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Abstract. Let K be a local non-archimedian field, F = K((t)) and let G

be a split semi-simple group. The purpose of this paper is to study certain
analogs of spherical and Iwahori Hecke algebras for representations of the group
G = G(F) and its central extension Ĝ. For instance our spherical Hecke algebra
corresponds to the subgroup G(A) ⊂ G(F) where A ⊂ F is the subring OK((t))
where OK ⊂ K is the ring of integers. It turns out that for generic level (cf.
[4]) the spherical Hecke algebra is trivial; however, on the critical level it is
quite large. On the other hand we expect that the size of the corresponding
Iwahori-Hecke algebra does not depend on a choice of a level (details will be
considered in another publication).

§1. Introduction

1.1. Let Let K be a local non-archimedian field and let F = K((t)).

In this paper we shall actually assume that K = Fq((x)) though this is

probably not necessary. Denote by OK the ring of integers of K. Set also

OF = K[[t]], mF = tOF, A = OK((t)), E = Fq((t)) and OE = Fq[[t]].

We denote by Vect the category of vector spaces over C and by Vect the

category of pro-vector spaces over C. Let now G be a connected split

reductive algebraic group (defined over Z). Set G = G(F). The category

of Rep(G) of representations of G was defined in [4]. The group G admits

canonical central extension Ĝ by means of K∗ and we denote by Rep(Ĝ)

the category of its representations. For each κ : K∗ → C∗ we denote by

Repκ(G) the full subcategory of of Rep(Ĝ) on which the central K∗ acts by

κ.
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1.2. Cherednik algebra as a Hecke algebra

In this paper we want to discuss some examples of “Hecke algebras”

for the group Ĝ. One of such examples is discussed in detail in [8] and [4].

Namely, let us choose a Borel subgroup B of G defined over K and let U

denote its unipotent radical and choose a Cartan subgroup T in B. Let

I ⊂ G(OF) be the Iwahori subgroup consisting of all elements of G(OF)

whose reduction mod t lies in B(K). Let also I0 denote the preimage of

U(K) under the map I → B(K) and set I00 = T (OF)I0. Consider the

functor

CoinvI00 : Rep(Ĝ) −→ Vect

sending every representation to its coinvariants with respect to I00. Let

Ḧ denote the algebra of endomorphisms of this functor. It is shown in

[5] that this algebra is naturally isomorphic to Cherednik’s double affine

Hecke algebra associated with G. This is an extension of a previous result

of Kapranov (cf. [8]).

1.3. The ring A and the corresponding subgroups

One of the purposes of the present paper is to try to understand the

results of [8] in some “global” context. In other words, one would like to

develop some kind of two-dimensional theory of automorphic forms. Some

speculations about this are presented in the last section of this article; the

main part of the paper is devoted to a discussion of certain “Hecke algebras”

which are supposed to play the same role in this (not yet constructed)

theory as the usual Hecke algebras of p-adic groups play in the theory of

automorphic forms. In the theory of representations of the group G(K) the

Hecke algebras are attached to open compact subgroups of this group; very

often such subgroups can be realized as subgroups of G(OK) of finite index.

Given such a group Γ we can consider the functor InvΓ : RepG(K) → Vect

sending every representation V to the subspace V Γ ⊂ V of Γ-invariants.

(Note that since Γ is compact we have V Γ = VΓ where VΓ is the quotient

space of Γ-coinvariants.) The corresponding Hecke algebra H(G,Γ) can be

defined as the algebra of endomorphisms of this functor. It turns out (cf.

some explanations in Section 1.14) that in our case the relevant subgroups

of G(F) are of the following form. Let A = OK((t)) 1. We have the natural

homomorphism A → Fq((t)) (reduction modulo mK). Hence we get the

natural homomorphism η : G(A) → G(Fq((t))) = G(E). The subgroups

1It is easy to see that A (as a subring of F) does not depend on the choice of t.
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Γ ⊂ G in which we shall be interested in in this paper are those which are

equal to the inverse image of a closed subgroup of G(E) 2. More specifically

we are going to concentrate on the following two examples:

1) Γ = G(A).

2) Γ = I00
A where

I00
A = η−1(T (OE)U(E)).

We shall refer to the first case as the spherical case and to the second

as the Iwahori case. It is easy to see that the central extension Ĝ splits over

G(A). Since G(A) is equal to it’s commutator we may consider the group

G(A) as a subgroup of Ĝ.

1.4. The spherical Hecke algebra

Fix κ : F∗ → C∗ as above and assume that it is trivial on O∗
F
. In this

case we may write κ(x) = qcv(x) where c ∈ C. In this case we shall write

Repc(Ĝ) instead of Repκ(Ĝ). Let Invc : Repc(Ĝ) → Vect be the functor of

invariants with respect to G(A) 3. Set

Hsph
c = End(Invc).

In other words, Hsph
c is the universal algebra acting on the (pro)space of

G(A)-invariants in any representation of level c.

Remarks. 1. In this case the functor of invariants no longer coincides
with the functor of coinvariants. It turns out that we have to use the former
(it is not difficult to see that the latter is almost always trivial).

2. One can also study another version of the “double spherical Hecke
algebra” when the subgroup G(A) is replaced by G(OF) (and the functor
of invariants is replaced by the functor of coinvariants). This is somewhat
simpler but seems to be less relevant for “global” purposes discussed in
Section 1.14.

Conjecture 1.5. (1) For any c the algebra Hsph
c is commutative.

(2) One has Hsph
c = C unless qc+h∨

is a root of unity ; here h∨ denotes

the dual Coxeter number of G.

2One can consider a more general class of subgroups considering reductions modulo
higher powers of mK. However, we are not going to do it in this paper.

3Since we are dealing with pro-vector spaces the notion of invariants is a bit tricky
(cf. Section 3.1).
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Remark. The reader should compare this conjecture with the corre-
sponding (known) statements for affine Lie algebras. For example the ana-
log of 1) for affine Lie algebras is a very general statement which is proved
using the theory of vertex operator algebras. It seems that in our case one
has to develop some sort of similar theory in order to prove such statements.

1.6. The case of critical level

The size of the algebra Hsph
c changes drastically when qc+h∨

is a root

of unity. In this paper we shall actually restrict ourselves to the critical

level, i.e. to the case when c = −h∨ (in this case we shall write Hsph
crit

instead of Hsph
−h∨). While we still can’t show that in this case the algebra is

commutative, we can construct a very large commutative subalgebra in it.

This is done as follows. Let B = OF ∩ A = Fq[[x, t]]. Let us consider the

scheme ∆ = Spec(B). By an irreducible curve in ∆ we shall mean a proper

principal prime ideal of B. If such a curve C is given by the equation f = 0

for some f ∈ B (i.e. f is a generator of the corresponding ideal) then we say

that C is good if the ring B is topologically generated by t and f over Fq

(thus automatically we have B = Fq[[f, t]]). In other words C is a smooth

irreducible curve which intersects the curve X := {t = 0} transversely. Let

C denote the set of good curves. Let R be the free commutative C-algebra

whose generators are elements of C. Let us also denote by Λ the coweight

lattice of G and by Λ+ ⊂ Λ the subsemigroup of dominant coweights.

