉
∃θ

| |η( )ασ( ∂ )

where the sum is over all the words either empty word, or its first symbol equals
∈ A and there exists a point ∈ such that

| |−1( ) =
−1( ) ∈ 〈 [ + 1]〉 (1≤ ≤ | | − 1)

Note that we need not assume the existence of a point′ ∈ 〈 〉 such that ( ′) = ,
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that is, we do not assume ∈ 〈 〉 (recall the definition of ). Our aim is to con-
struct a renewal equation of

∂

( : α) above. In [4], since we considered usual dy-
namical systems on a plane, we constructed it with coefficientsη( ) instead ofη( )α.
Nevertheless, the construction of the renewal equation is just the same.

Using Lemma 7, we get the following lemma.

Lemma 8. For a polygon ⊂ 〈 〉 for some ∈ A and ∈ ∞,

( : α) =
∫

( ) ¯+ η( )α ( : α) +
∑

∂∈

(∂)
∂

( : α)

( : α) = #A
∫

¯+

(∑

∈A

η( )α
)

( : α) +
∑

∈A

∑

∂∈ 〈 〉

∂

( : α)

This lemma suggests that the singularities of ( :α) are determined by the sin-

gularities of
∂

( : α).

To solve the problem of singularities of
∂

( : α), we construct a renewal equa-
tion. We need several notations which we mentioned in [4].

For and ( ∈ A), we say that a screeñ of a polygon crosses if
⊂ 〈 〉 and (̃ ) ∩ 〈 〉 6= ∅. Set

〈 ˜ 〉 =

{
{ ∈ 〈 〉 : σ( ( ˜ ) ) = +1} if ˜ crosses ab,

∅ otherwise.

A screen〈 ˜ 〉∂ with a face∂ ∈ 〈 ˜ 〉 such that〈 ˜ 〉∂ and ∂′

are different
as sets for any∂′ ∈ 〈 〉 is called a new screen generated by (˜ ) in 〈 〉, and we
denote by New〈 ˜ 〉 the set of all the new screens of〈 ˜ 〉.

Let = 1 · · · be a word of length ≥ 2 and ∈ A. We call a screeñ of a
polygon crosses if

⊂ 〈 1〉
( 0〈 [1 ] ˜ 〉) ∩ 〈 +1〉 6= ∅ (1≤ ≤ − 1)

( ˜ ) ∩ 〈 〉 6= ∅

for some ˜ ∈ New〈 ˜ 〉, where we define inductively the sets0〈 ˜ 〉, 〈 ˜ 〉
and the new screens New〈 ˜ 〉 generated by (̃) in 〈 〉 as follows:

〈 ˜ 〉 =

{⋂
˜ ∈New〈 ˜ 〉〈 ˜ 〉 if ˜ crosses

∅ otherwise,

New〈 ˜ 〉 =

{
{〈 ˜ 〉∂ : 〈 ˜ 〉∂ 6= ∂′ ∀∂′ ∈ 〈 〉} if ˜ crosses

∅ otherwise,



DYNAMICAL SYSTEMS ON FRACTALS 341

and

0〈 ˜ 〉 =

{
( ˜ ∩ 〈 〉)\ 〈 〉 if = ǫ

( ( ˜ ) ∩ 〈 ˜ 〉)\ 〈 〉 otherwise,

where is the boundary of a set .

DEFINITION 3. We denote by Ã the set of new screens generated by (∂) in
some〈 〉 ( ∈ A ∂ ∈ 〈 〉), that is, Ã = ∪ ∈A ∪∂∈ 〈 〉 New〈 ∂〉. For ≥ 2,
let Ã be the set of new screens generated by (˜ ) in some 〈 〉 ( ∈ A ˜ ∈

−1Ã ⊂ 〈 〉), which do not belong to∪ −1
=0 Ã.

DEFINITION 4. For a screeñ and ∈ ∞, set

χ
˜
( : α) =

∫
( )σ( ˜ ) ¯+ η( )α

∑

∈A

σ1( ( ˜ ) )
∫

( ) ¯

φ
˜
(˜ : α) = (˜)η( )ασ∗( ( ˜ ) ˜)

φ
˜
( : α) = η( )α

∑

∈A

σ1( ( ˜ ) )η( )α

and

σ1( ( ˜ ) ) =

{
−1 if σ( ( ˜ ) ) = −1 holds for a.e. ∈ 〈 〉,
+1 otherwise,

σ∗( ( ˜ ) ˜) =





+1 if σ( ( ˜ ) ) = +1 for all ∈ 〈 〉,
or if ˜ crosses and̃ = 〈 ˜ 〉∂

for some∂ ∈ 〈 ˜ 〉,
−1 otherwise.

