TOPOLOGICAL ENTROPY FOR DIFFERENTIABLE MAPS OF INTERVALS

Yong Moo CHUNG

(Received February 9, 1998)

Let I be a compact interval of the real line. For a continuous map $f: I \rightarrow I$ by Misiurewicz et al. ($[1,12,13])$ the following relation between the topological entropy $h(f)$ and the growth rate of the number of periodic points is known:

$$
\begin{equation*}
h(f) \leq \limsup _{n \rightarrow \infty} \frac{1}{n} \log \sharp \operatorname{Per}(f, n) \tag{*}
\end{equation*}
$$

where $\operatorname{Per}(f, n)$ denotes the set of all fixed points of f^{n} for $n \geq 1$, and $\sharp A$ the number of elements of a set A. (The equality of the expression $(*)$ does not hold in general. For instance, the topological entropy of the identity map is zero, nevertheless all of points of the interval are fixed by this map.)

For a periodic point p of f with period n we put

$$
\mathcal{O}_{f}^{+}(p)=\left\{p, f(p), \cdots, f^{n-1}(p)\right\} .
$$

Then we say that q is a homoclinic point of p if $q \notin \mathcal{O}_{f}^{+}(p)$ and there are a positive integer m with $f^{m}(q)=p$ and a sequence $q_{0}, q_{1}, \ldots, q_{k}, \ldots \in I$ with $q_{0}=q$ such that

$$
f\left(q_{k}\right)=q_{k-1}(k \geq 1), \quad \lim _{k \rightarrow \infty}\left|q_{k}-\mathcal{O}_{f}^{+}(p)\right|=0
$$

where $|x-A|=\inf \{|x-y|: y \in A\}$ for $x \in I, A \subset I$. It is known by Block ([2, 3]) that $h(f)$ is positive if and only if f has a homoclinic point of a periodic point.

In this paper we shall establish more results (Theorems 1 and 2) for differentiable maps of intervals. To describe them we need some notations.

Let $f: I \rightarrow I$ be a $C^{1+\alpha}$ map $(\alpha>0)$. A periodic point p of f with period n is a source if

$$
v(p)=\left|\left(f^{n}\right)^{\prime}(p)\right|^{1 / n}>1 .
$$

For $n \geq 1, v>1$ and $\delta>0$ we define an f-invariant set by
$\operatorname{Per}(f, n, v, \delta)=\left\{p \in \operatorname{Per}(f, n): v(p) \geq v,\left|f^{\prime}\left(f^{i}(p)\right)\right| \geq \delta\right.$ for all $\left.0 \leq i \leq n-1\right\}$.
Then we have

$$
\operatorname{Per}\left(f, n, v_{1}, \delta_{1}\right) \subset \operatorname{Per}\left(f, n, \nu_{2}, \delta_{2}\right) \quad \text { if } \quad v_{1} \geq v_{2}, \delta_{1} \geq \delta_{2}
$$

and

$$
\{p: \text { source of } f\}=\bigcup_{v>1} \bigcup_{\delta>0} \bigcup_{n=1}^{\infty} \operatorname{Per}(f, n, v, \delta)
$$

One of our results is the following:

Theorem 1.

$$
h(f)=\max \left\{0, \lim _{v \rightarrow 1} \lim _{\delta \rightarrow 0} \limsup _{n \rightarrow \infty} \frac{1}{n} \log \sharp \operatorname{Per}(f, n, v, \delta)\right\} .
$$

By Theorem 1 it is clear that for a $C^{1+\alpha}$ map of a compact interval if the topological entropy is positive then the map has infinitely many sources. However, the converse is not true in general. In fact, for any $r \geq 1$ it is easy to constract a C^{r} diffeomorphism of a compact interval having infinitely many source fixed points. But every diffeomorphism of an interval has zero entropy.

Remark. It is known that if f is a C^{2} map with non-flat critical points, then any periodic point of f with sufficiently large period is a source ([10]). In Theorem 1 we do not assume any conditition concerned with critical points. Then the map f may have flat critical points.

For a source p of f with period n we denote by $W_{\text {loc }}^{u}(p)$ the maximal interval J of I containing p such that

$$
\left|\left(f^{n}\right)^{\prime}(x)\right| \geq\{(1+\nu(p)) / 2\}^{n} \quad \text { for all } \quad x \in J .
$$

We say that a homoclinic point q of p is transversal if there are non-negative integers m_{1}, m_{2} and a point $q^{\prime} \in W_{\mathrm{loc}}^{u}(p)$ such that

$$
f^{m_{1}}\left(q^{\prime}\right)=q, \quad f^{m_{1}+m_{2}}\left(q^{\prime}\right)=f^{m_{2}}(q)=p \quad \text { and } \quad\left(f^{m_{1}+m_{2}}\right)^{\prime}\left(q^{\prime}\right) \neq 0 .
$$

