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LEVEL 0 MONOMIAL CRYSTALS

DAVID HERNANDEZ and HIRAKU NAKAJIMA

Dedicated to Professor George Lusztig on his 60th birthday

Abstract. We study the monomial crystal defined by the second author.
We show that each component of the monomial crystal can be embedded into
a crystal of an extremal weight module introduced by Kashiwara. And we
determine all monomials appearing in the components corresponding to all
level 0 fundamental representations of quantum affine algebras except for some
nodes of E

(2)
6 , E

(1)
7 , E

(1)
8 . Thus we obtain explicit descriptions of the crystals

in these examples. We also give those for the corresponding finite dimensional
representations. For classical types, we give them in terms of tableaux. For
exceptional types, we list up all monomials.

Introduction

In this paper we study the monomial crystal M defined by the second

author [32]. We show that each component of M can be embedded into a

crystal B(λ) of an extremal weight module V (λ) introduced by Kashiwara

[18] (Theorem 2.2). This result was originally conjectured by Kashiwara,

when the second author discussed the result of [32] with him. We prove

this result by showing that the monomial crystal is equivalent to the com-

binatorial crystal appeared in Kashiwara’s embedding theorem [17]. (See

Proposition 2.6.) We then study the case of extremal weight modules of

level 0. We realize the crystal B($`) of a level 0 fundamental representation

via the monomial crystal (Theorem 3.2). And we determine all monomials

appearing in the corresponding component of the monomial crystal for all

fundamental representations except for some fundamental representations

for E
(2)
6 , E

(1)
7 , E

(1)
8 . Thus we obtain explicit descriptions of the crystals in

these examples. For classical types, we give them in terms of tableaux. For
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exceptional types, we list up all monomials. Most of them have been calcu-

lated already in the literature ([14], [38], [24], [12], [36], [27], [37], [3]), but

we have a few new examples in exceptional types. And our method works

for arbitrary fundamental representations in principle, though we certainly

need to use a computer with huge memory for the triple node of E
(1)
8 .

One of motivations of this work comes from the study of q-characters

of finite dimensional modules of the quantum affine algebra, introduced by

Knight [25], Frenkel-Reshetikhin [7], and have been intensively studied for

example in [6], [26], [28], [29], [31], [32], [8], [9], [10], [5] and the references

therein. In the combinatorial algorithm to compute q-characters for arbi-

trary irreducible representations [29], [31], the first step was to compute

(t-analogs of) q-characters for level 0 fundamental representations. There-

fore it would be nice if we could give their explicit forms. They can be

calculated by a computer, but we hope to see a structure by examining

their possible relations to the crystal bases.

In simply-laced type examples given in this paper, we construct explicit

bijections between monomials in q-characters, counted with multiplicities

and the crystal bases. (The existences of abstract bijections are trivial

as both have the same cardinality as dimensions of modules.) In fact,

the computation of the crystal base has been done with help of explicit

knowledge of q-characters. This is opposite to our motivation, and we need

a further study to achieve it.

Acknowledgments. The authors would like to thank the anonymous
referee for comments. A part of this paper was written when the first author
visited the RIMS (Kyoto) in the summer of 2004. He would like to thank
the RIMS for his hospitality and the excellent work conditions.

§1. Background

In this section we give backgrounds on quantized enveloping algebras,

extremal weight modules.

1.1. Cartan matrix

Let C = (Ci,j)1≤i,j≤n be a generalized Cartan matrix , i.e., Ci,j ∈ Z,

Ci,i = 2, Ci,j ≤ 0 for i 6= j and Ci,j = 0 if and only if Cj,i = 0. We set

I = {1, . . . , n} and l = rank(C). In the following we suppose that C is

symmetrizable, that is to say that there is a matrix D = diag(r1, . . . , rn)

(ri ∈ N∗) such that B = DC is symmetric.
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We consider a realization (h,Π,Π∨) of C (see [13]): h is a 2n− l dimen-

sional Q-vector space, Π = {α1, . . . , αn} ⊂ h∗ (set of the simple roots) and

Π∨ = {α∨
1 , . . . , α∨

n} ⊂ h (set of simple coroots) are set so that αj(α
∨
i ) = Ci,j

for 1 ≤ i, j ≤ n. Let Λ1, . . . ,Λn ∈ h∗ (resp. the Λ∨
1 , . . . ,Λ∨

n ∈ h) be the fun-

damental weights (resp. coweights): Λi(α
∨
j ) = αi(Λ

∨
j ) = δi,j.

Let P = {λ ∈ h∗ | λ(α∨
i ) ∈ Z for all i ∈ I} be the weight lattice and

P+ = {λ ∈ P | λ(α∨
i ) ≥ 0 for all i ∈ I} the semigroup of dominant weights.

Let Q =
⊕

i∈I Zαi ⊂ P (the root lattice) and Q+ =
∑

i∈I Nαi ⊂ Q. For

λ, µ ∈ h∗, write λ ≥ µ if λ− µ ∈ Q+.

1.2. Quantized enveloping algebras

In the following we suppose that q ∈ C∗ is not a root of unity.

Let qi = qri . For l ∈ Z, r ≥ 0, m ≥ m′ ≥ 0 we introduce the following

polynomials in Z[q±]:

[l]q =
ql − q−l

q − q−1
∈ Z[q±], [r]q! = [r]q[r − 1]q · · · [1]q,

[
m
m′

]

q

=
[m]q!

[m−m′]q![m′]q!
.

Definition 1.1. The quantized enveloping algebra Uq(g) is the C-
algebra with generators kh (h ∈ h), x±

i (i ∈ I) and relations

khkh′ = kh+h′ , k0 = 1, khx±
j k−h = q±αj(h)x±

j ,

[x+
i , x−

j ] = δi,j

kriα∨

i
− k−riα∨

i

qi − q−1
i

,

1−Ci,j∑

r=0

(−1)r

[
1− Ci,j

r

]

qi

(x±
i )1−Ci,j−rx±

j (x±
i )r = 0 (for i 6= j).

This algebra was introduced independently by Drinfeld and Jimbo.

We use the notation k±
i = k±riα∨

i
and for l ≥ 0 we set (x±

i )(l) =

(x±
i )l/[l]qi

!.

For J ⊂ I we denote by gJ the Kac-Moody algebra of Cartan matrix

(Ci,j)i,j∈J .

Let Uq(h) the commutative subalgebra of Uq(g) generated by the kh

(h ∈ h).
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For V a Uq(h)-module and ω ∈ P we denote by Vω the weight space of

weight ω defined by

Vω = {v ∈ V | khv = qω(h)v for all h ∈ h}.

In particular for v ∈ Vω we have kiv = q
ω(α∨

i )
i v and for i ∈ I we have

x±
i Vω ⊂ Vω±αi

.

We say that V is Uq(h)-diagonalizable if V =
⊕

ω∈P Vω.

1.3. Extremal weight modules

In this section we recall the definition of extremal weight modules given

by Kashiwara [18], [19].

Definition 1.2. A Uq(g)-module V is said to be integrable if V is
Uq(h)-diagonalizable, the weight subspace Vω ⊂ V is finite dimensional for
all ω ∈ P , and for µ ∈ P , i ∈ I there is R ≥ 0 such that Vµ±rαi

= {0} for
r ≥ R.

Definition 1.3. For V an integrable Uq(g)-module and λ ∈ P , a vec-
tor v ∈ Vλ is called extremal of weight λ if there are vectors {vw}w∈W such
that vId = v and

x±
i vw = 0 if ± w(λ)(α∨

i ) ≥ 0 and (x∓
i )±(w(λ)(α∨

i ))vw = vsi(w).

In the same way one can define the notion of extremal elements in a

crystal. Note that if v is extremal of weight λ, then for w ∈ W , vw is

extremal of weight w(λ).

Definition 1.4. For λ ∈ P , the extremal weight module V (λ) of ex-

tremal weight λ is the Uq(g)-module generated by a vector vλ with the
defining relations that vλ is extremal of weight λ.

Example. If λ is dominant, V (λ) is the simple highest weight module
of highest weight λ.

Theorem 1.5. ([18]) For λ ∈ P , the module V (λ) is integrable and has

a crystal basis B(λ).

Note that uλ ∈ B(λ) (which represents vλ) is extremal of weight λ in

the crystal B(λ).
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§2. Monomial crystal

In this section we recall the definition of the monomial crystal and

show that each connected component can be embedded in the crystal of an

extremal weight module (Theorem 2.2).

In this paper we suppose that C is without odd cycles, i.e., there is a

function s : I → {0, 1} (i 7→ si) such that Ci,j ≤ −1 implies si + sj = 1.

This situation includes all Cartan matrices of finite type and all Cartan

matrices of affine type except A
(1)
2l (l ≥ 1).

2.1. Construction

Consider formal variables Y ±
i,l , eλ (i ∈ I, l ∈ Z, λ ∈ P ) and let A be the

set of monomials of the form m = eω(m)
∏

i∈I,l∈Z
Y

ui,l(m)
i,l where ui,l(m) ∈ Z,

ω(m) ∈ P such that

(2.1)
∑

l∈Z

ui,l(m) = ω(m)(α∨
i ).

For m ∈ A and i ∈ I we set ui(m) =
∑

l∈Z
ui,l(m).

For example, Y ±
i,l e

±Λi ∈ A and Ai,l = eαiYi,l−1Yi,l+1
∏

j 6=i Y
Cj,i

j,l ∈ A.

We call l the grade of the variable Yi,l.

Remark 2.1. (1) If we fix a monomial m and consider only monomi-
als m′ which are products of m with various A±

i,l’s (as we shall do in this
paper), ω(m′) is uniquely determined by ω(m) and ui,l(m

′). Indeed let z
be a formal variable and consider the modified quantized Cartan matrix
C(z) = (Ci,j(z))i,j defined by Ci,i(z) = [2]z , and for i 6= j, Ci,j(z) =
Ci,j. For P (z) ∈ Z[z±], let P (z) =

∑
l∈Z

Plz
l. C(z) is invertible be-

cause (det(C(q)))n = 1 6= 0. Let C̃(z) = (C̃i,j(z))i,j be its inverse. If
m′m−1 = eω(m′)−ω(m)

∏
i∈I,l∈Z

A
vi,l

i,l (with vi,l ∈ Z) we have vi,l =
∑

j∈I,l′∈Z

uj,l′(m
′m−1)(zlC̃i,j(z))l′ . So we can safely omit eω(m′).

(2) The group A appears, in an equivalent form, in [31] for q-characters
at roots of unity, and also in [9] to study the q-characters of integrable
representations of general quantum affinizations. The additional term eλ

(denoted by kλ there) appears by looking at a part of a “universal R-
matrix”.

A monomial m is said to be J-dominant if for all j ∈ J , l ∈ Z we have

uj,l(m) ≥ 0. An I-dominant monomials is said to be dominant . Let BJ is

the set of J -dominant monomials, B is the set of dominant monomials.
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Consider the subgroupM⊂ A defined by

M = {m ∈ A | ui,l(m) = 0 if l ≡ si + 1 mod 2}.

(For the shortness of notations, we have replaced the condition l ≡ si mod 2

of [32] by l ≡ si + 1 mod 2.)

Let us define wt: A → P and εi, ϕi, pi, qi : A → Z ∪ {∞} ∪ {−∞} for

i ∈ I by (m ∈ A)

wt(m) = ω(m),

ϕi,L(m) =
∑

l≤L

ui,l(m), ϕi(m) = max{ϕi,L(m) | L ∈ Z} ≥ 0,

εi,L(m) = −
∑

l≥L

ui,l(m), εi(m) = max{εi,L(m) | L ∈ Z} ≥ 0,

pi(m) = max{L ∈ Z | εi,L(m) = εi(m)}

= max
{

L ∈ Z
∣∣∣
∑

l<L

ui,l(m) = ϕi(m)
}

,

qi(m) = min{L ∈ Z | ϕi,L(m) = ϕi(m)}

= min
{

L ∈ Z
∣∣∣ −

∑

l>L

ui,l(m) = εi(m)
}

.

Then we define ẽi, f̃i : A→ A ∪ {0} for i ∈ I by

ẽi(m) =

{
0 if εi(m) = 0,

mAi,pi(m)−1 if εi(m) > 0,

f̃i(m) =

{
0 if ϕi(m) = 0,

mA−1
i,qi(m)+1 if ϕi(m) > 0.

By [32], [21] (M,wt, εi, ϕi, ẽi, f̃i) is a crystal (called the monomial crystal).

2.2. Connected components of M and monomial realization
of highest weight crystals

For m ∈M we denote byM(m) the subcrystal ofM generated by m.

By [32], [21] the crystal M(m) is isomorphic to the crystal B(wt(m))

of the highest weight module of highest weight wt(m), if m is dominant.

The aim of Sections 2.3 and 3 is to “generalize” this result for general

m ∈M.
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2.3. Embedding of M(m) into B(λ)

In this section we prove the following:

Theorem 2.2. For m ∈ M, the crystal M(m) is isomorphic to a

connected component of the crystal B(λ) of an extremal weight module for

some λ ∈ P .

Note that it is proved in [4, Theorem 4.15] that for quantum affine

algebras, all the connected components of B(λ) are isomorphic to each other

modulo shift of weight by δ.

The proof is a slight modification of Kashiwara’s proof of the above

mentioned result.

Definition 2.3. A shift on I is the data (≤, ϕ) of a total ordering ≤
on I and of a map ϕ : I → Z such that

(1) ϕ(i) ≥ ϕ(j) for i ≤ j,

(2) if Ci,j ≤ −1 and i ≤ j, then ϕ(i) = ϕ(j) + 1,

(3) for i ∈ I, si ≡ ϕ(i) mod 2.

For ϕ : I → Z, one says that a total ordering ≤ on I is adapted to ϕ if

(≤, ϕ) is a shift.

Lemma 2.4. Let ϕ : I → Z such that ϕ(i) − ϕ(j) ∈ {±1} if Ci,j ≤ −1
and si ≡ ϕ(i) mod 2 for i ∈ I. Then there is at least one total ordering on

I adapted to ϕ.

Proof. For each r ∈ Z choose a total ordering on {j ∈ I | ϕ(j) = r},
and for each (i, j) ∈ I2 such that ϕ(i) < ϕ(j), put i > j.

Note that in general there is at least one shift. Put ϕ(i) = si, and

Lemma 2.4 gives a shift (ϕ,≤).

In the following we fix a shift (≤, ϕ) in I. We put a numbering I =

{i1, . . . , in} so that i1 < i2 < · · · < in.

For i ∈ I, let Bi be the crystal Bi = {bi(l) | l ∈ Z} with wt(bi(l)) = lαi

and (j 6= i)

εi(bi(l)) = −l, ϕi(bi(l)) = l, ẽi(bi(l)) = bi(l + 1), f̃i(bi(l)) = bi(l − 1),

εj(bi(l)) = ϕj(bi(l)) = −∞, ẽj(bi(l)) = f̃j(bi(l)) = 0.
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Let B(∞) be the crystal of U−
q (g) and let Tλ = {tλ} (λ ∈ P ) be the

crystal defined by wt(tλ) = λ, εi(tλ) = ϕi(tλ) = −∞ and ẽi(tλ) = f̃i(tλ) =

0.

Let C be the crystal consisting of a single element c with wt(c) = 0,

εi(c) = ϕi(c) = 0, ẽi(c) = f̃i(c) = 0.

For m ∈ A we define the crystal Km = C⊗· · ·⊗K2⊗K1⊗K0⊗Tα⊗K−1⊗
K−2⊗ · · · ⊗ C where for l ∈ Z, Kl = Bi1 ⊗Bi2 ⊗ · · · ⊗Bin ⊗ Tλ(l) and λ(l) =∑

i∈I λi(l)Λi =
∑

i∈I ui,2l+ϕ(i)(m)Λi and α = wt(m)−
∑

i∈I,l∈Z
ui,l(m)Λi.

We also denote 〈λ(l), α∨
i 〉 by λi(l).

Definition 2.5. Let us define Φϕ
m : M(m)→ Km as follows: for m′ ∈

M(m) with

m′ = ewt(m′)
∏

i∈I,k∈Z

Y
λi(k)
i,2k+ϕ(i)

∏

i∈I,k∈Z

A
zi(k)
i,2k+ϕ(i)+1

we define Φϕ
m(m′) = b by

b = c⊗ · · · ⊗ b2 ⊗ b1 ⊗ b0 ⊗ tα ⊗ b−1 ⊗ b−2 ⊗ · · · ⊗ c,

where bl = bi1(zi1(l))⊗ · · · ⊗ bin(zin(l))⊗ tλ(l).

The map Φϕ
m is well-defined as the zi(k) depend only of m′ (see Re-

mark 2.1).

Proposition 2.6. Φϕ
m is a strict embedding of the crystal.

When m is dominant, this result appeared in [30, 8.5] in an equivalent

form. More precisely, we parametrize Irr Z̃� there by monomials as explained

in [32, §3]. Then the above is exactly [30, 8.5].

Although the proof is exactly the same, we reproduce it here in our

current notation for the sake of the reader.

Proof. The injectivity is obvious. Let m′ ∈ M(m) and b = Φϕ
m(m′).

First we have

wt(b) = α +
∑

i∈I,l∈Z

ui,l(m)Λi +
∑

i∈I,l∈Z

zi(l)αi

= wt(m) + wt(m′m−1) = wt(m′).

Let us prove the following formulas (i ∈ I, L ∈ Z):
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εi(bL−1)−
∑

l≥L

wt(bl)(α
∨
i ) = −

∑

l≥2L+ϕ(i)

ui,l(m
′),(2.2)

ϕi(bL) +
∑

l<L

wt(bl)(α
∨
i ) =

∑

l≤2L+ϕ(i)

ui,l(m
′).(2.3)

The equation (2.2) can be checked as

−
∑

l≥L

{zi(l) + zi(l − 1)} −
∑

l≥L,j>i

Ci,jzj(l)−
∑

l≥L−1,j<i

Ci,jzj(l)−
∑

l≥L

λi(l)

= −zi(L− 1)−
∑

j<i

Ci,jzj(L− 1) +
∑

l≥L

(
−

∑

j∈I

Ci,jzj(l)− λi(l)
)

= εi(bL−1)−
∑

l≥L

wt(bl)(α
∨
i ).

The equation (2.3) can be checked exactly in the same way.

The equation (2.2) implies

εi(b) = max
L∈Z

{
εi(bL−1)−

∑

l≥L

wt(bl)(α
∨
i )

}

= max
L∈Z

{
−

∑

l≥2L+ϕ(i)

ui,l(m
′)
}

= εi(m
′).

Similarly the equation (2.3) implies ϕi(b) = ϕi(m
′).

Let us prove the compatibility with the operators ẽi, f̃i.

If εi(m
′) = εi(b) = 0, then both ẽi(m

′) and ẽi(b) are 0. Suppose
otherwise. Then ẽi(b) is given by replacing zi(Li) by zi(Li) + 1 where
Li = max{L ∈ Z | εi(bL) −

∑
l>L wt(bl)(α

∨
i ) = εi(b)}. Therefore ẽi(b) =

Φϕ
m(m′Ai,2Li+ϕ(i)+1). But it follows from the equation (2.2) that 2Li+ϕ(i)+

2 = pi(m
′), and so ẽi(b) = Φϕ

m(m′Ai,pi(m′)−1) = Φϕ
m(ẽi(m

′)). Similarly f̃i is
compatible.

Let B = Bi1 ⊗Bi2 ⊗· · ·⊗Bin , and let P (resp. P−) be the subcrystal of

C ⊗ · · · ⊗ B ⊗ B (resp. of B ⊗ B ⊗ · · · ⊗ C) of elements of the form c⊗ · · · ⊗

b(0)⊗b(0)⊗bl⊗bl−1⊗· · ·⊗b1 (resp. b1⊗· · ·⊗bl−1⊗bl⊗b(0)⊗b(0)⊗· · ·⊗c)

where bl′ ∈ B (1 ≤ l′ ≤ l) and b(0) = bi1(0) ⊗ · · · ⊗ bin(0).
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Proof of Theorem 2.2. By the crystal isomorphism Tλ⊗Bi ' Bi⊗Tsi(λ)

given by tλ⊗ bi(l) 7→ bi(l + λ(α∨
i ))⊗ tsi(λ), our crystal Km is isomorphic to

P ⊗ Tλ′ ⊗P− for some λ′ ∈ P .
It is known that P is isomorphic to

⊔
ẽi(b)=0 B(∞) ⊗ Twt(b). (See [20,

7.2.4] for example.) Similarly P− is
⊔

f̃i(b)=0 Twt(b) ⊗ B(−∞). Therefore

P ⊗ Tλ′ ⊗ P− is a disjoint union of various B(∞) ⊗ Tλ ⊗ B(−∞). The
crystal of the modified enveloping algebra Ũq(g) is equal to

⊔
λ∈P B(∞) ⊗

Tλ ⊗ B(−∞) and its connected components can be embedded into some
B(λ) ([18, Corollary 9.3.4]). Therefore our assertion follows.

§3. Monomial realization of the level 0 extremal fundamental
weight crystals

In this section we study in more details extremal weight crystals (Propo-

sition 3.1) for quantum affine algebras. We prove that the crystal of a level

0 fundamental extremal weight module can be realized in the monomial

crystal (Theorem 3.2).

We omit eω(m′) hereafter by Remark 2.1(1).

3.1. Extremal monomials

When m is dominant, the component M(m) is isomorphic to B(λ)

where λ is the weight of m. But the situation is different in general, as not

all m ∈M are extremal, even if the monomial is dominant or antidominant

for each i ∈ I. For example in the case D
(1)
4 , m = Y2,0Y

−2
0,3 is not extremal.