Theorem 1.7. The algebra Hsph
crit contains R[Λ+] as a subalgebra.

In this section we give a rough idea of the proof of Theorem 1.7 (which

will also explain why the critical level is special) and provide details later

in the paper. The theorem says basically that given any C ∈ C we may

construct an embedding αC : C[Λ+] ↪→ Hsph
crit and that their images com-

mute for different curves C. In other words, given C as above we need to

construct the corresponding element αC(λ) ∈ Hsph
crit for each λ ∈ Λ+ such

that for any λ, µ ∈ Λ+ we have

αC(λ)αC(µ) = αC(λ + µ)

and such that for any two curves C, C ′ and any λ, µ ∈ Λ+ the elements

αC(λ) and αC′(µ) commute.

Let C be given by the equation f = 0. Choose a maximal torus T in G

and set fλ = λ(f). Let V be a representation of Ĝ of some level c. We need
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to construct an operator αV
C : VG(A) → VG(A). Assume for simplicity that

VG(A) is a vector space (and not a pro-space) so that we can talk about its

elements. Then for any v ∈ VG(A) we would like to write

(1.1) αV
C(λ)(v) =

∫

G(A)fλG(A)/G(A)
g(v) dg.

For this formula to make sense we have to

a) interpret the integrant g(v) dg as a measure on the set G(A)f λG(A)/

G(A)

b) to show that the corresponding integral is convergent.

Let us note that the expression g(v) doesn’t make sense on G but only on

Ĝ; more precisely, g(v) makes sense as V-valued function on the Z-torsor

over G obtained from the K∗-torsor Ĝ → G by applying the homomorphism

K∗ → Z. Also the shift by 1 ∈ Z multiplies it by q−h∨

.

Denote by T the −h∨-th power of this Z-torsor. Thus g(v) makes sense

as a V-valued function on T so that 1 ∈ Z acts by multiplication by q. For

a) we remind some basics of the theory of integration on varieties over local

fields such as E. Let Y be a smooth algebraic variety of E and let ΩY

denote the line bundle of highest forms on Y . This line bundle defines a

E∗-torsor over Y (E). By composing it with the valuation homomorphism

E∗ → Z we get a Z-torsor over Y (E). We denote by TY the dual Z-torsor.

Let s be a locally constant function on TY (with values in any vector space

V ) on which the shift by 1 ∈ Z acts by means of multiplication by q. Then

it is well known that s defines a V -valued measure on Y (E) for which all

open compact subsets are measurable. In particular,
∫
K s ∈ V makes sense

where K is any open compact subset of X(E). In our case it is easy to see

that we have an equality

G(A)fλG(A)/G(A) = G(E[[f ]])fλG(E[[f ]]).

The latter set is known to be the set of E-points of a smooth variety Grλ
G

(the union of all Grλ
G’s is the affine Grassmannian GrG of G – cf. Section 2).

Moreover, the main property of the critical level will be the following:

Proposition 1.8. The restriction of T to G(A)f λG(A)/G(A) is iso-

morphic to TGrλ
G
.
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So we see that the part a) is achieved and we can consider g(v) dg as a

measure on the set G(A)fλG(A)/G(A). If the variety Grλ
G is proper (and

thus the set Grλ
G(E) is compact) then the convergence of the above integral

would be obvious. However, this happens only in some very limited number

of cases, so theoretically some convergence issues may arise. However, we

show in Section 2 that the above integral is always absolutely convergent.

Remarks. 1. Note that the algebra C[Λ+] is (abstractly) isomorphic

to the usual “finite” spherical Hecke algebra Hsph
f for the group G(K) 4. In

Section 3.6 we make this isomorphism canonical by looking at the action
of Hsph

crit in the space of G(A)-invariants in some particular representation.
However, apart from the case of G = GL(n) we can’t compute this isomor-
phism explicitly.

2. We expect that the algebra R[Λ+] is dense in Hsph
crit in some sense.

A precise conjecture is formulated in Section 3.12.

1.9. A variant

Here we want to discuss what happens when the group G(A) is replaced

by G(OF) (as was remarked above this case is somewhat easier but seems

to be less relevant for global applications discussed below). In this case we

should consider the functor

Coinvc : Repc(Ĝ) −→ Vect ,

sending every representation to its coinvariants with respect to G(OF). We

set

Hsph′

c = End(Coinvc).

As before we believe that the following is true:

Conjecture 1.10. (1) The algebra Hsph′

c is commutative for every

c ∈ C.

(2) One has Hsph′

c = C unless qc+h∨

is a root of unity.

Let us write Hsph′

crit instead of Hsph′

−h∨ . Then we have the following result

Theorem 1.11. There exists an embedding C[Λ+] ↪→ Hsph′

crit .

4Here the subscript “f” stands for “finite”.
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The proof of Theorem 1.11 is basically a word-by-word repetition of

the proof of Theorem 1.7 which is discussed in Section 3 except that the

last part of the proof (Section 3.10) is not needed in the current case.

In fact, we believe that Theorem 1.11 may be strengthened in the fol-

lowing way.

Conjecture 1.12. The embedding in Theorem 1.11 is an isomor-

phism.

The reader should think of Conjecture 1.12 as an analog of the density

Conjecture 3.13.

One can also formulate the following Conjecture which implies both

Conjecture 1.10 and Conjecture 1.12. Let Ḧc as before denote the modified

double affine Hecke algebra as defined in [8] and let Z(Ḧc) denote its center.

It follows easily from the results of [8] and [4] that one has a natural map

jc : Z(Ḧc) → Hsph′

c .

Conjecture 1.13. The map jc is surjective for any c.

1.14. Global dreams

Here we would like to give some (very speculative) motivation for con-

sidering the above Hecke algebras. Let S be a smooth surface over Fq and

let X ⊂ S be a smooth geometrically irreducible projective curve in S.

We assume for simplicity that we also have a retraction SX → X which is

equal to identity on X. Let SX be the formal neighbourhood of X in S

and by S0
X the formal punctured neighborhood. We define in Section 4 the

set BunG(S0
X) of isomorphism classes of G-bundles on S0

X (over Fq) and a

canonical Pic(X)(Fq)-torsor B̂unG(S0
X) over the set BunG(S0

X). Using the

degree map Pic(X) → Z we obtain a Z-torsor B̃unG(S0
X) over BunG(S0

X).

Let W be a finite collection of closed points of X as a scheme over Fq.

Denote by SW the formal neighborhood of W in S and set S0
W = SW ∩S0

X .

For every w ∈ W we denote by Kw the local field of w in X and by Fw

the corresponding 2-dimensional local field (the completion of S0
X along

SpecKw). We let

FW =
∏

w∈W

Fw.