If f has a transversal homoclinic point of a source, then there is a C^{1} neighborhood \mathcal{U} of f such that every map g belonging to \mathcal{U} has a transversal homoclinic point of a source. We denote the set of transversal homoclinic points of a source p of f by $\mathrm{TH}(p)$, and its closure by $\overline{\mathrm{TH}(p)}$. We call $\overline{\mathrm{TH}(p)}$ the transversal homolinic closure of
p. It is easy to see that $p \in \overline{\mathrm{TH}(p)}$, and $\overline{\mathrm{TH}(p)}$ is f-invariant. For $m \geq 1$ and $\delta>0$ define

$$
H(p, m, \delta)=\left\{q \in W_{\mathrm{loc}}^{u}(p): f^{m}(q)=p,\left|f^{\prime}\left(f^{i}(q)\right)\right| \geq \delta \text { for all } 0 \leq i \leq m-1\right\} .
$$

Then we have

$$
H\left(p, m, \delta_{1}\right) \subset H\left(p, m, \delta_{2}\right) \quad \text { if } \quad \delta_{1} \geq \delta_{2}
$$

and

$$
\mathrm{TH}(p)=\bigcup_{\delta>0} \bigcup_{m=1}^{\infty} \bigcup_{i=0}^{m-1} f^{i} H(p, m, \delta) \backslash \mathcal{O}_{f}^{+}(p) .
$$

The second result of this paper is the following:
Theorem 2. If $h(f)>0$ then

$$
h(f)=\sup \left\{h\left(\left.f\right|_{\overline{\mathrm{TH}(p)}}\right): p \text { is a source of } f\right\},
$$

and for a source p of f we have

$$
h\left(\left.f\right|_{\overline{\mathrm{TH}(p)}}\right)=\max \left\{0, \lim _{\delta \rightarrow 0} \limsup _{m \rightarrow \infty} \frac{1}{m} \log \sharp H(p, m, \delta)\right\} .
$$

A result corresponding to Theorem 2 is known for surface diffeomorphisms by Mendoza ([11]). As an easy corollary of Theorem 2 we have:

Corollary 3. The following statements are equivalent:
(i) $h(f)>0$;
(ii) f has a transversal homoclinic point of a source;
(iii) f has a homoclinic point of a periodic point.

1. Proofs of Theorems

Let $f: I \rightarrow I$ be a continuous map. For integers $k, l \geq 1$ we say that a closed f invariant set Γ is a (k, l)-horseshoe of f if there are subsets $\Gamma^{0}, \ldots, \Gamma^{k-1}$ of I such that

$$
\Gamma=\Gamma^{0} \cup \cdots \cup \Gamma^{k-1}, \quad f\left(\Gamma^{j}\right)=\Gamma^{j+1}(\bmod k)
$$

and $\left.f^{k}\right|_{\Gamma^{0}}: \Gamma^{0} \rightarrow \Gamma^{0}$ is topologically conjugate to a one-sided full shift in l-symbols. If Γ is a (k, l)-horseshoe, then it is clear that

$$
h(f \mid \Gamma)=\frac{1}{k} \log l \quad \text { and } \quad l^{n} \leq \sharp[\operatorname{Per}(f, k n) \cap \Gamma] \leq k l^{n}
$$

for all $n \geq 1$. It was proved by Misiurewicz et al. ($[1,12,13]$) that if the topological entropy of f is positive then there are sequences k_{j}, l_{j} of positive integers with a $\left(k_{j}\right.$, l_{j})-horseshoe Γ_{j} of $f(j \geq 1)$ such that

$$
h(f)=\lim _{j \rightarrow \infty} h\left(\left.f\right|_{\Gamma_{j}}\right)=\lim _{j \rightarrow \infty} \frac{1}{k_{j}} \log l_{j} .
$$

Then the formula $(*)$ follows from this fact.
In order to prove our results, we need the notion of hyperbolic horseshoe and ideas of the theory of hyperbolic measures ($[14,15]$). Katok ($[9]$) has proved that if a $C^{1+\alpha}$ diffeomorphism of a manifold has a hyperbolic measure then its metric entropy is approximated by the entropy of a hyperbolic horseshoe. The author has shown in [5] that the result of Katok is also valid for $C^{1+\alpha}$ (non-invertible) maps.