Indeed suppose that m is extremal. Then we have

ms2 = f̃2(m) = Y −1
2,2 Y0,1Y

−2
0,3 Y1,1Y4,1Y3,1.

But (wt(ms2))(α
∨
0 ) = −1 ≤ 0 and f̃0(ms2) = Y −3

0,3 Y1,1Y4,1Y3,1 6= 0, and so

ms2 is not extremal, we have a contradiction.

However we have the following consequence of Theorem 2.2.

Proposition 3.1. Let (ϕ,≤) be a shift. Then for (l1, . . . , ln) ∈ Zn,

the monomial m =
∏

i∈I Y li
i,ϕ(i) ∈ M is extremal and M(m) is isomorphic

to the connected component of B(wt(m)) generated by uwt(m).

Proof. Consider the morphism Φϕ
m. It follows from Theorem 2.2 that

it gives an embedding M(m) ⊂ B(λ) where λ ∈ P . But for this particular
m we have Φϕ

m(m) = c⊗ · · · ⊗ b(0)⊗ b(0)⊗ twt(m) ⊗ b(0)⊗ b(0)⊗ · · · ⊗ c in
Proposition 2.6. So m is sent to uwt(m) ∈ B(wt(m)) which is extremal.
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3.2. Monomial realization of the level 0 extremal fundamental
weight crystals

We suppose that C is of affine type. Let us number the set of simple

roots as I = {0, 1, . . . , n}. We choose the extra vertices 0 so that a0 = a∨0 =

1 (except A
(2)
2n , a0 = 2, a∨0 = 1), and the index number of the vertices are

the notations of [13] (for untwisted cases X (1) we use the enumeration of

finite type of [13] for the sub-Dynkin diagram of type X). This choice is

unique up to an automorphism of the Dynkin diagram. We set I0 = I \{0}.

We also consider a new type A
(2)†
2n , which is the same as A

(2)
2n , but we

take the opposite numbering convention from [13], i.e., the vertex i in A
(2)†
2n

is the the vertex n− i in A
(2)
2n . In particular, the extra vertex 0 is the vertex

n in A
(2)
2n , and we have a0 = 1, a∨0 = 2. We need to distinguish these as we

consider the restriction of representations to Uq(gI0). Note also that this

convention was taken in [4].

Let Q∨ =
∑

i∈I Zα∨
i . There is a unique c ∈

∑
i∈I Nα∨

i such that {h ∈
Q∨ | αi(h) = 0 for all i ∈ I} = Zc. We write c =

∑
i∈I a∨i α∨

i . In the same

way one can define δ =
∑

i∈I aiαi ∈ Q. The ai are given in [13], the a∨
i are

the ai of the transposed Cartan matrix.

We have {ω ∈ P | ω(α∨
i ) = 0 for all i ∈ I} = Qδ ∩ P . Put Pcl =

P/(Qδ ∩ P ).

Let P 0 = {λ ∈ P | λ(c) = 0} be the set of level 0 weights.

Let Uq(g)′ be the subalgebra of Uq(g) generated by x±
i and kh (h ∈∑

Qα∨
i ). This has Pcl as a weight lattice. We have the corresponding

definition of the crystal. When we want to distinguish crystals of Uq(g) and

Uq(g)′, we call the former a P -crystal, and the latter a Pcl-crystal.

For i ∈ I0, let us define a level 0 fundamental weight $i by Λi−a∨i Λ0 ∈

P 0 when g 6= A
(2)†
2n and

$i = Λi − Λ0 (i 6= n), $n = 2Λn − Λ0

when g = A
(2)†
2n . The corresponding extremal weight module V ($i) are

called a level 0 fundamental extremal weight module. Those representations

and their crystal have been intensively studied, see [1], [2], [4], [19], [22],

[34], [35].

We identify these with (usual) fundamental weights of the finite dimen-

sional Lie algebra gI0 when (g, i) 6= (A
(2)†
2n , n). For (g, i) = (A

(2)†
2n , n), we

identify $n with the twice of the nth fundamental weight. We denote by
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VI0($i) the corresponding irreducible Uq(gI0)-module, and by BI0($i) its

crystal base, for either case.

As B($i) is connected (see [19]), it follows from Proposition 3.1 that

Theorem 3.2. Let (≤, ϕ) be a shift on I. For i ∈ I0, let M be the

monomial given by Yi,ϕ(i)Y
−a∨

i

0,ϕ(0)
for g 6= A

(2)†
2n , M = Yi,ϕ(i)Y

−1
0,ϕ(0)

for g =

A
(2)†
2n , i 6= n, and M = Y 2

n,ϕ(n)Y
−1
0,ϕ(0) for g = A

(2)†
2n , i = n. Then M is

extremal in M and M(M) ' B($i).

This result establishes a monomial realization of the level 0 extremal

fundamental weight crystals B($i). We will give some examples in Sec-

tion 5.

Not all monomials of weight $i give a crystal isomorphic to B($i)

(see the example in Section 3.1). However there are some other monomials

which generate the same crystal as we will see in the next subsection.

3.3. Other monomial realizations

For i ∈ I, let θi ≥ 0 be the distance between i and 0, that is to say the

minimum p ≥ 0 such that there exists a sequence {0 = j0, j1, . . . , jp = i} of

distinct elements of I satisfying Cjl,jl+1
≤ −1.

Suppose g 6= A
(2)†
2n for brevity.

Corollary 3.3. Let i ∈ I0 and l, l′ ∈ Z such that l− l′ ∈ {−θi,−θi +

2, . . . , θi} and l′ ≡ s0 mod 2. We have M(Yi,lY
−a∨

i

0,l′ ) ' B($i).

Proof. It follows from Theorem 3.2 that it suffices to show that there
is a shift (≤, ϕ) such that ϕ(i) = l and ϕ(0) = l′. Suppose that l − l′ ≤ 0
(the proof is the same for l − l′ ≥ 0) and let a = (θi + l − l′)/2. Define
ϕ : I → Z by ϕ(j) = l′ + θj if θj ≤ a and ϕ(j) = l′ + 2a− θj if θj ≥ a. We
can conclude with Lemma 2.4.

For example in all cases we have the following:

(1) if θi ∈ 2Z thenM(Yi,0Y
−a∨

i

0,0 ) ' B($i),

(2) if θi ∈ 2Z + 1 thenM(Yi,0Y
−a∨

i

0,1 ) ' B($i).

Proposition 3.4. Suppose that C is of type D
(1)
n (n ≥ 4) and let i ∈

{2, . . . , n−2}. Then M = Yi,0Y
−1
0,i−1Y

−1
0,i+1 is extremal andM(M) ' B($i).
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Proof. First suppose that i ≤ n− 3. Consider

m = (f̃2 · · · f̃i−1f̃i)(M) = Y −1
0,i+1Y1,i−1Y

−1
2,i Yi+1,1.

Let us define ϕ : I → Z by ϕ(0) = i+1, ϕ(2) = i, ϕ(1) = ϕ(3) = i−1, ϕ(4) =
i − 2, . . . , ϕ(n − 2) = i − n + 4, ϕ(n) = ϕ(n − 1) = i − n + 5. Lemma 2.4
gives a shift (ϕ,≤). So it follows from Proposition 3.1 that m is extremal,
and so M = msisi−1···s2 is extremal.

If i = n− 2, in the same way we consider

m = (f̃2 · · · f̃i−1f̃i)(M) = Y −1
0,n−1Y1,n−3Y

−1
2,n−2Yn−1,1Yn,1.

In the following we will see various examples of realizations of the level

0 extremal fundamental weight crystals.

§4. Finite dimensional crystals – start

Kashiwara has shown that there is a Uq(g)′-automorphism z` of the

level 0 fundamental extremal weight module V ($`) preserving the global

crystal base, and the induced Pcl-crystal automorphism, denoted also by

z`, on the crystal B($`) [19]. The weight of z` in the P -crystal is d`δ

where d` = max(1, a∨` /a`) except d` = 1 for (g, `) = (A
(2)
2n , n). The quotient

B($`)/z` is the crystal of the finite dimensional irreducible Uq(g)′-module

W ($`) = V ($`)/(z` − 1)V ($`). We denote it by B(W ($`)). We call

W ($`) the level 0 fundamental representation.

After Theorem 3.2 it is natural to ask the followings.

(1) Give an explicit description of monomials appearing inM(M).

(2) Give an explicit description of the automorphism z`.

Note that the automorphism z` is defined as a composite of operators

ẽi, f̃i’s. But we require more explicit description.

We do not answer these questions in general, but we give examples in

the next sections. These are motivated by known descriptions of level 0

crystals in terms of tableaux [14], [24], [37] in part, but closer to those of

q-characters [32].

Before giving examples, we define Pcl-crystal automorphisms on the

monomial crystal M. For p ∈ Z, α ∈ Qδ ∩ P let τ2p,α denote the map

τ2p,α : M→M defined by τ2p,α(eλ
∏

Y
ui,n

i,n ) = eλ+α
∏

Y
ui,n

i,n+2p. This clearly
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preserves the compatibility condition (2.1) and is a Pcl-crystal automor-

phism. In the following, we omit α from the notation and denote simply by

τ2p.

Suppose that M(M) is a monomial crystal isomorphic to B($`) such

that M is an extremal vector with ẽiM = 0 for all i ∈ I0. If we have a

monomial m ∈ M(M) with wt(m) = wt(M) + Nd`δ for N ∈ Z, then we

have m = zN
` (M). This follows from [19, §5.2]. In particular, if M(M) is

isomorphic to B($`) and preserved under τ2p, then τ2p is equal to a power

of z`.

In the following examples, we answer the above questions (1), (2) in

the following manner:

(1) First show that M(M) is invariant under τ2p for some p. Then

M(M)/τ2p ' B($`)/z
N
` for some N .

(2) We determine all monomials in M(M)/τ2p and give z` explicitly in

these monomials.

We thus obtain explicit descriptions of crystals of some finite dimen-

sional representations of Uq(g)′: we treat all fundamental representations

except some fundamental representations for E
(2)
6 , E

(1)
7 , E

(1)
8 . However it

is natural to hope that this procedure works for any fundamental represen-

tations with appropriate choices of the initial monomials m.

Note that the uniqueness of the crystal base for W ($`) is not known

so far. But all the examples where we compare the crystal base with those

existing in the literature, we can always prove that the crystal bases are

isomorphic.

4.1. Let us illustrate our description in type A
(1)
2r+1 with n = 2r + 1

(r ≥ 0).

Mimicking the definition in [32], [15], we define

k p = Y −1
k−1,p+kYk,p+k−1 for 1 ≤ k ≤ n + 1, p ∈ Z,

where Yn+1,p is understood as Y0,p.

4.1.1. Let us consider the first level 0 fundamental extremal weight

module V ($1). Let M = Y1,pY
−1
0,p+1. We have M(M) ' B($1) by Corol-

lary 3.3.

Then the crystal graph of M(M) is given in Figure 1. Here 0[n + 1]

means f̃0 n+1
p
= 1 p+n+1, i.e., the suffix is shifted by n + 1. In particular

M(M) is preserved under τn+1, which has weight −δ. Therefore we have

z1 = τ−n−1 andM(M)/τn+1 ' B(W ($1)).
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1 p 2 p n p
n+1

p
1 2 n−1 n

0[n+1]

Figure 1: (Type A
(1)
n ) the crystal B($1) of the vector representation

4.1.2. Next consider B($`) for ` ≤ r + 1. (The description for the

remaining case ` > r + 1 can be obtained from these cases by applying a

diagram automorphism.) Let M0 = Y`,0Y
−1
0,` . It follows from Corollary 3.3

that M(M0) ' B($`). We set

Mj = Y`,2jY
−1
0,n−`+1+2jY

−1
j,`+jYj,n−`+1+j

=
(

1 n−`+2j 2 n−`+2j−2 · · · j
n−`+2

)
×

(
j+1

`−1
j+2

`−3
· · · ` 1−`+2j

)

=

j∏

p=1

p
n−`−2p+2j+2

×
∏̀

p=j+1

p
`+1−2p+2j

with 0 ≤ j ≤ `. Note that M` = Y`,n+1Y
−1
0,n+1+` = τn+1(M0). Note also

that M1 = τ2(M0) for ` = r + 1.

For an increasing sequence T = (1 ≤ i1 < i2 < · · · < i` ≤ n + 1) of

integers (i.e., a Young tableaux of shape (`)) we assign

mT ;j =

j∏

p=1

ip
n−`−2p+2j+2

×
∏̀

p=j+1

ip
`+1−2p+2j

for 0 ≤ j ≤ `− 1.

Then one can directly check that

(1) MI0(Mj) consists of mT ;j for various sequences T (cf. [32, 4.6]),

(2) f̃0(mT ;j) with T = (2, 3, . . . , `, n + 1) is equal to Mj+1,

(3) the automorphism σ defined by mT ;j 7→ mT ;j+1 (j, j + 1 are under-

stood modulo `) is a Pcl-crystal automorphism.

Here, for J ⊂ I and m ∈ M we denote by MJ(m) the set of monomials

obtained by applying ẽj, f̃j with j ∈ J to m. It is a crystal for the Lie

subalgebra gJ associated with J .
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From (2) all Mj (and hence mT ;j by (1)) are in M(M0) by induction.

Computing the weights, we find that Mj = (z`)
−j(M0) as explained above.

In particular, τn+1 = (z`)
−`. In the case ` = r+1, we have τ2 = z−1

` . There-

foreM(M0)/τ2 ' B(W ($r+1)). By the same reason mentioned above, σ is

equal to z`. ThereforeM(M0)/σ ' B(W ($`)).

Let us describe Kashiwara operators ẽi, f̃i in terms of tableaux. This

can be done by transfering the definition of those operators on monomials

to tableaux. For i 6= 0 we have ẽimT ;j = mT ′;j or 0. Here T ′ is obtained

from T by replacing i by i− 1. If it is not possible (say, when we have both

i − 1 and i in T ), then it is zero. Similarly f̃i = mT ′′;j or 0, where T ′′ is

given by replacing i by i + 1. We can also describe the action of ẽ0, f̃0:

ẽ0(mT ;j) =

{
0 if i1 6= 1 or i` = n + 1,

m(i2,...,i`,n+1);j−1 if i1 = 1 and i` 6= n + 1,

f̃0(mT ;j) =

{
0 if i1 = 1 or i` 6= n + 1,

m(1,i1,...,i`−1);j+1 if i1 6= 1 and i` = n + 1.

Here we extend the definition of mT ;j from 0 ≤ j ≤ ` − 1 to all j ∈ Z so

that mT ;j+` = τn+1mT ;j.

As a corollary we get a description of B(W ($`)) in terms of tableaux.

This coincides with one in [14]. We also get an isomorphism of I0-crystals

B(W ($`)) ' BI0($`). This is a well-known result.

Comparing the above descriptions with the tableaux sum expressions

of q-characters in [32], we see that there is a bijection betweenM(M0)/σ '

B(W ($`)) and monomials appearing the q-characters of W ($`). In fact,

the bijection is simply given by putting Y0,∗ = 1 in mT ;0.

§5. Finite dimensional crystals – classical types

In this section we treat all classical types.

5.1. Type D
(1)
n

Let B = {1, . . . , n, n, . . . , 1}. We give the ordering ≺ on the set B by

1 ≺ 2 ≺ · · · ≺ n− 1 ≺
n

n
≺ n− 1 ≺ · · · ≺ 2 ≺ 1.

Remark that there is no order between n and n.
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For p ∈ Z, mimicking the definition in [32], [15], we define

1 p = Y −1
0,p+2Y1,p, 2 p = Y −1

0,p+2Y
−1
1,p+2Y2,p+1,

i p = Y −1
i−1,p+iYi,p+i−1 (3 ≤ i ≤ n− 2),

n−1
p

= Y −1
n−2,p+n−1Yn−1,p+n−2Yn,p+n−2, n−1

p
= Yn−2,p+n−1Y

−1
n−1,p+nY −1

n,p+n,

n p = Y −1
n−1,p+nYn,p+n−2, n p = Yn−1,p+n−2Y

−1
n,p+n,

i p = Yi−1,p+2n−2−iY
−1
i,p+2n−1−i (3 ≤ i ≤ n− 2),

2 p = Y0,p+2n−4Y1,p+2n−4Y
−1
2,p+2n−3, 1 p = Y0,p+2n−4Y

−1
1,p+2n−2.

We define the i-grade gri( ∗ p) as the grade of the variable Yi,∗ appear-

ing in ∗ p. If Yi,∗ does not appear, it is not defined. As variables appear

at most once, it is well-defined. When the suffix is clear from the context,

we may omit it and simply write gri( ∗ ).

5.1.1. First consider the case ` = 1. We take M = Y1,pY
−1
0,p+2. It follows

from Corollary 3.3 that M(M) ' B($1). The crystal graph of M(M) is

given in Figure 2.

1 p 2 p
n−1

p

n p

n p

n−1
p

2 p 1 p

1 2

n−1

n−2

n n−1

n

n−2 2 1

0[2n−4]

0[2n−4]

Figure 2: (Type D
(1)
n ) the crystal B($1) of the vector representation

We have

f̃0( 2 p) = Y1,p+2n−4Y
−1
0,p+2n−2 = 1 p+2n−4,

f̃0( 1 p) = Y −1
0,p+2n−2Y

−1
1,p+2n−2Y2,p+2n−3 = 2 p+2n−4.

Therefore M(M) is preserved under τ2n−4. Computing weights as above,

we find that z1 = τ4−2n and so we have M(M)/τ2n−4 ' B(W ($1)). We

also get an isomorphism of I0-crystals B(W ($1)) ' BI0($1).

5.1.2. Preliminary results for crystals of finite type D

As is illustrated in examples in type A
(1)
n , we first need to describe the

I0-crystal structure on the monomials. This will be given in this subsection.
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All the results on the I0-crystal are independent of the information on

Y0,∗, so we set Y0,∗ as 1 in this subsection. Note also that results can be

modified in an obvious manner so that the suffixes of ∗ can be shifted

simultaneously. We will use the results in these modified forms in later

subsections.

Theorem 5.1. Let 1 ≤ ` ≤ n− 2 and

M = 1 `−1 2 `−3 · · · ` 1−`.

ThenMI0(M) is isomorphic to BI0($`) and is equal to the set of monomials

mT = i1 `−1
i2 `−3

· · · i` 1−`
,

indexed by the set D`,0,0 of tableaux T = (i1, . . . , i`) satisfying the conditions

(1) ia ∈ B, i1 � i2 � · · · � i`,

(2) there is no pair a, b such that 1 ≤ a < b ≤ ` and ia = k, ib = k and

b− a = n− 1− k.

Moreover the map T 7→ mT defines a bijection between D`,0,0 andMI0(M).

This result follows from [32, 3.4, 5.5]. It was also proved by Kang-Kim-

Shin [15] in the present form. We briefly recall their argument for a later

purpose. They checked the following statements:

(a) The set of monomials mT with T satisfying (1), but not necessarily

(2), is preserved by ẽi, f̃i.

(b) If a monomial mT satisfies ẽimT = 0 for all i = 1, . . . , n, then mT

must be equal to M .

(c) For a tableau T satisfying (1), there exists a tableau T ′ satisfying (1),

(2) and mT = mT ′ .

(d) The tableau T satisfying (1), (2) is uniquely determined from the

monomial mT .

The statement (d) is not explicitly stated in [15], but follows from [15,

Prop. 3.2] or the argument below.

Let us give an example for the procedure (c). Suppose n = 7 and T =

(2, 3, 4, 3, 2). Using the relation k p k p−2(n−1−k) = k+1
p

k+1
p−2(n−1−k)

several times, we get

2 4 3 2 4 0 3 −2 2 −4 = 4 4 5 2 6 0 6 −2 5 −4.
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Thus T ′ = (4, 5, 6, 6, 5). In general, we replace the pair k p k p−2(n−1−k)

by k+1
p

k+1
p−2(n−1−k)

repeatedly from k = 1 to n− 2.

As we saw in examples in type A
(1)
n , we need to study a tableau whose

suffixes may jump. For 1 ≤ ` ≤ n− 2, 0 ≤ r ≤ n− `− 1, 0 ≤ h ≤ ` let

M`,h,r = Yh,`−hY −1
h,`−h−2rY`,−2r

=
(

1 `−1 2 `−3 · · · h `−2h+1

)

×
(

h+1
`−2h−2r−1

h+2
`−2h−2r−3

· · · ` 1−`−2r

)

=
h∏

p=1

p
`−2p+1

×
∏̀

p=h+1

p
`+1−2p−2r

and consider a monomial

mT =
(

i1 `−1
i2 `−3

· · · ih `−2h+1

)

×
(

ih+1
`−2h−2r−1

ih+2
`−2h−2r−3

· · · i` 1−`−2r

)

appearing in MI0(M`,h,r). When h = 0 or `, these are obtained from

MI0(M) in Theorem 5.1 by the simultaneous shift of grades.

We should consider T as a tableau of shape (h, ` − h) (one column

with h boxes and one column with ` − h boxes), where the second col-

umn is shifted below by h + r boxes. But we simply denote it by T =

((i1, . . . , ih), (ih+1, . . . , i`)) or by T = (i1, . . . , i`) for the sake of spaces.

From the proof of Theorem 5.1 in [15], we have

i1 � i2 � · · · � ih,

ih+1 � ih+2 � · · · � i`.
(D.1)

Let us study the order between ih and ih+1. The following example

shows that ih � ih+1 may not be satisfied in general: Let n = 7, ` = 3,

r = n− `− 2 = 2. Consider the starting monomial M = 1 2 2 −4 3 −6.