Set for a screeñ ˜ ∈ ∪∞=0 Ã ( ⊂ 〈 〉 for some ∈ A) of a polygon

φ( ˜ ˜ )( : α) =





φ
˜ ( ˜ : α) if ˜ ∈ Ã,

2 η( )α ( ˜ ) if ∈ A such that ˜ crosses
and ˜ ∈ ∪∞=1 Ã is a new screen
generated by (̃) in 〈 〉,

0 otherwise,

and

φ( ˜ )( : α) = 2φ
˜
( : α)

Then we get a renewal equation of the form using Lemma 7:
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Lemma 9. For all ∈ A, polygons ⊂ 〈 〉 and ∈ ∞, we get a formal
expression

(5)
˜
( : α) = χ

˜
( : α) +

∑

˜∈∪∞
=0 Ã

φ( ˜ ˜ )( : α)
˜
( : α) + φ( ˜ )( : α) ( : α)

This renewal equation leads an infinite dimensional renewal equation for

( ˜
( : α)

)
˜∈∪∞

=0 Ã∪

Using this renewal equation, we want to determine the singularities of ( :α).
Renewing all the terms corresponding to∪∞= +1 Ã in (5), we can construct a

finite dimensional Fredholm matrix ( :α), which is ∪ =0 Ã × ∪ =0 Ã matrix
and a∪ =0 Ã vector χ ( : α). We need complicated notations and calculations to
show how to construct them, thus we omit it. See [4] for detail. We get the following
theorem.

Theorem 4. For any ε > 0, there exists 0 and for ≥ 0 ( : α) and
χ ( : α) are analytic in | | < ξα−ν−ε and for any ∈ ∞ they satisfy

( − ( : α)) ( : α) = χ ( : α)

where

( : α) =
( ˜

( : α)
)

˜∈∪ =0 Ã

Using the above theorem, we can prove the singularities of ( :α) ( : polygon)
in | | < ξα−ν−ε are the solutions of

det( − ( : α)) = 0

ASSUMPTION 2. Assume that there exists0 such that for ≥ 0 there exists a
solutionα > ν/ξ of

(6) det( − (1 : α)) = 0

We denote byα0 the maximal solution of (6).

Hereafter, for notational convenience, we fix0 for which α0 is the maximal solution
of (6).

For Markov mappings, we have constructed two types of Fredholm matrices.
Noticing the fact that they are constructed to express the singularities of ( :α), the
zeros of the Fredholm determinant det(− ( : α)) are the same.
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8. Estimate of Hausdorff dimension

8.1. The inequality 2 0 ≥ dH Let be a polygon contained in some〈 〉 ( ∈
A). We constructed a renewal equation for

∂

( : α) =
∫

¯ ( )
∑

〈 [1]〉⊃〈 〉
∃θ

| |η( )ασ( ∂ )

in §7. We define another generating function:

∂

( : α) =
∫

¯ ( )
∑

〈 [1]〉⊃〈 〉
=ǫ or ∃θ

| |η( )ασ( ∂ )

where

σ( ∂ ) =





+1 if = ǫ and [1]∩ interior of ∂ 6= ∅
+1 if 6= ǫ and 〈(θ ) [1]〉 ∩ interior of ( ∂) 6= ∅
−1 otherwise,

where [1] = if ∈ 〈 〉 ( ∈ A). Then, as in Lemma 8

∑

∂∈ 〈 〉

(∂)
∂

( : α) +
∫

( ) ¯+ η( )α ( : α) = 〈 〉( : α)

where

〈 〉( : α) =
∞∑

=0

∑

| |=
[1]=

η( )α
∑

: 〈 〉6=∅

∫

〈 〉

( ) ¯

Thus, taking ≡ 1, the -th coefficient of
∑

∈A
〈 〉
1 ( : α) equals

∑

| |=

∑

: 〈 〉6=∅

η( )α Lebes(〈 〉) ≥
∑

| |=

∑

: 〈 〉6=∅

η( )α α(Lebes(〈 〉))α

≥ α

∑

| |= +1

(Lebes(〈 〉))α

where

α = min
∈A

Lebes(〈 〉)
(Lebes(〈 〉))α

Thus
∑

∈A
〈 〉
1 (1 : α) diverges as →∞ for 2α < ′ .
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Define

χ
˜
( : α) =

∫
σ( ˜ ) ¯+ η( )α

∑

∈A

σ1( ˜ )
∫

( ) ¯

where

σ1( ˜ ) = σ( ˜ ) ( ∈ 〈 〉)

Then we get as (5)

(7)
˜
( : α) = χ

˜
( : α) +

∑

˜∈∪∞
=0 Ã

φ( ˜ ˜ )( : α)
˜
( : α) + φ( ˜ )( : α) ( : α)

Thus, the singularities of ˜ ( : α) are the same as˜ ( : α). Namely, take 0 which is
defined in Assumption 2 and reduce the infinite dimensional Fredholm matrix ( :α)
above to∪ 0

=0 A dimensional Fredholm matrix 0( : α) as in (6). Then ( : α)
satisfies the similar renewal equation

0
( : α) = χ

0
( : α) + 0( : α)

0
( : α)

Thus, the maximal singularity of ˜ ( : α) equalsα0. This shows 2α0 ≥ ′ , that is,
2α0 ≥ .

