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ENDOMORPHISMS OF DELIGNE-LUSZTIG VARIETIES

F. DIGNE anp J. MICHEL

Abstract. We study some conjectures on the endomorphism algebras of the co-
homology of Deligne-Lusztig varieties which are a refinement of those of [BMi].

§1. Introduction

Let G be a connected reductive algebraic group, defined over an alge-
braic closure F of a finite field of characteristic p. Let ' be an isogeny on
G such that some power F? is the Frobenius endomorphism attached to a
split F s-structure on G (where ¢ is a real number such that ¢° is a power
of p). The finite group G of fixed points under F is called a finite group
of Lie type. When considering a simple group which is not a Ree or Suzuki
group we may take F' to be already a Frobenius endomorphism.

Let W be the Weyl group of G and let B (resp. B™) be the corre-
sponding braid group (resp. monoid). The canonical morphism of monoids
B : BT — W has a section that we denote by w — w: it sends an ele-
ment of W to the only positive braid w such that §(w) = w and such that
the length of w in BT is the same as the Coxeter length of w; we write
W={w|weW}and S = {s | s € S} where S is a set of Coxeter
generators for W.

Let us recall how in [BMi] a “Deligne-Lusztig variety” is attached to
each element of BT. Let B be the variety of Borel subgroups of G. The
orbits of B x B are in natural bijection with W. Let O(w) be the orbit corre-
sponding to w € W. Let b € BT and let b = w - - - w,, be a decomposition
of b as a product of elements of W. To such a decomposition we attach
the variety {(B1,...,Bn+41) | (Bi,Biy1) € O(w;) and B4 = F(B1)}. It
is shown in [De, p. 163] that the varieties attached to two such decomposi-
tions of b are canonically isomorphic. The projective limit of this system
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of isomorphisms defines what we call the Deligne-Lusztig variety X(b) at-
tached to b; it is the “usual” Deligne-Lusztig variety X(w) when we take
b=weW.

When W is an irreducible Coxeter group, the center of the pure braid
group is cyclic. We denote by 7 its positive generator; we define 7 in general
as the product of the corresponding elements for the irreducible components
of W. Another way of constructing 7 is as W(Q) where wq is the longest
element of W. The isogeny F' acts naturally as a diagram automorphism,
i.e., an automorphism which preserves S (resp. S), on W (resp. BT); we
still denote by F' these diagram automorphisms. We call “F-root of order
d of 7", an element b € B* such that (bF)? = wF4; in [BMi] it is proved
that 5(b) is then a regular element of the coset W F (in the sense of [Sp])
for the eigenvalue ¢%7/?; when F acts trivially we just have a root of order
d, i.e., b% = 7. It is conjectured in loc. cit. that the G -endomorphisms of
the ¢-adic cohomology complex of X(b) form a “cyclotomic Hecke algebra”
attached to the complex reflection group Cy (8(b)F'). We will show below
that for any F-root b of 7r except for 7 itself, there is another F-root w € W
of 7 of the same order and an equivalence of étale sites X(b) ~ X(w), thus
the conjecture is about the variety X(7) and some “ordinary” Deligne-
Lusztig varieties.

We shall make more specific this conjecture by replacing it by a set of
conjectures that we shall study, and prove in some specific examples. In
[DMR], of which this paper is a continuation, we already obtained some
general results on some of the conjectures. We will get here further results
for the element 7r, and for all roots of 7r in the case of split groups of type
A. We also study powers of Coxeter elements in type B and fourth roots
of 7 in split type Dy.

§2. Conjectures

First, we should state that a guide for the following conjectures is that,
using Lusztig’s results in [Lu2|, we will show in Section 4 that they all hold
in the case of Coxeter elements.

We recall from [DMR, 2.1.1] that a possible presentation of B is

(we W | wiwe = w3 when wiwe = w3 and I(wy) + I(w2) = l(w3)).

We recall the action defined in [DMR, 5.1] of a submonoid of Bt on X (w),
and of the group it generates (which will be equal to Cg(WF') in every case
we study) on H} (X(w)) = @, Hi(X(w)).
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First, we recall the definition of the morphism Dy : X(b) —
X(t~'bF(t)) defined when t is a left divisor of b: if b = tt/, and if t =
wi - Wy and t' = w) - - w/, are decompositions as products of elements of
W, it sends the element (B1,...,B,+n+1) € X(b) attached to the decom-
position wy ---w,w} ---w/, to the element (Bypt1,...,Bpipn, F(B1),...,
F(Bp+1)) attached to the decomposition w ---w! , F(wy)--- F(wy).

Then we introduce categories as in [DMR, 5.1]: B is a category with
objects the elements of B, and such that Homg(b,b’) = {y € B | b’ =
y !bF(y)}; composition of maps corresponds to the product in B; one has
Endg(b) = Cp(bF).

DT is the smallest subcategory of B which contains the objects in BT
and such that

{y € B" |y < b, y 'bF(y) = b’} C Homp+(b,b’),

where < denotes left divisibility in the braid monoid, and D is the smallest
subcategory of B containing D+ and where all maps are invertible.

CT is the category of quasi-projective varieties on FF, together with
proper morphisms. C is the localized category by morphisms inducing equiv-
alences of étale sites. An isomorphism in C induces a linear isomorphism in
l[-adic cohomology.

It is shown in [DMR, 5.2.1] that the map which sends the object b to
X(b) and the map t to Dt extends to a functor DT — CT, which itself
extends to a functor D — C.

In the following we denote by H(X) the graded vector space @, H.(X,
Qy), i.e., the f-adic cohomology with compact support of the quasi-projec-
tive variety X. With this notation, the monoid Endp+(b) acts on X(b)
as a monoid of endomorphisms, and the group Endp(b) acts linearly on
HE (X(b)).

CONJECTURE 2.1. When b is an F-root of w we have Endp(b) =
Endg(b) = Cp(bF).

We will show this conjecture for m, wg, Coxeter elements, all roots of
7 in types A and B, and 4-th roots of w in type D4. We should note
that in [DMR, 5.2.5] we have defined an action of Cp+r) on X(b) which
extends the action of Endp+(b), but we are not able to determine its image
in H(X (b)) (except via Conjecture 2.1).
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It is proved in [BMi, 6.8] that, except when b = 7, of course, there is a
morphism in DT between any d-th F-root b of 7w and a “good” d-th F-root
w, “good” meaning that (wF)* € W.F" for i < d/2. Thus the variety X(b)
is isomorphic in C to X(w), as was asserted above. We thus need only to
consider a variety associated to a good F-root. We actually need only to
consider one of them, according to the

CONJECTURE 2.2. There is always a morphism in DT between any two
F-roots of 7 of the same order.

This says in particular that two such roots are F-conjugate in B. The
result of [BMi, 6.8] shows that it is sufficient to consider “good” F-roots of
7 in the above conjecture.

We will show this conjecture for wyg, for Coxeter elements in split
groups and n-th roots of 7 in split type A,. It has now been proved in
split type A as a consequence of a recent result of Birman, Gebhardt and
Gonzales-Meneses (ArXiv:math.GT/0606652, Corollary 4.6 and Proposi-
tion 5.4) which states that in general there is a morphism in D between
two conjugate roots, and of the theorem of Eilenberg [E] stating that in
type A two roots of the same order are conjugate.

Since, when w is an F-root of w, wF = B(w)F is a regular element of
WF (cf. [BMi, 6.6]), the group Cy (wF') is naturally a complex reflection
group. We will denote by B(w) the corresponding braid group; it is shown
in e.g., [BDM] in the case F' = Id and in Section 3 below in the general
case that there is a natural map v : B(w) — Cpg(wF') such that the image
of oy is Cyw(wF). We recall the following conjecture from [BDM, 0.1]

CONJECTURE 2.3. + is an isomorphism.

The above conjecture is easy when w = 7 or w = wg. It has been
proved in [BDM] for split types A and B. We prove it for Coxeter elements
in split groups, and for 4th roots of 7 in type Dy4. For this last case we use
programs of N. Franco and J. Gonzales-Meneses which compute centralizers
in Garside groups.

Assuming Conjecture 2.1, and since the operators Dy commute with
the action of G, we get an action of B(w) as G¥-endomorphisms of
H}(X(w)). The next conjecture states that this action factors through
a cyclotomic Hecke algebra for B(w). Let us recall their definition; the



ENDOMORPHISMS OF DELIGNE-LUSZTIG VARIETIES 39

braid group B(w) is generated by so-called “braid reflections” (see Defini-
tion 3.1) which form conjugacy classes in bijection with conjugacy classes of
distinguished reflections in Cy (wF) (see again Definition 3.1) (¢f. [BMR,
2.15 and Appendix 1]). Let C be a set of representatives of conjugacy classes
of distinguished reflections in Cy (wF'); for s € C we choose a representative
s of the corresponding class of braid reflections, and we denote by ey the
order of s. Let A = Qlusj]s; where {us;}isec, j=o,..c,—1} are indetermi-
nates. The generic Hecke algebra of Cyy (wF') over the ring A is defined as
the quotient of A[B(w)] by the ideal generated by (s —us0) - (S —Use, ;)
A d-cyclotomic Hecke algebra for Cyy (wF) is a “one-variable specialization”
of the generic algebra which specializes to Q,[Cy (wF)] by the further spe-
cialization of the variable to e%7/¢. To make this precise, we need some
definitions: we choose an integer a and we denote by e2™/dWl a primitive
a|W|-th root of unity in @y; we choose an indeterminate denoted by z/%.
Then a d-cyclotomic Hecke algebra is a specialization of the generic Hecke
algebra of the form u,; — eimiles (e=2im/adgl/ayns for some integers N j
(it is defined over Q[z'/%]; it specializes to Q[Cy (wF)] by the further
specialization z1/® — e2im/ad),

CONJECTURE 2.4. Ifw is a d-th F-root of 7, the action of B(w) on
H}(X(w)) factors through a specialization x +— q of a d-cyclotomic Hecke
algebra H(w) for Cyw (wF).

More precisely we have to state the specialization as z1/® — ¢'/%. This
conjecture is proved for w = wg and w = 7 in [DMR, 5.4.1] and [BMi, 2.7]
respectively (see also [DMR, 5.3.4]). We will prove this conjecture for all
roots of 7r in split type A for roots of even order in type B and for 4-th
roots of 7 in type Dy.

Assuming Conjecture 2.4, let H,(w) be the above specialization (the
specialization for z'/* - ¢'/¢ of H(w)). We thus have a virtual repre-
sentation p,, of Hy(w) on > ,(—1)'H{(X(w)). If we decompose Y ,(—1)
H{(X(w)) = > xeln(GF) @A in the Grothendieck group of GT, we get thus
for each A a virtual character x of H,(w) of dimension ay.

We call a representation special if its trace defines up to a scalar the
canonical symmetrizing trace form on H,(w) (see [BMM, 2.1] for the defi-
nition of the canonical trace form). The canonical trace form has not been
proved to exist for all complex reflection groups; however it is known to
exist for those groups that we will encounter in the present paper.
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CONJECTURE 2.5. (i) The x» generate the Grothendieck group of
Hy(w) and are irreducible up to sign.

(ii) The representation p,, is special.

(i) above means that the image of Hy(w) by py, is the “full G¥-endo-
morphism algebra of >.(—1)*H:(X(w))”. We will be able to prove Con-
jecture 2.5 when w = 7 and G is split of type A,, G2, Fg and some small
rank cases and also for the cases when we can prove the next conjecture.

CONJECTURE 2.6. The groups H:(X(w)) are disjoint from each other
as G -modules.

Conjectures 2.5 and 2.6 thus imply that H,(w) ~ Endgr (H}(X(w))).
Conjecture 2.6 is the hardest in some sense, since it is very difficult to
determine individually the cohomology groups of a Deligne-Lusztig variety,
except when w is rather short. In addition to the known case of Coxeter
elements, we will show Conjecture 2.6 for n-th roots of 7 in type A, and
4-th roots of 7 in type Dy. Also, when G is of rank 2, Conjecture 2.6
follows from [DMR, 4.2.4, 4.2.9, 4.3.4, 4.3.5, 4.4.3 and 4.4.4] (with some
indeterminacy left in type split Ga).

It should be pointed out that Conjectures 2.4 to 2.6 are consequences
of a special case of the version for reductive groups of the Broué conjectures
on blocks with abelian defect. They already have been formulated in a very
similar form by Broué, see [Br], [BMa] and [BMi]. In particular, compared
to [BMi, 5.7], we have only inverted the order of the assertions, in order
to present them by order of increasing difficulty, and made the connection
with the braid group a little bit more specific via Conjectures 2.1 to 2.3.

83. Regular elements in braid groups

In this section we provide the needed background on braid monoids and
groups.

We fix a complex vector space V of finite dimension. A complez re-
flection is an element of finite order of GL(V') whose fixed point space is
a hyperplane. Let W € GL(V) be a finite group generated by complex
reflections, let A be the set of reflecting hyperplanes for reflections of W,
and let V' =V — (Jyc 4 H. Choose x € V™ and let T € V'™ /W be
its image. The group II; (V™8 z) is called the pure braid group of W and
the group B = II;(V™8/W,Z) is called the braid group of W. The map
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Vree — V'8 /TV is an étale covering, so that it gives rise to the exact se-
quence

1 IL(V*eq) — B oW — 1.

We denote by Ny (E) (resp. Cyw (E)) the stabilizer (resp. pointwise stabi-
lizer) of a subset £ C V in W.

We choose distinguished generators of W and B as follows (see [BMR,
2.15]):

DEFINITION 3.1. (i) A reflection s € W of hyperplane H is dis-
tinguished if its only non trivial eigenvalue is e?7/¢H where ey =
|Cw (H)|.

(ii) Let H € A and let sy be a distinguished reflection of hyperplane H.
We call “braid reflection” associated to sy an element of B of the
form yoXo~~!, where: « is a path from T to a point Zz7 which is the
image of a point zyy € V'™ “close to H” in the sense that there is a
ball around xy which meets H and no other hyperplane, and contains
the path \ : t — projg(zy) + e*™/¢H projy. (xg) where proj means
orthogonal projection (with respect to a chosen W-invariant inner
product); and where X is the image of .