It gives in the crystal MI0(M) the monomial m = 3 2 4 −4 4 −6 =

Y −1
2,5 Y3,4Y

−1
3,0 Y4,−1Y3,2Y

−1
4,3 . If we apply f̃3, we get the monomial m′ =

Y −1
3,6 Y4,5Y

−1
3,0 Y4,−1Y3,2Y

−1
4,3 and this monomial can only be written in the

form m′ = 4 2 4 −4 4 −6.

The condition (2) in Theorem 5.1 also needs to be modified for the

pair a, b with a ≤ h, h + 1 ≤ b as the suffix jump. A naive guess is
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to replace n − 1 − k by n − r − k − 1, but this change does not work as

indicated by the following example: Consider the case n = 6, ` = 4, r = 1

and the starting monomial m = 1 3 2 −1 3 −3 4 −5. Then consider the

monomial m′ = 1 3 2 −1 3 −3 1 −5 = Y1,3Y
−1
1,5 Y −1

1,1 Y3,−1. For b = 4 and

a = 1, we have b − a = n − r − k − 1 = 3. Thus this monomial violates

the condition (2) of Theorem 5.1. But if we replace the pair (i1, i4) = (1, 1)

to (2, 2) as before, we get 2 3 2 −1 3 −3 2 −5, which does not satisfy

the condition (1) of Theorem 5.1. In the original situation we can further

replace the pair (i2, i4) = (2, 2) to (3, 3), and then further (i3, i4) = (3, 3) to

(4, 4) to achieve the condition (1). But we cannot make this replacement

as 2 −1 2 −5 6= 3 −1 3 −5.

We modify the condition (2) as follows.

(D.2) There is no pair a, b such that 1 ≤ a < b ≤ h and ia = k, ib = k and

b− a = n− 1− k.

(D.3) There is no pair a, b such that h + 1 ≤ a < b ≤ ` and ia = k, ib = k

and b− a = n− 1− k.

(D.4) There is no pair a, b such that a ≤ h, h + 1 ≤ b, ia = k, ib = k and

b− a = n−max(r, 1) − k.

The conditions (D.2), (D.3) can be achieved without changing the cor-

responding monomial by the procedure explained above. For (D.4) (when

r ≥ 1), we replace a pair (ia, ib) = (k, k) with b − a = n − max(r, 1) − k

by (k − 1, k − 1). If there are several such pairs or this procedure yields a

new such pair, we replace them repeatedly starting from k = n − 1, then

k = n− 2, . . . , and finally to k = 2. (Note that this is converse to the order

of the procedure for (D.2), (D.3).) As r ≤ n − ` − 1, the condition (D.4)

always holds for k = 1.

Our approach to determine all monomials appearing inMI0(M`,h,r) is

to relate them to monomials in MI0(M`,h,r−1). Since we understand the

case r = 0, we know a general case inductively.

In order to accomplish this approach, we first remark that the crys-

tal structure on the monomials can be transfered to that on the tableaux

satisfying (D.1)–(D.4).

Lemma 5.2. There exists a unique crystal structure on the set of

tableaux T satisfying (D.1)–(D.4) such that T 7→ mT is a strict morphism,

i.e., it preserves εk, ϕk, wt and commutes with f̃k, ẽk.
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Proof. We transfer εk, ϕk, wt on monomials to those on tableaux via
T 7→ mT .

Let us define f̃k on tableaux. (ẽk can be defined in the same way.) In
general, f̃kmT 6= 0 can be written as mT ′ for a tableau T ′ which is obtained
by replacing an entry ia in T by a new one according to the rule described
in Figure 2. To define f̃k on tableaux, we need to specify the entry ia to be
replaced. There might be ambiguity when we have a pair (ia, ib) = (k, k + 1)
with grk( ia ) = grk( ib ). This happens when b−a = n− 1−k for a, b ≤ h
or h + 1 ≤ a, b and b− a = n− 1− k − r for a ≤ h, h + 1 ≤ b. In the first
case (or the second case with r = 0) we replace k by k + 1. In the second
case with r 6= 0 we replace k + 1 by k. Note that we are forced to take
these choices by (D.2)–(D.4). Now the assertion is clear.

Let us prove the statement (d) after Theorem 5.1 as we promised. From

(a), (c) we have a surjective map T 7→ mT . Since it commutes with ẽi

and f̃i, the injectivity follows if we check that ẽiT = 0 for all i implies

T = (1, . . . , `). But the proof of the statement (b) in [15], in fact, gives this

statement.

Let us next define a map σ`,h,r from tableaux satisfying (D.1)–(D.4)

to those where we increase r by 1, i.e., each ic `−2r−2c+1
is replaced by

ic `−2r−2c−1
for c ≥ h + 1. Almost all the cases, σ`,h,r(T ) is just T . But

the condition (D.4) is violated if there is a pair (ia, ib) = (k, k) such that

a ≤ h, h + 1 ≤ b and b− a = n− r− k− 1. We replace it by (k + 1, k + 1).

If there are several such pairs or this procedure yields a new such pair,

we replace them repeatedly starting from k = 1 to n − r − 1. We define

T ′ = σ`,h,r(T ) as the final result. As we have

k `−2a+1 k `−2r−2b+1 = k+1
`−2a+1

k+1
`−2r−2b+1

,

the procedure keeps the corresponding monomial unchanged if we do not

change r for the map T 7→ mT .

Let us check that σ`,h,r intertwines f̃k. By definition, σ`,h,rf̃kT is pos-

sibly different from f̃kσ`,h,rT if there is a pair (ia, ib) with a ≤ h, h + 1 ≤ b

such that the order of k-grades p = grk( ia ), q = grk( ib ) are changed by

σ`,h,r. If both ia and ib contribute to Yk,∗ in positive or negative powers,

the rule for f̃kT is changed accordingly. (See the proof of Lemma 5.2 how

f̃kT is defined.) Thus it is enough to study the case when one contributes

in positive, and the other in negative. For k = n − 1, n such a change

cannot occur. As grades can only be shifted by 2, for k ≤ n − 2 we have
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a possible change only when p + 2 = q for (ia, ib) = (k, k), and p = q for

(ia, ib) = (k + 1, k + 1). These are equivalent to

{
b− a = n− r − k − 1 if (ia, ib) = (k, k),

b− a = n− r − k − 2 if (ia, ib) = (k + 1, k + 1).

Therefore if there is no pair (ia, ib) = (k, k) with a ≤ h, h + 1 ≤ b and

b−a = n− r−k−1 for any k, then f̃kmT is unchanged when we increase r

by 1. But we have defined σ`,h,r exactly so that this condition is achieved.

Thus we have

σ`,h,rf̃kT = f̃kσ`,h,rT for all k ∈ I0.

This equality holds even if f̃kT = 0.

Similarly we define σ′
`,h,r(T ) as follows. When r = 1, we simply set it

T . Assume r > 1 hereafter. Suppose that there is a pair (ia, ib) = (k, k)

such that a ≤ h, h + 1 ≤ b and b − a = n − r − k + 1. We replace it

by (k − 1, k − 1). If there are several such pairs or this procedure yields

a new such pair, we replace them repeatedly starting from k = n − r to

3. We define σ′
`,h,r(T ) as the final result. As r ≤ n − ` − 1, we have

` + k ≥ b− a + k + 1 = n− r + 2 ≥ ` + 3. Therefore k ≤ 2 cannot happen,

so k − 1 ∈ B.

These maps are somewhat similar to one defined in [15, Prop. 3.2].

Now we introduce new conditions:

(D.5) Suppose that ih+1 = k ∈ {1, . . . , n− 1} and ih � ih+1. Then ih = k′

is also in {1, . . . , n − 1}, and the successive part (k ′, k′ − 1, . . . , k)

appears as (ib′ , ib′+1, . . . , ib) with n− r − k < b− h ≤ n− k − 1.

(D.6) Suppose that ih+1 = k ∈ {1, . . . , n− 1} and ih � ih+1. Then ih = k′

is also in {1, . . . , n− 1}, and the successive part (k ′, k′ + 1, . . . , k)

appears as (ia′ , ia′+1, . . . , ia) with n− r − k ≤ h− a < n− k − 1.

(D.7) If ih+1 = n or n, then ih � ih+1.

Note that (D.1) implies that the successive part in (D.5) occurs in

b′ > h + 1. This together with the second inequality (and b + k = b′ + k′)

implies k′ < n−2. Thus ih = n−1, n−2 cannot happen in (D.5). Similarly

ih+1 = n− 1, n− 2, cannot happen in (D.6).

Definition 5.3. Let D`,h,r be the set of tableaux T satisfying (D.1)–
(D.7).
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Remark 5.4. When r = 0, the conditions (D.1)–(D.7) are equivalent
to (1), (2) in Theorem 5.1.

Proposition 5.5. σ`,h,r defines a crystal isomorphism from D`,h,r to

D`,h,r+1. Its inverse is given by σ′
`,h,r+1.

As a corollary we have

Theorem 5.6. The map T 7→ mT induces a crystal isomorphism be-

tween D`,h,r and MI0(M`,h,r).

Proof. We first prove that the image of D`,h,r is contained in
MI0(M`,h,r) by the induction on r. This is true for r = 0 by Theorem 5.1.
Suppose it is true for r. First note that σ`,h,r maps T = (1, . . . , `) to
(1, . . . , `). Take T ∈ D`,h,r+1. By the induction hypothesis mσ′

`,h,r+1(T ) can

be written as

mσ′

`,h,r+1(T ) = f̃i1 f̃i2 · · · f̃iN M`,h,r

for N ≥ 0, ip ∈ I0. We then have

mT = f̃i1 f̃i2 · · · f̃iN M`,h,r+1.

This shows mT ∈MI0(M`,h,r+1).

As the crystal graph of MI0(M`,h,r) is connected by its definition, the
map is surjective.

By the induction on r, it follows that the only tableau T with ẽiT = 0
for all i ∈ I0 is the highest one T = (1, . . . , `). This shows that the strict
crystal morphism T 7→ mT is injective.

Proof of Proposition 5.5. It is enough to show that σ`,h,r is a set theo-
retical bijection, as we already observed that it is a strict crystal morphism.

When r = 0, there is no pair (ia, ib) = (k, k) to replace by (D.2)–(D.4).
Thus σ`,h,0 is just an identity. Also σ′

`,h,1 is an identity by definition. On
the other hand, the conditions (D.1)–(D.7) are the same for r = 0 and 1.
Therefore the assertion is true for r = 0. We assume r > 0 hereafter.

Suppose T satisfies (D.1)–(D.7). We show that σ`,h,r(T ) also satisfies
(D.1)–(D.7). The condition (D.1) is clearly satisfied. The condition (D.4)
with r replaced by r + 1 is satisfied by the definition of σ`,h,r.

We study the cases ih � ih+1 and ih � ih+1 separately.

Case (1): ih � ih+1.
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We assume ih+1 = k ∈ {1, . . . , n−1}. By (D.5) ih = k′ ∈ {1, . . . , n−1}
and there exists a successive part (k ′, . . . , k) = (ib′ , . . . , ib) with h + 1 ≤ b′,
n− r − k < b− h ≤ n− 1− k. The condition (D.2) automatically holds as
ih ∈ {1, . . . , n− 1}.

Suppose that ih is replaced during the procedure. Then in the middle
of the procedure, we find an entry i′B with i′B = k, B ≥ h + 1, B − h =
n−r−k−1. As i′B is obtained by replacing iB , we have i′B � iB . Therefore
B ≥ b. But this contradicts with (D.5) as

n− r − k − 1 = B − h ≥ b− h > n− r − k.

Therefore ih remains unchanged during the procedure. Therefore the pro-
cedure is performed for pairs (K,K) with K < k, so all (ih, ih+1, . . . , ib) are
also unchanged. Thus (D.5) remains true. Suppose (D.3) is violated, i.e.,
there exists (iA, iB) = (K,K) with B > A ≥ h + 1, B − A = n − 1 −K.
As K ≥ k, such a pair can appear only in (ih+1, . . . , ib). But this part is
unchanged, so (D.3) for r implies that this cannot happen. Thus (D.3) is
also satisfied.

We can similarly check the assertion when ih+1 ∈ {1, . . . , n− 1}.

Case (2): ih � ih+1.

Suppose that we apply the above procedure to a tableau T =
((i1, . . . , ih), (ih+1, . . . , i`)) to get a new tableau T ′ = ((j1, . . . , jh),
(jh+1, . . . , j`)). We separate the cases according to the order among jh

and jh+1.

Subcase (2.1): jh � jh+1 and ih+1 ∈ {1, . . . , n}.
As ih+1 is unchanged, jh � jh+1 can happen only when ih is replaced

during the procedure. Suppose that ih is replaced from k′ to m with
m ≥ k′ + 1. Then the procedure yields a successive part (jb, . . . , jb′′) =
(m, . . . , k′ + 1) with b− h = n− r −m. We have

m = jh � jh+1 = ih+1 � ih = k′.

Thus jh+1 can appear only in the successive part, so (D.5) is satisfied with
r replaced by r + 1.

The condition (D.2) is automatic. Suppose that (D.3) is violated, i.e.,
there exists (jA, jB) = (K,K) with B > A > h, B − A = n − 1 −K. We
have K ≥ jh+1 = ih+1 � ih = k′. Therefore jB can occur only in B ≤ b′′.
If jB appears outside of the successive part, then jB = iB and we have
a contradiction with (D.3) for the original tableau. If jB appears in the
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successive part, we have

n− 1−K = B −A < B − h = n− r −K.

As r ≥ 1, we have a contradiction.
Similarly we can check the assertion jh � jh+1 and ih ∈ {1, . . . , n}.

When ih ∈ {1, . . . , n}, ih+1 ∈ {1, . . . , n}, the inequality jh � jh+1 cannot
happen. Thus we checked the assertion when jh � jh+1.

Subcase (2.2): jh � jh+1.
The conditions (D.5)–(D.7) are satisfied by the assumption. Let

(ja, jb) = (k + 1, k + 1) with b − a = n − r − k − 1 be the pair obtained
by the last replacement in the procedure. We suppose that (D.2) is vio-
lated, i.e., we have a pair A < B ≤ h such that jA = K and jB = K
and B − A = n − 1 −K. As ic for a < c < b is unchanged by the above
procedure, the condition (D.2) for T implies that jA can appear only in
A ≤ a. Then n− 1−K = B − A = (a − A) + (B − b) + n− r − k − 1, so
K + a−A = b−B + r + k > k + 1. This inequality contradicts with (D.1)
as

k + 1 = ja ≥ jA + (a−A) > k + 1.

Thus (D.2) is satisfied. In the same way (D.3) is satisfied.
Next we show that σ′

`,h,r(T ) also satisfies (D.1)–(D.7). We may suppose
r ≥ 2. The condition (D.1) is clearly satisfied. The condition (D.4) with r
replaced by r − 1 is satisfied by the definition of σ ′

`,h,r.
Suppose that we apply the above procedure to a tableau T =

((i1, . . . , ih), (ih+1, . . . , i`)) to get a new tableau T ′ = ((j1, . . . , jh),
(jh+1, . . . , j`)). Let (ia, ib) = (k, k) with a ≤ h, h+1 ≤ b, b−a = n−r−k+1
be the first pair replaced in the procedure. Suppose that (D.2) is vio-
lated, i.e., we have a pair A < B ≤ h such that jA = K and jB = K
and B − A = n − 1 − K. As ic for a < c < b is unchanged by the
above procedure, we have A ≤ a. If iA = jA, i.e., iA is not unchanged,
we have a contradiction with (D.2) for T . Therefore iA ≥ jA + 1. We
have n − 1 − K = B − A = (a − A) + (B − b) + n − r − k + 1, so
K + a − A = b − B + r + k − 2 > k − 1. This inequality contradicts
with (D.1) as

k = ia ≥ iA + (a−A) ≥ jA + 1 + (a−A) > k.

So (D.2) is satisfied by T ′. In the same way (D.3) is satisfied by T ′.
In order to check the remaining conditions, we treat the cases separately

according the ordering among ih, ih+1.
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Case (a): ih � ih+1.

This inequality is preserved during the procedure. Therefore we have
jh � jh+1, so (D.5)–(D.7) are preserved.

Case (b): ih � ih+1 and ih+1 = k ∈ {1, . . . , n− 1}.
Take the successive part (k′, k′ − 1, . . . , k) = (ib′ , ib′+1, . . . , ib) with ih =

k′ as in (D.5). Suppose that an entry in the successive part is replaced
during the procedure, i.e., we replace a pair (iA, iB) = (K,K) with A ≤ h,
b′ ≤ B ≤ b with B −A = n− r −K + 1. The inequality in (D.5) implies

n− r −K + 1 ≤ b− h + k −K = B − h ≤ B −A.

So this can happen only when two inequalities are equalities, i.e., n − r −
k + 1 = b − h and A = h. And in such case, we really replace the pair by
the definition of σ′

`,h,r.

Subcase (b.1): ih is unchanged.

As we observed above, the successive part remains unchanged. By (D.5)
we have n− r− k < b− h ≤ n− k − 1. And the case b− h = n− r − k + 1
is excluded as we have just observed. Therefore the left hand side of the
inequality can be improved to n− r − k + 1. This shows that (D.5) with r
replaced by r − 1 is satisfied.

Subcase (b.2): ih is changed.

Suppose that ih is changed, say from k′ to jh = m with m ≤ k′ − 1.
Then ib′ = k′ is replaced by k − 1, ib′+1 is replaced by k − 2, and so on.
This procedure continues at least until we replace ib by k − 1. Thus m < k.
This is equivalent to jh < jh+1. Thus we have (D.2)–(D.4).

If ih � ih+1, we get jh � jh+1 as the procedure preserves this in-
equality. Thus if ih � ih+1, we have a successive part (k′, k′ + 1, . . . , k) =
(ia′ , ia′+1, . . . , ia) with ih+1 = k. Therefore the procedure continues at least
until ih+1 is replaced by k′ − 1, i.e., m < k′. Therefore jh � jh+1.

Case (c): ih � ih+1 and ih+1 ∈ {1, . . . , n}.
This case can be proved in the same way as in case (b).

Finally it is clear that σ`,h,r and σ′
`,h,r+1 are mutually inverse. All

replaced pairs (k + 1, k + 1) are returned back to (k, k). And we do not
have extra replacements by (D.4).

When r = 0, MI0(M`,h,0) is independent of h. Therefore we get a

crystal isomorphism between any pair MI0(M`,h,r) and MI0(M`,h′,r′) as a

composite of various σ`,h′′,r′′ and σ′
`,h′′,r′′ .
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For a later purpose we explicitly write down the crystal isomorphism

τ`,h,r : D`,h,r
∼=MI0(M`,h,r) −→ D`,h+1,r

∼=MI0(M`,h+1,r).

This is the composite σ`,h+1,r−1σ`,h+1,r−2 · · · σ`,h+1,0σ
′
`,h,1σ

′
`,h,2 · · · σ

′
`,h,r. All

replaced pairs (k − 1, k − 1) are returned back to (k, k) except for those

ih+1 = k − 1. Also we may have extra replacements for ih = k − 1.

Let T = ((i1, . . . , ih), (ih+1, . . . , i`)). We describe τ`,h,r(T ) in the fol-

lowing three cases separately.

(D.a) ih+1 = k ∈ {1, . . . , n−1} and there is an entry ib = k with n−r−k <

b− h ≤ n− 1− k.

(D.b) ih+1 = k ∈ {1, . . . , n− 1} and there is an entry ia = k with n−r−k ≤
h− a < n− 1− k.

(D.c) Neither (D.a) nor (D.b) is not satisfied.

In the case (D.c) we simply have

τ`,h,r(T ) = ((i1, . . . , ih+1), (ih+2, . . . , i`)).

Next suppose we are in the case (D.a). As was explained in the para-

graph just after (D.7), the inequalities imply b > h+1 and k < n−2. Start-

ing from ib, we go back ib−1, ib−2, . . . while entries are successive. Let ib′′ be

the ending entry, so (ib′′ , ib′′+1, . . . , ib) are successive as (k′′, k′′ + 1, . . . , k)

and ib′′−1 6= k′′ − 1. Also by the same reasoning as above, we have k ′′ <

n− 2. We then have

τ`,h,r(T ) = ((i1, . . . , ih, k′′ + 1),

(ih+2, . . . , ib′′−1, k′′ + 1, k′′, . . . , k + 1, ib+1, . . . , i`)).

Similarly in the case (D.b), we take ia′′ so that (ia′′ , ia′′+1, . . . , ia) =

(k′′, k′′ + 1, . . . , k) and ia′′−1 6= k′′ − 1. We have k < n− 2. We then have

τ`,h,r(T ) = ((i1, . . . , ia′′−1, k
′′ − 1, . . . , k − 1, ia+1, . . . , ih, k′′ − 1),

(ih+2, . . . , i`)).

5.1.3. Now we study B($`) for 2 ≤ ` ≤ n − 2. Let M0,0 =

Y`,0Y
−1
0,`−1Y

−1
0,`+1 = 1 `−1 2 `−3 · · · ` 1−`. Then M(M0,0) ' B($`) by

Proposition 3.4.
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For 0 ≤ j ≤ `, we set

Mj,0 =
(

1 2n−`+2j−5 2 2n−`+2j−7 · · · j
2n−`−3

)

×
(

j+1
`−1

j+2
`−3
· · · ` 1−`+2j

)

=

j∏

a=1

a 2n−`−2a+2j−3 ×
∏̀

a=j+1

a `−2a+2j+1

=





Y`,0Y
−1
0,`−1Y

−1
0,`+1 if j = 0,

Y`,2Y
−1
0,`+1Y

−1
0,2n−`−1Y

−1
1,`+1Y1,2n−`−3 if j = 1,

Y`,2jY
−1
0,2n−`+2j−5Y

−1
0,2n−`+2j−3Y

−1
j,`+jYj,2n−`+j−4 otherwise.