Let $f: I \rightarrow I$ be a differentiable map. For integers $k, l \geq 1$, numbers $v>1$ and $\delta>0$ we say that Γ is a (k, l, v, δ)-hyperbolic horseshoe of f if Γ is a (k, l) horseshoe and

$$
\left|\left(f^{k}\right)^{\prime}(x)\right| \geq v^{k}, \quad\left|f^{\prime}(x)\right| \geq \delta \quad(x \in \Gamma)
$$

The following lemma plays an important role for the proofs of Theorems 1 and 2.
Lemma 4. Let $f: I \rightarrow I$ be a $C^{1+\alpha}$ map. If $h(f)>0$, then for a number ν_{0} with $1<\nu_{0}<\exp \{h(f)\}$ there exist sequences k_{j}, l_{j} of positive integers and $\delta_{j}>0$ ($j \geq 1$) such that for $j \geq 1$ there is a $\left(k_{j}, l_{j}, \nu_{0}, \delta_{j}\right)$-hyperbolic horseshoe Γ_{j} of f so that

$$
h(f)=\lim _{j \rightarrow \infty} h\left(\left.f\right|_{\Gamma_{j}}\right)=\lim _{j \rightarrow \infty} \frac{1}{k_{j}} \log l_{j} .
$$

This is corresponding to the result obtained by Katok for surface diffeomorphisms ([9]). For the proof we use the result stated in [5].

Proof of Lemma 4. For a number v_{0} with $1<v_{0}<\exp \{h(f)\}$ we take a sequence η_{j} of positive numbers $(j \geq 1)$ such that $\exp \left\{h(f)-3 \eta_{j}\right\}>\nu_{0}$ and $\eta_{j} \rightarrow 0$ as $j \rightarrow \infty$. By the variational principle for the topological entropy ($[6,7,8]$), we have an f-invariant ergodic Borel probability measure μ_{j} on I such that

$$
h_{j} \geq h(f)-\eta_{j}>0
$$

where h_{j} denotes the metric entropy of μ_{j} with respect to f. If λ_{j} denotes the Lyapunov exponent of μ_{j}, that is,

$$
\lambda_{j}=\int \log \left|f^{\prime}(x)\right| d \mu_{j}(x)
$$

then by the Ruelle inequality ([17]) we have

$$
\lambda_{j} \geq h_{j}>0
$$

and so μ_{j} is a hyperbolic measure of f. Then by Theorem C (and its proof) of [5], we can construct sequences of integers $k_{j}, l_{j} \geq 1$ with $\left(1 / k_{j}\right) \cdot \log l_{j} \geq h_{j}-\eta_{j}$, numbers $c_{j} \geq 1$ and closed sets $\Lambda_{j} \subset I(j \geq 1)$ such that:
(1) $f^{k_{j}}\left(\Lambda_{j}\right)=\Lambda_{j}$;
(2) $\left|\left(f^{k_{j} i}\right)^{\prime}(x)\right| \geq c_{j}^{-1} \cdot \exp \left\{k_{j} i\left(\lambda_{j}-\eta_{j}\right)\right\}$ for all $x \in \Lambda_{j}$ and $i \geq 1$;
(3) $\left.f^{k_{j}}\right|_{\Lambda_{j}}: \Lambda_{j} \rightarrow \Lambda_{j}$ is topologically conjugate to a one-sided full shift in $l_{j^{-}}$ symbols.
For $j \geq 1$ we set

$$
\Gamma_{j}=\Lambda_{j} \cup f \Lambda_{j} \cdots \cup f^{k_{j}-1} \Lambda_{j}
$$

Then Γ_{j} is f-invariant. Moreover we put

$$
\begin{aligned}
& \delta_{j}=\min \left\{\left|f^{\prime}(x)\right|: x \in \Gamma_{j}\right\}>0, \\
& e_{j}=\max \left\{\frac{\left|f^{\prime}(x)\right|}{\left|f^{\prime}(y)\right|}: x, y \in \Gamma_{j}\right\} \in[1, \infty)
\end{aligned}
$$

and take an integer $n_{j} \geq 1$ large enough so that

$$
\exp \left\{k_{j} n_{j} \eta_{j}\right\} \geq c_{j} e_{j}^{k_{j}}
$$

Then we have

$$
\left|\left(f^{k_{j} n_{j}}\right)^{\prime}(x)\right| \geq v_{0}^{k_{j} n_{j}} \quad\left(x \in \Gamma_{j}\right)
$$

This follows from the fact that for $0 \leq i \leq k_{j}-1$ and $x \in f^{i} \Lambda_{j}$

$$
\begin{aligned}
\left|\left(f^{k_{j} n_{j}}\right)^{\prime}(x)\right| & =\left|\left(f^{k_{j} n_{j}}\right)^{\prime}\left(f^{k_{j}-i}(x)\right)\right| \cdot\left|\left(f^{k_{j}-i}\right)^{\prime}(x)\right| \cdot\left|\left(f^{k_{j}-i}\right)^{\prime}\left(f^{k_{j} n_{j}}(x)\right)\right|^{-1} \\
& \geq c_{j}^{-1} \cdot \exp \left\{\left(k_{j} n_{j}\right)\left(\lambda_{j}-\eta_{j}\right)\right\} \cdot e_{j}^{-k_{j}+i} \\
& \geq \exp \left\{k_{j} n_{j}\left(\lambda_{j}-2 \eta_{j}\right)\right\} \\
& \geq \exp \left\{k_{j} n_{j}\left(h(f)-3 \eta_{j}\right)\right\} \\
& \geq v_{0}{ }^{k_{j} n_{j}}
\end{aligned}
$$