It is clear from the definition that if sy is a braid reflection associated
to sy, then B(sy) = sy. Moreover it is proved in [BMR, 2.8] that braid
reflections generate B and in [BMR, 2.14] that § induces a bijection from
the conjugacy classes of braid reflections in B to the conjugacy classes of
distinguished reflections in W.

We assume now given ¢ € GL(V) normalizing W; thus V™8 is ¢-
stable. We fix a d-regular element w¢ € W.¢ i.e., an element which has an
eigenvector in V™8 for the eigenvalue ¢ = ¢%7/¢. We refer to [Sp] and [BMi,
§3.B] for the properties of such elements. If V¢ is the (-eigenspace of we,
then Cw (w¢) = Nw(V;); we denote this group by W. Its representation
on V¢ is faithful and makes it into a complex reflection group, with reflecting
hyperplanes the traces on V; of the reflecting hyperplanes of W.

To construct the braid group B(w) of W, we choose a base point z¢ in
Vgeg = V'8N V.. Then B(w) = 1_[1(V<]reg /We,T¢), where Z¢ is the image of
z¢in Vgeg /We. Let  : B(w) — B be the morphism induced by the injection
Vgeg JW¢ — V' /W, composed with the quotient V' /W, — V& /. It
is shown in [Bel, 1.2 (ii)] that « factorizes through the isomorphism induced
by a (unique) homeomorphism Vg & /We =~ (V™8 /W){ | where for a group
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G acting on a vector space V we denote by V& the the set of G-fixed points
in V.

Let 6 be the path t — eQi“t/dxC from z¢ to Cx¢ in Vgeg and let 0 be its
image in V™8 /WW. Then the map wo : A — § o (we)(\) o 5 s alift to B
of the action of w¢ on W.

Remark 3.2. Note that we have not defined independently w and ¢; if
¢ is l-regular this can be done in the following way: let x be a fixed point
of ¢, and choose a path 7y from z to z¢. Let 1, be the path ¢(ng) ™! o no,
from ¢(x¢) to x¢c. The image in V™8 /W of the path § o w(n;) from x¢ to
w(x¢) is an element w of B which by definition lifts w € W.

Then if 7, is the image of 1y in V™8 /W, the map ¢ : A+ 7 op(\) o7,
is an automorphism of B which lifts the action of ¢ on W.

Note also the following:

Remark 3.3. Let ¢ and w be as in Remark 3.2, and let 7 be the loop
t— e%”txg in V'°8; it is a generator of the center of the pure braid group.
Then (w¢)? = w¢? in the semi-direct product B x (¢). Indeed the element
(wep)?p~¢ is represented by the path § o we(d) o (we)2(8) o--- o (we)4=1(8)
which is equal to .

LEMMA 3.4. We have v(B(w)) C Cp(w¢).

Proof. It is easily checked that for any A € B the path §o )\ o 5 s
homotopic to (1A, so (we)(A) is homotopic to (1 (wp)(N). If A is the
image of a path in Vgeg, we have (~!(w¢)(\) = ); so the action of we¢ on
the image of A in B is trivial, as claimed. 0

We now assume that W is a Coxeter group. The space V is the com-
plexification of the real reflection representation of W and the real hyper-
planes define chambers. We choose a fundamental chamber, which defines
a Coxeter generating set S for W.

When ¢ is trivial, and W not of type Fy or E,, the morphism v has
been proved injective [Bel, 4.1]; if moreover W is of type A(split) or B it
is proved to be an isomorphism onto Cg(w¢) in [BDM].

We assume now that ¢ induces a diagram automorphism of W i.e.,
that it stabilizes the fundamental chamber. Then ¢ is 1-regular: in fact
it has a fixed point in the fundamental chamber. We recall the following
result from [VdL]:
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PROPOSITION 3.5. Assume that we have fized a base point whose real
part is in the fundamental chamber. Let W be the set of elements of B
which can be represented by paths \ in V'™, starting from the base point
and satisfying the two following properties:

(i) The real part of X meets each element of A at most once.

(ii) When the real part of X\ meets H € A, the imaginary part of \ is on
the same side of H as the fundamental chamber;

then W 1is in bijection with W via the map B 5, W. Moreover if S C W
is such that B(S) = S then B has a presentation with generators S and
relations the braid relations given by the Coxeter diagram of W.

The elements of S are braid reflections.

COROLLARY 3.6. Letx andy be two points with real parts in the funda-
mental chamber. If v is a path from x to y with real part in the fundamental
chamber, the isomorphism 111 (V"™ /W, x) — 11 (V"9 /W,y) which it defines
is independent of .

Proof. Two such isomorphisms differ by the inner automorphism of
IT, (V**8 /W, z) defined by a loop with real part in the fundamental chamber.
An element defined by a loop is in the pure braid group. But by the
Proposition 3.5 this element is also in W, so it is trivial. 0

DEFINITION 3.7. The braid monoid B is defined to be the submonoid
of B generated by W. Its elements are called positive braids.

Recall that a d-regular element in W.¢ is called a Springer element if
it has a (-eigenvector with real part in the fundamental chamber (cf. [BMi,
3.10]). We choose as base point a fixed point of ¢ in the fundamental
chamber. If w¢ is a Springer element we can choose 7y in Remark 3.2 such
that Re(no) is in the fundamental chamber.

PROPOSITION 3.8. Assume that d > 1 and that w¢ is a Springer el-
ement. If ng in Remark 3.2 is chosen with real part in the fundamental
chamber then the element w is independent of the choice of ng and is in
W.
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Proof. The element w is represented by § o w(n1). As Re(w(n;)) does
not meet any reflecting hyperplane, the only possibility for the real part of
this path to meet H € A is that for some ¢ € |0, 1| we have [ (Re(d(t))) = 0,
where [ is a real linear form defining H. Write 2 = a+1ib with a and b real
and let § = 2xt/d; since d > 1 we have 6 € ]0,7[. We have [ (Re(d6(t))) =
(cos0)lr(a) — (sinf)lg(b) = 0. As this equation has only one solution in
10, w[, property 3.5 (i) above is satisfied. Moreover if 6 is such a solution we
have 1 (Im(6(t))) = lg(a)(sin 6 + %) = % which has the same sign

as g (a) since sinf > 0. So property 3.5 (ii) is also satisfied. [

When d =1 we still have that similarly 7r is independent of the choice
of 1y and is in B™; a way to see this is to use that m = W(Q) where wy is the
element w obtained for d = 2.

We show now how in some cases we can lift to B a distinguished re-
flection of Cyy (w¢g). We still assume that w¢ is a Springer element. Recall
that a parabolic subgroup of W is the stabilizer of a subset of V; and a
standard parabolic subgroup of W is the subgroup generated by a subset of
S (it is a parabolic subgroup).

First, to H € A we associate the hyperplane H N V¢ of V¢ and the
distinguished reflection ty of W, with reflecting hyperplane H N V. Let
Wg = Cw(H N V;); it is a parabolic subgroup of W, thus a reflection
subgroup. The element w¢ normalizes Wy as it acts by ( on HNV¢; it is a
regular element of Wy .w¢ and we have Cyy, (w¢) = (tg). We can apply the
constructions of this section to Wy: let V™én =V — U{H’eA\H’DHOVC} H'
and let VcregH = VenVreern, We get a morphism Hl(VgegH [Cwy (W), T¢) —
I (Vreer /Wy, Z¢), whose image centralizes w¢ as in Lemma 3.4. As x¢
and z are both in the fundamental chamber of Wy, by Corollary 3.6 any
path from x to z; whose real part stays in this fundamental chamber defines
a canonical isomorphism between II; (V™% /Wy, Z¢) and I, (V**8# /Wy, T)
which commutes with w¢. Let us denote by By this group. By composition
with this isomorphism we get a morphism Hl(VCregH /Cwy (W), Z¢) — By,
whose image centralizes w¢. Let ty be the generator of the infinite cyclic
group Hl(VCregH/CWH(w@) such that its image in Cy (w¢) is tg; then
ty is a braid reflection in B(w) and, if ey is the order of tg, then tf/
is the loop t — e%”t:cg i.e., the element wgy of By. If H is such that
Wy is a standard parabolic subgroup generated by a subset I of S then
By = 1I;(V*es /Wy, T) is canonically embedded in B as the subgroup of
B generated by the lift I C S of I and if sy € By is the image of ty by
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the above morphism we have sy € By N Cp(we).

84. The case of Coxeter elements

We prove here, using the results of [BDM], [Be2] and [Lu2] that all
our conjectures hold in the case of Coxeter elements for an untwisted quasi-
simple reductive group G (the assumption of G being quasi-simple is equiv-
alent to W being irreducible). Even though the results of Lusztig cover
them, we are unable to handle twisted groups because the construction of
a dual braid monoid when F' is not trivial has not yet been carried out.

Let h be the Coxeter number of G and denote by n the semisimple
rank of G, which is also the Coxeter rank of W. We begin with

PRrOPOSITION 4.1. The h-th roots of ™ are the lift to W of Coxeter
elements of W. Conjecture 2.2 holds for h-th roots of m, that is, there is
always a morphism in DT between two such roots.

Proof. By e.g., [BMi, 3.11] h-th roots of 7 exist. Such a root is an
element of BT of length n, whose image in W is in the conjugacy class of
Coxeter elements by [BMi, 3.12]. Since the minimal length of an element
in this conjugacy class is n, which is attained exactly for Coxeter elements,
we conclude that an h-th root of m is in W, and its image is a Coxeter
element.

Now, by [Bou, Chap. V §6, Proposition 1], any two such elements are
connected by a morphism in DT (it is easy to identify the conjugating
process used in loc. cit. to morphisms in D). 0

We now show

PROPOSITION 4.2. Let c be the lift in W of a Cozeter element. Then
Cp(c) is the cyclic group generated by c.

Proof. Here we use the results of [BDM] and [Be2|. By [Be2, 2.3.2], B
admits a Garside structure where c is a Garside element. By [BDM, 2.26],
the centralizer of c is generated by the lem of orbits of atoms under the
action of c. Such an element is a c-stable simple element of the dual braid
monoid. By [Be2, 1.4.3], it is the lift to W of an element ¢; in the Coxeter
class of a parabolic subgroup of W. But the centralizer of ¢ in W is the cyclic
subgroup generated by ¢, in particular a simple element centralizes ¢ only if
its image in W is a power of ¢. Thus, we have to show that no power c* of ¢
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with 1 < k < h is the image of a simple element, or equivalently that no such
power divides ¢ for the reflection length. By [Be2, 1.2.1] this is equivalent
to showing that the equality dim ker(c* — 1) 4 dim ker(¢'~* — 1) = n cannot
hold for such k. But, by [Sp, 4.2], the eigenvalues of ¢ are (=% where
¢ = e%m/h and where d; are the reflection degrees of W. Thus the equality
to study becomes |[{i | (1 —d;)k =0 (mod h)} +|{i | (1 —-d;))(1—k)=0
(mod h)}| = n. Both conditions cannot occur simultaneously since this
would imply d; = 1 (mod h), which is impossible since the irreducibility
of W implies that 1 < d; < h. Thus it is sufficient to exhibit a d; which
satisfies neither condition. But d; = h itself is such a d;, whence the result.

a

It follows immediately from Proposition 4.2 that Conjecture 2.1 holds
for Coxeter elements, that is Endp(c) = Cp(c) = (c), since by definition
c € Endp(c).

Let us now prove that Conjecture 2.3 holds. The space V; is one-
dimensional, and for any z. € Vgeg = V¢ — {0} the group II1(V;/Cw(c), z¢)

Zimt/h  Doing if necessary a

is cyclic, generated by the loop b =t — e
conjugation in B, we may take any h-th root of 7 to prove Conjecture 2.3.
We will choose a Springer element, so we may assume that Re(z¢) is in the
real fundamental chamber of W. Then, by Proposition 3.8, the image v(b)
is in W, and since its image in W is ¢ it is equal to c. We have shown that
v is an isomorphism.

Conjectures 2.4, 2.5 and 2.6 will follow from the following proposition

from [Lu2]:

PROPOSITION 4.3. Let ¢ be a Coxeter element. Then

(i) F is a semisimple automorphism of @, H.(X(c)); it has h distinct
etgenvalues; the corresponding eigenspaces are mutually non-isomor-
phic irreducible GF -modules.

(ii) For s = 1,...,h — 1, the endomorphism F* has no fized points on

X(c).
(iii) The eigenvalues of F' are monomials in q which, under the specializa-
tion q +— 62”/’1, specialize to 1, (, CQ, . ,Ch*1 where ¢ = e2im/h

Proof. (i) is [Lu2, 6.1 (i)]; (ii) is 6.1.2 of loc. cit.; (iii) results from the
tables pages 146-147 of loc. cit. U
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We show now how this implies Conjectures 2.4, 2.5 and 2.6. Conjec-
ture 2.6 is immediate from Proposition 4.3 (i). The generic Hecke algebra
H(c) of the cyclic group Cyy(c) of order h is generated by one element T
with the relation (7" — ug)--- (T — up—1) = 0. The map which sends ¢ to
D, = F is thus a representation of this algebra, specialized to u; +— A;
where A, ..., Ap—1 are the eigenvalues of F on @, H:(X(c)). By Proposi-
tion 4.3 (iii) this is indeed an h-cyclotomic algebra for Cy(c). It remains
to see that the virtual representation >_.(—1)*H:(X(c)) of H(c) is special.
But, by e.g., [BMa, 2.2], the symmetrizing trace on H(c) is characterized
by its vanishing on T for i = 1,...,h — 1. By the Lefschetz trace formula,
one has Y, (—1)! Trace(F* | H{(X(c),Q,)) = |X(c)I"|, so this vanishing is
a consequence of Proposition 4.3 (ii).

85. Regular elements in type A

We prove Conjecture 2.1 for roots of = when W is of type A and F' acts
trivially on W. Here we assume that d > 1. The case of 7 will be treated
in Section 7.