Note that M`,0 = τ2n−4(M0,0).

For a tableau T = ((i1, . . . , ij), (ij+1, . . . , i`)) we define mT ;j,0 by re-

placing the ath-entry by ia.

Claim. We have Mj,0 ∈M(M0,0) for 0 ≤ j ≤ `.

In fact, by Theorem 5.6 we have mT ;j,0 with T = (3, . . . , `+1, 2) is con-

tained inMI0(Mj,0) as Mj,0 = m(1,...,`);j,0. Then we get f̃0mT ;j,0 = mT ′;j+1,0

with T ′ = (1, 3, 4, . . . , ` + 1). Again by Theorem 5.6 this is contained in

MI0(Mj+1,0) as Mj+1,0 = m(1,...,`);j+1,0. By induction we obtain the claim.

We have wt(Mj,0) = $` − jδ. Thus M1,0 = z−1
` (M0,0). As M`,0 =

τ2n−4(M0,0), B(M0,0) is preserved under τ2n−4 and we have (z`)
−` = τ2n−4.

As in type A
(1)
n , it is enough to study M(M0,0)/τ2n−4. We extend the

definition of Mj,0 from 0 ≤ j ≤ ` to all j ∈ Z so that Mj+`,0 = τ2n−4Mj,0.

The same applies to other various other monomials introduced below though

we do not mention it hereafter.

If we apply ẽ0 to Mj,0, we get the monomial given by replacing 2 ∗ by

1 4−2n+∗, that is

ẽ0(Mj,0) =

j∏

a=3

a 2n−`−2a+2j−3 ×
∏̀

a=max(j+1,3)

a `−2a+2j+1

×





1 `−1 1 `−2n+1 if j = 0,

1 2n−`−3 1 `−2n+3 if j = 1,

1 2n−`+2j−5 1 −`+2j−3 if 2 ≤ j ≤ `.
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Let Nj,1 denote 1 ∗ 1 ∗ in the right hand side. We have

Nj,1 =





Y0,`−3Y
−1
0,`+1 if j = 0,

Y0,`−1Y
−1
0,2n−`−1Y

−1
1,`+1Y1,2n−`−3 if j = 1,

Y0,2n−`+2j−7Y
−1
0,2n−`+2j−3 if 2 ≤ j ≤ `.

We define Mj,1 by replacing a ∗ by a−2
∗

for a ≥ 3 and 2 ∗ by

1 4−2n+∗ in Mj,0, that is

Mj,1 =

j−2∏

a=1

a 2n−`−2a+2j−7 ×
`−2∏

a=max(j−1,1)

a `−2a+2j−3 ×Nj,1.

We have

wt(Mj,1) = $` − jδ + α0 +

`−2∑

a=1

(αa + αa+1)

= $` − (j − 1)δ − α`−1 − 2α` − 2α`+1 − · · · − 2αn−2 − αn−1 − αn

= $`−2 − (j − 1)δ.

We recursively define Mj,k by replacing a ∗ by a−2
∗

for a ≥ 3 and 2 ∗

by 1 4−2n+∗ in Mj,k−1 until all boxes are either 1 ∗ or 1 ∗. We have

k = 0, . . . , b`/2c where b`/2c is the largest integer which does not exceed

`/2 (the integer part of `/2). We define Nj,k in the same way. We have

wt(Mj,k) = $`−2k − (j − k)δ.

Let us give Mj,k, Nj,k explicitly.

(1) k < bj/2c:

Nj,k =

k∏

a=1

(
1 2n−`−4a+2j−1 1 −`−4a+2j+1

)

= Y0,2n−`−4k+2j−3Y
−1
0,2n−`+2j−3,

Mj,k = Nj,k ×

j−2k∏

a=1

a 2n−`−4k−2a+2j−3 ×
`−2k∏

a=j−2k+1

a `−2(a−j+2k)+1,

= Y`−2k,2j−2kY
−1
0,2n−`−4k+2j−5Y

−1
0,2n−`+2j−3

× Y −1
j−2k,j+`−2kYj−2k,2n−`+j−2k−4
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(2) j is odd and k = (j − 1)/2:

Nj,(j−1)/2 = Y0,2n−`−5Y
−1
0,2n−`+2j−3,

Mj,(j−1)/2 = Nj,(j−1)/2 × 1 2n−`−3 ×

`−j+1∏

a=2

a `−2a+3

= Y −1
0,`+1Y

−1
0,2n−`+2j−3Y

−1
1,`+1Y1,2n−`−3Y`−j+1,j+1,

(3) j is even and k ≥ j/2:

Nj,k = Nj,j/2 ×

k−j/2∏

a=1

(
1 `−4a+3 1 `−4a−2n+5

)

= Y0,`−4k+2j+1Y
−1
0,`+1Y0,2n−`−3Y

−1
0,2n−`+2j−3,

Mj,k = Nj,k ×
`−2k∏

a=1

a `−2a−4k+2j+1

=





Y0,−`+2j+1Y
−1
0,`+1Y0,2n−`−3Y

−1
0,2n−`+2j−3 if k = `/2,

Y −1
0,`+1Y0,2n−`−3Y

−1
0,2n−`+2j−3Y1,−`+2j+1 if k = (`− 1)/2,

Y −1
0,`−4k+2j−1Y

−1
0,`+1Y0,2n−`−3

× Y −1
0,2n−`+2j−3Y`−2k,2j−2k otherwise,

(4) j is odd and k ≥ (j + 1)/2:

Nj,k = Nj,(j−1)/2 × 1 2n−`−3 1 `−2n+3

×

k−(j+1)/2∏

a=1

(
1 `−4a+1 1 `−4a−2n+3

)

= Y0,`−4k+2j+1Y
−1
0,2n−`+2j−3Y

−1
1,`+1Y1,2n−`−3,

Mj,k = Nj,k ×
`−2k∏

a=1

a `−2a−4k+2j+1

=





Y0,−`+2j+1Y
−1
0,2n−`+2j−3Y

−1
1,`+1Y1,2n−`−3 if k = `/2,

Y −1
0,2n−`+2j−3Y1,−`+2j+1Y

−1
1,`+1Y1,2n−`−3 if k = (`− 1)/2,

Y −1
0,`−4k+2j−1Y

−1
0,2n−`+2j−3Y

−1
1,`+1

× Y1,2n−`−3Y`−2k,2j−2k otherwise.
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All Mj,k satisfy ẽiMj,k = 0 for all i ∈ I0. The monomials appearing in

MI0(Mj,k) ∼= BI0($`−2k) can be described as in the previous subsection.

Indeed for k 6= `/2 let us define a monomial mT ;j,k associated with a tableau

T = ((i1, . . . , ij−2k), (ij−2k+1, . . . , i`−2k)) ∈ D`−2k,j−2k,n−`−2 by

(1) k < bj/2c:

mT ;j,k = Nj,k

j−2k∏

a=1

ia 2n−`−4k−2a+2j−3
×

`−2k∏

a=j−2k+1

ia `−2(a−j+2k)+1
,

(2) j is odd and k = (j − 1)/2:

mT ;j,(j−1)/2 = Nj,k × i1 2n−`−3

`−j+1∏

a=2

ia `−2a+3
,

(3) j is even and k ≥ j/2:

mT ;j,k = Nj,k ×
`−2k∏

a=1

ia `−2a−4k+2j+1
,

(4) j is odd and k ≥ (j + 1)/2:

mT ;j,k = Nj,k ×
`−2k∏

a=1

ia `−2a−4k+2j+1
.

(For the case (4) the Y −1
1,`+1Y1,2n−`−3 does not change anything because all

other Y ±
1,r satisfy r < ` + 1.) For k = `/2 we set D0,j−`,n−`−2 = {∅} and

define m∅;j,k by the same formula as in (3), (4) where the last product is

understood as 1. If k > j/2, we set D`−2k,j−2k,n−`−2 = D`−2k,0,0, i.e., the

set of tableaux whose suffixes do not jump.

As Mj,0 ∈ M(M0,0), it becomes clear by induction on k that all Mj,k

are in M(M0,0), and so by using Theorem 5.6 all mT ;j,k are in M(M0,0)

(the argument is similar to one for the type A
(1)
n ).

As wt(Mj,0) = $` − jδ, we have z−1
` (Mj,0) = Mj+1,0 by the reason

explained in the beginning of this section. Then from the definition of Mj,k

we have z−1
` (Mj,k) = Mj+1,k. Let us consider τ`−2k,j−2k,n−`−2, where we

understand it as the identity map when k > j/2. It maps Mj,k to Mj+1,k
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and respects the I0-crystal structure. Since such a map is unique, we have

z−1
` = τ`−2k,j−2k,n−`−2 :MI0(Mj,k)→MI0(Mj+1,k).

We can describe Kashiwara operators ẽi, f̃i in terms of tableaux as in

type A
(1)
n . For i 6= 0, it is basically explained in the proof of Lemma 5.2.

So let us consider the case ẽ0, f̃0. We get that ẽ0(mT ;j,k) is equal to





m(i3,...,i`−2k);j,k+1 if i2 = 2 and i`−2k−1 � 2,

m(i1,...,i`−2k,2,1);j−2,k−1 if i2 � 2, i`−2k � 2 and k > 0,

m(i2,...,i`,3−i1);j−1,0 if i1 � 2, i2 � 2, i` � 2 and k = 0,

0 otherwise,

and that f̃0(mT ;j,k) is equal to





m(1,2,i1,...,i`−2k);j,k−1 if i1 � 2, i`−2k−1 � 2 and k > 0,

m(i1,...,i`−2k−2);j+2,k+1 if i`−2k−1 = 2 and i2 � 2,

m(3−i`,i1,...,i`−1);j+1,0 if i1 � 2, i`−1 � 2, i` � 2 and k = 0,

0 otherwise,

where we denote 1 = 1 and 2 = 2, and we extend the definition of mT ;j,k

from 0 ≤ j ≤ `−1 to all j ∈ Z so that mT ;j+` = τ2n−4mT ;j. We understood

that the condition ‘i2 = 2’ is not satisfied when k = b`/2c (and hence there

is no entry i2). Similarly ‘i2 � 2’ is satisfied when k = b`/2c. The same

rules apply to other conditions. And we will use the same conventions for

other classical types.

As we have checked the stability for operators ẽ0, f̃0, all the monomials

appearing inM(M0,0) are the τ2n−4-images of the mT ;j,k.

In particular, we can describe the I0-crystal structure of B(W ($`)) as

B(W ($`)) 'M(M0,0)/z`

=MI0(M0,0) tMI0(M0,1) t · · · tMI0(M0,b`/2c)

' BI0($`) t BI0($`−2) t · · · t

{
BI0($1) if ` is odd,

BI0(0) if ` is even.

In fact, this last result is well-known.

As an application of the description of what we just obtained, we con-

struct an explicit bijection between two sets of monomials, one is

M(M0,0)/z`, the other is those appearing in the q-characters of W ($`)
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counted with multiplicities. Recall the conditions (1), (2) in Theorem 5.1.

In [32] we proved that the q-character of W ($`) is given by the sum of

monomials corresponding to T = (i1, . . . , i`) satisfying (1) alone. We then

defined l(T ) as the number of pairs as in (2). Now we define the bijection

{T = (i1, . . . , i`) | T satisfies (1), l(T ) = d}

←→ {T ′ = (i1, . . . , i`−2d) | T
′ satisfies (1), (2)}

by letting T ′ be the tableaux obtained by removing all the pairs violating

(2) in T .

This bijection cannot be expressed in terms of monomials in a simple

way unlike type A case.

As another application, we get a description of the crystal B(W ($`))

in terms of tableaux. Namely we identify it with {mT ;0,k | 0 ≤ k ≤ b`/2c}.
Then we express ẽ0mT ;0,k, f̃0mT ;0,k as mT ′;0,k′ , mT ′′;0,k′′ by the above for-

mula composed with the crystal automorphism τ`,h,r for suitable h, r. This

description is similar to one in [24], [37], probably the same if we use the

isomorphism between our D`,0,0 and Kashiwara-Nakashima’s tableaux [23]

in [15]. Note that the uniqueness of the crystal base of W ($`) was proved

in [24].

5.1.4. Spin representations

Finally we consider the case ` = n − 1 or n. Following [32], [15] we

define the half size numbered box as

i p =





Y1,p−1 if i = 1,

Y −1
1,p+1Y2,pY

−1
0,p+1 if i = 2,

Y −1
i−1,p+i−1Yi,p+i−2 if 3 ≤ i ≤ n− 2,

Y −1
n−2,p+n−2 if i = n− 1,

Yn,p+n−1 if i = n,

i p =





Y0,p+2n−1 if i = 1,

1 if 2 ≤ i ≤ n− 2,

Y −1
n−1,p+n+1Y

−1
n,p+n+1 if i = n− 1,

Yn−1,p+n−1 if i = n.

Let M = Y`,0Y
−1
0,n−2 =

∏n−1
a=1 a n+1−2a × n 1−n (` = n) or

∏n−1
a=1 a n+1−2a ×

n 1−n (` = n− 1). We have M(M) ' B($`) by Corollary 3.3.

Let B+
sp (resp. B−sp) be the set of tableaux T = (i1, . . . , in) satisfying
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(1) ia ∈ B, i1 ≺ i2 ≺ · · · ≺ in,

(2) i and i do not appear simultaneously,

(3) if ia = n, n− a is even (resp. odd),

(4) if ia = n, n− a is odd (resp. even).

We define mT by

mT =

n∏

a=1

ian+1−2a
.

Then BI0(M) is {mT | T ∈ B±sp}, where ± is − if ` = n − 1 and + if

` = n. Let T = (3, 4, 5, . . . , n − 1, n, 2, 1) for ` = n or T = (3, 4, 5, . . . , n −
1, n, 2, 1) for ` = n − 1. Then mT = Y −1

2,n+1Y`,4Y0,n. Applying f̃0 to mT ,

we get Y`,4Y
−1
0,n+2 = τ4(M). As this has weight wt(M) − δ, it follows that

τ4(M) = z−1
` (M) as before. As a consequence, we have z` = τ−4 and

B(W ($`)) 'M(M)/τ4.

We describe the action of ẽ0, f̃0. We have

ẽ0(mT ) =

{
τ−4(m(i3,...,in,2,1)) if i2 = 2,

0 otherwise,

f̃0(mT ) =

{
τ4(m(1,2,i1,...,in−2)) if in−1 = 2,

0 otherwise.

So the above are all the monomials in M(M)/τ4. So we recover a well-

known result B(W ($`)) ' BI0($`). The map Y0,∗ 7→ 1 gives a bijection

between {mT | T ∈ B
±
sp} and the monomials appearing in q-characters of

W ($`), where all the multiplicities are 1 in these cases.

5.2. Type B
(1)
n

We can describe monomial crystals of other classical types by a similar

method. We just state the result without proofs.

Let B = {1, . . . , n, 0, n, . . . , 1}. We give the ordering ≺ on the set B by

1 ≺ 2 ≺ · · · ≺ n ≺ 0 ≺ n ≺ · · · ≺ 2 ≺ 1.

For p ∈ Z, we define

1 p = Y −1
0,p+2Y1,p, 2 p = Y −1

0,p+2Y
−1
1,p+2Y2,p+1,

i p = Y −1
i−1,p+iYi,p+i−1 (3 ≤ i ≤ n− 1),
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n p = Y −1
n−1,p+nY 2

n,p+n−1,

0 p = Y −1
n,p+n+1Yn,p+n−1,

n p = Yn−1,p+nY −2
n,p+n+1,

i p = Yi−1,p+2n−iY
−1
i,p+2n+1−i (3 ≤ i ≤ n− 1),

2 p = Y0,p+2n−2Y1,p+2n−2Y
−1
2,p+2n−1, 1 p = Y0,p+2n−2Y

−1
1,p+2n.

5.2.1. First consider the case ` = 1. Let M = Y1,0Y
−1
0,2 . It follows from

Corollary 3.3 that M(M) ' B($`). The crystal graph of M(M) is given

in Figure 3. We find τ2n−2 = z−1
` andM(M)/τ2n−2 =MI0(M).

1 0 2 0 n 0 0 0 n 0 2 0 1 0

1 2 n n−1nn−1 2 1

0[2n−2]

0[2n−2]

Figure 3: (Type B
(1)
n ) the crystal B($1)

5.2.2. Preliminary results for crystals of finite type B

Let 1 ≤ ` ≤ n−1, 0 ≤ r ≤ n−` and 0 ≤ h ≤ `. Consider the monomial

M`,h,r = Yh,`−hY −1
h,`−h−2rY`,−2r

=
(

1 `−1 2 `−3 · · · h `−2h+1

)

×
(

h+1
`−2h−2r−1

h+2
`−2h−2r−3

· · · ` 1−`−2r

)

=

h∏

p=1

p
`−2p+1

×
∏̀

p=h+1

p
`+1−2p−2r

.

For T = ((i1, . . . , ih), (ih+1, . . . , i`)) such that ip ∈ B, we define the mono-

mial

mT = i1 `−1
i2 `−3

· · · ih `−2h+1
ih+1

`−1−2h−2r
ih+2

`−2h−3−2r
· · · i` −`+1−2r

.

Let B`,h,r be the set of tableaux T satisfying the following conditions

(B.1) ia ∈ B, i1 ≺ i2 ≺ · · · ≺ ih but 0 can be repeated, and ih+1 ≺ ih+2 ≺
· · · ≺ i` but 0 can be repeated.
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(B.2) There is no pair a, b such that 1 ≤ a < b ≤ h and ia = k, ib = k and

b− a = n− k.

(B.3) There is no pair a, b such that h + 1 ≤ a < b ≤ ` and ia = k, ib = k

and b− a = n− k.

(B.4) There is no pair a, b such that a ≤ h, h + 1 ≤ b, ia = k, ib = k and

b− a = n + 1−max(r, 1) − k.

(B.5) Suppose that ih+1 = k ∈ {1, . . . , n} and ih � ih+1. Then ih = k′ is

also in {1, . . . , n}, and the successive part (k ′, k′ − 1, . . . , k) appears

as (ib′ , ib′+1, . . . , ib) with n− r − k + 1 < b− h ≤ n− k.

(B.6) Suppose that ih+1 = k ∈ {1, . . . , n} and ih � ih+1. Then ih = k′ is

also in {1, . . . , n}, and the successive part (k ′, k′ + 1, . . . , k) appears

as (ia′ , ia′+1, . . . , ia) with n− r − k + 1 ≤ h− a < n− k.

(B.7) If ih+1 = 0, then ih � 0.

Note that the conditions above are the same as the ones in [15] when

r = 0.

For T = ((i1, . . . , ih), (ih+1, . . . , i`)) ∈ B`,h,r we define the tableau

τ`,h,r(T ) in the following three cases separately.

(B.a) ih+1 = k ∈ {1, . . . , n} and there is an entry ib = k with n−r−k+1 <

b− h ≤ n− k.

(B.b) ih+1 = k ∈ {1, . . . , n} and there is an entry ia = k with n−r−k+1 ≤
h− a < n− k.

(B.c) Neither (B.a) nor (B.b) is not satisfied.

In the case (B.a), let b′′ such that (ib′′ , ib′′+1, . . . , ib) are successive as

(k′′, k′′ + 1, . . . , k) and ib′′−1 6= k′′ − 1. We have k′′ < n− 1. We set

τ`,h,r(T ) = ((i1, . . . , ih, k′′ + 1),

(ih+2, . . . , ib′′−1, k′′+1, k′′, . . . , k + 1, ib+1, . . . , i`)).

Similarly in the case (B.b), we take ia′′ so that (ia′′ , ia′′+1, . . . , ia) =

(k′′, k′′ + 1, . . . , k) and ia′′−1 6= k′′ − 1. We have k < n− 1. We then set

τ`,h,r(T ) = ((i1, . . . , ia′′−1, k
′′ − 1, . . . , k − 1, ia+1, . . . , ih, k′′ − 1),

(ih+2, . . . , i`)).

In the case (B.c) we set

τ`,h,r(T ) = ((i1, . . . , ih+1), (ih+2, . . . , i`)).
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Theorem 5.7. (1) The map T 7→ mT induces a crystal isomorphism

between B`,h,r and MI0(M`,h,r).
(2) τ`,h,r induces a crystal isomorphism from MI0(M`,h,r) to

MI0(M`,h+1,r).

5.2.3. Now we study B($`) for 2 ≤ ` ≤ n − 1. Let M0,0 = Y`,0Y
−1
0,`−1

Y −1
0,`+1 = 1 `−1 2 `−3 · · · ` 1−`. For ` 6= n − 1 we have f̃2f̃3 · · · f̃`M0,0 =

Y −1
0,`+1Y1,`−1Y

−1
2,` Y`+1,1 and for ` = n − 1 we have f̃2f̃3 · · · f̃`M0,0 = Y −1

0,`+1

Y1,`−1Y
−1
2,` Y 2

n,1. By a method similar to the proof of Proposition 3.4 we have

M(M0,0) ' B($`).