It is easy to see that $\left.f^{k_{j} n_{j}}\right|_{\Lambda_{j}}: \Lambda_{j} \rightarrow \Lambda_{j}$ is topologically conjugate to a one-sided full shift in $l_{j}{ }^{n_{j}}$-symbols. Thus Γ_{j} is a $\left(k_{j} n_{j}, l_{j}{ }^{n_{j}}, v_{0}, \delta_{j}\right)$-hyperbolic horseshoe, and from which

$$
h\left(\left.f\right|_{\Gamma_{j}}\right)=\frac{1}{k_{j} n_{j}} \log l_{j}^{n_{j}}
$$

$$
\begin{aligned}
& =\frac{1}{k_{j}} \log l_{j} \\
& \geq h_{j}-\eta_{j} \\
& \geq h(f)-2 \eta_{j}
\end{aligned}
$$

Since $\eta_{j} \rightarrow 0$ as $j \rightarrow \infty$, we have

$$
h(f)=\lim _{j \rightarrow \infty} h\left(\left.f\right|_{\Gamma_{j}}\right)
$$

Lemma 4 was proved.

Proof of Theorem 1. For $v>1$ and $\delta>0$ we want to find $\gamma_{0}=\gamma_{0}(\nu, \delta)>0$ such that $\operatorname{Per}(f, n, v, \delta)$ is an $\left(n, \gamma_{0}\right)$-separated set of f for all $n \geq 1$. Take $\gamma_{1}=\gamma_{1}(\delta)>0$ so small that if $x, y \in I$ satisfy $|x-y| \leq \gamma_{1}$ then

$$
\left|f^{\prime}(x)-f^{\prime}(y)\right| \leq \frac{\delta}{2}
$$

We put

$$
I_{\delta}=\left\{x \in I:\left|f^{\prime}(x)\right| \geq \frac{\delta}{2}\right\}
$$

Obviously, I_{δ} is closed. For $n \geq 1$ and $x \in I$,

$$
|x-\operatorname{Per}(f, n, v, \delta)| \leq \gamma_{1} \quad \text { implies that } \quad x \in I_{\delta}
$$

Since a function $x \mapsto \log \left|f^{\prime}(x)\right|$ is bounded and varies continuously on I_{δ}, there is $\gamma_{2}=\gamma_{2}(\nu, \delta)>0$ such that if $x, y \in I_{\delta}$ satisfy $|x-y| \leq \gamma_{2}$ then

$$
|\log | f^{\prime}(x)|-\log | f^{\prime}(y)| | \leq \frac{1}{2} \log v
$$

We put $\gamma_{0}=\min \left\{\gamma_{1}, \gamma_{2}\right\}$. Then it is checked that $\operatorname{Per}(f, n, v, \delta)$ is an $\left(n, \gamma_{0}\right)$-separated set of f for $n \geq 1$. Indeed, if a pair $p, p^{\prime} \in \operatorname{Per}(f, n, v, \delta)$ with $p \leq p^{\prime}$ satisfies

$$
\max \left\{\left|f^{i}(p)-f^{i}\left(p^{\prime}\right)\right|: 0 \leq i \leq n-1\right\} \leq \gamma_{0}
$$

then we see that for $x \in\left[p, p^{\prime}\right]$ and $0 \leq i \leq n-1$,

$$
\left|f^{i}(x)-f^{i}(p)\right| \leq \gamma_{0}, \quad f^{i}(x) \in I_{\delta}
$$

On the other hand, by the mean value theorem there is a point $\xi \in\left[p, p^{\prime}\right]$ such that

$$
\left|f^{n}(p)-f^{n}\left(p^{\prime}\right)\right|=\left|\left(f^{n}\right)^{\prime}(\xi)\right| \cdot\left|p-p^{\prime}\right| .
$$