Let W be a Coxeter group of type A,_1 and let B be the associated
braid group. There are d-regular elements in W for any d dividing n or
n — 1. To handle the case d|n — 1, it will be simpler to embed W as a
standard parabolic subgroup of a group W' of type A, to embed B as the
corresponding subgroup of the associated braid group B’ and to consider
d-regular elements for djn in W'.

We denote by S = {o1,...,0,} the set of generators of B’, the gen-
erators of B being o1,...,0,_1, where the Coxeter diagram of W' is
O—0O---O—~0. We denote by w and 7w’ respectively the positive gen-

o1 g2 On—1 On
erators of the centers of the pure braid groups respectively associated to W

and W',

Let ¢ = 0109 0,_1, the lift in W of a Coxeter element. Let r and
d be two integers such that rd = n and let w = ¢”; it is a d-th root of 7
(¢f. Proposition 4.1). The image w of w in W is a regular element of order
d and its centralizer Cyy(w) is isomorphic to the complex reflection group
G(d,1,r) which has a presentation given by the diagram: @=0)--- O—O.

t Ssr—1 S22 S1
We denote by B(d,1,7) the braid group associated to G(d, 1,r); it has
a presentation given by the same diagram (deleting the relations giving the
orders of the generators).
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Conjecture 2.3 holds in our case. Indeed, Bessis [Bel, 4.1] has proved
that the morphism v : B(w) — Cp(w) is injective and in [BDM], this
morphism is proved to be bijective. More precisely Bessis proves that
~(s;) = H;l;é 0+ and 7(1_[;:11 sit) = ¢, where t,s;,...,s,_1 are the gen-
erators of B(w) given in [BMR, 3.6]: they are braid reflections which satisfy
the braid relations given by the above diagram for G(d, 1, 7). We shall iden-
tify B(w) with its image, so that we shall identify s; and t with the elements
given by the above formulas.

Let now ¢’ = o1 -+ 0,04, a n-th root of @’ in B, ¢f. [BMi, Al.1]. Let
w’ = c"; it is a d-th root of v/ and if w’ is its image in W', the centralizer
Cw(w') is also isomorphic to G(d,1,7). It has been proved in [BDM,
5.2] that Cg(w) ~ Cp/(w'). More precisely, let X,, be the configuration
space of n distinct points in C, let u, be the set of n-th roots of 1, and
let vpt1 = pn U {0}. We have B’ = II1(Xp41,tnt1). Let X' be the
configuration space of n non-zero distinct points in C; we have morphisms
I (Xot1s Vnt1) &, (X, pn) S, 11 (X, tin ), (these morphisms are called
A and B in loc. cit.). One gets the map ¥ by adjoining to a braid a constant
string at 0.

If we choose an isotopy from v,1 to pn41 we get an isomorphism of
I (X 41, Vnt1) with B’; this can be done by bringing 0 along a path ending
at €2t

Similarly, if we choose an isotopy mapping the n first n + 1-th roots of
1 to pn, we get an isomorphism a : 111 (X,,, pn) — B.

It is shown in loc. cit. that the map a.o© has a section ©’ above C(w).

Let 1 be the restriction to Cp(w) of ¥ 0 ©'; it is an isomorphism from
Cp(w) to Cpr/(w'). We have 1(c) = ¢’ and 9(s;) = s;. Let t' = ¢(t); it
satisfies [[/Z] sit’ = c’.

The following theorem proves Conjecture 2.1 in type A. Note that if
we have a standard parabolic subgroup W; of a Coxeter group Ws, and if
By and By are the corresponding braid groups, the category Dy (resp. Dy)
associated to Bj as in Section 1 is a full subcategory of the category D,
(resp. D) associated to By. This allows us in the following theorem to
state the results in term of the categories associated to B’. We will denote
these categories by D and DT.

THEOREM 5.1.  One has s; € Endp+(w) N Endp+ (W), t € Endp(w)
and t' € Endp(w’'), so that Endp(w) = Cp(w) =~ B(d,1,r) and
Endp(w') = Cp/(W') ~ B(d, 1,7).
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The end of this section is devoted to the proof of that theorem.
In the next lemma =< (resp. =) denotes left divisibility (resp. right
divisibility) in the braid monoid.

LEMMA 5.2. Let B be the braid group of an arbitrary finite Coxeter
group; let x,y,z € BT be such that xy 'z € BT. Then there exist x1,2; €
BT such that x = x1, 21 <z and y = z1X1.

Proof. Let b = xy 'z, so that y~'z = x~'b. By [Mi, 3.2], if we
denote by z; the left gcd of y and z, and by x5 the left ged of x and b, we

have zl_ly = XQ_IX, whence the result, putting x; = x2_1x. 0

LEMMA 5.3. Fori=1,...,n,letc, =01 0;.

) We have cyo; = oir1¢p fori < k.
) We have oy = 0441¢ fori<n—1.
) We have Cgan_l =o0].
(ii’) We have C/Qan,l =o0;.
(iii) For x € BT, one has 011 < X & 0; < X fori < k.
(iv) For j <k, we have {i | o; <ci}:{1,...,j}.
) <t ={L....jh
)

V' =chon_ji1- 0, for 1 <j<n.

For j <n we have {i | o;

Proof. Let us prove (i) and (i’). We get cxo; = j11¢ by commuting
o (resp. o;41) with the factors of ¢, and applying once the braid relation
between o; and ;1. Moreover, as ¢’ = ¢,0, and o, commutes with o;
for i <n —1, we get also (').

From (i), by induction on j we get (v).

Let us prove (ii). For proving ®o,_1 = o, we use (i) to get
CoO1--0Op_o =09 0,_1C, then we multiply both sides on the right by
0,1 and on the left by o1 to get o1c? =c’o, .

—1 —1

co le) (¢
—1 — n
n O'n —

We deduce (ii’): we have on = g, | =
that °/20'n,1 = C"”"#can = o by (ii).

Let us prove (iii). We have 0,41 < cx < O';Jrllckx € BT; by (i)
J;_Fllckx = cka;lx and by Lemma 5.2 this implies that either o; < x
or ¢ »= o;. But, as no braid relation can be applied in cg, the only
J such that c; = o; is k. So we are in the case o; < x, whence the
implication from left to right. The converse implication comes from the
fact that o; < x = ckai_lx € BT.

o, SO
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Let us prove (iv). If o; < ci we cannot have ¢ > j otherwise applying j
times (iii), we get o;—; < 1 which is false. Conversely, if i < j, by applying
i — 1 times (iii) we get o; < ci S o < Ci_i—’_l

(v) is a direct computation using (i).

Let us prove (iv’). By (iv) and (v), we have o; < ¢’ for i < j. On
the other hand by (iii) and (v) we see that if o; < c” with ¢ > j, then
Oi—j < Op—j+1--- 0y which is impossible. 0

which is true.

In the next lemma, as in [DMR, 5.2.7], for I C S we denote by B}F
the submonoid of B* generated by I = {s € S | s € I}, and by D} the
“parabolic” subcategory of D where we keep only the maps coming from
elements of B;r.

LEMMA 5.4. Assume 1 <i <7 and let I; = {0, 0i4r,- -, Tiy(a—1)r}-
Then

(i) si € Endp+(w) N Endy+ (W),  In particular s; € Endp+(w) N
I; I;
Endp+(w').

(ii) The conjugation by either w or w' stabilizes I; and induces on this
set the cyclic permutation @ itjr = G4y (j41)r (mod n)-

Proof. We can assume r > 2 otherwise there is nothing to prove. Let
Yj = Oiyr(j—1) for j =1,...,d, and, following the notation of [DMR, 5.1.1
(i)] let w1 = w and w;1 =y, 'wy; for j = 1,...,d. We have w; € BT as
y1 = o; divides w = ¢],_; by Lemma 5.3 (iv). We have w;; = yj_leyj
by using Yy;_1 = y;, which is a consequence of Lemma 5.3 (i), and the fact
that y; and y; commute as r > 2; from Lemma 5.3 (ii) we have Yy, =y,
whence wg; = w so that (i) is proved for w. We get (i) for w’ by the
same computation, replacing w by w’ and using Lemma 5.3 ("), (ii’) and
(iv’) instead of Lemma 5.3 (i), (ii) and (iv). We have also got (ii) along the
way. 0

To prove that t € Endp(w), we shall find y € BT such that ywy~! €
B,y € Homp+ (ywy !, w) and yty ! € Endp+ (ywy™!). Then, as D is
a groupoid, we will get t € Endp(w).

We will follow the same lines to prove that t' € Endp(w’).

LEMMA 5.5. When j < k, let o, = 00410 and let x; =

Oiitr—2. With this notation, let'y = H?;ll y; where y; = H;J;l Xi(r—1)4j -

1

Then ywy ™! € BY and y € Homp: (ywy ™!, w).
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Proof. We set wg = w, and then by decreasing induction on i we
define y;lwiyi = w;y1. It is enough to show that y;1w1- € BT; we will get
this by proving by induction that w; = YiCTilci(r—l)-I—d—l' This formula is
true for i = d (here yg = 1). Let us assume it true for i+ 1 and let us prove
it for . We have

_ r—1
Wi+l = Yi+1C  C(i41)(r—1)+d—1

= X(i41)(r—1)+d " 'X(i+1)(r71)+i+1CT?lC(i+1)(r71)+d71

= ¢ X1 Ki(r— D)1 €+ 1) (r—1)4d—1 (DY 5.3 (1))

= Crilc(z’ﬂ)(r71)+d71Xz’(r71)+d71 C Xi(r—1)+4 (by 5.3 (1))

r—1
=C Cir—1)+d—1Xi(r—1)+dXi(r—1)+d—1 """ Xi(r—1)+i

=c"Cipr—1)4d—1Yi
which, conjugating by y;, gives the stated value for w; . 0
We note that in particular we have ywy ! = w; = ¢"lcg1y0 =

r—1
Orr4+d—2C "Xq° X1
We prove now the analogous lemma for w’. Let ¢, = c;o;.

LEMMA 5.6. Let y' = H?;ll y; where y, = H;J;}H_l Xi(r—1)+j- Then

J
y'w'y'~t € BY and y' € Homp+ (y'w'y' "1, w').

Proof. We can assume 7 > 2 since for » = 1 we have y’ = 1. We set
w!, = w’, and then by decreasing induction on ¢, we define w, = yiw +1y;*1
We will show that yg_lw; € BT by proving by decreasing induction on i
that w, = ygczlc’(ril)i +q- This equality has no meaning for i = d, as
Xar+1 does not make sense. So we rewrite it as w; = c:gl&,l(y;)c?r_l)wd,
where we define formally 0;(x;) = x;_; which makes sense when j —i < n.
Now the formula for i = d becomes W' = ¢ ,0,4—r+1,r4, Which holds by
Lemma 5.3 (v). This is the starting point of the induction. Let us assume
the formula true for 7 and let us prove it for i — 1. We have

-1
w; = Crq 5T*1(y§)cl(r—1)i+d
-1
=y Or—1(Y})C(r—1)i+dT (r—1)i+d

= 0:210(T—1)z‘+d5r—2(yg)U(r—l)ier
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the last equality as r > 2 implies that the largest j such that o ; occurs in
dr—1(y}) is at most (r — 1)i +d,

1
= Crq Cr—1)(i- 1)+dyz 10 (r—1)i+d

_ =1
=Crg Clr—1)(i— 1)+de 1

where we get the last line by commuting o (,_1y;4+q and X(_1)(—1)4; for
J < d, and applying formula X,11X,044+r—1 = O¢Xaqt+1X, to the two first
terms of y;_;. [

From Lemma 5.6 we get y'w'y’~! = =c IC&YO Orrtd—10r+d—1

r—1
crd Xd+1 X1
Let us now prove

LEMMA 5.7. (i) We have yty ™' = oy pq—2.
(ii) We have y't'y ' =0, 1a-10r1d-1-

Proof. Let us prove (i). We show that t= H r(j+1)r—1 Where ag ;=
a’k,lagllfl. For this, replace each aj; by its Value to get Hi:l Oir (i4+1)r—1

-1 -1 o -1 _—1 .
| by O i (it 1)r—20 which is equal to o gr—1 [[;—; O (it 1)r—2r I turn equal

to c tc Hf:_ll Uz_rl(zﬂ)r - We can put c on the right of this product if we
-1

replace o ; by o141 for all k, [. We get Hl 0 Uzr+1,(z‘+1)r—1

equal to t = ([[/Z} si) "¢, as wanted, since [/} s; = H;-l;é Xjr4+1 where

all factors commute.
By decreasing induction on i, we find H;l;il yj = Hzgj Cirtj—ijr—1s

so, setting z; = 0y (i+1)r—1, We have y = Hil:dfl z;. But z; conjugates

c, which is

ajr’(j+1)7«,1 into aj+r7(j+1)7«,1 and aj+r,1,(j+1)7«,1 into Ojtr—1- It commutes

with o; for i < j + 7 —1 and with a;. (j41),—1 for i > j. So by induc-

tion on j we see that H ; Zi conjugates t into (I, Oitr—1)&4p (j+1)r—1
d

(Hz‘:j—H azr,(z—l—l)r—l)’ whence (i).

We now prove (ii). We claim that y' = o44,q4,y: indeed y, =
Xi(r—1)+d+1Yi and X;_1)4q+1 commutes with yy for k < 4; this gives the

. d—1
claim as [[;Z) Xj(r—1)+d+1 = Tdtr,dr-

Let us now conjugate t' = to2 by y' = o4yrary. By (i), y’ conju-
gates t into o, ,44-2 as 044 commutes with o, ,,4 2. On the other
hand conjugation by y’ has the same effect on o4 as conjugation by
OdtrdrZd—1 = OdtrdrOdsr—1,dr—1 as Z; for i < d — 1 commutes with o 4.
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It remains to see that o g4, 4,0 g4r—1,4dr—1 conjugates o4, into g1 i.e.,
Od+r,drOd+r—1,dr—19dr = Od+r—10 d+r,drOd+r—1,dr—1; this can be written
Odtr,drOd+r—1,dr = Od+r—1,drOd+r—1,dr—1, which is true. [

COROLLARY 5.8. We have t € Endp(w) and t' € Endp(w’).