For 0 ≤ j < `, 0 ≤ k < `/2, let us define the monomial mT ;j,k associated

with T = ((i1, . . . , ij−2k), (ij−2k+1, · · · , i`−2k)) ∈ B`−2k,j−2k,n−`−1 by

(1) k < bj/2c:

mT ;j,k = Y0,2n−`−4k+2j−1Y
−1
0,2n−`+2j−1

j−2k∏

a=1

ia 2n−`−4k−2a+2j−1

×
`−2k∏

a=j−2k+1

ia `−2(a−j+2k)+1
,

(2) j is odd and k = (j − 1)/2:

mT ;j,(j−1)/2 = Y0,2n−`−3Y
−1
0,2n−`+2j−1 i1 2n−`−1

`−j+1∏

a=2

ia `−2a+3
,

(3) j is even and k ≥ j/2:

mT ;j,k = Y0,`−4k+2j+1Y
−1
0,`+1Y0,2n−`−1Y

−1
0,2n−`+2j−1

×
`−2k∏

a=1

ia `−2a−4k+2j+1
,

(4) j is odd and k ≥ (j + 1)/2:

mT ;j,k = Y0,`−4k+2j+1Y
−1
0,2n−`+2j−1Y

−1
1,`+1Y1,2n−`−1

×
`−2k∏

a=1

ia `−2a−4k+2j+1
.
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For ` = k/2 we set B0,j−`,n−`−1 = {∅} and define m∅;j,k by the same

formula as in (3), (4) where the last product is understood as 1. We extend

the definition of mT ;j,k for all j ∈ Z so that mT ;j+`,k = τ2n−2mT ;j,k.

We describe the action of ẽ0, f̃0. We get that ẽ0(mT ;j,k) is equal to





m(i3,...,i`−2k);j,k+1 if i2 = 2 and i`−2k−1 � 2,

m(i1,...,i`−2k,2,1);j−2,k−1 if i2 � 2, i`−2k � 2 and k > 0,

m(i2,...,i`,3−i1);j−1,0 if i1 � 2, i2 � 2, i` � 2 and k = 0,

0 otherwise,

and that f̃0(mT ;j,k) is equal to





m(1,2,i1,...,i`−2k);j,k−1 if i1 � 2, i`−2k−1 � 2 and k > 0,

m(i1,...,i`−2k−2);j+2,k+1 if i`−2k−1 = 2 and i2 � 2,

m(3−i`,i1,...,i`−1);j+1,0 if i1 � 2, i`−1 � 2, i` � 2 and k = 0,

0 otherwise.

So all monomials of M(M0,0) are connected to either Mj,k (0 ≤ j < `,

0 ≤ k ≤ b`/2c) or their τ2n−2 images in the I0-crystal, thus

M(M0,0)/τ2n−2 =
⊔

0≤j<`,0≤k≤b`/2c

MI0(Mj,k).

Moreover for 0 ≤ j ≤ `− 1, 0 ≤ k < b`/2c we have

(z`)
−1(mT ;j,k) = mτ`−2k,j−2k,n−`−1(T );j+1,k.

We have τ2n−2 = (z`)
−`, and all monomials in M(M0,0)/τ2n−2 are written

as mT ;j,k. The crystal automorphism z` is given by τ−1
`−2k,j−2k,n−`−1.

So we get

B(W ($`)) ' BI0($`) t BI0($`−2) t · · · t

{
BI0($1) if ` is odd,

BI0(0) if ` is even.

Our crystal structure described here is probably the same as one in [24]

if we use the isomorphism between our B`,0,0 and Kashiwara-Nakashima’s

tableaux [23] in [15]. Note that the uniqueness of the crystal base of W ($`)

was proved in [24].
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5.2.4. Finally we consider the case ` = n. Let M = Yn,0Y
−1
0,n−1. It

follows from Corollary 3.3 that M(M) ' B($`).

Let

i p =





Y1,p−1 if i = 1,

Y −1
1,p+1Y2,pY

−1
0,p+1 if i = 2,

Y −1
i−1,p+i−1Yi,p+i−2 if 3 ≤ i ≤ n− 1,

Y −1
n−1,p+n−1 if i = n,

Yn,p+n if i = 0,

i p =





Y0,p+2n+1 if i = 1,

1 if 2 ≤ i ≤ n− 1,

Y −2
n,p+n+2 if i = n.

Then the monomials appearing inMI0(M) are mT =
∏n+1

a=1 ian+2−2a
asso-

ciated with a tableau T = (i1, . . . , in+1) satisfying the conditions

(1) ia ∈ B, i1 ≺ i2 ≺ · · · ≺ in+1,

(2) i and i do not appear simultaneously.

We have z` = τ−4. We describe the action of ẽ0, f̃0: we have

ẽ0(mT ) =

{
τ−4(m(i3,...,in+1,2,1)) if i2 = 2,

0 otherwise,

f̃0(mT ) =

{
τ4(m(1,2,i1,...,in−1)) if in = 2,

0 otherwise.

So all monomials in M(M)/τ4 are written as mT . As an application, we

recover a known result B(W ($`)) = BI0($`).

By the condition (2) there is always an entry ia = 0. If we remove this

entry, we get the tableaux description in [23].

5.3. Type C
(1)
n

Let B = {1, . . . , n, n, . . . , 1}. We give the ordering ≺ on the set B by

1 ≺ 2 ≺ · · · ≺ n ≺ n ≺ · · · ≺ 2 ≺ 1.

For p ∈ Z, we define

i p = Y −1
i−1,p+iYi,p+i−1 (1 ≤ i ≤ n),

i p = Yi−1,p+2n−iY
−1
i,p+2n+1−i (1 ≤ i ≤ n).
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5.3.1. First consider the case ` = 1. Let M = Y −1
0,1 Y1,0. It follows from

Corollary 3.3 that M(M) ' B($`). The crystal graph of M(M) is given

in Figure 4. We find τ2n = z−1
` andM(M)/τ2n =MI0(M).

1 0 2 0 n 0 n 0 2 0 1 0

1 2 n n−1n−1 2 1

0[2n]

Figure 4: (Type C
(1)
n ) the crystal B($1)

5.3.2. Preliminary results for crystals of finite type C

Let 1 ≤ ` ≤ n, 0 ≤ r ≤ n− ` and 0 ≤ h ≤ `. Consider the monomial

M`,h,r = Yh,`−hY
−1
h,`−h−2rY`,−2r

=
(

1 `−1 2 `−3 · · · h `−2h+1

)

×
(

h+1
`−2h−2r−1

h+2
`−2h−2r−3

· · · ` 1−`−2r

)

=

h∏

p=1

p
`−2p+1

×
∏̀

p=h+1

p
`+1−2p−2r

.

For T = ((i1, . . . , ih), (ih+1, . . . , i`)) such that ip ∈ B, we define the mono-

mial

mT = i1 `−1
i2 `−3

· · · ih `−2h+1
ih+1

`−1−2h−2r
ih+2

`−2h−3−2r
· · · i` −`+1−2r

.

Let C`,h,r be the set of tableaux T satisfying the following conditions

(C.1) ia ∈ B, i1 ≺ i2 ≺ · · · ≺ ih, and ih+1 ≺ ih+2 ≺ · · · ≺ i`.

(C.2) There is no pair a, b such that 1 ≤ a < b ≤ h and ia = k, ib = k and

b− a = n− k.

(C.3) There is no pair a, b such that h + 1 ≤ a < b ≤ ` and ia = k, ib = k

and b− a = n− k.

(C.4) There is no pair a, b such that a ≤ h, h + 1 ≤ b, ia = k, ib = k and

b− a = n + 1−max(r, 1) − k.

(C.5) Suppose that ih+1 = k ∈ {1, . . . , n} and ih � ih+1. Then ih = k′ is

also in {1, . . . , n}, and the successive part (k ′, k′ − 1, . . . , k) appears

as (ib′ , ib′+1, . . . , ib) with n− r − k + 1 < b− h ≤ n− k.
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(C.6) Suppose that ih+1 = k ∈ {1, . . . , n} and ih � ih+1. Then ih = k′ is

also in {1, . . . , n}, and the successive part (k ′, k′ + 1, . . . , k) appears

as (ia′ , ia′+1, . . . , ia) with n− r − k + 1 ≤ h− a < n− k.

Note that the conditions above are the same as the ones in [15] when

r = 0. Note also that we only have r = 0 when ` = n.

For T = ((i1, . . . , ih), (ih+1, . . . , i`)) ∈ C`,h,r we define the tableau

τ`,h,r(T ) in the following three cases separately.

(C.a) ih+1 = k ∈ {1, . . . , n} and there is an entry ib = k with n−r−k+1 <

b− h ≤ n− k.

(C.b) ih+1 = k ∈ {1, . . . , n} and there is an entry ia = k with n−r−k+1 ≤
h− a < n− k.

(C.c) Neither (C.a) nor (C.b) is not satisfied.

In the case (C.a), let b′′ such that (ib′′ , ib′′+1, . . . , ib) are successive as

(k′′, k′′ + 1, . . . , k) and ib′′−1 6= k′′ − 1. We have k′′ < n− 1. We set

τ`,h,r(T ) = ((i1, . . . , ih, k′′ + 1),

(ih+2, . . . , ib′′−1, k′′ + 1, k′′, . . . , k + 1, ib+1, . . . , i`)).

Similarly in the case (C.b), we take ia′′ so that (ia′′ , ia′′+1, . . . , ia) =

(k′′, k′′ + 1, . . . , k) and ia′′−1 6= k′′ − 1. We have k < n− 1. We then set

τ`,h,r(T ) = ((i1, . . . , ia′′−1, k
′′ − 1, . . . , k − 1, ia+1, . . . , ih, k′′ − 1),

(ih+2, . . . , i`)).

In the case (C.c) we set

τ`,h,r(T ) = ((i1, . . . , ih+1), (ih+2, . . . , i`)).

Theorem 5.8. (1) The map T 7→ mT induces a crystal isomorphism

between C`,h,r and MI0(M`,h,r).

(2) τ`,h,r induces a crystal isomorphism from MI0(M`,h,r) to

MI0(M`,h+1,r).

5.3.3. Now we study B($`) for 1 ≤ ` ≤ n. Let M0 = Y`,0Y
−1
0,` =

1 `−1 2 `−3 · · · ` 1−`. It follows from Corollary 3.3 thatM(M0) ' B($`).
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For 0 ≤ j < `, let us define the monomial mT ;j associated with T =

((i1, . . . , i`−j), (i`−j+1, . . . , i`)) ∈ C`,`−j,n−` by

mT ;j =

`−j∏

a=1

ia −2j+`+1−2a
×

∏̀

a=`−j+1

ia 3`+1−2n−2j−2a
.

We extend the definition of mT ;j for all j ∈ Z so that mT ;j+` = τ2nmT ;j.

We describe the action of ẽ0, f̃0 by computation on monomials. We get

that ẽ0(mT ;j) is equal to

{
m(i2,...,i`,1);j+1 if i1 = 1 and i` 6= 1,

0 otherwise,

and that f̃0(mT ;j) is equal to

{
m(1,i1,...,i`−1);j−1 if i1 6= 1 and i` = 1,

0 otherwise.

We have τ2n = z−`
` and all monomials in M(M0)/τ2n are written as

mT ;j. The case ` = n is exceptional. We have τ2 = z−1
n , so M(M0)/τ2 '

B(W ($n)). The Pcl-crystal automorphism z` is given by τ−1
`,`−j−1,n−`.

As an application, we have

B(W ($`)) ' BI0($`).

A conjectural description of the crystal of B(W ($`)) was proposed in

[36]. As their description is given by relating the crystal to an A
(1)
2n+1-crystal,

it is not clear, at least to authors, whether their conjecture is true or not.

5.4. Type A
(2)
2n (n ≥ 1)

Let B = {1, . . . , n, n, . . . , 1}. We give the ordering ≺ on the set B by

1 ≺ 2 ≺ · · · ≺ n ≺ n ≺ · · · ≺ 2 ≺ 1.

For p ∈ Z, we define

1 p = Y1,pY
−2
0,p+1, 1 p = Y 2

0,p+2n−1Y
−1
1,p+2n,

i p = Yi,p+i−1Y
−1
i−1,p+i (2 ≤ i ≤ n),

i p = Yi−1,p+2n−iY
−1
i,p+2n−i+1 (2 ≤ i ≤ n).
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5.4.1. First consider the case ` = 1. Let M = Y1,0Y
−2
0,1 . It follows

from Corollary 3.3 that M(M) ' B($`). Let M ′ = ẽ0(M) = Y0,−1Y
−1
0,1 .

The crystal graph of M(M) is given in Figure 5. We find τ2n = z−1
` and

M(M)/τ2n =MI0(M) tMI0(M
′).

M ′ 0[2n]0

1 0 2 0 n 0 n 0 2 0 1 0

1 2 n n−1n−1 2 1

Figure 5: (Type A
(2)
2n ) the crystal B($1)

5.4.2. Now we study B($`) for 1 ≤ ` ≤ n. Let M0,0 = Y`,0Y
−2
0,`

= 1 `−1 2 `−3 · · · ` 1−`. It follows from Corollary 3.3 that M(M0,0) '

B($`).

For 0 ≤ j < `, 0 ≤ k < `, let us define the monomial mT ;j,k associated

with T = ((i1, . . . , i`−j−k), (ij−2k+1, . . . , i`−k)) ∈ C`−k,`−j−k,n−` by

(1) 0 ≤ k ≤ `− j − 1:

mT ;j,k = (Y −1
0,`−2jY0,`−2j−2k)

`−j−k∏

a=1

ia −2j+`+1−2a−2k

×
`−k∏

a=`−j−k+1

ia 3`+1−2n−2j−2a−2k
,

(2) `− j ≤ k ≤ `− 1:

mT ;j,k = (Y −1
0,`−2jY0,−`Y

−1
0,`−2nY0,−2n+3`−2j−2k)

×
`−k∏

a=1

ia 3`+1−2n−2j−2a−2k
.

For k = ` we set C0,−j,n−` = {∅} and define m∅;j,k by the same formula

as in (1), (2) where the last product is understood as 1. We extend the

definition of mT ;j,k for all j ∈ Z so that mT ;j+`,k = τ2nmT ;j,k.
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We describe the action of ẽ0, f̃0. We get that ẽ0(mT ;j,k) is equal to





m(i2,...,i`−k);j,k+1 if i1 = 1 and i`−k 6= 1,

m(i1,...,i`−k,1);j+1,k−1 if i1 6= 1, i`−k 6= 1 and k > 0,

0 otherwise,

and that f̃0(mT ;j,k) is equal to





m(i1,...,i`−k−1);j−1,k+1 if i1 6= 1 and i`−k = 1,

m(1,i1,...,i`−k);j,k−1 if i1 6= 1, i`−k 6= 1 and k > 0,

0 otherwise.

We have τ2n = (z`)
−` and all the monomials in M(M0,0)/τ2n are writ-

ten as mT ;j,k. The case ` = n is exceptional. We have τ2 = z−1
n , so

M(M0)/τ2 ' B(W ($n)). For ` 6= n, the crystal automorphism z` is given

by τ−1
`−k,`−j−k−1,n−`. As an application, we have

B(W ($`)) ' BI0($`) t BI0($`−1) t · · · t BI0($1) t BI0(0).

A conjectural description of the crystal of B(W ($`)) was proposed in

[36]. As their description is given by relating the crystal to an A
(1)
2n+1-crystal,

it is not clear, at least to authors, whether their conjecture is true or not.

5.5. Type A
(2)†
2n (n ≥ 1)

Let B = {1, . . . , n, 0, n, . . . , 1}. We give the ordering ≺ on the set B by

1 ≺ 2 ≺ · · · ≺ n ≺ 0 ≺ n ≺ · · · ≺ 2 ≺ 1.

For p ∈ Z, we define

i p = Y −1
i−1,p+iYi,p+i−1 (1 ≤ i ≤ n− 1),

n p = Y −1
n−1,p+nY 2

n,p+n−1,

0 p = Y −1
n,p+n+1Yn,p+n−1,

n p = Yn−1,p+nY −2
n,p+n+1,

i p = Yi−1,p+2n−iY
−1
i,p+2n+1−i (1 ≤ i ≤ n− 1).

5.5.1. First consider the case ` = 1. Let M = Y −1
0,1 Y1,0. It follows from

Corollary 3.3 that M(M) ' B($`). The crystal graph of M(M) is given

in Figure 6. We find τ2n = z−1
` andM(M)/τ2n =MI0(M).
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1 0 2 0 n 0 0 0 n 0 2 0 1 0

1 2 n n−1nn−1 2 1

0[2n]

Figure 6: (Type A
(2)†
2n ) the crystal B($1)

5.5.2. Now we study B($`) for 1 ≤ ` ≤ n − 1. Let M0 = Y`,0Y
−1
0,` =

1 `−1 2 `−3 · · · ` 1−`. It follows from Corollary 3.3 thatM(M0) ' B($`).

For 0 ≤ j < `, let us define the monomial mT ;j associated with T =

((i1, . . . , i`−j), (i`−j+1, . . . , i`)) ∈ B`,`−j,n−` by

mT ;j =

`−j∏

a=1

ia −2j+`+1−2a
×

∏̀

a=`−j+1

ia 3`+1−2n−2j−2a
.

We extend the definition of mT ;j for all j ∈ Z so that mT ;j+` = τ2nmT ;j.

We describe the action of ẽ0, f̃0 by computation on monomials. We get

that ẽ0(mT ;j) is equal to

{
m(i2,...,i`,1);j+1 if i1 = 1 and i` 6= 1,

0 otherwise,

and that f̃0(mT ;j) is equal to

{
m(1,i1,...,i`−1);j−1 if i1 6= 1 and i` = 1,

0 otherwise.

We have τ2n = z−`
` and all monomials in M(M0)/τ2n are written as mT ;j.

The Pcl-crystal automorphism z` is given by τ−1
`,`−j−1,n−`. As an application,

we have

B(W ($`)) ' BI0($`).

A conjectural description of the crystal of B(W ($`)) was proposed in

[36]. As their description is given by relating the crystal to an A
(1)
2n+1-crystal,

it is not clear, at least to authors, whether their conjecture is true or not.

5.5.3. Finally we consider the case ` = n. Let M = Y 2
n,0Y

−1
0,` =

1 n−1 2 n−3 · · · n 1−n. It follows from Corollary 3.3 that M(M) '

B($n). Let us define the monomial mT =
∏n

a=1 ia n+1−2a
associated with
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T = (i1, . . . , in) satisfying (1) ia ∈ B and i1 ≺ i2 ≺ · · · ≺ in but 0 can

be repeated, and (2) there is no pair a, b such that ia = k, ib = k and

b − a = n − k. The above exhausts all monomials in MI0(M) (see [15,

Proposition 2.10]). We describe the action of ẽ0, f̃0 on these monomials:

we have

ẽ0(mT ) =

{
τ−2(m(i2 ,...,in,1)) if i1 = 1 and in 6= 1,

0 otherwise,

f̃0(mT ) =

{
τ2(m(1,i1,...,in−1)) if in = 1 and i1 6= 1,

0 otherwise.

So the above exhausts all the monomials inM(M)/τ2. We have τ2 = z−1
n , so

M(M)/τ2 ' B(W ($n)). As an application, we have B(W ($n)) ' BI0($n).

Note that $n is identified with the twice of the nth fundamental weight of

gI0 .

5.6. Type A
(2)
2n−1 (n ≥ 3)

Let B = {1, . . . , n, n, . . . , 1}. We give the ordering ≺ on the set B by

1 ≺ 2 ≺ · · · ≺ n ≺ n ≺ · · · ≺ 2 ≺ 1.

For p ∈ Z, we define

1 p = Y −1
0,p+2Y1,p, 2 p = Y −1

0,p+2Y
−1
1,p+2Y2,p+1,

i p = Y −1
i−1,p+iYi,p+i−1 (3 ≤ i ≤ n),

i p = Yi−1,p+2n−iY
−1
i,p+2n+1−i (3 ≤ i ≤ n),

2 p = Y0,p+2n−2Y1,p+2n−2Y
−1
2,p+2n−1, 1 p = Y0,p+2n−2Y

−1
1,p+2n.

5.6.1. First consider the case ` = 1. Let M = Y1,0Y
−1
0,2 . It follows from

Corollary 3.3 that M(M) ' B($1). The crystal graph of M(M) is given

in Figure 7. We find τ2n−2 = z−1
` andM(M)/τ2n−2 =MI0(M).

5.6.2. Now we study B($`) for 2 ≤ ` ≤ n − 1. Let M0,0 = Y`,0Y
−1
0,`−1

Y −1
0,`+1 = 1 `−1 2 `−3 · · · ` 1−`. As f̃2f̃3 · · · f̃`(M0,0) = Y −1

0,`+1Y0,`−1Y
−1
1,`

Y`+1,1, we see as in Proposition 3.4 that M(M0,0) ' B($`).

For 0 ≤ j < `, 0 ≤ k < `/2, let us define the monomial mT ;j,k associated

with T = ((i1, . . . , ij−2k), (ij−2k+1, . . . , i`−2k)) ∈ C`−2k,j−2k,n−`−1 by
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1 0 2 0 n 0 n 0 2 0 1 0

1 2 n n−1n−1 2 1

0[2n−2]

0[2n−2]

Figure 7: (Type A
(2)
2n−1) the crystal B($1)

(1) k < bj/2c:

mT ;j,k = Y0,2n−`−4k+2j−1Y
−1
0,2n−`+2j−1

j−2k∏

a=1

ia 2n−`−4k−2a+2j−1

×
`−2k∏

a=j−2k+1

ia `−2(a−j+2k)+1
,

(2) j is odd and k = (j − 1)/2:

mT ;j,(j−1)/2 = Y0,2n−`−3Y
−1
0,2n−`+2j−1 i1 2n−`−1

`−j+1∏

a=2

ia `−2a+3
,

(3) j is even and k ≥ j/2:

mT ;j,k = Y0,`−4k+2j+1Y
−1
0,`+1Y0,2n−`−1Y

−1
0,2n−`+2j−1

×
`−2k∏

a=1

ia `−2a−4k+2j+1
,

(4) j is odd and k ≥ (j + 1)/2:

mT ;j,k = Y0,`−4k+2j+1Y
−1
0,2n−`+2j−1Y

−1
1,`+1Y1,2n−`−1

×
`−2k∏

a=1

ia `−2a−4k+2j+1
.