Similarly let Aw ⊂ Fw be the subring considered in Section 1.3 and let

OS,w denote the formal ring of S at w. Clearly we have OS,w = Aw ∩OFw
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and we denote by Rw the corresponding free commutative algebra whose

generators are good curves in Spec(OS,w). Let also

AW =
∏

w∈W

Aw.

Let us also consider the group GW = G(FW ). We also denote by

G̃W the corresponding central extension of GW by means of Z. Let

BunG(S0
X ,W )(Fq) denote the set of isomorphism classes of the following

data:

• A principal G-bundle M on S0
X defined over Fq.

• A trivialization of M on S0
W .

We denote by B̃unG(S0
X ,W ) the pull-back of the Z-torsor B̃unG(S0

X) →

BunG(S0
X) under the natural map BunG(S0

X ,W ) → BunG(S0
X). Note that

the ring AW is exactly the ring of regular functions on S0
W . Thus it is clear

that the group G(AW ) acts on BunG(S0
X ,W ) by changing the trivialization

of M on S0
W .

The following lemma is proved in Section 4.

Lemma 1.15. The action of G(AW ) on BunG(S0
X ,W ) extends canon-

ically to an action of G̃W on B̃unG(S0
X ,W ) in such a way that the central

Z ⊂ G̃W acts on B̃unG(S0
X ,W ) in the natural way.

We expect to be able to define some “correct” pro-space of functions

FW on B̃unG(S0
X ,W ) which should be a representation of the group G̃W . In

particular, we should also have the pro-space F of functions on BunG(S0
X)

by taking W to be the empty set. It can also be defined by

(1.2) F = F
G(AW )
W .

For any c ∈ C we should also consider the spaces FW,c and Fc of functions

on which 1 ∈ Z acts by means of multiplication by qc. Generalizing (1.2),

for every decomposition W = W ′
∐

W ′′ we should have

(1.3) FW ′,c = F
G(AW ′′ )
W,c .

Now combining (1.3) with Theorem 1.7 we see that for every u /∈ W we

get an action of Ru[Λ+] on FW,−h∨. Moreover, for different choices of u



HECKE ALGEBRAS OVER TWO-DIMENSIONAL FIELDS 65

the corresponding endomorphisms of FW,−h∨ commute with each other. In

other words, each FW,−h∨ is endowed with an action of the commutative

algebra ⊗

u/∈W

Ru[Λ+].

One should think about this action as the “affine” analog of Hecke operators

acting on the space of automorphic forms for the group G associated with

the global field of rational functions on X. It would therefore be very

interesting to construct some examples of common eigen-functions of the

above operators. We believe that some generalizations of Eisenstein series

considered in [7] should provide such examples.
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§2. Some results on singularities of affine Schubert varieties

In this section we collect some facts about the canonical class of certain

Schubert varieties that we shall need in the future. All the results of this

section follow easily from [3] and [1]. In what follows we fix a ground field

k and set K = k((x)) and O = k[[x]].

2.1. The affine Grassmannian

Let G be a split semi-simple group over k and set GrG = G(K)/G(OK ).

It is known that GrG has a natural structure of a proper ind-scheme over

k. More precisely, it is known that the orbits of the group G(O) on GrG

are parameterised by the elements of Λ+. For each λ ∈ Λ+ we shall denote

by Grλ
G the corresponding orbit and by Gr

λ
G its closure GrG. The following

theorem is proved in [3] (cf. also [9] and [10] for the corresponding result in

characteristic 0).

Theorem 2.2. (1) Each Gr
λ
G is a normal and Cohen-Macaulay pro-

jective variety over k.

(2) Each Gr
λ
G has a resolution of singularities 5 and for every such reso-

5Of course, this statement is not empty only if char k > 0.
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lution πλ : G̃r
λ

G → Gr
λ
G one has

Rπλ
∗ (O

fGr
λ

G

) = O
Gr

λ
G

(in other words Gr
λ
G has rational singularities).

Remark. In fact the above theorem is proved in [3] in a slightly different
context. Namely, let F l = G(K)/I denote the affine flag variety as in [3],
where I is an Iwahori subgroup of G(O) consisting of those elements of
G(O) whose reduction mod t lies in a fixed Borel subgroup of G. The I-
orbits of on F l are parametrised by the elements of the affine Weyl group
Waff ; for every w ∈ Waff we let F lw denote the corresponding orbit and by
F l

w
its closure in F l. The above theorem is proved in [3] for the varieties

F l
w

rather than Gr
λ
G. However, it is easy to deduce the statement for Gr

λ
’s

from the statement for F l
w
’s. Namely, we have the natural proper smooth

projection p : F l → GrG. It is well-known that for every λ ∈ Λ+ there exist
two elements wλ, wλ ∈ Waff such that: 1) The projection p maps F l

wλ to

Gr
λ

and the resulting map is proper and birational. 2) F l
wλ

= p−1(Gr
λ
G). It

follows from 1) that any resolution of F l
wλ is automatically a resolution of

Gr
λ
G; this shows that the latter variety has a resolution of singularities. Now

given the existence of a resolution, all the properties claimed in Theorem 2.2

are properties of the singularities of Gr
λ
G; in particular, it is easy to see that

they are equivalent under smooth base change. Hence 2) shows that it is

enough to check them for F l
wλ

.

2.3. Line bundles on GrG

It is well-known (cf. [1] and [3]) that every finite-dimensional represen-

tation V of G gives rise to a (determinant) line bundle LV on GrG. In

particular, we let Lg (here g is the Lie algebra of G) denote the line bundle

corresponding to the adjoint representation of G. We let Lcrit be the “crit-

ical line bundle” on GrG; by the definition this is the (unique) square root

of L−1
g

.

In fact, it is well-known (cf. [3]) that Pic(GrG) ' Z. Under this identi-

fication the line bundle Lg is the 2h∨-th power of a generator of Z; we shall

denote this generator by D.

Let Ĝ(K) be the central extension of G(K) by means of k∗ constructed

in the same way as the one discussed in Section 1.1 (with k playing the role

of K and x playing the role of t). Then Lcrit is Ĝ(K)-equivariant in such a
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way that the central k∗ acts on the fibers of Lcrit by means of the character

a 7→ a−h∨

. The following result from [1] is crucial for us:

Theorem 2.4. For every λ ∈ Λ+ there is a canonical isomorphism

Lcrit |Grλ
G
' ΩGrλ

G
.

(Here, as in the Introduction, ΩGrλ
G

denotes the bundle of highest forms on

Grλ
G.)

The next result is an easy corollary of Theorem 2.2 and Theorem 2.4.

Theorem 2.5. (1) For every λ ∈ Λ+ the variety Gr
λ
G is Goren-

stein. Moreover, the canonical sheaf of Gr
λ
G is isomorphic to Lcrit |Gr

λ
G

.

Abusing the notation we shall denote this sheaf by Ω
Gr

λ
G

.

(2) For any λ ∈ Λ+ let πλ : G̃r
λ

G → Gr
λ
G be any resolution of singularities.