Proof. f 1 = {o,...,0,44-2}, then 0,142 € EndDr (ywy™1), as
Orrtd—2 = ywy !, By Lemma 5.5 and the remarks made above that
lemma, we get the first assertion.

Similarly, if I' = {oy,...,0,44-1}, then o, ,1q-10,44-1 € EndD;; (y

w'y' 1) as ¢, 4a-10,+a-1 < ywy !. By Lemma 5.6, we get the second

assertion. 0

§6. Regular elements in type B

We now prove Conjecture 2.1 for roots of 7w when W is of type B,. We
will see W as the centralizer in a Coxeter group W’ of type As,_1 of the
longest element wg. Let V' be the vector space which affords the reflection
representation of W'. As wy is a 2-regular element, the eigenspace V', of wy
affords the reflection representation of W, and if we choose a base point in
V'8 we get an embedding 11 (V'8 /W) < TI; (V"8 /W) of the braid group
B of type By, into the braid group B’ of type Ag,—1. If ' = {o,...,05, 1}
is the generating set of B’ then it is known (see [Mi, 4.4]) that o1 = o, and
Ont1—i = 0,04, for 1 <i < n are generators of B such that the relations

are given by the Coxeter diagram O=0O—)---O.
o1 On

oy O3

Let w be a d-regular element of W for some d, and let ¢ = e%™/4 With
notation as above 3.2, we have Vgeg/CW(w) ~ (Vg /W) and Vg /W =
Virleg/CW’(wo) ~ (V’reg/W/)<_1), so that Vgeg/CW(w) ~ (V’reg/W’)<_1’C)-
This is equal to (V™8 /W'){) if d is even and to (V/*8/W')€") with ¢/ =
e™/dif d is odd. As Cw(w) = Cyr(w,wp), we see that if wg is a power of
w, which implies that d is even, then Cy (w) = Cy/(w). In this case, as
Vi® = Vgreg we see that the map 7 from B(w) to Cg/(w) is the composition
of the map which we still denote by v from B(w) to Cp(w) and of the
embedding B — B'.

We make a specific choice of a regular element. Let c =o1---0,. It
is a 2n-th root of 7 (cf. Proposition 4.1). Let r and d be two integers such
that rd = 2n and let w = ¢”; it is a d-th root of 7r and its image w € W is
a good regular element.
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If d is odd, we have Cp(w) = Cp(c") = Cp(cPsedm)) = Cp(c"/?)
and Cy (w) = Cy(c"/?) since wg = ¢” is central. So we are reduced to
study Cg(w) when d is even and Cg(w?) when d is even and d/2 odd (see
Theorem 6.3 (ii), below).

When d is even we have seen above that Cy (w) = Cy(w), and this
group is a complex reflection group of type G(d, 1,7) (see also [BMi, A.1.2]).

We have ¢ = o},0),_,07,_ |- 010%, ;. In order to apply the results
of Section 5, we use a conjugation by v~! where v is the canonical lift of
the longest element of the standard parabolic subgroup of W’ generated by
Lol v,

This proves that the generators of Cp(w) are the elements s; =

Vfl(H?;(l) O 1)V = Hz/jo_l Oitkr for @ = 2,...,r and the element t

such that t[[i_,s; = c; note that we have not chosen for the element

0l,...,00_q: indeed we have ¢ = v~

t the conjugate by v~! of the element t of Section 5 but we have ap-
plied a further conjugation by c in order to simplify the computations. We
have t = (6203041042 - O'(d/g_l)r+1)_10'10'2 1 0(g/2—1)r4+1, Where
&; means deleting o; from the product: we have deleted all o; such that
i =2 (mod ).

We first prove a lemma analogous to Lemma 5.3.

LEMMA 6.1. (i) We have coj = 0o;y1c for2 <i<n-—1.
(ii) We have o, = o5.
(i) For x € BT and 2 <i <n we have 0; < X & 041 < CX.
(iv) We have {i | o; </} ={1,...,j} for j <n.
Proof. Statements (i) and (iii) have the same proof as the correspond-

ing statements in Lemma 5.3.
Let us prove (ii). We have

= o103(03---0,)c=0105¢(02 O p_1)

=01020103(03 - 0,) (02 0p-1)
=02010201(03 - 0y) (02 0p-1)
= 090103(03---0y)01(02- -0 1)
=02C01 " 0On-1,
whence c?o,, = oyc?.
The proof of (iv) is similar to that of Lemma 5.3 (iv): it uses similarly
the fact that o; < c if and only if ¢ = 1, but it also needs the fact that
o3 < ¢, which we have seen in the proof of (ii). U
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LEMMA 6.2. The group Cp(w) has a presentation with generators t,
$2,...,8., the relations being the braid relations given by the diagram

THE e

Proof. We already know that Cp(w) has a presentation with genera-
tors so, .. .,s,, t’ and relations the braid relations given by O—)--- O=0),

S2 S3 Sr t/
where t’ is the element conjugate by v~! of the element t of Section 5. We

have t = ct’'c™! = (sy---s,)t'(s2---s,)~!. The commutation t’ with s; for
i < r is equivalent by 6.1 (i) to the commutation of t with s; for ¢ > 2. It
remains to see that the braid relation between t’ and s, is equivalent to the
braid relation between t and ss. This is proved by decreasing induction on
1 using the following fact that is the result of a simple computation: if s;_1,
s; and u’ are elements of a group and if u = s;u’ SZ-_1 then the braid rela-
tions given by O—(=() imply s;_ius;_1u = us;_jus;_1. Conjugating by

Si—1 S; u’
So the relation 933 Srt/sySs Srg/ = S3:Srt/g,83Srg/gy  which we get at the
end of the induction, gives the braid relation which we want. The converse
is similar. []

THEOREM 6.3. Assume d even; then
(i) We haves; € Endp+(w) (i =1,...,r—1) and t € Endp(w), so that
Endp(w) = Cp(w) ~ B(d,1,r).

(ii) If d/2 odd, we have s; € Endp+(w?) (i = 1,...,r — 1) and t €
Endp(w?), so that Endp(w?) = Cp(w?) ~ B(d, 1,7).

Proof. In the following lemma, the statements about w? assume that
d/2 is odd. The proof follows the same lines as that of Lemma 5.4, using
Lemma 6.1 instead of Lemma 5.3.

LEMMA 6.4. Assume2 <i <71 andletl; = {0}, 0iyr, .., Tip@po—1)r}-
Then
(i) s; € EndD? (w) and s; € EndD? (w?). In particular s; € Endpt (w)
and s; € EI;dD+ (w?). Z
(i) The conjugation by w (resp. w?) stabilizes I; and induces the cyclic per-
mutation &t jr = Oiy(j+1)r (mod n) (T€SP- Titjr = Ot (j12)r (mod n))-

LEMMA 6.5. For i < j we set 0;; = 0;0;41---0;, and we set X; =

d/2—1 d/2—i
Oitlitr—1. Lety = Hiil yi where y; = k/zl Zx(i—l)(r—1)+d/2—k+1-

Then ywy ™! € BY andy € Homp+ (ywy ™, w).
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Proof. We set ¢; = o1;. Let wg/5 = w, and by decreasing induction
on i define y; 'wiyi = wip1. We claim that v 'w; € BT, which implies
the result: in fact we prove by induction that w; = y;¢;,_1)4q /ch_l. This
equality is clearly true for i = d/2 (with y4/, = 1). Let us assume it to be
true for ¢ 4+ 1 and let us prove it for ¢. We have

-1
Wi+l = yi+1c(i+1)(r—1)+d/2cr
d/2—i—1

= H Xi(r—1)+d/2—k+1€(41)(r—1)4d/2€
k=1
d/2—i—1

= Cirn)r—1+d2 || Fir—1rap—rc " (by 6.1 (1))
k=1
d/2—i-1

= Ci(r—1)+d/2 H Xi(r—1)4d/2—kC "
k=0

d/2—i—1

=112 " ] Xe—ne—1)sap-r  (by 6.1 (1)
k=0

= Ci(r—1)+d/2cr71}’i
which, conjugating by y; gives the equality for w;. U

We note that the above proof shows that

2 r—1+d/2
-1 _ r—1 __ r—1
ywy =~ =Y¥i1Cr—14d/2€ = X gic
i=d/2 i=1

1
_ Ar—1
= 01,r—1+d/2 H XiC
i=d/2—1

the last equality by Lemma 6.1 (i), so ywy ! = O1.4/2 Hil:d/Q x;c" L
LEMMA 6.6. We have yty ' = O1,d/2-
Proof. Fori=1,... ,d/2 —1,let t; = (6‘20’3 S Orp10pg2 'O'Z'T_H)*l
O1,i(r—1)+d/2- We have t =t;/5_1 and to = 0 4/2. We prove by induction

that y; (¢f. Lemma 6.5) conjugates t; into t;_1, which proves the lemma.
Keeping the notation of Lemma 6.5, we have t; = (xoX, 42+ X(i,l)ﬂrz)_l
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" dj2—i .
Ul,i(r71)+d/2' By definition Y: = Hk/zl ! X(ifl)(r71)+d/27k+1' This pI‘OdUCt
commutes with XX, 12+ X(;_2)r4+2. As the factor indexed by k = d/2 —i
in y; is equal to X(;_1),42, We get

yitiy; ' = (XoXp42- "X(ifZ)rJrZ)il
dj2—i—1
X H X(ifl)(r71)+d/2fk+1Ul,i(r71)+d/2yi_1~
k=1
We wuse the fact that conjugation by o ;,—1)4q2 of the factor
X(i—1)(r—1)+d/2—k+1 D y;l for k > 1 changes k into k — 1: this allows
to simplify the product and we get

yitay; ' = (XaXp42 .. ~X(¢—2)r+2)_101,z‘(r—1)+d/2x(i_1)(,,_1)+d/2
= (X2Xr42 - 'X(i*?)r+2)710'1,(i71)(r71)+d/2 =ti—1.

i

Let I = {o1,...,04/2}; we have 0; 4/ € Endp (ywy 1), by the re-

? I
mark following the proof of Lemma 6.5. This, together with Lemmas 6.5
and 6.6 proves the statements about t in the theorem. 0

Note added in proof. The conjugacy of two roots of the same order of
7 in type B can be deduced from the result of Eilenberg in type A by using
the embedding of B,, in As,_1; thus, as in type A, Conjecture 2.2 follows
from the result of Birman, Gebhardt and Gonzales-Menes mentioned in the
introduction.

87. The elements w and wg

We consider here the order one F-root of 7r, which is y = 7, and the
order two F-root y = wq. For wg, we will just show how Conjectures 2.1
to 2.4 follow from known results. For 7, we will in addition prove Conjec-
ture 2.5 in a certain number of cases, including split type A in general.

We recall that (¢f. [DMR, Proposition 2.1.6]) the group Cyw (F') (resp.
Cw(woF)) is a Coxeter group with Coxeter generators the elements w]
for I an element of the set of orbits S/F (resp. I € S/woF). The cor-
responding braid groups Cg(7F) (resp. Cp(woF')) have as generators the
corresponding elements w{.

Since the generators w{ divide 7 (resp. wg) in BT, Conjecture 2.1 is

trivial. For 7r, Conjecture 2.2 is also trivial. For wyg it results from the
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remark below 2.2 and the fact that wy is the only “good” square F-root of
7 since it is the only element of W of its length.

Since F (resp. woF') acts as a diagram automorphism, Conjecture 2.3
is [Mi, Corollary 4.4].

Conjecture 2.4 holds for the cases y = 7 and y = wq by the following
results:

ProprOSITION 7.1. ([DMR, 5.3.4]) The map t — Dy from Cp(F) to the
GF-endomorphisms of H}(X(m)) factors through the specialization x +
q of a l-cyclotomic Hecke algebra for Cyw (F) which is the specialization
Uyl o 2! (wd) Uyl 1 —1 of the generic Hecke algebra of Cyy (F).

PRrOPOSITION 7.2. ([DMR, 5.4.1]) The map t — Dy from Cp(woF') to
the GF-endomorphisms of H}(X(wq)) factors through the specialization
x +— q of a 2-cyclotomic Hecke algebra for Cy (woF') which is the special-

1+l(w(l)), where e =0 Zfl(’u}(l)) 1S even

ization Uy . — o), Uyt e — (—1)
and 1 otherwise, of the generic Hecke algebra of Cyw (woF') (here the names
Ul o and Uy aTE given in accordance with the definition of a cyclotomic

Hecke algebra in Section 2).

We will now consider Conjecture 2.5 for y = w. Let H be the cyclotomic
algebra of Proposition 7.1. Since some characters of H are only defined over
Qy[z'/?] (for W irreducible, this happens only for the characters of degree
512 of W(E7) and those of degree 4096 of W (Eg)), we need to take the
integer a defined above 2.4 equal to 2 and thus consider the specialization
f:aY? — ¢'/2 of the algebra with parameters Ugyt o ((—z1/2)2(wp))
and uyr; — —1. In the terms of [DMR, 5.3.1] this corresponds to the
specialization z'/2 +— —¢'/2 of H,(W,F). We recall from [DMR, 5.3.2]
that if f’ is the specialization z1/2 — —g%/2 (which corresponds to the
specialization z'/2 +— ¢'/2 of H,(W, F)), and if we fix an F-stable Borel
subgroup B, then H ® ¢ Q, ~ Endg, g r (Indgﬁ Id).

Let o be the semi-linear automorphism, coming from Gal(Q,(z'/?)/
Qu()), given by z'/2 s —x1/2 of H; thus foo = f'. Let H, = H ®p Qy
and let x — x4 be the bijection between characters of H and H, obtained
via f’; we then denote by x4 — py the bijection between characters of H,
and characters of G occurring in Indgg Id coming from [DMR, 5.3.2].