For k = `/2 we set C0,j−`,n−`−1 = {∅} and define m∅;j,k by the same formula

as in (3), (4) where the last product is understood as 1. We extend the

definition of mT ;j,k for all j ∈ Z so that mT ;j+`,k = τ2n−2mT ;j,k.
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We describe the action of ẽ0, f̃0. We get that ẽ0(mT ;j,k) is equal to





m(i3,...,i`−2k);j,k+1 if i2 = 2 and i`−2k−1 � 2,

m(i1,...,i`−2k,2,1);j−2,k−1 if i2 � 2, i`−2k � 2 and k > 0,

m(i2,...,i`,3−i1);j−1,0 if i1 � 2, i2 � 2, i` � 2 and k = 0,

0 otherwise,

and that f̃0(mT ;j,k) is equal to





m(1,2,i1,...,i`−2k);j,k−1 if i1 � 2, i`−2k−1 � 2 and k > 0,

m(i1,...,i`−2k−2);j+2,k+1 if i`−2k−1 = 2 and i2 � 2,

m(3−i`,i1,...,i`−1);j+1,0 if i1 � 2, i`−1 � 2, i` � 2 and k = 0,

0 otherwise.

We have τ2n−2 = (z`)
−`, and all monomials in M(M0,0)/τ2n−2 are written

as mT ;j,k. The crystal automorphism z` is given by τ−1
`−2k,j−2k,n−`−1. As an

application, we have

B(W ($`)) ' BI0($`) t BI0($`−2) t · · · t

{
BI0($1) if ` is odd,

BI0(0) if ` is even.

A crystal base on W ($`) was constructed in [12]. A key fact used there

is that W ($`) remains irreducible when it is restricted to Uq(g) for the

finite dimensional Lie algebra g obtained by removing the vertex n. They

showed that the crystal base for the restriction is preserved also by ẽn, f̃n.

By the uniqueness of the crystal base for an irreducible Uq(g)-module we

conclude that their crystal base is isomorphic to the B(W ($`)). However

their description of the Kashiwara operators was given in terms of g, it is

not obvious to compare our description to theirs.

5.6.3. Finally we consider the case ` = n. Let M0 = Yn,0Y
−2
0,n−1 =∏n

a=1 a n+1−2a. It follows from Corollary 3.3 that M(M0) ' B($`).

For 0 ≤ k ≤ bn/2c, let us define the monomial mT ;k associated with

T = (i1, . . . , in−2k) ∈ Cn−2k,0,0 by

mT ;k = Y −1
0,n−1Y0,n+1−4k ×

n−2k∏

a=1

ia n+1−4k−2a
,

where the case n = 2k is understood as before.
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We describe the action of ẽ0, f̃0. We get that ẽ0(mT ;k) is equal to





m(i3,...,in−2k);k+1 if i2 = 2 and in−2k−1 � 2,

τ−4(m(i1,...,in−2k ,2,1);k−1) if i2 � 2, in−2k � 2 and k > 0,

τ−2(m(i2,...,in,3−i1);0) if i1 � 2, i2 � 2, in � 2 and k = 0,

0 otherwise,

and that f̃0(mT ;k) is equal to





m(1,2,i1,...,in−2k);k−1 if i1 � 2, in−2k−1 � 2 and k > 0,

τ4(m(i1,...,in−2k−2);k+1) if in−2k−1 = 2 and i2 � 2,

τ2(m(3−i`,i1,...,i`−1);0
) if i1 � 2, in−1 � 2, in � 2 and k = 0,

0 otherwise.

We find that z` = τ−2 and the monomials appearing inM(M0)/τ2 are

written as mT ;k. As an application, we have

B(W ($`)) ' BI0($`) t BI0($`−2) t · · · t

{
BI0($1) if ` is odd,

BI0(0) if ` is even.

5.7. Type D
(2)
n+1 (n ≥ 2)

Let B = {1, . . . , n, 0, n, . . . , 1}. We give the ordering ≺ on the set B by

1 ≺ 2 ≺ · · · ≺ n ≺ 0 ≺ n ≺ · · · ≺ 2 ≺ 1.

For p ∈ Z, we define

1 p = Y1,pY
−2
0,p+1,

i p = Yi,p+i−1Y
−1
i−1,p+i (2 ≤ i ≤ n− 1),

n p = Y −1
n−1,p+nY 2

n,p+n−1,

0 p = Yn,p+n−1Y
−1
n,p+n+1,

n p = Yn−1,p+nY −2
n,p+n+1,

i p = Yi−1,p+2n−iY
−1
i,p+2n−i+1 (2 ≤ i ≤ n− 1),

1 p = Y 2
0,p+2n−1Y

−1
1,p+2n.
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M ′ 0[2n]0

1 0 2 0
n p 0 p n p 2 p 1 p

1 2 n n−1nn−1 2 1

Figure 8: (Type D
(2)
n+1) the crystal B($1)

5.7.1. First consider the case ` = 1. Let M = Y1,0Y
−2
0,1 . It follows

from Corollary 3.3 that M(M) ' B($`). Let M ′ = ẽ0(M) = Y0,−1Y
−1
0,1 .

The crystal graph of M(M) is given in Figure 8. We find τ2n = z−1
` and

M(M)/τ2n =MI0(M) tMI0(M
′).

5.7.2. Now we study B($`) for 1 ≤ ` ≤ n− 1. Let M0,0 = Y`,0Y
−2
0,` =

1 `−1 2 `−3 · · · ` 1−`. It follows from Corollary 3.3 that M(M0,0) '

B($`).

For 0 ≤ j < `, 0 ≤ k < `, let us define the monomial mT ;j,k associated

with T = ((i1, . . . , i`−j−k), (i`−j−k+1, . . . , i`−k)) ∈ B`−k,`−j−k,n−` by

(1) 0 ≤ k ≤ `− j − 1:

mT ;j,k = (Y −1
0,`−2jY0,`−2j−2k)

`−j−k∏

a=1

ia −2j+`+1−2a−2k

×
`−k∏

a=`−j−k+1

ia 3`+1−2n−2j−2a−2k
,

(2) `− j ≤ k ≤ `− 1:

mT ;j,k = (Y −1
0,`−2jY0,−`Y

−1
0,`−2nY0,−2n+3`−2j−2k)

×
`−k∏

a=1

ia 3`+1−2n−2j−2a−2k
.

For k = ` we set B0,−j,n−` = {∅} and define m∅;j,k by the same formula

as in (1), (2) where the last product is understood as 1. We extend the

definition of mT ;j,k for all j ∈ Z so that mT ;j+`,k = τ2nmT ;j,k.
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We describe the action of ẽ0, f̃0. We get that ẽ0(mT ;j,k) is equal to





m(i2,...,i`−k);j,k+1 if i1 = 1 and i`−k 6= 1,

m(i1,...,i`−k,1);j+1,k−1 if i1 6= 1, i`−k 6= 1 and k > 0,

0 otherwise,

and that f̃0(mT ;j,k) is equal to





m(i1,...,i`−k−1);j−1,k+1 if i1 6= 1 and i`−k = 1,

m(1,i1,...,i`−k);j,k−1 if i1 6= 1, i`−k 6= 1 and k > 0,

0 otherwise.

We have τ2n = (z`)
−` and all monomials in M(M0,0)/τ2n are written as

mT ;j,k. The crystal automorphism z` is given by τ−1
`−k,`−j−k−1,n−`. As an

application, we have

B(W ($`)) ' BI0($`) t BI0($`−1) t · · · t BI0($1) t BI0(0).

A conjectural description of the crystal of B(W ($`)) was proposed in

[36]. As their description is given by relating the crystal to an A
(1)
2n+1-crystal,

it is not clear, at least to authors, whether their conjecture is true or not.

5.7.3. Finally we consider the case ` = n. Let M = Yn,0Y
−1
0,n . It follows

from Corollary 3.3 thatM(M) ' B($`).

Let

i p =





Y −1
i−1,p+i−1Yi,p+i−2 if 1 ≤ i ≤ n− 1,

Y −1
n−1,p+n−1 if i = n,

Yn,p+n if i = 0,

i p =





Y0,p+2n if i = 1,

1 if 2 ≤ i ≤ n− 1,

Y −2
n,p+n+2 if i = n.

Then the monomials appearing inMI0(M) are mT =
∏n+1

a=1 ian+2−2a
asso-

ciated with a tableau T = (i1, . . . , in+1) satisfying the conditions

(1) ia ∈ B, i1 ≺ i2 ≺ · · · ≺ in+1,

(2) i and i do not appear simultaneously.
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We describe the action of ẽ0, f̃0 on these monomials. We have

ẽ0(mT ) =

{
τ−2(m(i2,...,in+1,1)) if i1 = 1,

0 otherwise,

f̃0(mT ) =

{
τ2(m(1,i1,...,in)) if in+1 = 1,

0 otherwise.

We have τ2 = (z`)
−1 and the above monomials are those appearing in

M(M)/τ2. As an application, we have B(W ($n)) ' BI0($n).

§6. Finite dimensional crystals – exceptional types

In this section we treat all exceptional cases (except some nodes of

type E
(1)
7 , E

(1)
8 , and for one node of type E

(2)
6 where we do not get the

decomposition in I0-crystals at this moment). We enumerate the nodes of

the Dynkin diagram as explained in Section 3.2.

6.1. Type E
(1)
n

Recall VI0(λ) denotes the irreducible Uq(gI0)-module with the highest

weight λ. To save the space, we write ip instead of Yi,p in some places.

6.1.1. Let ` be a nonzero vertex with a` = 1, i.e., ` = 1 or 5 for E
(1)
6

and ` = 6 for E
(1)
7 . In these cases it is known that the corresponding level 0

fundamental representation W ($`) is restricted to the irreducible Uq(gI0)-

module VI0($`). Let us consider M(M) for M = Y`,0Y
−1
0,θ`

where θ` is the

distance of 0 and `. By Corollary 3.3 we have M(M) ' B($`). Moreover

an explicit calculation shows that Y`,pY
−1
0,θ`+p = τp(M) appears in M(M)

where p = 6 for E
(1)
6 and p = 8 for E

(1)
7 . By the weight calculation we have

z` = τ−p. HenceM(M)/τp ' B(W ($`)). We can check that all monomials

are connected to some τN
p (M) in the I0-crystal. This recovers the above

mentioned result that W ($`) is restricted to VI0($`).

Let us explain the E
(1)
6 case for an illustration. Let M = Y5,0Y

−1
0,4 . Then

a calculation shows that the following 27 monomials appear in BI0(M):

500
−1
4 , 415

−1
2 0−1

4 , 324
−1
3 0−1

4 , 63233
−1
4 0−1

4 , 6−1
5 23, 14632

−1
5 0−1

4 ,

146
−1
5 2−1

5 34, 1−1
6 630

−1
4 , 1−1

6 6−1
5 34, 143

−1
6 45, 1−1

6 253
−1
6 45, 144

−1
7 56,

2−1
7 45, 1−1

6 254
−1
7 56, 145

−1
8 , 2−1

7 364
−1
7 56, 1−1

6 255
−1
8 , 673

−1
8 56,

2−1
7 365

−1
8 , 6−1

9 5608, 673
−1
8 475

−1
8 , 6−1

9 475
−1
8 08, 674

−1
9 , 6−1

9 384
−1
9 08,

293
−1
10 08, 1102

−1
11 08, 1−1

12 08.
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Applying f̃0 to 6−1
9 5608, we get 560

−1
10 = τ6(M). It is also clear that all

monomials are connected to either M or its τ6-images in the I0-crystal.

Remark 6.1. (1) For a level 0 fundamental representation W ($`) the
corresponding quiver varieties are moduli spaces of vector bundles of rank
a` on ALE spaces. In particular, they are moduli spaces of line bundles for
the cases studied here. Then each component is a single point, and it is a
geometric reason why W ($`) is restricted to the irreducible representation
of Uq(gI0).

(2) This crystal has been studied in [27].

6.1.2. Let ` be the vertex adjacent to the vertex 0, i.e., ` = 6 for

E
(1)
6 , 1 for E

(1)
7 and E

(1)
8 . We have a` = 2. It is known that W ($`) is

restricted to the direct sum of the adjoint representation VI0($`) and the

trivial representation VI0(0) of Uq(gI0). We can check this, for example, by

using the algorithm for the t-analog of q-characters [29]. All the coefficients

of monomials are 1 except one, whose coefficient is 1 + t2. The exceptional

monomial is Y3,5Y
−1
3,7 for E

(1)
6 , Y3,8Y

−1
3,10 for E

(1)
7 and Y5,14Y

−1
5,16 for E

(1)
8 , if

the l-highest weight monomial is Y`,0.

Let M = Y`,0Y
−1
0,1 Y −1

0,p where p = 5 for E
(1)
6 , 7 for E

(1)
7 and 11 for E

(1)
8 .

We have

E6 : f̃3f̃6M = Y4,2Y2,2Y
−1
3,3 Y −1

0,5 ,

E7 : f̃3f̃2f̃1M = Y7,3Y4,3Y
−1
3,4 Y −1

0,7 ,

E8 : f̃5f̃4f̃3f̃2f̃1M = Y6,5Y8,5Y
−1
5,6 Y −1

0,11.

By the same argument as in the proof of Proposition 3.4, we see that M is

extremal. Therefore M(M) ' B($`). A direct calculation shows that the

monomial corresponding to the lowest weight vector in the adjoint repre-

sentation is m = Y −1
`,h∨Y0,h∨−pY0,h∨−1 where h∨ is the dual Coxeter number,

i.e., h∨ = 12 for E
(1)
6 , 18 for E

(1)
7 and 30 for E

(1)
8 . Applying f̃0 to m, we

get Y0,h∨−pY
−1
0,h∨+1, which corresponds to the trivial representation.

We have f̃0ẽ`m = Y −1
0,h∨−p+2Y`,h∨−p+1Y`,h∨−2Y

−1
i,h∨−1, where i is the ver-

tex adjacent to ` different from 0. A direct calculation shows that

Y −1
0,(h∨−p+3)/2Y`,(h∨−p+1)/2Y`,(h∨+p−5)/2Y

−1
i,(h∨+p−3)/2 = τ−(h∨−p+1)/2(f̃0ẽ`m)

is in MI0(M). (Note that (h∨ − p + 1)/2 is 4 for E
(1)
6 , 6 for E

(1)
7 and 10

for E
(1)
8 .) Therefore τ(h∨−p+1)/2(M) is contained inM(M). The weight of
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τ(h∨−p+1)/2(M) is equal to wt(M) − δ. Therefore this is z−1
` (M) and we

have τ(h∨−p+1)/2 = z−1
` andM(M)/τ(h∨−p+1)/2 ' B(W ($`)).

We can also check that M(M)/τ(h∨−p+1)/2 ' MI0(M) t {Y0,h∨−p

Y −1
0,h∨+1}. Therefore we recover that W ($`) is restricted to VI0($`)⊕VI0(0).

Let us give E
(1)
6 case for an illustration. The following monomials

appear inMI0(600
−1
1 0−1

5 ):

600
−1
1 0−1

5 , 6−1
2 310

−1
5 , 223

−1
3 420

−1
5 , 132

−1
4 420

−1
5 , 224

−1
4 530

−1
5 ,

1−1
5 420

−1
5 , 132

−1
4 334

−1
4 530

−1
5 , 225

−1
5 0−1

5 , 1−1
5 334

−1
4 530

−1
5 ,

13643
−1
5 530

−1
5 , 132

−1
4 335

−1
5 0−1

5 , 1−1
5 64243

−1
5 530

−1
5 , 1−1

5 335
−1
5 0−1

5 ,

136
−1
6 53, 13643

−1
5 445

−1
5 0−1

5 , 1−1
5 6−1

6 2453, 642
−1
6 530

−1
5 ,

1−1
5 64243

−1
5 445

−1
5 0−1

5 , 136
−1
6 445

−1
5 , 13644

−1
6 0−1

5 , 6−1
6 2−1

6 3553,

1−1
5 6−1

6 24445
−1
5 , 642

−1
6 445

−1
5 0−1

5 , 1−1
5 64244

−1
6 0−1

5 , 136
−1
6 354

−1
6 ,

3−1
7 4653, 6−1

6 2−1
6 35445

−1
5 , 1−1

5 6−1
6 24354

−1
6 , 642

−1
6 354

−1
6 0−1

5 ,

13263
−1
7 , 4−1

8 5357, 3−1
7 44465

−1
5 , 6−1

6 2−1
6 32

54
−1
6 , 1−1

5 24263
−1
7 ,

64663
−1
7 0−1

5 , 13172
−1
8 , 535

−1
9 , 444

−1
8 5−1

5 57, 353
−1
7 , 1−1

5 17242
−1
8 ,

646
−1
8 0−1

5 , 131
−1
9 , 445

−1
5 5−1

9 , 354
−1
6 4−1

8 57, 66263
−2
7 46, 172

−1
6 2−1

8 35,

6−1
6 6−1

8 3507, 1−1
5 1−1

9 24, 354
−1
6 5−1

9 , 66263
−1
7 4−1

8 57, 6−1
8 263

−1
7 4607,

17662
−1
8 3−1

7 46, 1−1
9 2−1

6 35, 66263
−1
7 5−1

9 , 6−1
8 264

−1
8 5707, 176

−1
8 2−1

8 4607,

17662
−1
8 4−1

8 57, 1−1
9 663

−1
7 46, 6−1

8 265
−1
9 07, 176

−1
8 2−1

8 374
−1
8 5707,

1−1
9 6−1

8 4607, 17662
−1
8 5−1

9 , 1−1
9 664

−1
8 57, 176

−1
8 2−1

8 375
−1
9 07,

1−1
9 6−1

8 374
−1
8 5707, 173

−1
9 5707, 1−1

9 665
−1
9 , 1−1

9 6−1
8 375

−1
9 07,

1−1
9 283

−1
9 5707, 173

−1
9 485

−1
9 07, 1−1

9 283
−1
9 485

−1
9 07, 2−1

10 5707, 174
−1
10 07,

2−1
10 485

−1
9 07, 1−1

9 284
−1
10 07, 2−1

10 394
−1
10 07, 6103

−1
11 07, 6−1

12 07011.

There is 64663
−1
7 0−1

5 as claimed. We can also check that all monomials

are connected to either M , 070
−1
13 or their τ4-images in the I0-crystal.

Remark 6.2. (1) In this example, the corresponding quiver varieties
are either a single point or an ALE space of type En. The graded quiver
varieties, which are fixed point sets of a C∗-action, are single points or
a complex projective line. The latter gives the monomial with coefficient
1 + t2.

(2) The crystal structure here is isomorphic to one studied recently in
[3]. As the crystal graph is connected, we conclude that the crystal base
constructed in [3] are isomorphic to B(W ($`)).
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6.1.3. Let g = E
(1)
6 and ` = 2. The t-analog of q-character of W ($2)

has 351 monomials among which the following 27 monomials have coeffi-

cients 1 + t2 and others have 1:

333
−1
5 53, 333

−1
5 445

−1
5 , 334

−1
6 , 64243

−1
5 444

−1
6 , 6−1

6 24444
−1
6 ,

15642
−1
6 444

−1
6 , 156

−1
6 2−1

6 35444
−1
6 , 1−1

7 64444
−1
6 , 1−1

7 6−1
6 35444

−1
6 ,

153
−1
7 44, 1−1

7 263
−1
7 44, 15353

−1
7 4−1

6 55, 2−1
8 44, 1−1

7 26353
−1
7 4−1

6 55,

15353
−1
7 5−1

7 , 2−1
8 354

−1
6 55, 1−1

7 26353
−1
7 5−1

7 , 2−1
8 355

−1
7 , 66262

−1
8 3−1

7 55,

66262
−1
8 3−1

7 465
−1
7 , 6−1

8 262
−1
8 55, 6−1

8 262
−1
8 465

−1
7 , 66262

−1
8 4−1

8 ,

6−1
8 262

−1
8 374

−1
8 , 263

−1
9 , 172

−1
8 373

−1
9 , 1−1

9 373
−1
9 .

From this (or by other methods) we can see that W ($2) is restricted

to VI0($2)⊕ VI0($5).

Let us consider the monomial crystalM(M) with M = 200
−1
3 0−1

5 . From

f̃6f̃3f̃2M = 11426
−1
4 0−1

5 , we see that M is extremal by the argument in the

proof of Proposition 3.4. Therefore M(M) ' B($2).

There is a monomial

m = 156
−1
6 6−1

8 4407 = f̃6f̃6f̃3f̃2f̃3f̃2f̃1f̃4f̃5f̃3f̃4f̃6f̃3f̃2M

inMI0(M). We have ẽ2ẽ3ẽ6f̃0m = 1−1
3 15220

−1
5 0−1

9 . By the weight calcula-

tion, we find that this is z−1
` (M). Let us denote this by M1.

InMI0(M1) we can find a monomial

m′ = 176
−2
10 4809 = f̃6f̃6f̃3f̃2f̃3f̃2f̃1f̃4f̃5f̃3f̃4f̃6f̃3f̃2M1.

We have ẽ2ẽ3ẽ6f̃0m
′ = 260

−1
9 0−1

11 = τ6(M). This is equal to z−2
` (M).