Since $f^{i}(\xi), f^{i}(p) \in I_{\delta}$ and $\left|f^{i}(\xi)-f^{i}(p)\right| \leq \gamma_{0}$ for $0 \leq i \leq n-1$, we have

$$
\begin{aligned}
|\log |\left(f^{n}\right)^{\prime}(\xi)|-\log |\left(f^{n}\right)^{\prime}(p)| | & \leq \sum_{i=0}^{n-1}|\log | f^{\prime}\left(f^{i}(\xi)\right)|-\log | f^{\prime}\left(f^{i}(p)\right)| | \\
& \leq \frac{n}{2} \log v,
\end{aligned}
$$

and so

$$
\frac{\left|\left(f^{n}\right)^{\prime}(\xi)\right|}{\left|\left(f^{n}\right)^{\prime}(p)\right|} \geq \exp \left(-\frac{n}{2} \log v\right)=v^{-n / 2}
$$

Since $p, p^{\prime} \in \operatorname{Per}(f, n, v, \delta)$, we have

$$
\begin{aligned}
\left|p-p^{\prime}\right| & =\left|f^{n}(p)-f^{n}\left(p^{\prime}\right)\right| \\
& =\left|\left(f^{n}\right)^{\prime}(\xi)\right| \cdot\left|p-p^{\prime}\right| \\
& =\frac{\left|\left(f^{n}\right)^{\prime}(\xi)\right|}{\left|\left(f^{n}\right)^{\prime}(p)\right|} \cdot\left|\left(f^{n}\right)^{\prime}(p)\right| \cdot\left|p-p^{\prime}\right| \\
& \geq v^{-n / 2} \cdot v^{n} \cdot\left|p-p^{\prime}\right| \\
& =v^{n / 2} \cdot\left|p-p^{\prime}\right|,
\end{aligned}
$$

and so $p=p^{\prime}$ because of $v>1$. Thus $\operatorname{Per}(f, n, v, \delta)$ is an $\left(n, \gamma_{0}\right)$-separated set of f, and then

$$
\begin{align*}
\limsup _{n \rightarrow \infty} \frac{1}{n} \log \sharp \operatorname{Per}(f, n, v, \delta) & \leq \limsup _{n \rightarrow \infty} \frac{1}{n} \log s\left(f, n, \gamma_{0}\right) \tag{1.1}\\
& \leq \lim _{\gamma \rightarrow 0} \limsup _{n \rightarrow \infty} \frac{1}{n} \log s(f, n, \gamma) \\
& =h(f)
\end{align*}
$$

for $v>1$ and $\delta>0$, where $s(f, n, \gamma)$ denotes the maximal cardinality of $(n, \gamma)-$ separated sets for f. Therefore we have the conclusion of Theorem 1 when $h(f)=0$. Thus it remains to give the proof for the case when $h(f)>0$. Fix $1<\nu_{0}<$ $\exp \{h(f)\}$. Take sequences k_{j}, l_{j}, δ_{j} and $\Gamma_{j}(j \geq 1)$ as in Lemma 4. Since

$$
l_{j}^{n} \leq \sharp\left[\operatorname{Per}\left(f, n k_{j}, v_{0}, \delta_{j}\right) \cap \Gamma_{j}\right] \leq k_{j} l_{j}^{n}
$$

for all $n \geq 1$, we have

$$
\begin{aligned}
\lim _{\delta \rightarrow 0} \limsup _{n \rightarrow \infty} \frac{1}{n} \log \sharp \operatorname{Per}\left(f, n, v_{0}, \delta\right) & \geq \lim _{n \rightarrow \infty} \frac{1}{n k_{j}} \log \sharp\left[\operatorname{Per}\left(f, n k_{j}, v_{0}, \delta_{j}\right) \cap \Gamma_{j}\right] \\
& =\frac{1}{k_{j}} \log l_{j} .
\end{aligned}
$$

If $j \rightarrow \infty$, then

$$
\begin{equation*}
\lim _{\delta \rightarrow 0} \limsup _{n \rightarrow \infty} \frac{1}{n} \log \sharp \operatorname{Per}\left(f, n, v_{0}, \delta\right) \geq h(f) . \tag{1.2}
\end{equation*}
$$

Combining (1.1) and (1.2) we have

$$
\begin{aligned}
h(f) & \leq \lim _{\delta \rightarrow 0} \limsup _{n \rightarrow \infty} \frac{1}{n} \log \sharp \operatorname{Per}\left(f, n, v_{0}, \delta\right) \\
& \leq \lim _{v \rightarrow 1} \lim _{\delta \rightarrow 0} \limsup _{n \rightarrow \infty} \frac{1}{n} \log \sharp \operatorname{Per}(f, n, v, \delta) \\
& \leq h(f) .
\end{aligned}
$$

Theorem 1 was proved.