Let us recall that the representation Indg’f: Idof H® Qy is special (cf.
2.5 (ii)); this follows from the fact that the image of any non-trivial w € W
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has zero trace in this representation, which characterizes the canonical trace
form for Hecke algebras of Coxeter groups.
It follows that Conjecture 2.5 is implied by the

CONJECTURE 7.3. We have an equality of virtual GT x Hy-modules

D EVH(X(m),Q) = Y s @aX)e

( xElrr(WF)
In the remaining part of this section we will prove the following theorem:

THEOREM 7.4. Conjecture 7.3 holds if the characteristic is almost good
for G and if (W, F) is irreducible of type untwisted A, Ba, B3, Bs, Dy,
Ds, D¢, D7, G2 or Eg.

Recall that the characteristic is almost good for G if it is good for each
simple component of exceptional type of G.

Proof. We have to prove that the virtual character of H, appearing in
the p,-isotypic component of Y,(—1)*H (X (), Q) is equal to o(x),. This
is equivalent to proving that for any x € Cg+ (F) and any x € Irr(W 1), we
have:

(1) (g D (1) Trace(gDx | HAX(m), Q). py )., = 7()a(T);
7

where Ty denotes the image of x in ‘H,. We will prove this equality for
sufficiently many elements of C' g+ (F') to deduce it for all elements for groups
in the list of Theorem 7.4.

The lemmas used in the proof have a larger scope of validity than the
theorem. The proof proceeds by induction on the semi-simple rank of G
because of the next lemma.

LEMMA 7.5. Let G be an arbitrary reductive group as in Section 1.
If Conjecture 7.3 holds for any reductive group with semi-simple rank less
than that of G then (1) holds for any x € CB;r (F) for any F-stable proper
subset I of S.

Proof. If Ly is the standard Levi subgroup of G corresponding to I,
then by [DMR, Théoréme 5.2.10], for x € CB;F(F) we have:

(9= D2 (-1)" Trace(gDx | HA(X (), Qo). px )

= (1= Y7 (~1)" Trace(IDx | HA(Xw, (m1), @), “RES py).

i
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which by assumption is equal to

* F
Z 0(@)q(TX)<P¢7 RS{;‘ pX>Lf'
pelrr(WE)

As (p,, *Rfﬁpth = (go,Res%? X>WIF, cf. [CR, Theorem 70.24], we get (1)
I I
for x. [

LEMMA 7.6. Here again G is arbitrary. Fquality (1) holds if x = w",
with n multiple of §.

Proof. As w™ acts by F™ on X, we have
> (=1)! Trace(gDan | HA(X (), Q) = [X(m)?""|

by the Lefschetz trace formula. We shall use the same methods and notation
as in [BMi, §2.B and §6.D]. Proposition [DMR, 3.3.7] shows that

X(m* =Y ple) D (. ROX(TFF).

pElrr(GF) X€Elrr(W)F

We have X, (TP F) = ¢"?N=x=4)y(F) [BMi, Proposition 6.11] whence we
get as in the proof of [BMi, Proposition 2.5]

n F " i
X(@) = > plg){p, IndGr Id)g" PN =4)
pElrr(GT)

= Y x(D)g"ENTa A, (g).
X€EIrr(WF)

We now use x4(T%) = o(x)o(TR) = x(1)g"®N=ax=4x) [BMi, Corollaire
4.21], which gives the result. {

LEMMA 7.7. If the characteristic is almost good for the split irreducible
group G, equality (1) holds when x is a oot of .

Proof. Lemma 7.6 shows the result for x = 7; we thus assume that x
is a d-th root of 7 with d > 2. By [DMR, 5.2.2 (i)] the endomorphism Dy,
of X(7r) satisfies the trace formula so that

> (—1) Trace(gDw | Hi(X(m), Q) = [X ()P ].

%
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Moreover, by [DMR, 5.2.2 (ii)], we have (g — |X(w)9Pv|) = Shi(g —
Trace(gTw | Indgg Id)) where Sh is the twisting operator on G¥'-class func-
tions. So we have to prove

Sh¢(g — Trace(gTy | Indgij Id)) = Z a(X)q(Tw) Py
Xq€Irr(Hq(W,F))

which is equivalent to

(1) Z Xq(Tw) Sh? Px = Z o (X)q(Tw)px-

Xq€Irr(Hq (W, F)) Xq€Irr(Hq(W,F))

To prove this, we may replace w by a conjugate in B so we may assume
that w is a “good” root, in particular that w € W. As usual we set
w = B(w).

2N—apy —Apy

We have x4(Tw) = x(w)g™ < : one gets this by applying [BMM,
6.15 (2)] to H; with the notation of loc. cit., it is a principal algebra (see
loc. cit. 6.3), with Op(wl) = 20 we have Dy = 2N and if we take
P(q) = |(G/B)¥| the degree Deg;P) identifies with the generic degree of
Px-

As 'H is split over Z[z'/2, 271/2], there exists a sign €4, depending only
on (ap, + A, )/d such that o(x)q(Tw) = €4,y Xq(Tw). This sign is equal to
—1if and only if (a, + A, )/d € Z+1/2 and x(w) # 0. Equation (1’)
becomes then

2N—apX —ApX

(1) Y. o x(w)shipy
Xq€lrr(Hq(W,F))
2N7apX7ApX

- Z €d,x4q d X(w)px

Xq€Irr(Hq (W, F))

For computing Sh?, we shall use Shoji’s results on the identification
of character sheaves with almost characters. Here we need the assumption
that the characteristic is almost good. We recall these results: unipotent
characters of G have been divided by Lusztig into families. Unipotent
character sheaves have also been divided into families which are in one-
to-one correspondence with the families of unipotent characters. In [Sh2,
3.2 and 4.1] Shoji proves that the transition matrix from the unipotent
characters to the characteristic functions of the unipotent character sheaves
is block diagonal according to the families, and in [Sh1, 3.3] he proves that
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the characteristic functions of the character sheaves are eigenvectors of Sh.
From this we see that (1”) is equivalent to the set of its projections on
each family. Moreover a, and A, are constant when p runs over a family of
unipotent characters. So (1”) is equivalent to the set of equations

(1) D x(w)Sh¥py =cqr Y x(w)py,

pxeF pxEF

where F runs over the families. We have written e4 7 instead of €4, because
this sign depends only on the family of p,.

We can also assume that G is adjoint as the unipotent characters factor-
ize through the adjoint group and Sh is compatible with this factorization.

Lusztig defined in [Lu3, 4.24.1] almost characters R, indexed by unipo-
tent characters. If R, is the Deligne-Lusztig character given by the virtual
representation y.5o(—1)"Hi(X(w)), we have R, = 2 oxete(w) X(W) Ry s
for any unipotent character p we also have (p, R, )agr = Ay(R,, px)gF
for a sign A, defined in [Lu3]. Almost characters being an orthonormal
basis of the space of unipotent class functions, we get pxefx(w)px =
Zpe]—‘ <Rwa P)GFA/JRP'

In [Lu4, 23.1] Lusztig has defined a bijection p — A, from the set of
unipotent characters to the set of unipotent character sheaves, compatible
with the partition into families. Shoji, in ([Sh1l] and [Sh2]) proved that
the almost character R, is a multiple of the characteristic function of x 4,
relative to the Frobenius endomorphism F' of the character sheaf A, and
that (cf. [Shl, 3.6 and 3.8]) Sh(xa,) = A,xa, where )\, is as in [DMR,
3.3.4].

Using this, we see that (1”) is equivalent to:

(1) if (Ru, p)gr # 0 then X = ¢4 7

This would be a consequence of conjecture [BMi, 5.13]. We prove it by
a case by case analysis.

If G is classical, we have always g4 7 = 1 and A\, = £1, so (1””) holds if
d is even. Assume d odd; one checks that in a Coxeter group of type A,,, By,
or D,, any odd order element lies in a parabolic subgroup of type A. Let
us denote by L the corresponding Levi subgroup of G, which is an F-stable
Levi subgroup of an F-stable parabolic subgroup. We have R,, = RE (RL)
where RE is the Deligne-Lusztig character of L associated to w. As Ap is
constant in a Harish-Chandra series and is equal to 1 for a group of type
A, we get the result in this case.
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If G is of exceptional type we can check the result, using the explicit
description of the coefficients (R, p)gr and of A, in [Lu3]. The most
complicated case to check is when for some d we have €4 7 = —1. In type
E; there is exactly one such family; it contains 4 unipotent characters. Two
of them are some p, for a x such that a,+A, = 63. In type Ey there are two
such families, each with 4 unipotent characters. In each of these families
there are two p, with respectively a, + A, = 105 and a, + A, = 135.
So in all cases we have eq 7 = —1 if and only if d = 2 (mod 4). In each
case for the two other unipotent characters of the family one has A\, = =i.
One checks that if p € F and (p, Ry)gr # 0 then if d # 2 (mod 4) one
has )\g # 1 whence the result in this case; and if d = 2 (mod 4) we have
Ap = %1, thus )\Z = —1 and we also get the result in that case. 0

Let ® be the class function on H, with values in the Grothendieck
group of G given by

(T3) = (9= (1) Trace(gDx | HAX(m), Q) ) = 3 0 00Ty

7 X

To prove Theorem 7.4 we have to prove that ® = 0. By Lemmas 7.5, 7.6
and 7.7 respectively we know that

(a) ®(Tx) =0 for x € By for any proper subset I of S.

(b) ®(T7) =0 for n > 0.

(c) We have ®(Tx) = 0 if x is a root of 7 and the characteristic is almost
good.

We shall prove that in any of the cases considered in Theorem 7.4 a
class function on H, which satisfies these three properties is zero. Such
a class function, can be written ZX AxXq- We show that the three above
properties imply A, = 0 for all x. Let us translate each of these properties
into a property of (Ay)y.

LEMMA 7.8. Property (a) means that (\y)y is linearly spanned by vec-
tors (x(w))y with w € W cuspidal (i.e., the conjugacy class of w has no
representative in a proper parabolic subgroup of W).

Proof. Consider the scalar product on the Grothendieck group of H,
such that the x, form an orthonormal basis (which corresponds to the usual
scalar product on the vectors (Ay)y); then the Xxcq = > crwry X(€)X
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are pairwise orthogonal when ¢ runs over a set of representatives of the
conjugacy classes in W. The statement to prove is that a class function
satisfies property (a) if and only if it is orthogonal to the x4 with ¢ non
cuspidal.

With our choice of scalar product, restriction and induction satisfy
Frobenius reciprocity, as the scalar product is compatible with the special-
ization to W, as are restriction and induction. So for I C .S, a class function

is zero on Hy(W7i) if and only if it is orthogonal to any Indzz(wl) ¢; but

the x4 with ¢ non-cuspidal span the same subspace as the Ind%l ¢ with
I C S, so we get the result. U

LEMMA 7.9. If x is a d-th root of m, property (c) is equivalent to
2N—apX—ApX

Proof. This is a simple translation of (c), using the value of x,(7%). [

We now prove the theorem when G is split of type A,. The only cus-
pidal class is the class of a Coxeter element c¢. So by Lemma 7.8 (Ay)y

has to be equal to a(x(c)), for some a € Q,. Lemma 7.9 then gives
2N—ap, —A
aZX x(c)%q g = 0, so that @ = 0, as all summands are non-

negative and at least one is non-zero.
For the other types we need property (b).

LEMMA 7.10. Property (b) is equivalent to: for all i, we have

> Ax(1) = 0.

{X | aPX +Aﬂx :Z}

Proof. Using the value of x4(T7) property (b) is equivalent to the fact
that for all n we have

S Y -0
¢ {X | aPX +Aﬂx :Z}
We get the result using the linear independence of the characters of Z. []
The proof of Theorem 7.4 in the remaining types is obtained by a
computer calculation which shows that the vectors given by Lemmas 7.10

and 7.9 span for any ¢ the space given by Lemma 7.8 (note that only the
vectors given by Lemma 7.9 depend on q). 0
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88. Pieces of the Deligne-Lusztig varieties

In this section, we introduce a technique inspired by [Lu2], which will
allow us to compute Harish-Chandra restrictions of the cohomology of some
Deligne-Lusztig varieties; we will also find a criterion for irreducibility of a
generalized Deligne-Lusztig variety (see Proposition 8.4).

The technique is intersecting with Bruhat cells. Let B be the vari-
ety of Borel subgroups of G. We recall from [DMR, 2.2.18] that, given
a decomposition t = wi---wy of t € B" as a product of elements of
W, and denoting by O(w) the G-orbit in B x B indexed by w € W, the
variety O(w1,...,wg) = {(B1,...,Bgy1) | (B;,Bit1) € O(w;)} depends
only on t and not on the chosen decomposition; it affords two canonical
projections p'(Bq,...,Bgy1) = By and p”(B1,...,Bri1) = Bri1 and the
Deligne-Lusztig variety is X(t) = {x € O(t) | p"(x) = F(p'(z))}. We
fix an F'-stable Borel subgroup B = TU C G, where U is the unipotent
radical of B and T is an F-stable maximal torus. We identify W with
Ng(T)/T. We put B~ = “oB = TU~. For v € W, we define the piece
XU(t) = {zr € X(t) | (B,p'(z)) € O(v)}. We have X(t) = [],cp X"(t),
and the action of G on X(t) restricts to an action of B on each piece.

Remark 8.1. If t = wy---wy is a decomposition of t € B as a product
of elements of W, we recall from [DMR, 2.2.12 et 2.3.2] that

X(t) = {(ngquBu cee 7ng) | gi_lg’iJrl S BwZB) for i = 15 cee 7k -1
and gk_ngl € Bw;B}.

In this model we get X" (t) by adding the condition ¢g; € BuB.