We have

530
−1
11 = ẽ5ẽ4ẽ3ẽ6ẽ0 · τ6(M)

in M(M). Write this M0;1. Then MI0(M0;1) consists of the following 27

monomials:

530
−1
11 , 445

−1
5 0−1

11 , 354
−1
6 0−1

11 , 66263
−1
7 0−1

11 , 6−1
8 26070

−1
11 , 17662

−1
8 0−1

11 ,

176
−1
8 2−1

8 37070
−1
11 , 1−1

9 660
−1
11 , 1−1

9 6−1
8 37070

−1
11 , 173

−1
9 48070

−1
11 ,

1−1
9 283

−1
9 48070

−1
11 , 174

−1
10 59070

−1
11 , 2−1

10 48070
−1
11 , 1−1

9 284
−1
10 59070

−1
11 ,

175
−1
11 070

−1
11 , 2−1

10 394
−1
10 59070

−1
11 , 1−1

9 285
−1
11 070

−1
11 , 2−1

10 395
−1
11 070

−1
11 ,

6103
−1
11 59070

−1
11 , 6103

−1
11 4105

−1
11 070

−1
11 , 6−1

12 59070
−1
11 , 6−1

12 4105
−1
11 07,
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6104
−1
12 070

−1
11 , 6−1

12 3114
−1
12 07, 2123

−1
13 07, 1132

−1
14 07, 1−1

15 07.

We have ẽ5ẽ4ẽ3ẽ6ẽ0·M1 = 1−1
3 155−10

−1
9 . Set this M1;1. ThenMI0(M1;1)

consists of

1−1
3 155−10

−1
9 , 1−1

3 15405
−1
1 0−1

9 , 1−1
3 15314

−1
2 0−1

9 , 1−1
3 15223

−1
3 620

−1
9 ,

1−1
3 15226

−1
4 0−1

9 , 152
−1
4 620

−1
9 , 152

−1
4 336

−1
4 030

−1
9 , 1−1

7 2−1
4 26620

−1
9 ,

1−1
7 2−1

4 26336
−1
4 030

−1
9 , 153

−1
5 44030

−1
9 , 1−1

7 263
−1
5 44030

−1
9 ,

154
−1
6 55030

−1
9 , 2−1

8 3−1
5 3744030

−1
9 , 1−1

7 264
−1
6 55030

−1
9 , 155

−1
7 030

−1
9 ,

2−1
8 374

−1
6 55030

−1
9 , 1−1

7 265
−1
7 030

−1
9 , 2−1

8 375
−1
7 030

−1
9 ,

3−1
9 4−1

6 485568030
−1
9 , 3−1

9 485
−1
7 68030

−1
9 , 4−1

6 48556
−1
10 03, 485

−1
7 6−1

10 03,

4−1
10 5−1

7 5968030
−1
9 , 394

−1
10 5−1

7 596
−1
10 03, 2103

−1
11 5−1

7 5903, 1112
−1
12 5−1

7 5903,

1−1
13 5−1

7 5903.

These have different weights, so there is only one way to make a bijec-

tion to the above polynomials with coefficients 1+ t2 preserving weights. It

is the bijection given in order.

Also it should be possible to make the bijection between MI0(M) and

MI0(M1) explicit , though we do not do here, as both are 351 monomials.

Thus we have

M(M)/τ6 'MI0(M) tMI0(M1) tMI0(M0;1) tMI0(M1;1),

and we have a crystal isomorphism τ interchanging MI0(M) ↔ MI0(M1)

and MI0(M0;1) ↔ MI0(M1;1). These follow from the known results, but

should be possible to check directly from the above computation.

6.1.4. Let g = E
(1)
6 and ` = 3. It is known that W ($3) restricts to

VI0($3)⊕ VI0($6)
⊕2 ⊕ VI0($1 + $5)⊕ VI0(0) as a Uq(gI0)-module.

Let M = 300
−1
2 0−1

4 0−1
6 . We have

m = f̃6f̃
2
3 f̃6f̃4f̃2f̃3M = 12233

−1
4 43526

−1
5 0−1

6 .

By the same argument as in the proof of Proposition 3.4, we see that M is

extremal. Therefore M(M) ' B($3).

We have

m′ = ẽ3f̃
2
6 f̃3

3 f̃2
4 f̃2

2 f̃5f̃1m = 1434546
−1
5 6−2

7 06



LEVEL 0 MONOMIAL CRYSTALS 141

inMI0(M). Then

ẽ3ẽ4ẽ2ẽ3ẽ6ẽ6f̃0m
′ = 320

−1
4 0−1

6 0−1
8 = τ2(M).

By the weight calculation, this is z−1
` (M), so we have z` = τ−2 and

M(M)/τ2 ' B(W ($`)).

Let

M1 = ẽ6ẽ0τ2(M) = 610
−1
6 0−1

8 .

ThenMI0(M1) is the crystal of the adjoint representation of gI0 . By 6.1.2

the lowest weight vector is 6−1
13 08012 × 020

−1
8 = 6−1

13 02012. Applying τ−2f̃0,

we get M2 = 000
−1
12 . Applying f̃0 again, we get M3 = 610

−1
2 0−1

12 . Looking at

monomials in 6.1.2, we find 146
−1
7 54060

−1
12 inMI0(M3). Applying f̃0, we get

M4 = 14540
−1
8 0−1

12 . This monomial generates the I0-crystal of VI0($1 +$5).

Thus

M(M)/τ2 =MI0(M) tMI0(M1) tMI0(M2) tMI0(M3) tMI0(M4).

This follows from Res W0($3) ' VI0($3)⊕VI0($6)
⊕2⊕VI0($1+$5)⊕VI0(0),

but it is probably possible to check directly from the above computation.

Remark 6.3. The authors do not find the last two examples in the
literature. One can probably check their perfectness, though we have not
done yet.

6.2. Type G
(1)
2

6.2.1. First we consider ` = 1. Let M = Y1,0Y
−1
0,1 Y −1

0,3 . As f̃1(M) =

Y −1
1,2 Y 3

2,1Y
−1
0,3 , we see as in Proposition 3.4 that M(M) ' B($`).

As ẽ1ẽ
3
2ẽ

2
1ẽ0f̃1M = τ−2(M), M(M) is preserved under τ−2. It has

weight δ, so z` = τ−2 and henceM(m)/τ2 ' B(W ($`)).

Let M ′ = ẽ0(M) = Y0,−1Y
−1
0,3 . We have MI0(M

′) = {M ′}. The follow-

ing 14 monomials appear inMI0(M):

100
−1
1 0−1

3 , 23
11

−1
2 0−1

3 , 22
12

−1
3 0−1

3 , 212
−2
3 120

−1
3 , 2−3

3 12
20

−1
3 , 21231

−1
4 , 121

−1
4 ,

212
−1
5 , 1−2

4 23
303, 2−1

3 2−1
5 12, 22

32
−1
5 1−1

4 03, 232
−2
5 03, 2−3

5 0314, 03051
−1
6 .

By direct calculation, we find that these 14 monomials and M ′ are all

monomials of M(M)/τ2. As an application, we get

B(W ($`)) ' BI0($`) t BI0(0).

This crystal was described in [38], [3]. The crystal base is isomorphic

to ours by the same reason as in 6.1.2.
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6.2.2. Now we consider the case ` = 2. Let M = Y2,0Y
−1
0,2 . It follows

from Corollary 3.3 thatM(M) ' B($`). The following 7 monomials appear

inMI0(M):

M = 200
−1
2 , m2 = 112

−1
2 0−1

2 , m3 = 1−1
3 22

2, m4 = 222
−1
4 ,

m5 = 2−2
4 13, m6 = 1−1

5 2404, m7 = 2−1
6 04.

The crystal graph ofM(M) is given in Figure 9. We find z` = τ−4 and

M(M)/τ4 =MI0(M).

The authors do not find a description of this crystal structure in the

literature (probably because it is not perfect), but one can easily obtain it

from the description of its I0-crystal structure in [16].

M m2 m3 m4 m5 m6 m7
2 1 2 2 1 2

0[4]

0[4]

Figure 9: (Type G
(1)
2 ) the crystal B($2)

6.3. Type F
(1)
4

6.3.1. First let ` = 1 and M = Y1,0Y
−1
0,1 Y −1

0,5 . We have f̃2f̃1M =

Y −1
0,5 Y −1

2,3 Y 2
3,2 and so we see as in Proposition 3.4 that M(M) ' B($`). As

ẽ1ẽ2ẽ
2
3ẽ

2
4ẽ2ẽ3ẽ3ẽ2ẽ1ẽ1ẽ0f̃1M = τ−4(M),M(M) is preserved under τ4, which

has weight δ. Therefore we have z` = τ−4 andM(m)/τ4 ' B(W ($`)).

Let M ′ = ẽ0(M) = Y0,−1Y
−1
0,5 . We have MI0(M

′) = {M ′}.
The following 52 monomials appear inMI0(M):

100
−1
1 0−1

5 , 1−1
2 210

−1
5 , 2−1

3 32
20

−1
5 , 323

−1
4 430

−1
5 , 233

−2
4 42

30
−1
5 , 324

−1
5 0−1

5 ,

142
−1
5 42

30
−1
5 , 233

−1
4 434

−1
5 0−1

5 , 1−1
6 42

3, 142
−1
5 434

−1
5 340

−1
5 , 234

−2
5 0−1

5 ,

1−1
6 34434

−1
5 , 142

−1
5 4−2

5 32
40

−1
5 , 143

−1
6 430

−1
5 , 1−1

6 253
−1
6 43, 1−1

6 32
44

−2
5 ,

14343
−1
6 4−1

5 0−1
5 , 2−1

7 3643, 1−1
6 253

−1
6 344

−1
5 , 14253

−2
6 0−1

5 , 3−1
8 4743,

2−1
7 36344

−1
5 , 1−1

6 22
53

−2
6 , 14162

−1
7 0−1

5 , 4−1
9 43, 3−1

8 344
−1
5 47, 252

−1
7 ,

141
−1
8 070

−1
5 , 344

−1
5 4−1

9 , 253
−1
6 3−1

8 47, 162
−2
7 32

6, 1−1
6 1−1

8 2507, 253
−1
6 4−1

9 ,

071
−1
8 2−1

7 32
6, 162

−1
7 363

−1
8 47, 162

−1
7 364

−1
9 , 1−1

8 363
−1
8 4707, 163

−2
8 42

7,

1−1
8 364

−1
9 07, 163

−1
8 474

−1
9 , 1−1

8 273
−2
8 42

707, 1−1
8 273

−1
8 474

−1
9 07, 164

−2
9 ,
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2−1
9 42

707, 2−1
9 38474

−1
9 07, 1−1

8 274
−2
9 07, 3−1

10 4707, 2−1
9 32

84
−2
9 07,

383
−1
10 4−1

9 07, 293
−2
10 07, 1102

−1
11 07, 1−1

12 07011.

These 52 monomials, M ′ and their τ4-images are all monomials of

M(M). As an application we have

B(W ($1)) ' BI0($1) t BI0(0).

The crystal base is isomorphic to one in [3] by the same reason as in

6.1.2.

6.3.2. Let us consider ` = 2 and M = Y2,0Y
−1
0,2 Y −1

0,4 Y −1
0,6 . We have

f̃1f̃
2
2 f̃2

3 f̃1f̃2M = Y 2
4,2Y

2
3,3Y

−1
2,4 Y −1

1,5 Y −1
0,6 and so we see as in Proposition 3.4

that M(M) ' B($`). As ẽ2ẽ
2
3ẽ2ẽ

2
1ẽ2ẽ

2
4ẽ

4
3ẽ

3
2ẽ

2
1ẽ0f̃1f̃

2
2 f̃2

3 f̃1f̃2M = τ−2(M),

M(M) is preserved under τ2, which has weight δ. Therefore M(M)/τ2 '
B(W ($`)).

Let M2 = ẽ1ẽ0M = Y −1
0,4 Y −1

0,6 Y1,−1. The following 52 monomials appear

inMI0(M2):

1−10
−1
4 0−1

6 , 1−1
1 20000

−1
4 0−1

6 , 2−1
2 32

1000
−1
4 0−1

6 , 313
−1
3 42000

−1
4 0−1

6 ,

223
−2
3 42

2000
−1
4 0−1

6 , 314
−1
4 000

−1
4 0−1

6 , 132
−1
4 42

2000
−1
4 0−1

6 ,

223
−1
3 424

−1
4 000

−1
4 0−1

6 , 1−1
5 42

2000
−1
6 , 132

−1
4 424

−1
4 330

−1
5 000

−1
4 0−1

6 ,

224
−2
4 000

−1
4 0−1

6 , 1−1
5 33434

−1
4 000

−1
6 , 132

−1
4 4−2

4 32
30

−1
5 000

−1
4 0−1

6 ,

133
−1
5 420

−1
5 000

−1
4 0−1

6 , 1−1
5 243

−1
5 42000

−1
6 , 1−1

5 32
34

−2
4 000

−1
6 ,

13333
−1
5 4−1

4 000
−1
4 0−1

6 , 2−1
6 3542000

−1
6 , 1−1

5 243
−1
5 334

−1
4 000

−1
6 ,

13243
−2
5 0−1

5 000
−1
4 0−1

6 , 3−1
7 4642000

−1
6 , 2−1

6 35334
−1
4 000

−1
6 ,

1−1
5 22

43
−2
5 000

−1
6 , 13152

−1
6 0−1

5 000
−1
4 0−1

6 , 4−1
8 42000

−1
6 ,

3−1
7 334

−1
4 46000

−1
6 , 242

−1
6 000

−1
6 , 131

−1
7 000

−1
6 , 334

−1
4 4−1

8 000
−1
6 ,

243
−1
5 3−1

7 46000
−1
6 , 152

−2
6 32

5000
−1
6 , 1−1

5 1−1
7 24000

−1
6 , 243

−1
5 4−1

8 000
−1
6 ,

1−1
7 2−1

6 32
500, 152

−1
6 353

−1
7 46000

−1
6 , 152

−1
6 354

−1
8 000

−1
6 ,

1−1
7 353

−1
7 4600, 153

−2
7 42

6000
−1
6 , 1−1

7 354
−1
8 00, 153

−1
7 464

−1
8 000

−1
6 ,

1−1
7 263

−2
7 42

600, 1−1
7 263

−1
7 464

−1
8 00, 154

−2
8 000

−1
6 , 2−1

8 42
600,

2−1
8 37474

−1
8 00, 1−1

7 264
−2
8 00, 3−1

9 4600, 2−1
8 32

74
−2
8 00, 373

−1
9 4−1

8 00,

283
−2
9 00, 192

−1
10 00, 1−1

11 00010.

Let M3 = ẽ1ẽ2ẽ
2
3ẽ2ẽ

2
4ẽ

2
3ẽ2ẽ1ẽ0M2 = Y1,−5Y

−1
0,6 Y −1

0,−4. The following 52

monomials appear inMI0(M3):

1−50
−1
6 0−1

−4, 1−1
−32−40

−1
6 , 2−1

−23
2
−30

−1
6 , 3−33

−1
−14−20

−1
6 , 2−23

−2
−14

2
−20

−1
6 ,
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3−34
−1
0 0−1

6 , 1−12
−1
0 42

−20
−1
6 , 2−23

−1
−14−24

−1
0 0−1

6 , 1−1
1 42

−2000
−1
6 ,

1−12
−1
0 4−24

−1
0 3−10

−1
6 , 2−24

−2
0 0−1

6 , 1−1
1 3−14−24

−1
0 000

−1
6 ,

1−12
−1
0 4−2

0 32
−10

−1
6 , 1−13

−1
1 4−20

−1
6 , 1−1

1 203
−1
1 4−2000

−1
6 ,

1−1
1 32

−14
−2
0 000

−1
6 , 1−13−13

−1
1 4−1

0 0−1
6 , 2−1

2 314−2000
−1
6 ,

1−1
1 203

−1
1 3−14

−1
0 000

−1
6 , 1−1203

−2
1 0−1

6 , 3−1
3 424−2000

−1
6 ,

2−1
2 313−14

−1
0 000

−1
6 , 1−1

1 22
03

−2
1 000

−1
6 , 1−1112

−1
2 0−1

6 , 4−1
4 4−2000

−1
6 ,

3−1
3 3−14

−1
0 42000

−1
6 , 202

−1
2 000

−1
6 , 1−11

−1
3 020

−1
6 , 3−14

−1
0 4−1

4 000
−1
6 ,

203
−1
1 3−1

3 42000
−1
6 , 112

−2
2 32

1000
−1
6 , 1−1

1 1−1
3 2002000

−1
6 , 203

−1
1 4−1

4 000
−1
6 ,

1−1
3 2−1

2 32
100020

−1
6 , 112

−1
2 313

−1
2 42000

−1
6 , 112

−1
2 314

−1
4 000

−1
6 ,

1−1
3 313

−1
3 4200020

−1
6 , 113

−2
3 42

2000
−1
6 , 1−1

3 314
−1
4 02000

−1
6 ,

113
−1
3 424

−1
4 000

−1
6 , 1−1

3 223
−2
3 42

202000
−1
6 , 1−1

3 223
−1
3 424

−1
4 02000

−1
6 ,

114
−2
4 000

−1
6 , 2−1

4 42
202000

−1
6 , 2−1

4 33424
−1
4 02000

−1
6 , 1−1

3 224
−2
4 02000

−1
6 ,

3−1
5 4202000

−1
6 , 2−1

4 32
34

−2
4 02000

−1
6 , 333

−1
5 4−1

4 02000
−1
6 , 243

−2
5 02000

−1
6 ,

152
−1
6 02000

−1
6 , 1−1

7 0200.

Let M4 = ẽ0M3 = Y0,−6Y
−1
0,6 and M5 = ẽ2

4ẽ
2
3ẽ

2
2ẽ

2
1ẽ0f̃1f̃2M = Y 2

4,−2Y
−1
0,2

Y −1
0,6 . We have MI0(M4) = {M4}. We do not give the list of monomials of

MI0(M) andMI0(M5) (a total of 1598 monomials).

All monomials of M(M)/τ2 are connected to either M , M2, M3, M4,

M5 in the I0-crystal (it is possible to check from the above computation; or

it also follows from ResW ($2) = VI0($2)⊕VI0($1)
⊕2⊕VI0(0)⊕VI0(2$4)).

6.3.3. Let us consider ` = 3 and M = Y3,0Y
−1
0,3 Y −1

0,5 . We have f̃1f̃2f̃3M

= Y4,1Y3,2Y
−1
1,4 Y −1

0,5 and so we see as in Proposition 3.4 thatM(M) ' B($`).

Let M1 = ẽ3ẽ2ẽ3ẽ
2
4ẽ1ẽ2ẽ

3
3ẽ

2
2ẽ

2
1ẽ0f̃1f̃2f̃3M = (Y4,−1Y

−1
4,−3)Y3,−4Y

−1
0,3 Y −1

0,−1. This

has weight wtM + δ and hence z`(M) = M1. As

ẽ3ẽ2ẽ3ẽ
2
4ẽ1ẽ2ẽ

3
3ẽ

2
2ẽ

2
1ẽ0f̃1f̃2f̃3M1 = Y3,−6Y

−1
0,−1Y

−1
0,−3 = τ−6(M),

M(m) is preserved under τ6 and we have (z`)
−2 = τ6.

Let us define the monomials M3 = ẽ4ẽ3ẽ2ẽ1ẽ0M = Y −1
0,5 Y4,−3 and M4 =

ẽ4ẽ3ẽ2ẽ1ẽ0M1 = Y4,−1Y
−1
4,−3Y4,−7Y

−1
0,3 . In particular, as z` is compatible with

the operators ẽi, it follows from z`(M) = M1 that z`(M3) = M4.

The following 26 monomials appear inMI0(M3):

4−30
−1
5 , 3−24

−1
−10

−1
5 , 2−13

−1
0 0−1

5 , 102
−1
1 300

−1
5 , 103

−1
2 410

−1
5 ,



LEVEL 0 MONOMIAL CRYSTALS 145

1−1
2 300

−1
5 01, 104

−1
3 0−1

5 , 1−1
2 213

−1
2 410

−1
5 01, 1−1

2 214
−1
3 0−1

5 01,

2−1
3 32410

−1
5 01, 2−1

3 32
24

−1
3 0−1

5 01, 3−1
4 41430

−1
5 01, 323

−1
4 0−1

5 01,

414
−1
5 0−1

5 01, 233
−2
4 430

−1
5 01, 324

−1
3 4−1

5 0−1
5 01, 142

−1
5 430

−1
5 01,

233
−1
4 4−1

5 0−1
5 01, 1−1

6 4301, 142
−1
5 344

−1
5 0−1

5 01, 1−1
6 344

−1
8 01,

143
−1
6 0−1

5 01, 1−1
6 253

−1
6 01, 2−1

7 3601, 3−1
8 4701, 4−1

9 01.

The following 26 monomials appear inMI0(M4):

4−14
−1
−34−70

−1
3 , 3−64

−1
−54−14

−1
−30

−1
3 , 2−53

−1
−44−14

−1
−30

−1
3 ,

1−42
−1
−33−44−14

−1
−30

−1
3 , 1−43

−1
−24−10

−1
3 , 1−1

−23−44−14
−1
−30−30

−1
3 ,

1−43
−1
−2304

−1
1 0−1

3 , 1−1
−22−33

−1
−24−10−30

−1
3 , 1−1

−22−33
−1
−2304

−1
1 0−30

−1
3 ,

2−1
−13−24−10−30

−1
3 , 2−1

−13−2304
−1
1 0−30

−1
3 , 3−1

0 42
−10−30

−1
3 ,

2−1
−1213−23

−1
2 0−30

−1
3 , 4−14

−1
1 0−30

−1
3 , 213

−1
0 3−1

2 4−10−30
−1
3 ,

304
−2
1 0−30

−1
3 , 122

−1
3 3−1

0 324−10−30
−1
3 , 213

−1
2 4−1

1 0−30
−1
3 ,

1−1
4 3−1

0 324−10−3, 122
−1
3 324

−1
1 0−30

−1
3 , 1−1

4 324
−1
1 0−3,

123
−1
4 4−1

1 430−30
−1
3 , 1−1

4 233
−1
4 4−1

1 430−3, 2−1
5 344

−1
1 430−3,

3−1
6 454

−1
1 430−3, 4−1

7 4−1
1 430−3.