8.2. The inequality 2 0 ≤ dH For any non-Markov transformation , we will
construct Markov transformations for which
1. 〈 〉 ⊂ 〈 〉, where 〈 〉 and 〈 〉 are the polygons corresponding to and
( ∈ A),
2. 〈 〉 is monotone increasing in and∪ 〈 〉 = 〈 〉,
3. is the restriction of to∪ ∈A〈 〉 ,
4. the components of the Fredholm matrix ( :α ) almost coincides until the co-
efficients with ( :α), where ( :α ) the α-Fredholm matrix associated with

.
Then we getC ⊂ C, whereC is the Cantor set generated by . Therefore, the

Hausdorff dimension ofC is less than or equal to .

Lemma 10. Assumeξα > ν.
1. det( − (1 : α )) converges todet( − (1 : α )) as →∞,
2. for sufficiently large ξ α > ν , whereξ is the lower Lyapunov number asso-
ciated with .

Proof. Let us denote by〈 〉 the polygon corresponding to a word deter-
mined by . Note first is the restriction of . Therefore, the matrices which de-
termine and are the same, that is, for a word (| | = ), the Jacobian on〈 〉
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of and the Jacobian on〈 〉 of concide if is admissible with respect to
both and . From the definition, for any word ,〈 〉 ⊂ 〈 〉. This means if
is admissible with respect to , then it is also admissible with respect to . Thus,
ξ ≥ ξ . On the other hand,〈 〉 → 〈 〉 as → ∞. Therefore, for an admissible
word with respect to , there exists0 such that for ≥ 0 〈 〉 is admissible.
This shows lim →∞ ξ = ξ. Again, since〈 〉 ⊂ 〈 〉, we getν ≤ ν. From the as-
sumption thatξα > ν, 1< ξα−ν . Moreover, since ( :α ) almost coincides until
the coefficients with ( :α), det( − (1 : α )) converges to det(− (1 : α)).
This proves the lemma.

Let α0 be the maximal zero of det(− (1 : α )). Because is Markov,
2α0 equals the Hausdorff dimension ofC which is less than or equal to . This
shows ≥ 2α0 .

Markov transformations satisfying the above conditions are constructed as fol-
lows. Arrange screens̃ ∈ Ã which are generated by edges in an order˜1 ˜2 . . .. Let

0 = { ( ˜ ) : ˜ ∈ Ã 1≤ ≤ }

Consider 1 = ˜1 ∩ 〈 1〉, that is, 1 is an edge of〈 1〉 which generates̃ 1. Choose
words { 1} which satisfy:

1. | 1| > .
2. 〈 1〉 ⊂ 〈 1〉.
3. ( 〈 1〉) ∩ 1 6= ∅, that is, 〈 1〉 has an edge contained in1.
4. (∪ 〈 1〉) ⊃ 1.
5. If ( ˜) intersects 1 (1 ≤ ≤ ˜ ∈ Ã), there exists only one 1 which
intersects it.
6. Let ′

1 =
(

(∪ 〈 1〉)
)
\ 1. Then, for any edge of〈 〉 ( ∈ A), 1( ′

1 ∩
(〈 1〉)) intersects at most once for any 1≤ ≤ .

We can choose such 1 taking | 1| sufficiently large. Now take〈 1〉\(∪〈 1〉) as a
new polygon associated with1 and (̃ 1\ 1) ∪ ′

1 as a new screeñ1. We can natu-
rally define new screens generated by vertices of〈 1〉 using new screens generated by
edges. Now define 1 using new ˜1 as we define 0 . Next consider˜2 and choose
words { 2} same as before and do the same thing. Continue this procedure, and we
get new polygons and screens. When we want to emphasize new or old polygons or
screens, we will write such as〈 〉 or 〈 〉old etc. Note that

〈 〉 = ∩∂∈ 〈 〉 interior of new screens of∂ ⊂ 〈 〉old

Take the union of new〈 〉 ( =
∑

∈A〈 〉 ), and define the restriction of
to . We denote byC the Cantor set generated by . Then from the definition
⊂ C, and is a Markov transformation (cf. Remark 1). Hence, by Lemma 5,
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satisfies Assumption 1. Now consider for a polygon⊂ 〈 〉 ( ∈ A) and ∂ ∈

∂

( : α ) =
∞∑

=0

∑

∈W : | |=

η( )α

∫
σ ( ∂ )δ[〈 [1]〉 ⊃ 〈 〉 〈θ 〉 6= ∅] ( ) ¯̄

where ¯̄ is the Lebesgue measure restricted to . Let us denote by ( :α ) the
α-Fredholm determinant. Since is Markov, the Hausdorff dimension ofC equals
2α0 , whereα0 is the maximal solution of

(8) det( − (1 : α )) = 0

Note also, from the construction of theα-Fredholm matrix ( :α ), the singulari-
ties of ( :α ) ( : a polygon) is determined by the equation

(9) det( − ( : α )) = 0

Without loss of generality, we can assume≥ 0, where 0 is determined in As-
sumption 2.