Let H(W) be the generic Hecke algebra of W over Clz]. This is the
quotient of the group algebra C[z|B by the relations (s + 1)(s —x) = 0
for s € S. We denote by T}, the image of b € BT in H(W). The algebra
H(W) has a basis {Tw | w € W} We will also sometimes denote by
Ty, the elements of this basis. We will denote by H,(W) the specialized
algebra by the specialization x — ¢ and keep the notation Ty, for the
basis of this algebra (trying to make clear by the context which algebra is
meant). Finally we note A|T), the coefficient of the element A € H(W) on
the basis element T,,. We recall that the canonical symmetrizing form is
T, — Ty|1. Since T, and q*l(”)Tyfl are dual bases for this form we have
A|T, = ¢7'™ AT, 1 |1. With this notation, we have
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PROPOSITION 8.2. Lett € Bt and v € W; for any m multiple of § we
have !(UF\X”(t))F | = T,T;|Tr,, where the elements on the right-hand
side are taken in the Hecke algebra Hym(W).

Proof. We may assume t € W. Indeed, by [DMR, 2.3.3], if t =
W1 ---Wj is a decomposition as a product of elements of W, and if I}
is the isogeny on GF defined by Fi(g1,...,9:) = (g2,..., 9%, F(g1)), then
X(t) ~ Xgr((wi,...,wg), F1) and this isomorphism restricts to

xt)~ [ X&) (. wr), ).

UQ,...,UkEW
Thus
F Fm ke F ( N
(U \XU(t)) ~ H ((U ) 1\(XGk((wla---,wk),F1)) VU2, V) ) ’
V2,...,Vk

and it is also clear that:

Z T(v,vg,...,vk)T(wL...,wk)|TF1(v,v2,...,vk)
V2.,V
= Z (ToToy | Ty ) (Toy T | Tog) -+ - (T'Ukka Tr,) = T,T¢|Tr,.

V2,...,Vk

As F{“‘S is the smallest power of F} which is a split Frobenius, we are indeed
reduced to the same statement for G*, Fy, (wy,...,wg), (v,va,...,vp).

We then assume t € W. Thus X?(t) = {¢gB | g € BuB, g~ '¥g ¢ BtB}.
The map u — uvB then fibers {u € U | (uwv) ¥ (uv) € BtB} on X"(¢)
with fibers isomorphic to U N U, since BvB = U,vB, where for v € W
we set U, = UNvU~. This fibration is U -equivariant for the action
of U by left multiplication on both spaces. The quotient by U¥ is thus
obtained by u — u~'.Fu which maps the above variety to U N vBtBfv~1.
As the fibers U N YU are connected and have ¢™(®o?) fixed points under
F™, the cardinality we seek is thus ¢~"/(wov) | UF™ nyBtB¥v~!|. Thus the
proposition results from the following lemma, applied with F' replaced by
F™ and w by Fv:

LEMMA 8.3. Assume F split. Forv,t,w € W and T,,T;, T, € Hq(W)
we have
T, Ty T = ¢~ @0 (U N oBtBw ™).



ENDOMORPHISMS OF DELIGNE-LUSZTIG VARIETIES 67

Proof. We have T,T}|Tyy = Ty1T,—1|Ty-1 = ¢ T, 1T, 1 Ty|1 =
¢ O~ T, T, |T;. We recall that H,(W) may be realized as a subalgebra
of C[G!] via the isomorphism H,(W) ~ Endgr Indgﬁ C. By this isomor-
phism, T}, corresponds to ¢"*)egwep where w is a representative of w in
N(T)¥ and where ep is the idempotent |B¥ |71 3", _pr b. Thus:

T,-1Tw|T; = ql(”)+l(w)_l(t)er_leBweB | epten
— ’BF’—lql(’U)-i-l(w)—l(t) "U_IBFU] N BFtBF‘
— qfl(wo)+l(v)+l(w)fl(t) ’UF ) ’UBFtBFwil‘.

The lemma follows, since (UNvBtBw 1) = U NuBftBfw~! which may
be seen by using the uniqueness properties of the Bruhat decomposition. []

O

For t € BT, we call support of t the set of s € S which appear in a
decomposition of t as a product of elements of S: this set does not depend
on the decomposition as it is not changed by a braid relation. With this
notation, we have

PROPOSITION 8.4. Let t € BT. The variety X(t) is irreducible (in
particular, with the convention of [DMR, 3.3.5], Hgl(t)(X(t)) is given by
R2®)(E) Id) if and only if the support of t meets every orbit of F' on S (i.e.,
if the group Li of [DMR, 2.3.8] cannot be taken different from G).

Proof. We adapt the proof of [Lul, 3.10 (d)] to our case. From Propo-
sition 8.2 we get that if m is a multiple of , [(UF\X"(t))¥™| is the co-
efficient T3, T¢|Tr, in Hqm(W); this coefficient is equal to TyTr,|T, thus
[(UF\X(t))F™] is the trace of the endomorphism z — Tg ¥z of Hym (W).

The next lemma generalizes [Lu5, Lemma 10.4 (c)].

LEMMA 8.5. Let x1,...,x, € W; then the coefficient Ty, Ty, -+ Ty, |1
1 a polynomial in g™ of degree less than or equal to

Z l(x;) —sup{l(x1),...,l(zy)}.
i=1

Proof of the lemma. As the coefficient T, T}, - - - Ty, |1 is invariant un-
der cyclic permutation of the factors, it is sufficient to prove that its degree
is at most I(z1)+- - -+I(xn—1). We prove it by induction on n and for a fixed
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n by induction on I(z1). If n = 0 then 1|1 = 1 has indeed degree 0. Assume
now n > 0. If I(z1) = 0 we get the result by induction on n. Assume now
I(xz1) > 0. If there exists 2 # 1 such that x1 = 2} with I(z1) = (z}) +
l(z}) and I(z]) + l(z2) = l(2{x2), then we get the result by induction on
U(z1), as l(xy)+H(xo)+ - Hl(xn—1) = () +H (2 z2)+(x3)+ - -+I(Tp—1) and
Ty Ty Ty |1 = Tt Ty -+ - Tip,, |1 Otherwise there exists s € S, y1,y2 €
W such that =1 = y1s, xo = sys and I(y;) = l(z;) — 1 for i = 1,2. We then
have Ty, Ty - - Ty, |1 = ¢™ (T, Ty - - T, |1)+(¢" = 1) (T, Ty - - - T, |1), and
we get the result by induction on I(z1) as 1+1(y1) +1(z2) + -+ (zp—1) =
Uz) + -+ U(zp1). a

LEMMA 8.6. Lett € BY; then Trace(z — Tyfx | Hym(W)) is a poly-
nomial in ¢ of degree I(t) and the coefficient of g™ ®) in this polynomial
is the number of v.€ W who are right multiples of all elements of the
support of t.

Proof. As we have TyTr,|T, = ¢ ™©)(TyTr,T,-1|1), to show the
lemma, it is enough to show that TyTr,T,-1|1 is a polynomial in ¢ of de-
gree < [(t)+1(v) except if v = v and all s in the support of t divide v on the
left, and that in this last case it is a unitary polynomial of degree [(t)+1(v).
Let us write t = t’s where s € S. If [(s'v) > I(¥v), then by Lemma 8.5 the
degree of TyTr,T,-1|1 = Ty T,r,T,~1|1 is less than I(t) + (v). Otherwise,
TyTr,Tyr |1 = ¢™(Ty Tr,Ty1|1) + (g™ — 1)(Ty TyryTy-1|1). By Lemma 8.5,
we see that only the first summand can contribute to ¢™(®+1): and by in-
duction on I(t'), we see that the contribution to ¢"(®+{v) of Ty T, T, 1|1
is Tr,T,1|1 if all s in the support of t divide on the left F'v, and is 0 oth-
erwise. The result follows. [

From the last lemma, [(U\X(t))f™| is a polynomial of degree I(t) in
¢™, unitary if and only if the support of t meets every F-orbit in S. As all
irreducible components of U\ X(t) have the same dimension, since X(t)
is the transverse intersection of the graph of F' with the smooth irreducible
variety O(t), this variety is irreducible if and only if [(UF\X(t))f™"] is a
unitary polynomial in ¢".

To prove the proposition it remains to check that X(t) is irreducible
if and only if UF\X(t) is. The “only if” part is clear; to see the “only”
part, we may follow the arguments of [Lu2, 4.8]: if U\ X(t) is irreducible,
the set 7 of irreducible components of X(t) is a single orbit under Ur,
so its cardinality is a power of p. The set 7 is in bijection with the set
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of irreducible components of the (smooth) compactification X(s;,...,s,)

(see [DMR, 2.3.4]). But the GI-stabilizer of (B,...,B) € X(sy,...,s,) is
BY, thus the orbit of (B,...,B) (and a fortiori the number of irreducible
components of X(sq,...,s,)) has cardinality a divisor of |G /B|, which

is prime to p, whence the result. 0

By Proposition 8.2, we see that the variety X¥(w) is non-empty if and
only if T,7w|Tr, # 0. We shall study this condition, especially when v is
F-stable. In what follows, we will denote by < the Bruhat order on W.

PROPOSITION 8.7. Assume that w € BT is of the form w = w1 - - - Wy,
where w; € W have mutually disjoint support. Then T,Tw|T, # 0 is equiv-
alent to T, Tw,|T, # 0 for all i.

Proof. By induction on k, it is enough to show the case k& = 2 of
the proposition. By the isomorphism of the Hecke algebra with a subal-
gebra of the group algebra of G¥', we have T,T\w|T}, # 0 if and only if
BvBw;BwsB D BuB. We then use the following lemma:

LEMMA 8.8. For w,w’ € W we have: BuBw'B C ([[, <, Bwv'B) N
(ITy<, Bvw'B).

Proof. The inclusion in e.g., the left union is an easy induction on
I(w'), using the exchange lemma. 0

Thus BvBw;BwsB = Hvl BuvviBwyB for some v1 < wy, and in turn
this last union is a union of double cosets of the form BwvwvivsB, where
v9 < wo; now the assumption on supports implies that vvive = v if and only
if v1 = vo = 1. Since v = 1 occurring is equivalent to BvBw;B D BvB
and then in turn v, = 1 occurring is equivalent to BvBw,B D BuB, we
get the proposition. 0

LEMMA 8.9. Ifv,w,z € W and if T,Ty|Ty # 0, then x > vw.
Proof. The condition is equivalent to T,,7T,-1|T,~1 # 0. Applying
Lemma 8.8, this implies v~ = wa’ with 2/ < 271, i.e., vw = 2'~! with

2 <. 0

LEMMA 8.10. Let v,t € W where t is a reflection of root o > 0. Then
T,T|T, # 0 if and only if va < 0.
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Proof. By [Dy, 1.2 and 1.12], va: < 0 if and only if vt < v. If T, T}|T, #
0, then by Lemma 8.9 we have v > vt thus va < 0. Conversely, if va < 0, we
will show by induction on I(¢) that T, T3|T,, # 0. If [(¢t) = 1, then v = v't with
l(v) =1(v")+1. We have then T,T; = (¢—1)T,+qTyt, thus T,T;|T, = q—1 #
0. Otherwise, by [Dy, 1.4], we may write t = at’a where a € S and [(t) =
I(t') + 2. We have: T, Typpo|Ty = ¢~ T, T, Ty T,T,-1|1; when va > v this is
equal to ¢T,q Ty |Tye. Otherwise, it is equal to gl (P (T Ty Ty ]1)+ (g —
DT, Ty Ty |1)+q(q—1)(Too Ty Ty—1|1)+q(q— 1) (T Ty Tpyy-1]1)) whose first
term is equal to q3TvaTt/|Tva. Since the structure constants of the Hecke
algebra are polynomials which positive highest coefficient, we see in both
cases that T, T¢|T, will be non-zero if Ty, Ty |Tyq # 0 is non-zero. Since t' is
a reflection of root aa, we see by induction, that this coefficient is non-zero
if va(aa) < 0, i.e., va < 0, whence the result. 0

Recall that an element w € W is reduced-I, with I C S, if it is of
minimal length in its coset wW;. To continue our study, we define Eyy (w) =
{wov € W | T, T,,|T,, # 0}. With this notation, we have

LEMMA 8.11. Let I C S be F-stable. Assume that w € W is of the
form w = sw’ with s € S — I and and w' € W;. Then Ew (w) consists of
the products vivy where vo € Eyw, (w') and where vy is a reduced-I element
such that l(vives) > l(viva).

Proof. By Proposition 8.7, T, T,,|T, # 0 if and only if T,,Ts|T, # 0
and T, T, |T, # 0. Let wgv = vive where vo € W and v; is reduced-I.
Then we have v = (wovlw{)).(w{)vg). Note that wovlw{) is still reduced-I;
it follows that T, = TwovlwéngU2 and that the condition Twovlw({Twévaw”
Twovlw(z)ngv2 # 0 is equivalent to Twéngw/|Twév2 # 0. It remains to ex-
press the condition Tyv,vsTs|Twev,vs 7 0; this condition is equivalent to
l(wov1v2s) < l(wovive), which in turn is equivalent to [(vives) > I(vive).

a

Note that v = 1 and v arbitrary in Eyy, (w’) satisfy the above condi-
tion, so that Ew (w) D Ew, (w').

We will apply Lemma 8.11 in a more specific situation where the fol-
lowing holds:

ProOPOSITION 8.12. Under the assumptions of Lemma 8.11, assume
in addition that S = I U {s}, that there is a unique s’ € I which does not
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commute with s and that ss's = §'ss’. Assume also that any v € Ew, (w')
whose support contains s’ is such that s’ is not in the support of s'v. Then
Ew(w) = Ew, (W)U {sv | v € Ew,(w") and s'v < v}.

Proof. We take vivy € Ew(w) as in Lemma 8.11; if v; # 1, then
l(v1s) < l(v1) since vy is reduced-I. It follows that ve does not commute
with s, thus the support of vo must contain s’. We claim that v; = s;
otherwise, as vq is reduced-I, it would end with s’s since s”s = ss” for
s"” # s'; but then s’svys would not be reduced since by the assumption of
the proposition vgs has a reduced expression starting with s’s as s commutes
with all terms of a reduced expression for vy excepted s’. 0

For I C S, we denote by ®; the corresponding parabolic root subsys-
tem, and we denote by L the Levi subgroup generated by T and {U, }aca, -
We denote By (resp. B;, Wy, Uy, U} ) the intersection with L of B (resp.
B~, W, U, U7), by P; the parabolic subgroup L;B and by Up, its unipo-
tent radical. We will use the following proposition in the proof of Proposi-
tion 8.17:

PROPOSITION 8.13. Let Iy, ..., I be mutually disjoint subsets of S and
let x; € Ly,. Then the condition z1---x,, € U™ B 1is equivalent to x; €
U} By, for all .