Remark. In fact, from the proof of Theorem 1 it follows that

$$
h(f)=\lim _{\delta \rightarrow 0} \limsup _{n \rightarrow \infty} \frac{1}{n} \log \sharp \operatorname{Per}\left(f, n, v_{0}, \delta\right)
$$

if $1<\nu_{0}<\exp \{h(f)\}$.
Proof of Theorem 2.
Proof of the first statement. Under the assumption of Theorem 2 we fix a number v_{0} with $1<\nu_{0}<\exp \{h(f)\}$. By Lemma 4 , for $j \geq 1$ there are $k_{j}, l_{j} \geq 1$ and $\delta_{j}>0$ with a $\left(k_{j}, l_{j}, \nu_{0}, \delta_{j}\right)$-hyperbolic horseshoe $\Gamma_{j}=\Gamma_{j}^{0} \cup \cdots \cup \Gamma_{j}^{k_{j}-1}$ such that

$$
h\left(\left.f\right|_{\Gamma_{j}}\right)=\frac{1}{k_{j}} \log l_{j} \rightarrow h(f)
$$

as $j \rightarrow \infty$. For $j \geq 1$ define a product space

$$
\Sigma_{j}=\prod_{m=1}^{\infty}\left\{1, \ldots, l_{j}\right\}
$$

with the product topology and a shift $\sigma_{j}: \Sigma_{j} \rightarrow \Sigma_{j}$ by

$$
\sigma_{j}\left(\left(a_{m}\right)_{m \geq 1}\right)=\left(a_{m+1}\right)_{m \geq 1} \quad\left(\left(a_{m}\right)_{m \geq 1} \in \Sigma_{j}\right) .
$$

From the definition of hyperbolic horseshoe, there is a homeomorphism $\varphi_{j}: \Sigma_{j} \rightarrow \Gamma_{j}^{0}$ such that $\varphi_{j} \circ \sigma_{j}=\left(\left.f^{k_{j}}\right|_{\Gamma_{i}^{0}}\right) \circ \varphi_{j}$. Then $p_{j}=\varphi_{j}(1,1, \ldots)$ is a source of f. For $m \geq 1$ and $a_{1}, \ldots, a_{m} \in\left\{1, \ldots, l_{j}\right\}$ with $a_{i} \neq 1$ for some $1 \leq i \leq m, \varphi_{j}\left(a_{1}, \ldots, a_{m}, 1,1, \ldots\right)$ is a transversal homoclinic point of p_{j}. Thus, $\overline{\mathrm{TH}\left(p_{j}\right)} \supset \Gamma_{j}$, from which

$$
\begin{aligned}
h(f) & =\lim _{j \rightarrow \infty} h\left(\left.f\right|_{\Gamma_{j}}\right) \\
& \leq \lim _{j \rightarrow \infty} h\left(\left.f\right|_{\overline{T H\left(p_{j}\right)}}\right) \\
& \leq \sup \left\{h\left(\left.f\right|_{\overline{T H(p)}}\right): p \text { is a source of } f\right\} \\
& \leq h(f) .
\end{aligned}
$$

The first statement was proved.
Proof of the second statement. Let p be a source of f. Without loss of generality we may assume that p is a fixed point, i.e., $f(p)=p$. To show that for $\delta>0$

$$
h\left(\left.f\right|_{\overline{\mathrm{TH}(p)}}\right) \geq \limsup _{m \rightarrow \infty} \frac{1}{m} \log \sharp H(p, m, \delta),
$$

take $\gamma_{0}=\gamma_{0}(\delta)>0$ so small that if $x, y \in I$ satisfy $|x-y| \leq \gamma_{0}$ then

$$
\left|f^{\prime}(x)-f^{\prime}(y)\right| \leq \frac{\delta}{2} .
$$

Then, for $m \geq 1$ and a pair $q, q^{\prime} \in H(p, m, \delta)$ satisfying

$$
\max \left\{\left|f^{i}(q)-f^{i}\left(q^{\prime}\right)\right|: 0 \leq i \leq m-1\right\} \leq \gamma_{0},
$$

we can find a sequence $\xi_{0}, \ldots, \xi_{m-1} \in I$ such that

$$
\left|\xi_{i}-f^{i}(q)\right| \leq \gamma_{0}
$$

and

$$
\left|f^{i+1}(q)-f^{i+1}\left(q^{\prime}\right)\right|=\left|f^{\prime}\left(\xi_{i}\right)\right| \cdot\left|f^{i}(q)-f^{i}\left(q^{\prime}\right)\right| \quad(0 \leq i \leq m-1) .
$$