Then the identification between (πλ)∗Ω
Gr

λ
G

and Ω
fGr

λ

G

that one has at

the generic point of G̃r
λ

G comes from an embedding

(πλ)∗Ω
Gr

λ
G

↪−→ Ω
fGr

λ

G

.

(In the case char k = 0 this implies that Gr
λ
G has canonical singulari-

ties.)

Proof. Let us first prove (1). Let Ω
Gr

λ
G

denote the Grothendieck-

Serre dualizing complex of Gr
λ
G shifted by −dimGrλ

G (so that it coincides

with ΩGrλ
G

on Grλ
G). According to Theorem 2.2 the variety Gr

λ
G is Cohen-

Macaulay. Hence Ω
Gr

λ
G

is in fact a sheaf (and not a complex of sheaves)

which is automatically reflexive. Equivalently, one can reformulate this as

follows. Let jλ : Grλ
G ↪→ Gr

λ
G denote the natural open embedding. Since

Gr
λ
G is normal and the complement to Grλ

G in Gr
λ
G has codimension 2 we

have Ω
Gr

λ
G

= jλ
∗ ΩGrλ

G
. Now the normality of Gr

λ
G also implies that

Lcrit |Gr
λ
G

= jλ
∗ (Lcrit |Grλ

G
) = jλ

∗ ΩGrλ
G

= Ω
Gr

λ
G

.

Let us now prove (2). According to Theorem 2.2 we have Rπλ
∗OfGr

λ

G

= O
Gr

λ
G

.

Applying the Grothendieck-Serre duality to both sides of this equality we
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get Rπλ
∗Ω

fGr
λ

G

= Ωλ
GrG

. By using the fact that the functor πλ
∗ is right adjoint

to (πλ)∗ we get the map (πλ)∗Ωλ
GrG

→ Ω
fGr

λ

G

which extends the natural

identification of these line bundles at the generic point of G̃r
λ

G.

2.6. Application to integration

Let now E be a local non-archimedian field and let Y be a smooth

variety over E. Let L be a line bundle on Y . Denote by LE∗ the corre-

sponding K∗-torsor over Y (E) and by TL the Z-torsor obtained from LE∗

by pushing-forward under the valuation map E∗ → Z. Set S(Y,L) to be

the space of locally constant C-valued functions s on TL−1 satisfying the

following properties:

1) The element 1 ∈ Z acts on s by means of multiplication by q;

2) The support of s is equal to the preimage of a compact subset of

Y (E).

Note that every embedding L1 → L2 between two invertible sheaves

on Y gives rise to an embedding S(Y,L1) → S(Y,L2). Similarly, for a pro-

vector space V over C we may consider the pro-vector space S(Y,L) ⊗ V.

Assume now that Y is smooth and let L = ΩY (in this case we shall write TY

instead of TΩ−1
Y

). Then it is well-known that we have a canonical integration

functional ∫

Y
: S(Y,ΩY ) −→ C.

Thus for a pro-vector space V we also get the integration map
∫

Y
S(Y,ΩY ) ⊗ V −→ V.

Assume now that Y is not necessarily smooth but satisfies the following

conditions: 1) Y is Gorenstein (we denote by ΩY the corresponding line

bundle); 2) Y has canonical singularities, i.e. there exists a resolution of

singularities π : Ỹ → Y and an embedding π∗ΩY → ΩeY extending the

natural identification of these line bundles at the generic point of Ỹ . Then

we claim that the integration map
∫
Y as above is still well-defined. Indeed,

it follows from condition 2) that every s ∈ S(Y,ΩY ) gives rise to some

s̃ ∈ S(Ỹ ,ΩeY ) and we define

∫

Y
s =

∫

eY
s̃.
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It is clear that
∫

eY
s̃ does not depend on a choice of a resolution Ỹ since

in fact this integral is equal to the integral of s over the smooth part of

Y (the existence of Ỹ with the above properties shows that this integral is

absolutely convergent). So, for any pro-vector space and any λ ∈ Λ+ we

have a well-defined integration map

(2.1)

∫

Gr
λ
G

: S(Gr
λ
,Lcrit) ⊗ V −→ V.

Sometimes we shall write
∫
Grλ

G
instead of

∫
Gr

λ
G

.

§3. The Hecke algebras

In this section we prove Theorem 1.7 and discuss some corollaries of it.

First, let us discuss the functor of invariants in more detail.

3.1. The functor Invc

Since we are dealing with pro-vector spaces let us first explain what

we mean by the functor Invc of G(A)-invariants on the category Repc(Ĝ).

In [4] the authors explain the for any V ∈ Rep(Ĝ) and any subgroup H ∈

Ĝ one can define a functor from Vect to Vect which is supposed to be

represented by VH . However, this functor is representable only if certain

conditions are satisfied. In this sub-section we want to check that these

conditions are satisfied in the case of the subgroup G(A) ⊂ Ĝ. In fact

this is not necessary for the rest of this section. Namely in the next sub-

section we are going to construct some endomorphisms of VG(A) (for every

V). For this purpose we shall only need the functorial definition V G(A).

However, the fact that V G(A) actually exists as a pro-vector space shows

the existence of the functor Invc : Repc(Ĝ) → Vect and it still nice to know

that the endomorphisms that we are going to construct will actually be

endomorphisms of this functor.

Let us recall some definitions from [4].

Let us denote by Set0 the category of finite sets. Let also

Set = Ind(Pro(Set0)); Set = Ind(Pro(Set)).

We have the natural functor T : Set 0 → Set . We shall need the functor

T : Set = Ind(Pro(Set 0)) −→ Set = Ind(Pro(Ind(Pro(Set 0)))

which is defined by first applying T to the “inner” Set 0 and then applying

Ind(Pro) to both sides.
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Let H be an object of Set . In [4] the notion of action of H on a pro-vector

space V is defined. Also if H is a group-like object of Set then the notion

of a representation of H on a pro-vector space is defined and we also have

a well defined category Rep(H) of pro-representations of H. One has the

functor triv : Vect → Rep(H) corresponding to “trivial” representations.

It is shown in [4] (cf. Proposition 2.10) that this functor always admits a

left adjoint (which should be called the functor of coinvariants of H). In

addition, triv also admits a right adjoint functor if the following technical

condition is satisfied:

(∗∗) As an object of Set the group H can be represented as a limit

“lim
→

”Xk
6 where each Xk ∈ Pro(Set) is weakly strict (we refer the

reader to [4] for the definition of this notion).

In our case let H = G(A). The ring A naturally gives rise to an object of

Set since

A = lim
→

t−kOK[[t]]

and the ring OK[[t]] is clearly a projective limit of finite sets. However, we

are going to regard the ring A as an object in Set by applying the functor T

to the above construction. For any affine algebraic variety X over A we may

also regard X(A) as an object of Set by embedding it into An. Moreover,

X(A) always satisfies the condition (∗∗) (it is enough to check this for A

itself and in this case this is obvious).