Proof. If k =1, let us write x1 = uvb with u € U}, with ¥ a represen-
tative of v € Wy, and b € By,. As Uy C U™ and B} C B, the existence
of the Bruhat decomposition with respect to the pair of Borel subgroups
(B7,B), which is obtained by multiplying on the left by wq the classical
Bruhat decomposition, implies that v = 1.

By induction on k it is enough to prove the statement for k = 2. Let
I =1, UIy; we have U} = U;lU;2 and By = By, By,. From the case k =1
we get that 129 € U™ B is equivalent to x1z9 € U; U, B;,By,. As By,
normalizes Uy , this is equivalent to 122 € (U} Bp,).(U;By,). Let us
write x129 = y1y2 according to this decomposition; as Ly, "Ly, = T we get
Z; eyiTCU[_iBIi fori:1,2. D

LEMMA 8.14. Let w =wvy---v € W be such that l(v1) + -+ + I(vg) =
l(w) and let w,01,...,0; be representatives in Ng(T) such that w =
0105, Then Upgth = Uy, 01 - - Uy, 0.
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Proof. We have Uy, 01 --- Uy, 0y, = Uy, U, --- 171U, w, and we
have Uy = [[,en@w-1) Ua, where N(w) = {a > 0 | Ya < 0}. Let []
represent disjoint union. The lemma is thus a consequence of N(w~!) =
[T, 01 vi—1(N(v; 1)), which itself is obtained by iterating the well known

)

formula: I(z) +I(y) = l(zy) & N(zy) =y~ (N(2)) [[ N(y). il

COROLLARY 8.15. Let I,...,I; be disjoint parts of S, and let v; €
W[i. Then Bvy---v, BNU™ = Hi((BliviBIi) N Uf).

Proof. As in Proposition 8.13, it is enough to prove the result for
k = 2. By Lemma 8.14 we have BvjvaB = Uy 4,v112B = Uy, 01U, 02B.
Let x € BvjvasB N U™ and write accordingly z = x1x9b where 1 € Uy, ¥y,
xo € Uy,v9 and b € B. We have z122 € U™ B thus by Proposition 8.13
z1 = uiby € U; B. We have uy = 2167 € U,,tBN U~ = ByyBNU™,
As x € U™ we have also byzob € U™, thus bjzsb € BvsBNU™. [

PROPOSITION 8.16. Letw € B, and let I be an F-stable subset of S.
Then for any v € W, the left multiplication action of P on X(w) stabilizes

Hv/ eEWrv Xv/ (W) .

Proof. An element (¢1B,...,¢9,B) € X(w) is in X"(w) if and only
if g € BuB. If p € Bw'B with w’ € Wy, then by Lemma 8.8 we have
pg1 € Bw”vB with w” < w', thus w” € W}, whence the result. 0

In the next proposition, for I C S we denote by B;r the submonoid of
BT generated by I={s €S |se I}

ProproSITION 8.17. Under the assumptions of Proposition 8.16, as-
sume in addition that Yow = sw’ where s ¢ 1 and where w' € Bf. Let
Up, be the unipotent radical of Py. Then, if wl € W lifts w}, for any I
we have an isomorphism of LT x (F%)-modules

H(( TT X"(w)/Ub,) = HZ2 (X, ("0w')(-1) & HE™ (X, (“0w).

veWrwo

Proof. To simplify the notation we write just L, P for L;, P, and
we set Y = [[ ey, X' (W). Let us see first that the proposition follows
from its special case where w € W. If w = w;---wy is a decomposi-
tion of w as a product of elements of W, we have w' = w|Wowy - -- Wowy,
where Wow; = sw]. Using [DMR, 2.3.3] as in the beginning of the proof
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of Proposition 8.2, we apply the proposition with G*, Iy, L¥, (w1,...,wy)
and (s,1,...,1) replacing respectively G, F, L, w and s. If we set Y' =

| 1 (Xg}ﬂ""’vk)((wl, . ,wk),F1)> we obtain that the cohomol-

ogy groups of Y’/(U%)F1 are sums of those of Xy ((W(I)w’l, Wo,...,Wg), F1).
This last variety is isomorphic to Xg,(¥ow’). On the other hand (U511 ~
Ug and Y’ is formed from pieces from Y. Indeed, by the beginning of the
proof of Proposition 8.2, we have

Y = I1 (X&) (wy, . wy), F)).
veEWT, va,..., v, EW

We show that the only non-empty pieces of Y are those such that v; € Wy

for all 4, i.e., those of Y': the (v,v9,...,vy) piece is non-empty if and only if
T(wlw.vwk)T(v2—171}3—17___71:1},1)|T(v,17v2—17__w;1) 75 0. As w, ..., W € woW and
v € Wrwp the non-vanishing of this coefficient implies that vo,..., v €

Wrwp; indeed, proceeding by induction on ¢, if v;4; € Wrwy with ¢ > 2,
then the product TwiTv_l1 involves only T, for y € Wrwp, thus v; € Wiwy.
it

We thus assume now w € W. We use then the model 8.1 of X"(w)

taking k = 2, w1 = “0s and wy = “ow':

X"(w) = {(91B,92B) | g; g2 € B*’sB, g, g1 € B*w/'B,
and ¢g; € BuB}.
Let g be a rational representative of wqg. Taking gjwg and gotg as variables
we get
X'(w) = {(¢1B7,02B7) | g1 € BowyB™, g7 '.g2 € B7sB™,
g;l.Fgl e B w'B7}.
By arguing as in the proof of Proposition 8.16 we see that
J BowB™ =PB".
veEWrwo
Thus
(1) Y = {(ng7792B7) | g1 S PB?: g2 S G) 9;1'92 € BiSBia
g;l.Fgl €cB wB}.
The action of P is by left multiplication. In the following, we fix F?-

stable representatives, denoted 5 and %’ of s and w’. For v € W, let
U, =U"Nn"U.
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LEMMA 8.18. The variety X = {p € P | p~'Fp € B=sw'B~} admits
natural actions of B~ by right multiplication and of P¥ by left multiplica-
tion. The map p — (pB~, pu,sB™) where wuy, is the unique element of U
such that p~'F'p € upsBTw'B™ defines a P! and FO equivariant isomor-
phism of varieties X/B; — Y.

Proof. The existence and uniqueness of u,, come from Lemma 8.14: we
have

B sw'B™ =U, ,su'B” =U;s5U_«w'B™ =U;$B w'B~

where the U part is unique. The image of the map p — (pB~, pu,sB™)
is easily checked to be in the model (1) of Y. If b € B}, the element u,, is
determined by bilupéB* = uppsB™. We have thus pu,sB™ = pbu,,sB™,
which shows that p and pb have the same image in Y.

Conversely, given (¢1B7,¢2B7) € Y, the equality g;B~ = pB~ de-
fines p € X up to right translation by B;. We must check that goB™ =
pu,sB~. By definition of Y, we have g € Fg1B~w/"!B~ N B~ sB™ =
FpB~w'™1B™ N pB~sB~ whence p~lgs € p " HpB W/ 'B- N B sB~ C
u,sB"w'B~w'"IB” N B7sB~; but B~w/B~w'~!B~ is a union of double
cosets of the form B~vB~, where v € W;. Thus u,sB /B w'"1B™ N
B~ sB™ = u,5B™, whence the result. U

Let us decompose p € X as ul, with u € Up and [ € L. The action of
B, does not change the component u thus the quotient of X/B; by Upr
is realized by the Lang map (u,l) — (u=t.Fu,1). If we take ! (u=1.Fu)
and [ as variables we get

Y/Ub ~{ueUp,leL|u"Fle B su/B"}/Bj,

where the action of b € B} is by conjugation by b~ on u and by right
multiplication on I, and where the action of L is by left multiplication on
l.

LEMMA 8.19. For w € Up, | € L, the condition ul € B~ sw'B~ is
equivalent to u € BES}SBES} and l € Bjw'Bj .

Proof. We have B~ sw'B~ = U, sU, wB; Uy = U;sB;wB; Up.
Thus using that | normalizes Up, we see that there exists u’ € Up such
that uu/ € U;sBywBjI™'. Thus there exists Iy € U;s C Lyy, I €
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B;wB; ™! C L such that uu’ = [,;'. We may then apply Proposition 8.13
with £ = 2, I} = {s} and I, = I (exchanging the roles of B and of B7),
and we get [, € USB{_S}. Thus there exists us € U, such that I € uSB{_S}.
We have uj lu € B{_S}Lu’*1 C LUp thus u;'u € Up N LUp = {1} thus
u = ug € Ug, and since I3 € U s we even have u € US_éB{_S} = B{_S}SB{_S}.
The condition uu’ = 4’ becomes thus v’ = b,l’ for some by € st}; as
TUp NL =T, this implies I’ € T thus [ € B, w'B; . 0

As we have U N B, 5B, = U C Up, we get thus Y/UL ~ {u ¢
Uz, 1 € L |17l € Bfw'B; }/B; where the action of L is by left multi-
plication on [ and the action of b € B} is by right multiplication on [ and
conjugation by b~! on u. Note that, as U; centralizes Uy since no root in
¢, can add to the simple root corresponding to s, the action of B} on u
is through T.

We have Xy, (“ow') = {l € L | I7'F] € B, w'B; }/B;. We conclude
arguing as in [DMR, 3.2.10]. To simplify the notation we write w” for
wiy'. Let Y be the variety {u € Uy, € L | I71F] ¢ B, w'B} }/B;; the
projection m : Y — X, (w”) defined by (u,l) — [ is a fibration by affine
lines, and 7 restricted to Y — Y /UL is an isomorphism. Let i be the
closed inclusion Y — Y /UL < Y and j the open inclusion Y/UL — Y.
If we make L¥ act by left multiplication on Y then i, j and 7 are L¥-
equivariant. Let Ax be the constant sheaf Q, on a variety X; we have
an exact sequence 0 — j!AY/Ug — Ay — i!A?iY/Ug — 0. Using
that Rﬂ'!AY ~ AXLI(w”)[_Q](_]-) and that Rﬂ-mAYfY/Ug ~ AXLI(w”)’
we deduce a distinguished triangle RmjiAy JuL — AXLI wn[—2](—=1) 5,
AXLI (w) ~ where 0 € EXt2 (AXLI (w”)’AXLI (w”)) = H2(XLI (w//),Qg). All
maps being G -equivariant, we even have 0 € HQ(XLI(w”),@g)GF o~
H2-2(Xy, (w"), Q)" where the isomorphism comes from the smoothness
of the variety Xy, (w”). But by [DMR, 3.3.14] we have H2~2(Xy,, (w"),
QZ)GF = 0, thus 0 = 0 and the distinguished triangle gives an isomorphism
ijlAY/Ug o~ AXLI(U]”)[_2](_1) @ AX(LI)("UN)[_]'] whence H(Y/UL) ~
HI2(Xy, (w") (1) ® Hi7Y(Xp, (w")) as wanted. [

In the proof of Proposition 8.21 we will use the next lemma.

LEMMA 8.20. Let wy,...,w; be representatives in Ng(T) of wi,...,
wi € W; for any uy,...,ur, € U, there exist unique u € U, such that



76 F. DIGNE AND J. MICHEL

for all i we have ujwy - - - ww; € vy - - s U. This defines a morphism
k k
U" — [[izy Uu-

Proof. Tt is known that for v € W, the equality uv = v'ou” with u € U,
v € U, and v” € UN U defines an isomorphism U = U, x UN*U. The
lemma is a consequence of this fact by induction on k. 0

The elements w that we will handle in this paper will have Eyy(w) of the
form WrwoU{v}, where v satisfies the assumptions of the next proposition.

PROPOSITION 8.21. Let w = wy -+ Wy be a decomposition of w with
w; € W; let v e WE, and let I be an F-stable subset of S; we write P for
P;. Then

(i) For all i we have an isomorphism of (F')-modules:
HYX" (w)) VP o HIF200(Z3,) (1(wov)),

where (I(wov)) is a “Tate twist” and

Z;, = {(y,x,ul,...,uk) € Up x Uy x HUwi

y:):_lFx € vuqwy - - - uk.’u’)k.Bv_l}.

(i) Let Zy, be the variety {(y, z,u1,...,ux) € Zy |y € Up N U~ }. The
map ZY, — Z:)V gwen by (y,z,u1,...,u;) — (y2,@,u, ..., up) where
yo is defined by y = y1y2 with y1 € Up N"U and yo € Up N"U~ and
where the u; are defined by iflyflulwl C iy € iy - upw U for
any i (cf. Lemma 8.20), is a fibration whose fibers are all isomorphic
to v UpNU.

(iii) If in addition v is the unique element of Wrv such that X"(w) is
nonempty, there is an action of Lf on Z¥, such that the isomorphism
of 8.21 (i) is LY -equivariant (for the action of LY on X®(w) given by
Proposition 8.16).