Since $f^{m}(q)=f^{m}\left(q^{\prime}\right)=p$, we have

$$
\begin{aligned}
0=\left|f^{m}(q)-f^{m}\left(q^{\prime}\right)\right| & =\left|f^{\prime}\left(\xi_{m-1}\right)\right| \cdot\left|f^{m-1}(q)-f^{m-1}\left(q^{\prime}\right)\right| \\
=\cdots & =\prod_{i=0}^{m-1}\left|f^{\prime}\left(\xi_{i}\right)\right| \cdot\left|q-q^{\prime}\right| \\
& \geq \prod_{i=0}^{m-1}\left(\left|f^{\prime}\left(f^{i}(q)\right)\right|-\frac{\delta}{2}\right) \cdot\left|q-q^{\prime}\right| \\
& \geq\left(\frac{\delta}{2}\right)^{m} \cdot\left|q-q^{\prime}\right|,
\end{aligned}
$$

and so $q=q^{\prime}$. Thus $H(p, m, \delta)$ is an $\left(m, \gamma_{0}\right)$-separated set of $\left.f\right|_{\overline{\mathrm{TH}(p)}}$, from which it follows that

$$
\begin{align*}
\limsup _{m \rightarrow \infty} \frac{1}{m} \log \sharp H(p, m, \delta) & \leq \limsup _{m \rightarrow \infty} \frac{1}{m} \log s\left(\left.f\right|_{\overline{\mathrm{TH}(p)}}, m, \gamma_{0}\right) \tag{1.3}\\
& \leq h\left(\left.f\right|_{\overline{\mathrm{TH}}(p)}\right) .
\end{align*}
$$

If $h\left(\left.f\right|_{\overline{\mathrm{TH}}(p)}\right)=0$, then nothing to prove for the second statement. Thus we must check the conclusion for the case when $h(f \mid \overline{\mathrm{TH}(p)})>0$. To do so fix a number ν_{0} with $1<\nu_{0}<\min \left\{\nu(p), \exp h\left(\left.f\right|_{\overline{\mathrm{TH}(p)}}\right)\right\}$. By the same way as in the proof of Lemma 4, we can take sequences of integers $k_{j}, l_{j} \geq 1$, numbers $\delta_{j}>0$ with $\left(k_{j}, l_{j}, v_{0}, \delta_{j}\right)$ hyperbolic horseshoes $\Gamma_{j}=\Gamma_{j}^{0} \cup \cdots \cup \Gamma_{j}^{k_{j}-1}$ containing $p(j \geq 1)$ such that

$$
h\left(\left.f\right|_{\Gamma_{j}}\right)=\left(1 / k_{j}\right) \cdot \log l_{j} \rightarrow h\left(\left.f\right|_{\overline{\mathrm{TH}(p)}}\right) \quad \text { as } \quad j \rightarrow \infty .
$$

Then there is a homeomorphism $\varphi_{j}: \Sigma_{j} \rightarrow \Gamma_{j}^{0}$ such that $\varphi_{j} \circ \sigma_{j}=\left(\left.f^{k_{j}}\right|_{\Gamma_{j}^{0}}\right) \circ \varphi_{j}$, where $\sigma_{j}: \Sigma_{j} \rightarrow \Sigma_{j}$ is the shift defined as in the proof of the first statement. Without loss of generality we may assume that $\varphi_{j}(1,1, \ldots)=p$. By taking an integer $n_{j} \geq 1$ large enough we have

$$
\varphi_{j}\left([1, \ldots, 1]_{n_{j}}\right) \subset W_{\mathrm{loc}}^{u}(p)
$$

where

$$
[1, \ldots, 1]_{n_{j}}=\left\{\left(b_{m}\right)_{m \geq 1} \in \Sigma_{j}: b_{m}=1 \text { for all } 1 \leq m \leq n_{j}\right\} .
$$

Since

$$
\varphi_{j}(\overbrace{1, \ldots, 1,}^{n_{j} \text { times }} a_{1}, \ldots, a_{m-n_{j}}, 1,1, \ldots) \in H\left(p, m k_{j}, \delta_{j}\right)
$$

holds for all $m \geq n_{j}+1$ and $a_{1}, \ldots, a_{m-n_{j}} \in\left\{1, \ldots, l_{j}\right\}$, we have

$$
\sharp H\left(p, m k_{j}, \delta_{j}\right) \geq l_{j}^{m-n_{j}} .
$$

Thus,

$$
\begin{aligned}
\lim _{\delta \rightarrow 0} \lim \sup & \frac{1}{m} \log \sharp H(p, m, \delta)
\end{aligned} \geq \limsup _{m \rightarrow \infty} \frac{1}{m k_{j}} \log \sharp H\left(p, m k_{j}, \delta_{j}\right) \quad .
$$

for $j \geq 1$. If $j \rightarrow \infty$, then we have

$$
\begin{equation*}
\lim _{\delta \rightarrow 0} \limsup _{m \rightarrow \infty} \frac{1}{m} \log \sharp H(p, m, \delta) \geq h\left(\left.f\right|_{\overline{\mathrm{TH}(p)}}\right) . \tag{1.4}
\end{equation*}
$$

Combining (1.3) and (1.4),

$$
\begin{aligned}
h\left(\left.f\right|_{\overline{\mathrm{TH}(p)}}\right) & \leq \lim _{\delta \rightarrow 0} \limsup _{m \rightarrow \infty} \frac{1}{m} \log \sharp H(p, m, \delta) \\
& \leq h\left(\left.f\right|_{\overline{\mathrm{TH}(p)}}\right) .
\end{aligned}
$$

The second statement was proved. This completes the proof of Theorem 2.