Thus the group G(A) may be regarded as a group-like object of the

category Set which satisfies (∗∗). Hence the functor of G(A)-invariants is

well-defined on the category Rep(G(A)) according to loc. cit. Also, the em-

bedding G(A) → Ĝ is an embedding of group-like objects of Set . Hence the

restriction functor Repc(Ĝ) → Rep(G(A)) is well-defined. By composing

these two functors we get the functor

Invc : Repc(Ĝ) −→ V

of G(A)-invariants on the category Repc(Ĝ).

3.2. The construction of αC

We want to define the homomorphism αC by means of the formula (1.1).

First of all, without loss of generality we may assume that f = x. Consider

6Here “lim
→

” means that the limit is taken as an object of the corresponding Ind-

category.
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the ring B = Fq[[x, t]] and let FB denote its field of fractions. It is easy

to see that the natural embedding A = Fq[[x]]((t)) ↪→ Fq((t))[[x]] = E[[x]]

induces an isomorphism

(3.1) G(A)xλG(A)/G(A)
∼

−→ G(E[[x]])xλG(E[[x]]) = Grλ
G(E).

We need now the following result which generalizes slightly Proposition 1.8.

It follows from (3.1) that we have the natural identification

(3.2)
⋃

µ≤λ

G(A)xµG(A)/G(A) = Gr
λ
G(E).

The left hand side has a natural K∗-torsor over it coming from the central

extension Ĝ. As before we denote by T the −h∨-th power of the corre-

sponding Z-torsor.

Proposition 3.3. (1) Under the identification (3.2) the Z-torsor T
defined above goes over to T

Gr
λ
G

.

(2) Let now V be a Ĝ-representation with the critical central charge. Then

the formula v 7→ g(v) for

g ∈
⋃

µ≤λ

G(A)xµG(A)/G(A)

defines a linear map VG(A) → S(Grλ
G,ΩGrλ

G
) ⊗ VG(A).

First of all, let us explain why Proposition 3.3 implies the construction

of αC . By composing the map VG(A) → S(Grλ
G,Ω

Gr
λ
G

) ⊗ VG(A) defined in

(2) of Proposition 3.3 it with the integration map
∫
Grλ

G
as in Section 2.6 we

get a well defined linear map VG(A) → VG(A) which is clearly functorial in

V. In other words we get an element of Hsph
crit which by definition is equal

to αC(λ).

For the proof of Proposition 3.3 we need the following auxiliary result.

Let R denote the ring Fq[x, t, x−1, t−1]. By the definition the ring R is

embedded naturally into the field F = Fq((x))((t)) as well as into the field

Fq((t))((x)). Hence the group G(R) acquires two natural central extensions:

one by means of K∗ = Fq((x))∗ and the other by means of E∗ = Fq((t))
∗.

By applying the valuation homomorphisms K∗ → Z and E∗ → Z we get

two central extensions of G(R) by means of Z. Clearly, these two central

extensions are interchanged by the automorphism of G(R) induced by the

automorphism of R which interchanges x and t.
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Lemma 3.4. The above two central extensions are opposite to each

other.

Proof. The proof follows from the following facts:

1) There exists a natural central extension

(3.3) 1 −→ K2(R) −→ G(R) −→ G(R) −→ 1

where K2(R) denotes the second K-group of R;

2) The two central extensions of G(R) by Z are induced by the homo-
morphisms K2(R) → Z obtained by composition

K2(R) −→ K1(Fq[x, x−1]) ' F∗
q × Z −→ Z

(resp. K2(R) −→ K1(Fq[t, t
−1]) ' F∗

q × Z −→ Z),

where the first arrow comes from the Quillen isomorphism (cf. [11])
K2(A[t, t−1]) ' K2(A) ⊕ K1(A).

3) The above two homomorphisms K2(R) → Z are opposite to each
other.

The first two statements follow from [2] and the third statement is
proved in [11] (this is a special case of the existence of the Gersten resolu-
tion).

It is now clear that the assertion (1) of Proposition 3.3 follows from

Lemma 3.4 combined with Theorem 2.4. From this the assertion (2) is

straightforward.

It is easy to see that the homomorphisms αC defined above together define

a homomorphism R[Λ+] → Hsph
crit . Indeed, for this we have to verify the

following two statements:

1) For any C ∈ C and λ, µ ∈ Λ+ we have

(3.4) αC(λ) · αC(µ) = αC(λ + µ).

2) For any C,C ′ ∈ C and λ, µ ∈ Λ+ the elements αC(λ) and αC′(µ)

commute with each other.

First of all, if C 6= C ′ then statement 2) is obvious: in this case both

αC(λ) ·αC′(µ) and αC′(µ) ·αC(λ) are given by integrals of the same measure

over Grλ(E)×Grµ(E). Hence it is enough to check 1) (note that (3.4) implies
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that αC(λ) and αC(µ) commute). For any field k consider the ind-scheme

GrG ∗ GrG whose set of k points is equal G(K) ×G(O) G(K)/G(O) here as

before we denote K = k((x)) and O = k[[x]]). We have the natural maps

p1 : G(K) × GrG −→ Gr, p2 : G(K) × GrG −→ GrG and

m : GrG ∗ GrG −→ GrG

which are defined by

p1(g1, g2 mod G(O)) = g1; p2(g1, g2 mod G(O)) = g2 mod G(O)

and

m(g1, g2 mod G(O)) = g1g2 mod G(O).

We also have the natural projection π : G(K) → GrG. For any λ, µ ∈ Λ+ let

us set Grλ
G∗Grµ

G to be the image of (π◦p1)
−1(Grλ

G)×p−1
2 (Grµ

G) ⊂ G(K)×GrG

in GrG ∗GrG. We also denote its closure by Gr
λ
G∗Gr

µ
G. The following result

is well-known:

Lemma 3.5. The map m maps Grλ
G ∗ Grµ

G to Gr
λ+µ
G .

Hence we also have the map m : Gr
λ
G ∗ Gr

µ
G → Gr

λ+µ
G which is proper

and birational. Thus (using the same notations as in (1.1) we get

αV
C(λ) · αV

C(µ)(v)

=

∫

g1∈G(A)fλG(A)/G(A)
g1

(∫

g2∈G(A)fµG(A)/G(A)
g2(v) dg2

)
dg1

=

∫

g∈Grλ
G(E)∗Grµ

G
(E)

g(v) dg =

∫

g∈Grλ+µ
G

(E)
g(v) dg = αV

C(λ + µ)(v).

It remains to show that this homomorphism is an embedding. Before we

proceed with this let us look at one example of the action of R[Λ+] on

VG(A) for some particular representation V.

3.6. The homomorphism Hsph
crit → Hsph

f

Let Hsph
f denote the usual spherical Hecke algebra associated with the

group G and the local field K. This algebra can be defined as follows. Let

S(G(OK)\G(K)) be the space of C-valued functions on G(OK)\G(K) with

finite support. This is a representation of the group G(K) (acting on the

right). Then

(3.5) Hsph
f = EndG(K) S(G(OK)\G(K)).



74 A. BRAVERMAN AND D. KAZHDAN

Equivalently, Hsph
f is the algebra of endomorphisms of the functor of G(OK)-

invariants on the category RepG(K) of smooth representations of G(K).