The crystal isomorphism z` is given in order.

It should also be possible to make explicit the bijection between

MI0(M) and MI0(M1) (but we do not write it in the paper as there are

273 monomials).

All monomials of M(M)/τ6 are connected to either M , M1, M3, M4

in the I0-crystal (it is possible to check from the above computation; this

follows also from ResW0($3) = VI0($3)⊕ VI0($4)).

6.3.4. Finally consider ` = 4 and M = Y4,0Y
−1
0,4 . It follows from Corol-

lary 3.3 that M(M) ' B($`). As ẽ4ẽ3ẽ2ẽ1ẽ3ẽ2ẽ4ẽ
2
3ẽ2ẽ1ẽ0M = τ−6(M),

M(M) is preserved under τ6, which is of weight δ. So z` = τ−6 and

M(M)/τ6 ' B(W ($`)).

The following 26 monomials appear inMI0(M):

400
−1
4 , 314

−1
2 0−1

4 , 223
−1
3 0−1

4 , 132
−1
4 330

−1
4 , 133

−1
5 440

−1
4 , 1−1

5 33,

134
−1
6 0−1

4 , 1−1
5 243

−1
5 44, 1−1

5 244
−1
6 , 2−1

6 3544, 2−1
6 32

54
−1
6 , 3−1

7 4446,

353
−1
7 , 444

−1
8 , 263

−2
7 46, 354

−1
6 4−1

8 , 172
−1
8 46, 263

−1
7 4−1

8 , 1−1
9 4608,

172
−1
8 374

−1
8 , 1−1

9 374
−1
8 08, 173

−1
9 , 1−1

9 283
−1
9 08, 2−1

10 3908, 3−1
11 41008,

4−1
12 08.
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These are the monomials appearing in M(M)/τ6. We thus have

B(W ($`)) ' BI0($`).

Remark 6.4. The authors do not find the last three examples in the
literature. One can probably check whether they are perfect or not, though
we have not done yet.

6.4. Type E
(2)
6

6.4.1. First let ` = 1 and M = Y1,0Y
−1
0,1 Y −1

0,5 . We have f̃2f̃1M =

Y −1
0,5 Y −1

2,3 Y3,2 and so we see as in Proposition 3.4 that M(M) ' B($`). As

ẽ1ẽ2ẽ3ẽ4ẽ2ẽ3ẽ2ẽ1ẽ1ẽ0f̃1M = τ−4(M),M(m) is preserved under τ4, which is

of weight δ. Thus we have z` = τ−4 andM(m)/τ4 ' B(W ($`)).

Let M ′ = ẽ0M = Y0,−1Y
−1
0,5 . We have MI0(M

′) = {M ′}.
The following 26 monomials appear inMI0(M):

100
−1
1 0−1

5 , 211
−1
2 0−1

5 , 322
−1
3 0−1

5 , 433
−1
4 230

−1
5 , 432

−1
5 140

−1
5 ,

4−1
5 230

−1
5 , 431

−1
6 , 4−1

5 342
−1
5 140

−1
5 , 4−1

5 341
−1
6 , 3−1

6 25140
−1
5 ,

3−1
6 22

51
−1
6 , 2−1

7 14160
−1
5 , 252

−1
7 , 141

−1
8 0−1

5 07, 362
−2
7 16, 251

−1
6 1−1

8 07,

473
−1
8 16, 362

−1
7 1−1

8 07, 4−1
9 16, 473

−1
8 271

−1
8 07, 4−1

9 271
−1
8 07, 472

−1
9 07,

4−1
9 382

−1
9 07, 3−1

10 2907, 2−1
11 11007, 1−1

12 07011.

These 26 monomials, M ′ are all monomials ofM(M)/τ4. As an appli-

cation we have

B(W ($1)) ' BI0($1) t BI0(0).

The crystal structure here is isomorphic to one studied recently in [3].

As the crystal graph is connected, we conclude that the crystal base con-

structed in [3] are isomorphic to B(W ($`)).

6.4.2. Now we consider ` = 2 and M = Y2,0Y
−1
0,2 Y −1

0,4 Y −1
0,6 . We have

f̃1f̃
2
2 f̃3f̃1f̃2M = Y4,2Y3,3Y

−1
2,4 Y −1

1,5 Y −1
0,6 and so we see as in Proposition 3.4

that M(M) ' B($`). As ẽ2ẽ3ẽ2ẽ
2
1ẽ2ẽ4ẽ

2
3ẽ

3
2ẽ

2
1ẽ0f̃1f̃

2
2 f̃3f̃1f̃2M = τ−2(M),

M(M) is preserved under τ2, which is of weight δ. Therefore we have

z` = τ−2 andM(M)/τ2 ' B(W ($`)).

Let M2 = ẽ1ẽ0M = Y1,−1Y
−1
0,4 Y −1

0,6 . The following 26 monomials appear

inMI0(M2):

1−10
−1
4 0−1

6 , 201
−1
1 000

−1
4 0−1

6 , 312
−1
2 000

−1
4 0−1

6 , 423
−1
3 22000

−1
4 0−1

6 ,

422
−1
4 13000

−1
4 0−1

6 , 4−1
4 22000

−1
4 0−1

6 , 421
−1
5 000

−1
6 , 4−1

4 332
−1
4 13000

−1
4 0−1

6 ,
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4−1
4 331

−1
5 000

−1
6 , 3−1

5 2413000
−1
4 0−1

6 , 3−1
5 22

41
−1
5 000

−1
6 , 2−1

6 1315000
−1
4 0−1

6 ,

242
−1
6 000

−1
6 , 131

−1
7 000

−1
4 , 352

−2
6 15000

−1
6 , 241

−1
5 1−1

7 00, 463
−1
7 15000

−1
6 ,

352
−1
6 1−1

7 00, 4−1
8 15000

−1
6 , 463

−1
7 261

−1
7 00, 4−1

8 261
−1
7 00, 462

−1
8 00,

4−1
8 372

−1
8 00, 3−1

9 2800, 2−1
10 1900, 1−1

11 00010.

Let M3 = ẽ1ẽ2ẽ3ẽ2ẽ4ẽ3ẽ2ẽ1ẽ0M2 = Y1,−5Y
−1
0,6 Y −1

0,−4. The following 26

monomials appear inMI0(M3):

1−50
−1
−40

−1
6 , 2−41

−1
−30

−1
6 , 3−32

−1
−20

−1
6 , 4−23

−1
−12−20

−1
6 , 4−22

−1
0 1−10

−1
6 ,

4−1
0 2−20

−1
6 , 4−21

−1
1 000

−1
6 , 4−1

0 3−12
−1
0 1−10

−1
6 , 4−1

0 3−11
−1
1 000

−1
6 ,

3−1
1 201−10

−1
6 , 3−1

1 22
01

−1
1 000

−1
6 , 2−1

2 1−1110
−1
6 , 202

−1
2 000

−1
6 ,

1−11
−1
3 0−1

6 02, 312
−2
2 11000

−1
6 , 201

−1
1 1−1

3 0−1
6 0002, 423

−1
3 11000

−1
6 ,

312
−1
2 1−1

3 000
−1
6 02, 4−1

4 11000
−1
6 , 423

−1
3 221

−1
3 000

−1
6 02,

4−1
4 221

−1
3 000

−1
6 02, 422

−1
4 000

−1
6 02, 4−1

4 332
−1
4 000

−1
6 02, 3−1

5 24000
−1
6 02,

2−1
6 15000

−1
6 02, 1−1

7 0002.

Let M4 = ẽ0M3 = Y0,−6Y
−1
0,6 . We have MI0(M4) = {M4}.

Let M5 = ẽ4ẽ3ẽ
2
2ẽ

2
1ẽ0f̃1f̃2M = Y4,−2Y

−1
0,2 Y −1

0,6 . The following 52 mono-

mials appear inMI0(M5):

4−20
−1
2 0−1

6 , 4−1
0 3−10

−1
2 0−1

6 , 3−1
1 22

00
−1
2 0−1

6 , 202
−1
2 110

−1
2 0−1

6 ,

312
−2
2 12

10
−1
2 0−1

6 , 201
−1
3 0−1

6 , 423
−1
3 12

10
−1
2 0−1

6 , 312
−1
2 111

−1
3 0−1

6 ,

4−1
4 12

10
−1
2 0−1

6 , 423
−1
4 111

−1
3 220

−1
6 , 311

−2
3 020

−1
6 , 4−1

4 22111
−1
3 0−1

6 ,

423
−1
3 1−2

3 22
2020

−1
6 , 422

−1
4 110

−1
6 , 4−1

4 332
−1
4 110

−1
6 , 4−1

4 22
21

−2
3 020

−1
6 ,

42222
−1
4 1−1

3 020
−1
6 , 3−1

5 24110
−1
6 , 4−1

4 332
−1
4 221

−1
3 020

−1
6 , 42332

−2
4 020

−1
6 ,

2−1
6 15110

−1
6 , 3−1

5 24221
−1
3 020

−1
6 , 4−1

4 32
32

−2
4 020

−1
6 , 42443

−1
5 020

−1
6 ,

1−1
7 11, 2−1

6 221
−1
3 15020

−1
6 , 333

−1
5 020

−1
6 , 424

−1
6 020

−1
6 , 221

−1
3 1−1

7 02,

332
−1
4 2−1

6 15020
−1
6 , 443

−2
5 22

4020
−1
6 , 4−1

4 4−1
6 33020

−1
6 , 332

−1
4 1−1

7 02,

4−1
6 3−1

5 22
4020

−1
6 , 443

−1
5 242

−1
6 15020

−1
6 , 443

−1
5 241

−1
7 02, 4−1

6 243
−1
6 15020

−1
6 ,

442
−2
6 12

5020
−1
6 , 4−1

6 241
−1
7 02, 442

−1
6 151

−1
7 02, 4−1

6 352
−2
6 12

5020
−1
6 ,

4−1
6 352

−1
6 151

−1
7 02, 441

−2
7 0206, 3−1

7 12
5020

−1
6 , 3−1

7 26151
−1
7 02,

4−1
6 351

−2
7 0206, 2−1

8 1502, 3−1
7 22

61
−2
7 0206, 262

−1
8 1−1

7 0206, 372
−2
8 0206,

483
−1
9 0206, 4−1

10 0206.
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We do not list the 273 monomials of MI0(M), but we can check that

all monomials ofM(M)/τ2 are connected to either M , M2, M3, M4, M5 in

the I0-crystal. As an application we have

B(W ($2)) ' BI0($2) t BI0($1) t BI0($1) t BI0(0) t BI0($4).

6.4.3. We consider ` = 3 and M = Y3,0Y
−2
0,3 Y −2

0,5 . We have f̃2
1 f̃2

2 f̃3M =

Y4,1Y3,2Y
−2
1,4 Y −2

0,5 and so we see as in Proposition 3.4 that M(M) ' B($`).

As ẽ3ẽ
2
2ẽ4ẽ

2
3ẽ

2
2ẽ

4
1ẽ

2
2ẽ

2
3ẽ

3
2ẽ

3
4ẽ

3
3ẽ

4
2ẽ

4
1ẽ

4
0M = τ−6(M), M(M) is preserved under

τ6, which is of weight −4δ = −2d`δ. Therefore we have (z`)
−2 = τ6. Let

M1 = ẽ3ẽ
2
2ẽ

2
1ẽ3ẽ

2
2ẽ

2
4ẽ

3
3ẽ

4
2ẽ

4
1ẽ

2
0f̃

2
1 f̃2

2 f̃3M = Y −2
0,3 Y −2

0,−1Y3,−4. This has weight

wt(M) + d`δ, hence we have z`(M) = M1.

We do not determine the I0-crystal components of M(M)/τ6 at this

moment.

6.4.4. Finally let us consider ` = 4. Let M = Y4,0Y
−2
0,4 . It follows

from Corollary 3.3 that M(M) ' B($`). As ẽ4ẽ3ẽ
2
2ẽ

2
1ẽ3ẽ

2
2ẽ4ẽ

2
3ẽ

2
2ẽ

2
1ẽ

2
0M =

τ−6(M), M(M) is preserved under τ6, which is of weight −2δ = −d`δ.

Therefore we have z` = τ−6 andM(M)/τ6 ' B(W ($`)).

The following 52 monomials appear inMI0(M):

400
−2
4 , 2−1

2 310
−2
4 , 3−1

3 22
20

−2
4 , 222

−1
4 130

−2
4 , 332

−2
4 12

30
−2
4 , 221

−1
5 0−1

4 ,

443
−1
5 12

30
−2
4 , 332

−1
4 131

−1
5 0−1

4 , 4−1
6 12

30
−2
4 , 443

−1
5 131

−1
5 240

−1
4 , 331

−2
5 ,

4−1
6 24131

−1
5 0−1

4 , 443
−1
5 1−2

5 22
4, 442

−1
6 130

−1
4 , 4−1

6 352
−1
6 130

−1
4 ,

4−1
6 22

41
−2
5 , 44242

−1
6 1−1

5 , 3−1
7 26130

−1
4 , 4−1

6 352
−1
6 241

−1
5 , 44352

−2
6 ,

2−1
8 17130

−1
4 , 3−1

7 26241
−1
5 , 4−1

6 32
52

−2
6 , 44463

−1
7 , 1−1

9 13080
−1
4 ,

2−1
8 241

−1
5 17, 353

−1
7 , 444

−1
8 , 241

−1
5 1−1

9 08, 352
−1
6 2−1

8 17, 463
−2
7 22

6,

4−1
6 4−1

8 35, 352
−1
6 1−1

9 08, 4−1
8 3−1

7 22
6, 463

−1
7 262

−1
8 17, 463

−1
7 261

−1
9 08,

4−1
8 262

−1
8 17, 462

−2
8 12

7, 4−1
8 261

−1
9 08, 462

−1
8 171

−1
9 08, 4−1

8 372
−2
8 12

7,

4−1
8 372

−1
8 171

−1
9 08, 461

−2
9 02

8, 3−1
9 12

7, 3−1
9 28171

−1
9 08, 4−1

8 371
−2
9 02

8,

2−1
10 1708, 3−1

9 22
81

−2
9 02

8, 282
−1
10 1−1

9 02
8, 392

−2
10 02

8, 4103
−1
11 02

8, 4−1
12 070

2
8.

Let M ′ = ẽ1ẽ2ẽ3ẽ2ẽ1ẽ0M = Y1,−3Y
−1
0,4 Y −1

0,−2. The following 26 monomi-

als appear inMI0(M
′):

1−30
−1
−20

−1
4 , 2−21

−1
−10

−1
4 , 3−12

−1
0 0−1

4 , 403
−1
1 200

−1
4 , 402

−1
2 110

−1
4 ,

4−1
2 200

−1
4 , 401

−1
3 020

−1
4 , 4−1

2 312
−1
2 110

−1
4 , 4−1

2 311
−1
3 020

−1
4 ,

3−1
3 22110

−1
4 , 3−1

3 22
21

−1
3 020

−1
4 , 2−1

4 11130
−1
4 , 222

−1
4 020

−1
4 , 111

−1
5 ,
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332
−2
4 13020

−1
4 , 221

−1
3 1−1

5 02, 443
−1
5 13020

−1
4 , 332

−1
4 1−1

5 02, 4−1
6 13020

−1
4 ,

443
−1
5 241

−1
5 02, 4−1

6 241
−1
5 02, 442

−1
6 02, 4−1

6 352
−1
6 02, 3−1

7 2602, 2−1
8 1702,

1−1
9 0208.

Let M ′′ = ẽ0M
′ = Y0,−4Y

−1
0,4 . We have MI0(M

′′) = {M ′′}.

The above exhausts all monomials ofM(M)/τ6. As an application we

have

B(W ($4)) ' BI0($4) t BI0($1) t BI0(0).

Remark 6.5. The authors do not find the description of the examples
` = 2, 3, 4 in the literature.

6.5. Type D
(3)
4

6.5.1. First we consider ` = 1. Let M = Y1,0Y
−1
0,1 Y −1

0,3 . As f̃1M =

Y −2
1,2 Y −1

0,3 Y2,1 we see as in Proposition 3.4 thatM(M) ' B($`). The follow-

ing 7 monomials appear inMI0(M):

M = 100
−1
1 0−1

3 , m2 = 1−1
2 0−1

3 21, m3 = 2−1
3 12

20
−1
3 , m4 = 121

−1
4 ,

m5 = 1−2
4 2303, m6 = 2−1

5 1403, m7 = 1−1
6 0305.

Let M ′ = τ2(ẽ0M) = Y0,1Y
−1
0,5 . We have MI0(M

′) = {M ′}. The

crystal graph of M(M) is given in Figure 10. We find that zl = τ−2 and

M(M)/τ2 =MI0(M) tMI0(M
′).

This crystal was described in [11].

M m2 m3 m4 m5 m6 m7

M ′

1 2 1 1 2 1

0[2]

0[2]

0[2]0[2]

Figure 10: (Type D
(3)
4 ) the crystal B($1)

6.5.2. Now we consider ` = 2. Let M = Y2,0Y
−3
0,2 . It follows from

Corollary 3.3 that M(M) ' B($`). As ẽ2ẽ
3
1ẽ

2
2ẽ

3
1ẽ

3
0M = τ−4(M), M(M) is

preserved under τ4, which is of weight 3δ = d2δ. Therefore z` = τ−4 and so

M(m)/τ4 ' B(W ($`)).
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The following 14 monomials appear inMI0(M):

200
−3
2 , 2−1

2 13
10

−3
2 , 12

11
−1
3 0−2

2 , 22111
−2
3 0−1

2 , 1−3
3 12

2, 2−1
4 11130

−1
2 ,

222
−1
4 , 111

−1
5 0−1

2 04, 2−2
4 13

3, 1−1
3 1−1

5 2204, 2−1
4 12

31
−1
5 04, 131

−2
5 02

4,

1−3
5 03

424, 2−1
6 03

4.

Let M2 = ẽ1ẽ0M = Y −2
0,2 Y1,−1. The following 7 monomials appear in

MI0(M2):

0−2
2 1−1, 000

−2
2 1−1

1 20, 000
−2
2 12

12
−1
2 , 000

−1
2 111

−1
3 , 1−2

3 2200,

2−1
4 1300, 1−1

5 0004.

Let M3 = ẽ1ẽ2ẽ1ẽ0M2 = Y1,−3Y
−1
0,−2Y

−1
0,2 . The following 7 monomials

appear inMI0(M3):

0−1
−20

−1
2 1−3, 0−1

2 1−1
−12−2, 0−1

2 12
−12

−1
0 , 000

−1
2 1−11

−1
1 , 1−2

1 200
2
00

−1
2 ,

2−1
2 110

2
00

−1
2 , 1−1

3 02
0.

Let M4 = ẽ0M3 = Y0,−4Y
−1
0,2 . We have MI0(M4) = {M4}.

By direct calculation we can see that all monomials of M(M)/τ4 are

connected to either M or M2 or M3 or M4 in the I0-crystal. As an appli-

cation we have

B(W ($2)) ' BI0($2) t BI0($1) t BI0($1) t BI0(0).

The authors do not find the description of this example in the literature.

§7. Discussions

(1) As we saw in the simply-laced type examples (except the last one in

6.1.4) in this paper, we can construct explicit bijections between monomial

crystals M(m) and the set C(m0) of monomials in q-characters counted

with multiplicities. (Here m0 is obtained from m by setting Y0,∗ as 1.)

Their origin is combinatorial and we do not understand their representation

theoretical meaning yet. In the example in 6.1.2, the global crystal base

element corresponding to the exceptional monomial does not belong to a

single l-weight subspace.

Also we can check that the bijection is compatible with the crystal

structure in the following sense: Let MI0(m0) be the component of the

monomial crystal for gI0 containing m0. Let p : M(m) → MI0(m0) be
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the composition of the above mentioned bijection and the map obtained

by forgetting multiplicities. Then p is a morphism of the crystal (but not

strict). This is not true in general.

Counterexample: In the q-character of W ($3) for E6 we have mono-

mials m1 = Y3,4Y
−1
3,6 Y4,3Y

−1
2,5 Y1,4 and m2 = Y 2

3,4Y
−1
3,6 Y −1

4,5 Y5,4Y
−1
2,5 Y1,4 with

coefficients 1 + 2t2 + t4 and 1 + t2 + t4. We have f̃4m1 = m2 in the mono-

mial crystal. If we had a crystal morphism which preserves the weight, the

4 vectors corresponding to m1 would necessarily satisfy ϕ4 ≥ 1, and each

of them would be sent by f̃4 to vectors corresponding to m2. As there are

only 3 of them, we have a contradiction.

(2) In [35] Naito-Sagaki proved that the crystal of Lakshmibai-Seshadri

paths of shape $` is isomorphic to B($`). This result is better than Theo-

rem 3.2 in the sense that they determine all paths, not in a recursive way

as ours. Therefore it would be nice if we could give an explicit map from

the path crystal to the monomial crystal.
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45 avenue des Etats-Unis, Bat. Fermat, 78035 Versailles

France

hernandez@math.cnrs.fr

http://www.math.uvsq.fr/~hernandez

Hiraku Nakajima
Department of Mathematics

Kyoto University

Kyoto, 606-8502

Japan

nakajima@math.kyoto-u.ac.jp

http://www.math.kyoto-u.ac.jp/~nakajima