2. Circle Maps

In the same way as above, it can be checked that our results (Theorems 1 and 2) are also valid for $C^{1+\alpha}$ maps $(\alpha>0)$ of the circle S^{1}. However, the existence of a homoclinic point does not imply that the topological entropy is positive. In fact, we know an example of a C^{∞} map $g: S^{1} \rightarrow S^{1}$ such that g has a homoclinic point of a source fixed point, nevertheless $h(g)=0$ ([16]). It is known that the topological entropy of a continuous circle map is positive if and only if the map has a nonwandering homocinic point of a periodic point ([4]). Since any transversal homoclinic point of a source is nonwandering, we have:

Corollary 5. For a $C^{1+\alpha}$ map $f: S^{1} \rightarrow S^{1}(\alpha>0)$ the following statements are equivalent:
(i) $h(f)>0$;
(ii) f has a transversal homoclinic point of a source;
(iii) f has a nonwandering homoclinic point of a periodic point.

Added in proof. After this manuscript was completed the author learned from A. Katok that he and A. Mezhirov had obtained a result that overlaps with Theorem 1 for C^{1} maps with finitely many critical points ([18]).

References

[1] L. Alsedà, J. Llibre and M. Misiurewicz: Combinatorial Dynamics and Entropy in Dimension One, Advanced Series in Nonlinear Dynamics 5, World Scientific, Singapore, 1993.
[2] L.S. Block: Homoclinic points of mappings of the interval, Proc. Amer. Math. Soc. 72 (1978), 576-580.
[3] L.S. Block and W.A. Coppel: Dynamics in One Dimension, Lect. Notes in Math. 1513, Springer-Verlag, Berlin-Heidelberg, 1992.
[4] L. Block, E. Coven, I. Mulvey and Z. Nitecki: Homoclinic and nonwandering points for maps of the circle, Ergod. Th. and Dynam. Sys. 3 (1983), 521-532.
[5] Y.M. Chung: Shadowing property of non-invertible maps with hyperbolic measures, Tokyo J. Math. 22 (1999), 145-166.
[6] E.I. Dinaburg: On the relations among various entropy characteristics of dynamical systems, Math. USSR Izvestia, 5 (1971), 337-378.
[7] T.N.T. Goodman: Relating topological entropy and measure entropy, Bull. London Math. Soc. 3 (1971), 176-180.
[8] L.W. Goodwyn: Topological entropy bounds measure-theoritic entropy, Proc. Amer. Math. Soc. 23 (1969), 679-688.
[9] A. Katok: Lyapunov exponents,entropy and periodic orbits for diffeomorphisms, Publ. Math. I.H.E.S. 51 (1980), 137-173.
[10] W. de Melo and S. van Strien: One-Dimensional Dynamics, Springer-Verlag, Berlin-Heidelberg, 1993.
[11] L. Mendoza: Topological entropy of homoclinic closures, Trans. Amer. Math. Soc. 311 (1989), 255-266.
[12] M. Misiurewicz: Horseshoes for mappings of an interval, Bull. Acad. Pol. Soc. Sér. Sci. Math. 27 (1979), 167-169.
[13] M. Misiurewicz and W. Szlenk: Entropy of piecewise monotone mappings, Studia. Math. 67 (1980), 45-63.
[14] Ya.B. Pesin: Families of invariant manifolds corresponding to nonzero characteristic exponents, Math. USSR Izvestija, 10 (1976), 1261-1305.
[15] Ya.B. Pesin: Characteristic Lyapunov exponents and smooth ergodic theory, Russian Math. Surveys, 32 (1977), 55-112.
[16] F. Przytycki: On Ω-stability and structural stability of endomorphisms satisfying Axiom A, Studia Math. 60 (1977), 61-77.
[17] D. Ruelle: An inequality for the entropy of differentiable maps, Bol. Soc. Bras. Math. 9 (1978), 83-87.
[18] A. Katok and A. Mezhirov: Entropy and growth of expanding periodic orbits for onedimensional maps, Fund. Math. 157 (1998), 245-254.

Department of Applied Mathematics
Faculty of Engineering
Hiroshima University
Higashi-Hiroshima 739-8527, Japan e-mail: chung@amath.hiroshima-u.ac.jp