Let G∨ denote the Langlands dual group of G (considered as an alge-

braic group over C). Thus Λ is the weight lattice of G∨ and Λ+ is the set

of dominant weight of G∨. Recall that Hsph
f is canonically isomorphic to

the complexified Grothendieck group of the category of finite-dimensional

representations of G∨. In particular, Hsph
f has a basis {Aλ}λ∈Λ+

where each

Aλ corresponds to the irreducible representation of G∨ with highest weight

λ.

As is well-known the algebra Hsph
f is also isomorphic to the algebra of

G(OK)-biinvariant functions on G(K) (the algebra structure is with respect

to convolution; here we choose a Haar measure on G(K) which is charac-

terized by the property that the volume of G(OK) is equal to 1). Since we

have the natural identification

G(OK)\G(K)/G(OK) = Λ+,

it follows that Hsph
f has another basis Tλ where each Tλ is equal to the char-

acteristic function of the corresponding double coset multiplied by

(−q)〈λ,ρ∨〉 7. It is also well known that if we let ρ∨ denote the half-sum

of the positive roots of G then we have

Aλ = (−q1/2)〈λ,ρ∨〉Tλ + linear combination of Tµ with µ < λ 8.

Let now Γ1 ⊂ G(OF) denote the first congruence subgroup (i.e. Γ1 is the

kernel of the natural “reduction mod t” homomorphism G(OF) → G(K)).

Let S(Ĝ/Γ1) denote the Schwartz space 9 of Ĝ/Γ1 in the sense of [4] (equiv-

alently, S(Ĝ/Γ1) is the space of Γ1-coinvariants in the Schwartz space S(Ĝ)

introduced in [4]). For c ∈ C we also denote by Sc(Ĝ/Γ1) the coinvariants

of K∗ on S(Ĝ/Γ1) with respect to the character defined by c. This is a

representation of G × G(K) where the first factor acts on the left and the

second factor acts on the right. In particular, we may consider the space

Sc(Ĝ/Γ1)
G(A) of G(A)-invariants with respect to the left action. It has a

natural action of G(K). We have the natural embedding φ : G(K) → Γ1\G

which identifies the left hand side with Γ1\G(OK). Since the central exten-

sion splits canonically over G(OK) we get a well-defined restriction map

φ∗
c : Sc(Γ1\Ĝ) −→ S(G(K)).

7Here ρ∨ is the half-sum of all the positive roots of G.
8Here we say that µ < λ if the difference λ − µ is a sum of positive coroots.
9Recall that S(Ĝ/Γ1) is actually a pro-vector space.
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Since the image of G(A)∩G(OK) is equal to G(OK) it follows that φ∗
c gives

rise to the map

φ∗
c,A : Sc(Γ1\Ĝ)G(A) −→ S(G(OK)\G(K))

which is a homomorphism of right G(K)-modules.

Lemma 3.7. The map φ∗
c,A defined above is an isomorphism.

Proof. The proof follows immediately from the following result.

Lemma 3.8. For any connected linear reductive algebraic group G one

has G = G(A) · G(OF).

This lemma is essentially contained in Appendix B of [6]. We include
the proof for completeness (also, our proof is different from that in [6]).

Proof. The quotient G/G(OF) is the set of K-points of the Grassman-
nian GrG. Since GrG is a proper ind-scheme, it follows that GrG(K) =
GrG(OK). This means that G(OK((t))) maps surjectively onto GrG(K),
which is equivalent to the statement of Lemma 3.8.

Let now h ∈ Hsph
c . By the definition it gives rise to an endomor-

phism of Sc(Ĝ/Γ1)
G(A) which commutes with every endomorphism of this

space coming from an endomorphism of Sc(Ĝ/Γ1) as a Ĝ-representation.

In particular, it commutes with the right translations by elements of G(K).

Hence it follows from Lemma 3.7 that h gives rise to an endomorphism of

S(G(OK)\G(K)) which commutes with right translations by elements of

G(K). By (3.5) this is the same as an element of Hsph
f . In this way we get

a homomorphism

ιc : Hsph
c −→ Hsph

f .

When c = −h∨ we shall denote ιc by ιcrit .

Lemma 3.9. For every C ∈ C we have

ιcrit ◦ αC(λ) = (−q1/2)〈λ,ρ∨〉Aλ + linear combination of Aµ’s with µ < λ

= Tλ + linear combination of Tµ’s with µ < λ.

In particular, ιcrit ◦ αC is an isomorphism.
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Proof. First of all we want to show that ιcrit ◦ αC(λ) lies in the span
of Aµ with µ ≤ λ. This is equivalent to saying that ιcrit ◦ αC(λ) lies in the
span of Tµ with µ ≤ λ. It is clear that it is enough to assume that C is
given by the equation x = 0.

To prove this assertion we must look at the support of ιcrit ◦ αC(λ)
considered as a G(OK)-biinvariant function on G(K). In other words, the
statement is reduced to the following “set-theoretic” problem. We have the
identification

Γ1\G/G(A) = G(K)/G(OK) = GrG(Fq).

Thus we obtain the map δ : G/G(A) → GrG(Fq). We need to show that the

image of G(A)xλG(A)/G(A) under δ is contained in Gr
λ
G(Fq). Recall that

we denote by E the field Fq((t)) and that we have the natural identification

G(A)xλG(A)/G(A) = Grλ
G(E).

Since GrG is ind-proper it follows that we have GrG(E) = GrG(OE) (here
OE = Fq[[t]] thus we have the well-defined “reduction mod t” map

G(A)xλG(A)/G(A) = Grλ
G(E) → GrG(Fq).

It is easy to see that this map actually coincides with the restriction of δ

to G(A)xλG(A)/G(A). On the other hand, since Gr
λ
G is proper, the above

map actually lands in Gr
λ
(Fq) which is what we had to prove.

To compute the coefficient of Tλ in ιcrit ◦ αC(λ) (which is the same as
the coefficient of Aλ up to the factor of (−q1/2)λ,ρ∨) we need to study the
fibers of the map

G(A)xλG(A)/G(A) ∩ δ−1(Grλ
G(Fq)) −→ Grλ

G(Fq).

Since Grλ
G(Fq) is smooth, it follows from Hensel’s lemma that each fiber

is isomorphic to (tOE)dim Grλ
G and its volume with respect to the measure

coming from a differential form on Grλ
G defined over OE is equal to 1. This

finishes the proof.

Remark. Let G = PGL(n). Then Lemma 3.9 describes the map ιcrit ◦
αC completely. Indeed, since the group PGL(n) is of adjoint type, the
semigroup Λ+ is generated by the fundamental coweights ω1, . . . , ωn−1 and
thus it is enough to describe all the ιcrit(ωi) ◦αC . Also in this case for each
i = 1, . . . , n − 1 the set

{µ ∈ Λ+ | µ < ωi}
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is empty. Hence ιcrit ◦ αC(ωi) = Aωi
. We don’t know how to describe ιcrit

for other groups.