Lemma 11. Fix any ε > 0. Then, there exists a constant > 0 such that for a
word (| | > ) and ≤

(10) |the coefficient of of 〈 〉( : α)| ≤ || ||∞ −(ξ−ε)

Proof. We have

|the coefficient of of 〈 〉( : α)| =

∣∣∣∣∣∣

∫ ∑

| |=

η( )α1〈 〉( ) ( ) ¯

∣∣∣∣∣∣

≤ ′ −(ξα−ε) || ||∞
∑

| |=

∫
1〈 〉( )(11)

with some constant ′. From the assumption ≤ , only one satisfies 1〈 〉( ) = 1.
Therefore,

rhs. of (11)≤ ′ −(ξα−ε) || ||∞ Lebes〈 〉

and Lebes〈 〉 ≤ ′′ −(ξ−ε) with some constant ′′. This proves the lemma.

Recall that the renewal equation of˜ ( : α) is constructed by looking the posi-
tions of (˜ ) and 〈 〉. We will review the construction of the renewal equation. Take
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˜ ∈ ∪ 0
=0 Ã ( ⊂ ( )). Then dividing = 0 term and others in

˜
( : α) =

∫ ∞∑

=0

∑

| |=

σ( ˜ )η( )α ( ) ¯

we get

˜
( : α) =

∫
σ( ˜ ) ( ) ¯(12)

+ η( )α


∑

∈A

σ1( ( ˜ ) ) 〈 〉( : α) +
∑

〈 〉∩ ( ˜ )6=∅

〈 ˜ 〉( : α)




When we consider new̃ ’s and , there may happenσ( ( ˜ ) ) differs or 〈 〉 ∩
( ˜ ) = ∅ or not for new and old ones. However, such things may happen when at

least one of new or old (˜ ) crosses˜ ∈ Ã. When we consider

˜
( : α )−

∫
σold( ˜ ) ( ) ¯(13)

− η( )α


∑

∈A

σ1 old( ( ˜ ) ) 〈 〉( : α )−
∑

〈 〉∩ ( ˜ )6=∅

〈 ˜ 〉old( : α )




using oldσ( ( ˜ ) ) etc., we get

|(14)| ≤
∑

〈 〉 crosses ( ˜ )

| |η( )α 〈 〉( : α )(14)

≤ | |η( )α || ||∞ −(ξ−ε)

We get a renewal equation dividing〈 〉( : α) and 〈 ˜ 〉( : α) in (13) using
Lemma 7, and continuing this procedure. So also for˜ ( : α ), we approximate

it using old σ1 old(
˜ [1 ]( ˜ ) ) and 〈 ˜ [1 ] ˜ 〉old until , and for > we use

new σ1 ( ˜ [1 ]( ˜ ) ) and 〈 ˜ [1 ] ˜ 〉 . Then the difference

˜
( : α )− χ ˜

( : α )−
∑

˜∈∪ 0
=0 A

( : α ) ˜ ˜
˜
( : α )(15)

is at most

|(15)| ≤
∑

=0

| | η( ˜ [1 ])α || ||∞ −(ξ−ε)

×
(
the number of〈 〉 which intersect with∪ =0 Ã

)
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≤ ′
0∑

=0

| | −(ξα−ε) || ||∞ −(ξ−ε) ν

= ′ || ||∞
1− | | −(ξα−ε)

−(ξ−ν−ε)

with some constant ′. The singularities of ˜ ( : α ) in | | < ξα−ν are de-
termined by the zeros of det(− ( : α )), and from the construction they con-
verge to the zeros of det(− ( : α)). On the other hand, the maximal zero of
det( − (1 : α )) equalsα0 . This shows, ifξα0 > ν, by Lemma 10 and the
assumption thatα0 is the simple zero, lim→∞ α0 = α0. Therefore,

≥ lim
→∞

(C ) = lim
→∞

2α0 = 2α0

Combining the results, we get = 2α0 = , and complete the proof of Theo-
rem 1.

REMARK 5. It is not always possible to construct a Markov transformation for
which C ⊃ C. Because〈 〉 may intersect.
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