3.10. End of the proof

We now want to show that the above homomorphism R[Λ+] → Hsph
crit

is an embedding. To do that it is sufficient to check the following: let

C1, . . . , Ck be pairwise distinct elements of C and let µ1, . . . , µk ∈ Λ+. Con-

sider the elements

(3.6) αC1
(µ1) · · ·αCk

(µk) ∈ Hsph.

We need to show that all these elements are linearly independent.

For this we want to see how these elements act on the pro-space of

G(A)-invariants for representations Vn = Scrit(Ĝ/Γn) where Γn denotes

the n-th congruence subgroup (by definition Γn is the kernel of the natural

homomorphism G(OF) → G(OF/mn
F
)).

Let Gn = G(OF/mn
F
) and let also Gn,O = G(OK[[t]]/tn). Then Gn is

a locally compact totally disconnected group and Gn,O is an open com-

pact subgroup of it. Also we have the natural identification V
G(A)
n =

Gn,O\Gn. Thus the image of Hsph
crit in End(V

G(A)
n ) embeds into the Hecke

algebra H(Gn, Gn,O). In particular, we may think about the elements

αVn

C1
(µ1), . . . , α

Vn

Ck
(µk) as Gn,O-biinvariant functions on Gn. Thus it is

enough to show that for any finite collection of elements of the type (3.6)

their images in H(Gn, Gn,O) are linearly independent functions for n large

enough.

Let f1, . . . , fk be the equations of the curves C1, . . . , Ck and set

Xλ1,...,λk

n,C1,...,Ck
= Gn,Ofλ1

1 · · · fλk

k Gn,O ⊂ Gn
10.

Lemma 3.11. (1) The element αVn

C (λ) is supported on

⋃

µ≤λ

Xµ
n,C

and doesn’t vanish on Xλ
n,C .

(2) Assume that the curves C1, . . . , Ck are distinct. Then for any collec-

tion ((C ′
1, µ1), . . . , (C

′
l , µl)) different from ((C1, λ1), . . . , (Ck, λk)) and

for n large enough the set Xλ1

n,C1
· · ·Xλk

n,Ck
does not contain Xµ1,...,µl

n,C′

1,...,C′

l
.

10We shall always assume that λj 6= 0 unless k = 0.
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(3) Fix a finite set of pairwise distinct collections ((C1, λ1), . . . , (Ck, λk)).

The for n large enough all the corresponding cosets Xλ1 ,...,λk

n,C1,...,Ck
are

pairwise distinct.

Proof. The first assertion is proved in exactly the same way as Lem-
ma 3.9. Let us prove (2) and (3). Let us “take the limit” n → ∞. In
other words, let us recall the notation B = OF ∩ A = Fq[[x, t]]. For
((C1, λ1), . . . , (Ck, λk)) as above set

Xλ1,...,λk

C1,...,Ck
= GBfλ1

1 · · · fλk

k GB ⊂ G(OF).

Then we have

Xλ1,...,λk

C1,...,Ck
= lim

→
Xλ1,...,λk

n,C1,...,Ck

and hence the assertions (2) and (3) of Lemma 3.11 follow from the following
two statements:

a) Assume that the curves C1, . . . , Ck are distinct. Then for any

((C ′
1, µ1), . . . , (C

′
l , µl)) 6= ((C1, λ1), . . . , (Ck, λk)),

the set Xλ1

C1
· · ·Xλk

Ck
does not contain Xµ1,...,µl

C′

1,...,C′

l

.

b) The cosets Xλ1,...,λk

C1,...,Ck
are distinct for distinct collections ((C1, λ1), . . . ,

(Ck, λk)).

To prove a) and b) let us give a geometric interpretation of these statements.
Recall that we denote ∆ = SpecB. Then it is easy to see that the set
G(B)\G(OF)/G(B) naturally parametrises the following data:

1) Two principal G-bundles F1,F2 on ∆;

2) An identification κ between F1 and F2 defined outside the union of
all the curves C in ∆ which are different from the curve t = 0.

Under this identification, the coset Xλ1,...,λk

C1,...,Ck
lies in the subset Y λ1,...,λk

C1,...,Ck
of

all triples (F1,F2, κ) as above such that κ is well-defined outside the curves
C1, . . . , Ck and at the generic point of every Cj the singularity of κ is of

type λj (note, however, that in general Xλ1,...,λk

C1,...,Ck
6= Y λ1,...,λk

C1,...,Ck
unless k = 1).

This immediately proves b) since the sets Y λ1,...,λk

C1,...,Ck
are clearly disjoint. To

prove a) it is enough to observe that we have

(F1,F2, κ) ∈ G(B)\Xλ1

C1
· · ·Xλk

Ck
/G(B)
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if and only if there exists a chain

(G0,G1, κ1), (G1,G2, κ2), . . . , (Gk−1,Gk, κk) ∈ G(B)\G(OF)/G(B)

such that

(i) G0 = F1, Gk = F2;

(ii) κ is equal to the composition of all the κj;

(iii) (Gj−1,Gj , κj) ∈ G(B)\X
λj

Cj
/G(B) for every j = 1, . . . , k.

This implies that κ has singularities only on the curves C1, . . . , Ck and the
singularity of κ at the generic point of Cj is of type λj. In other words, this
implies that

(F1,F2, κ) ∈ G(B)\Y λ1,...,λk

C1,...,Ck
/G(B),

i.e. we have Xλ1

C1
· · ·Xλk

Ck
⊂ Y λ1,...,λk

C1,...,Ck
. Thus a) follows from the fact that

Xλ1,...,λk

C1,...,Ck
⊂ Y λ1,...,λk

C1,...,Ck
and from the fact that all the Y λ1,...,λk

C1,...,Ck
are disjoint.

Let us explain why Lemma 3.11 implies what we need. Let us fix a

finite set P of collections ((C1, λ1), . . . , (Ck, λk)) with C1, . . . , Ck pairwise

distinct and with all λj ∈ Λ+ and λj 6= 0 if k 6= 0. Define a partial order

on the set of all such collections by declaring that ((C1, λ1), . . . , (Ck, λk)) ≥

((C ′
1, λ

′
1), . . . , (C

′
l , λ

′
l)) if k ≥ l and after possible renumbering of the C ′

j ’s

we have C ′
j = Cj and λ′

j ≤ λj for all j = 1, . . . , l. We shall assume that

P is closed under the operation of replacing some ((C1, λ1), . . . , (Ck, λk))

by a smaller element (with respect to the above partial order). We want

to show that the corresponding elements αC1
(λ1) · · ·αCk

(λk) ∈ Hsph
crit are

linearly independent.

Choose n > 0 so that the assertions (2) and (3) hold for it. Consider

now the corresponding elements αVn

C1
(λ1) · · ·α

Vn

Ck
(λk). We claim that they

are linearly independent as elements of H(Gn, Gn,O). Indeed, let us consider

the restriction map from H(Gn, Gn,O) to the space Un of Gn,O-biinvariant

functions on ⋃
Xλ1,...,λk

n,C1,...,Ck
.

Let also T λ1,...,λk

n,C1,...,Ck
be the characteristic function of Xλ1,...,λk

n,C1,...,Ck
and set

Un,P to be the span of all the T λ1,...,λk

n,C1,...,Ck
with ((C1, λ1), . . . , (Ck, λk)) ∈ P.

Then it is clear from (3) above that they form a basis of Un,P . On the

other hand, it follows from (1) and (2) that the images (in Un) of all

the αVn

C1
(λ1) · · ·α

Vn

Ck
(λk) lie in Un,P and that the transformation taking
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T λ1,...,λk

n,C1,...,Ck
to the image αVn

C1
(λ1) · · ·α

Vn

Ck
(λk) in Un is upper triangular with

respect to the partial order on P defined above with non-zeros on the diag-

onal. This shows that the elements αVn

C1
(λ1) · · ·α

Vn

Ck
(λk) are linearly inde-

pendent.

3.12. Density conjecture

The above results show that there exists an embedding R[Λ+] ↪→ Hsph
crit .

Though we do not expect this map to be an isomorphism we still would like

to say that the left hand side is dense in the right hand side in some sense.

One of the ways to do this is as follows.

Conjecture 3.13. For every n ≥ 0 the images of R[Λ+] and of Hsph
crit

in End(Scrit(Ĝ/Γn)G(A)) coincide.

This conjecture is obvious for n = 0 (more precisely it follows from

Lemma 3.8 that Scrit(Ĝ/Γ0) = Scrit(Ĝ/G(OF)) = C and hence there is

nothing to prove). Also, it follows from Lemma 3.9 that Conjecture 3.13 is

true for n = 1. We do not know how to prove Conjecture 3.13 for n > 1.

3.14. The Iwahori case

Let us briefly mention what happens in the Iwahori case. In other

words we want to study the algebra Hc(Ĝ, I00
A ) which is by definition the

algebra of endomorphisms of the functor of I00
A -invariants on the category

Repc(Ĝ). In this case we can’t describe in full detail even a dense subalgebra

in Hc(Ĝ, I00
A ). However, from the results [8] and [4] one can derive the

following (details will appear elsewhere):

(i) For any C ∈ C one can construct an embedding βC : Ḧ ↪→ Hc(Ĝ, I00
A )

where Ḧ denotes the modified Cherednik’s double affine Hecke algebra

as in [8].

(ii) There is a natural subalgebra of Hc(Ĝ, I00
A ) isomorphic to C[Λ] which

lies in the image of every βC .

Recall that the set C only consists of good formal curves, i.e. curves

which are transversal to the curve t = 0. We expect that every irreducible

curve in SpecB (cf. Section 1.6) contributes some sort of subalgebra to

Hc(Ĝ, I00
A ). It would be extremely interesting to describe these subalgebras

explicitly.

§4. Some remarks on G-bundles on S0
X

In this section we would like to explain some constructions related to

G-bundles on the “surface” S0
X that were used in Section 1.14. We are



HECKE ALGEBRAS OVER TWO-DIMENSIONAL FIELDS 81

going to work over an arbitrary ground field k (instead of the finite field

Fq). In what follows we fix the following data:

1) A smooth geometrically irreducible algebraic surface S over Fq;

2) A smooth projective geometrically irreducible curve X over Fq;

3) A closed embedding i : X → S;

4) A “retraction” p : S → X such that p ◦ i = id. 11

We denote by IX ⊂ OS the sheaf of ideals corresponding to X.

Also we shall assume that the derived group of G is simply connected.

4.1. G-bundles on SX

Let us denote by SX the formal neighbourhood of X in S considered

as an ind-scheme. In other words, we set

SX,n = SpecOX
(OS/In

X) and SX = lim
→

SX,n.

By a G-bundle on SX we mean a projective system of G-bundles on SX,n. In

other words, to specify a G-bundle G on SX we need to specify a G-bundle

Gn on each SX,n together with the isomorphisms

Gn|SX,m
' Gm

for each n ≥ m satisfying the standard transitivity condition.

4.2. G-bundles on S0
X

In Section 1.14 we were talking about G-bundles on S0
X where the

latter was defined as the complement of X in SX . Let first explain what we

mean by a G-bundle on S0
X . Namely, we define the category of G-bundles

on S0
X to be category whose objects are G-bundles on SX and morphisms

are isomorphisms of their restrictions on S0
X (thus, by the definition, every

G-bundle on S0
X extends to a G-bundle on SX).

Warning. This definition is not good for families of G-bundles on S0
X .

We denote by BunG(S0
X) the set of isomorphism classes of G-bundles

on S0
X with respect to the above definition.

11This datum is not probably not necessary.
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4.3. Construction of the torsor B̃unG(S0
X)

Let us explain the construction of the torsor B̃unG(S0
X). Since in this

paper we are constructing all the spaces only set-theoretically (i.e. we do not

consider families) what we actually have to do is describe a Pic(X)-torsor

B̃unG(S0
X)M for every M ∈ BunG(S0

X).

Consider the following functor

Schemes over Fq −→ Sets

which sends every scheme T to the following data:

1) A morphism T → X;

2) A G-bundle G on T ×X SX ;

3) An isomorphism G|T×XS0
X
' pr∗2 M

where pr2 : T ×X S0
X → S0

X denotes the natural projection. This functor is

representable by an ind-scheme GrM endowed with a natural proper map

γ : GrM → X. It is easy to see that every fiber of γ is non-canonically iso-

morphic to the corresponding affine Grassmannian of GrG of G considered

in Section 2. We now define the B̃unG(S0
X)M to be the set of isomorphism

classes of line bundles DM on GrM satisfying the following property:

For every x ∈ X the restriction of DM to γ−1(x) is isomorphic to the

generator D of Pic(γ−1(x) ' Pic(GrG).

Since D is defined uniquely up to non-canonical isomorphism and since

its group of automorphisms is just the multiplicative group (since GrG is

ind-proper) it follows that DM is defined uniquely up to tensoring with

a line bundle of the form γ∗P where P ∈ Pic(X). Hence B̃unG(S0
X) is

a homogeneous space over Pic(X). Since the map γ has sections (this

is equivalent to saying that M extends from S0
X to SX) it follows that

B̃unG(S0
X) is actually a Pic(X)-torsor.

4.4. Proof of Lemma 1.15

We need to construct an action of G̃W on B̃unG(S0
X ,W ). To simplify

the notations let us do that for BunG instead of B̃unG (the general case

is treated in a very similar manner). Let us denote by S0
X\W the pre-

image of X\W in S0
X . Then by arguing in a way similar to the one in the

proof of Lemma 3.8 we see the group GW may be identified with the set of
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isomorphism classes of G-bundles on S0
X trivialized at both S0

W and S0
X\W .

Hence we have

BunG(S0
X) = G(AW )\GW /G(S0

X\W )

and

BunG(S0
X ,W ) = GW/G(S0

X\W ).

The right hand side has now a natural action of GW .
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