(iv) If in addition V" 'U; € U™ and projy, (U NvBwB - w;Bv™!) =
[I.,c; Us (where we have denoted projy, the natural projection U —
Uj), then the projection m : (y,z,u1,...,u) —  is an epimorphism
ZY, — Xr,(c), where c is a Cozeter element of Wy, which is L¥ -
equivariant (for the action of LY on ZY, given in 8.21 (iii)).
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Proof.
LEMMA 8.22. Let ©,11,...,w; be representatives in Ng(T) of v,
wi,...,wp € W and let

O%(wn,... wy) = {(B,....24B) € (G/B)" |
x;lel € Bw;B and z1 € BuB};

there exist unique v € U, and u; € Uy, such that x; € wwvB and that for
all i we have T;y1 € udurwy - - - uyw;B. This defines a morphism

k
O%(wy,...,wg) — U, x <HUwi)-

i=1
Proof. The proof is similar to that of Lemma 8.20. b

Consider the map VU : (u,¢2B,...,g:B) — (uvB,g2B, ..., g:B) from
the variety

Z={(u,9:B,...,9B) |u €U, (w) 'go € BuB,
97 'gi+1 € Bu;B, g; ' (w) € Bw,B}

to XY(w). As BuB = U,vB, it is a fibration whose fibers are isomorphic
to U N VU, an affine space of dimension [(wqv). This fibration is U (thus
Ug)—equivariant, for the action by left multiplication of all components.
Applying Lemma 8.22 with z; = (uv) " 1gir1 we get Z ~ {(u,uq,...,ux) |
u € U,y € Uy, uwHy e bulwl"'ukkav_l}. The map v = xpx +—
(y = ‘”_l(xf,lFxp),x), where zp € Up and x € Uy, defines thus an iso-
morphism between Z/UL and ZY,; 8.21 (i) results immediately from this
isomorphism and the isomorphism of cohomology implied by V.

Let us prove 8.21 (ii). It is clear that the image of the map is in Z.,.
Consider now the fiber of (y2,z, ), ..., u}). Let y; in UpN"U be arbitrary;
the formulas i’_lyl_lulu‘)l cuy € uhy - - - ufw;B for any @ define unique
u; (cf. Lemma 8.20), and the element thus obtained (y1y2,z,u1,...,ug) is
in the fiber and we get thus all the fiber.

We prove now 8.21 (iii). If v is the unique element of Wjv such that
X(w) is non-empty, we will define an action of P¥ on Z such that V¥ is
P! -equivariant. Under this assumption, by Proposition 8.16 X?(w) is P*'-
stable, i.e., if p € PF and (uvB,¢2B,...,gB) € X¥(w) where u € U,,
then pu € U,vB. The action of p € P¥ on X?(w) is thus given by

(uvB, g2B, ..., giB) — (WB, pg2B, ..., pg.B)
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where w € U, is defined by pu = ub with b € YB. Let z € Z have
image (uwvB, 2B, ...,g;B) in X¥(w), i.e., z = (wu/, 9B, ..., gxB) where
v’ € UNYU. We want to define the action of p by the map

z +— (. projyney (bu'), pg2B, . .., pgrB)

where pu = ub as above and where projynet is the projection of “B on
UN"U according to the decomposition "B = (UN*U).(U- N"U).T. This
map clearly commutes with W, but it is not obvious that it defines an action.
Let p/ € PF: let us write p'u = b’ where @ € U, and ¥/ € YB. We must
check that the action of pp’ is the composition of that of p and that of
p'; this is equivalent to projyney (b'bu’) = projyneu(V projyqwy (bu)), and
this last equality is easy to check. This action of P¥ gives after quotienting
Z by U% an action of L on ZY,, for which 8.21 (iii) holds.

Let us now prove 8.21 (iv). By [Lu2, 2.5] the variety Xi,,(c) has a single

I I
piece Xi]?(c) As ¢ € W, the model 8.1 gives Xi]?(c) ~ {¢B; € L;/By |
g 'fg € BicB; and g € Bjw{B;}. Defining u € U; by g € uwlB; we get
I
Xp’(e) ~ {u € Uy | “0(u='Fu) € BjeB;}. As BreBr NU; =[], Uy

(cf. [Lu2, 2.6]) and wé(Hsel U;) = [[,e; U™, we get Xgé(c) ~ {u e Uy |
uFu € [[,c; UL}, on which ¢t € T acts by u — u and uy € UJ acts
by w +— wuyu; the action of u_ € UI_F maps u on the element v’ of Uy
such that u_u € «'Bj: such an element exists by uniqueness of the piece

I
XE? (c). On the other hand the projection on the first two components of

Z"(w) is surjective on couples (y,z) € Up x U which satisfy yz='.Fz €

U nNovBwB---w,Bv~! and the projection of U N vBwB---w,Bv~! on
Uy is equal to [ .; Us by assumption. Thus we see that 7 indeed defines
an epimorphism ZY, — Xi,, (c).

It remains to check that this epimorphism is Lf -equivariant. For this,
it is enough to check that the above action and that on the component x of
(y,x,u1,...,ur) € ZY,, which results itself of the action on the projection
on Uy of the first component of an element of Z, coincide. For this it is
enough to check separately that the actions of Bf and U;F coincide.

Let u € U, and v/ € U N YU; the first component of the image of
z = (uu, g2B,...) € Z by the action of xt € B, with t € T and x € UT,
is zluprojy~ey(tu’) = zluly’, since z € U, and v € U N *U. Since
U; c U,, the action of ot on the projection u; of uu' is thus u; — x'uy,
which coincides with the action on Xy, (c).

Similarly, the action of y € UI_F maps u; on projy, (%) where yu € u"B



ENDOMORPHISMS OF DELIGNE-LUSZTIG VARIETIES 79

I
with @ € U,. On the other hand, the image by y of u; € Xi]?(c) is u)
such that yu;r € v;B] C u}"B. Let us write v = upuy with up € Up;
thus/}{upul = yuPyuf c yuPu/IvB — u}(u}_lyuP)UB — ’u/](u}_lyup)_vB =
“r(“1 Yup)_u;B, where we have denoted by x_ the projection on U, of
an element x € U= U,.(UN"U). But we have “/I(“/I_lyuP), e UpnN U~
since u; € UyNvU~, thus u = “ll(“/l_lyuP),u’I and its component in Uy is
u as required. J

The map 7 of 8.21 (iv) is the composition of the fibration of 8.21 (ii)
and the projection

T (y,x,up,. .., up) —

which is an epimorphism Zy, — X, (c). All fibers of Z%, — Z,, are affine
spaces of dimension [(wgv). It will be easier to compute the fibers of 7 than
those of m. In the case where we will apply Proposition 8.21, we will be in
the situation of one of the next two propositions:

PROPOSITION 8.23. Assume under the assumptions of 8.21 (iv) that
the fibers of ™ are affine spaces of dimension d. Then for every i we have an

isomorphism of LY x (F)-modules: Hé(X”(w))ng ~ Hi724(Xy,, (c))(—d).
Proof.

LEMMA 8.24. With the same notation as above Proposition 8.13, let
V be a variety given with an action of Pf, let V' be a variety given with an
action of Lf and let 7 : V/UEI — V' be an Lf—equivam’(mt epimorphism
whose fibers are all affine spaces of dimension d. Then for all i we have an
isomorphism Hg(V)Ugl ~ HI72(V')(—d) of LY x (F)-modules.

Proof. This lemma results from standard properties of /-adic cohomol-
ogy , see e.g., [DM, 10.10 and 10.12]. 0

The proposition results immediately from Proposition 8.21 and Lem-
ma 8.24, taking in account the “Tate twist” induced by the quotient ZY, —
A 0

In the next proposition we assume w € W and write X(w) for X(w).
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PROPOSITION 8.25. Assume that in addition to w, there is another
element w' < w satisfying the assumptions of 8.21 (iv) with the same v; let
7 2 — X1, (c) be the epimorphism analogous to T and assume that the
fibers of ™ are affine lines and that the fibers of

71[7 : 2., [[Z., — Xv,(c)

are affine planes, the above union being taken in (Up, N*U~) x Uy x U.
Then for any i we have an isomorphism of Lf x (F)-modules:

U

HX? (w) VPr = B3 (X, () (—1) & HI4 (X, (0))(—-2).

Proof. Proposition 8.23 and Lemma 8.24 give respectively the iso-
. F .
morphisms of L x (F)-modules Hé(X”(w’))UPI ~ H=%(Xy,(c))(—1) and
. F .
Hé(X”(w)HX”(w’))UPI ~ H:=4(Xy,(c))(—2). The assumption w’' < w
implies that X"(w) is open in X"(w) ][] X"(w'). We deduce a long exact
sequence

L HI3(X, () (—1) — Hi(X"(w)) %
— H (X, (€))(—2) — H2(X, (0)(=1) — --- .

We deduce the proposition by observing that a morphism of Lf -modules
from H:4(Xy,(c))(—2) to H:=3(Xp,(c))(—1) must be 0. Indeed cohomol-
ogy groups of different degrees of Xp,,(c) are disjoint as L¥-modules. 0

89. The n-th roots of 7 in type A,

In this section we compute the cohomology groups H(X(w)) as GI' x
(F)-modules when G is a split group of type A, (n > 1) and w an n-th
root of w and we show Conjectures 2.1 to 2.6 for this case. The Coxeter
presentation of W is given by the diagram (O—()---(), and we denote

S1 S2 Sn
S = {s1,...,8,} the corresponding generating set of B.

Conjecture 2.1 holds by Theorem 5.1, and Conjecture 2.3 holds as re-
marked in Section 5. As noticed in Section 2, Conjecture 2.2 follows from a
result of Eilenberg and a recent result of Birman, Gebhardt and Gonzales-
Meneses. However, we will give a simple proof of it in our case.

PROPOSITION 9.1. There is a morphism in DT between any two of
n-th roots of ™ in BT .
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Proof. We will show the proposition by showing that any two roots b
and b’ are equivalent by the transitive closure of the relation on BT given
by xy ~ yx.

By [BMi, 3.12 and A.1.1] the image in w, identified with the symmetric
group S,,41, of any n-th root of w is an n-cycle. So it is enough to see
that if b € BT has length n + 1 and support S, and is such that 3(b) is an
n-cycle then there exists a morphism from b to s; - --s,_1S,s, in D™.

We first show that there exists a morphism in D' from b to an element
of the form xs,,s,y. By assumption, in the decomposition of b as a product
of elements of S, exactly one, say s; is present twice. We write b = xs;ys;z
where X,y,z € BT do not have s; in their support. There are three cases:

(a) The support of y contains neither s;+1 nor s;_;. Then b = xys;s;z, so
that 5(b) = B(xyz) is an element of length n — 1 of support S — {s;}.
Such an element can be an n-cycle only if ¢ = 1 or ¢ = n. In the latter
case b is as desired. If i = 1, as s; commutes with all elements of
S — {s2}, we see that b has the form xs;s;s2y or xsssis;y. In both
cases b is equivalent to xs18981y = XS98182y and we are reduced to
case (c) below with i = 2.

(b) The support of y contains s;+1 and s;—1. Then we use that b is
equivalent to ys;zxs;, and the support of zx contains neither s;; nor
si—1. We are back to case (a).

(¢) The support of y contains one of s;;1 and s;_j. Then s; commutes
with either x or z and if ¢ = n then b is equivalent to an element of
the form we want. Otherwise replacing if needed b by the equivalent
element ys;zxs;, we may assume that y involves s;;1. Then b can
be written xs;8;118;y'z = XS;118;8;+1y'z. By induction on i we are
reduced to ¢ = n whence the result.

We prove now that any pair of elements xs,s,y of length n + 1 with
support S are connected by a morphism in Dt. We use [Bou, Chap. V §6,
Lemma 1] which says “If X is a finite forest and if = +— ¢, is a mapping
from X to a group I' such that g, and g, commute if x and y are not
connected in X, then the elements of I' which are the products of all the
g in some order are conjugate by cyclic permutation”, where conjugation
by cyclic permutation is the transitive closure of g;, - - gz, ™ Guo * ** 9oy 91
([Bou] does not state that the conjugation is by cyclic permutation but
it is established in the proof). We apply this result to the map from the
Coxeter diagram of type A, which maps the i-th vertex to s; € B, with
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the exception of the n-th vertex which is mapped onto s,s,. This gives the
result. [

We denote by pl()n) the unipotent representation of G which corre-
sponds to the partition 1,...,1,2,b of n + 1. Let St(™ be the Steinberg
representation and Id™ be the identity representation of G¥'. We will de-
duce Conjectures 2.4 to 2.6 from the following theorem. In this theorem,
we adopt the conventions of [DMR, 3.3.5] to describe the cohomology of
a variety X(w) as a G" x (F)-module; we describe the cohomology as a
2-variable polynomial with coefficients in the Grothendieck group of GF,
where the degree in the variable h represents the degree of the cohomol-
ogy group, and where the degree in t encodes the eigenvalues of F: by a
theorem of Lusztig, given a unipotent character p, the eigenvalues of F on
the p-isotypic part of a cohomology group HZ(X(w)) are of the form ¢‘\,

1/2

where A, is a complex number of module 1 or ¢*/“ which depends only on

p and neither on j nor on w. We encode such an eigenvalue by t°.

THEOREM 9.2. Let w € B™ be an n-th root of m; then we have as
G x (F)-modules:

n—1
Z hng(X(w)) = St prtt Z pl()n)tbhn—l—b 4 14 g1 20t
L b=2

Proof. We prove the theorem by induction on n. If n = 1 we have
w = 7. Then the only unipotent representations of G* are St and 1d™
and the result is given by [DMR, 3.3.14] and [DMR, 3.3.15]. If n > 2, by
Proposition 9.1 and [DMR, 3.1.6], it is sufficient to prove the result for a
fixed root of .

We choose w = 81 - -s,,—1S,S,. We shall prove the theorem using the
results of Section 8. Let I = {s1,...,8,-1}.

LEMMA 9.3. The variety XV(w) is not empty if and only if v is the
longest element in its coset vW7.

Proof. We apply Proposition 8.2: XV(w) is not empty if and only if
T,Tw|T, is not equal to zero. In the Hecke algebra Ty, = (¢ — 1)Tg,...s, +
qTs,...s, 50 if T, Tw|T,, # 0 then T, T, ..., | Ty or Ty,Ts, .5, |1y is not zero.
By [Lu2, 2.5] or Proposition 8.7, the only v such that T, T, ..., | Ty # 0 is wo.
Let us write v = zy with x reduced-I and y € Wy; then T, T, ..., ,|Ty # 0
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if and only if T,)Ts,...s,_,|T, # 0; by the same result as above, applied in
W, this coefficient is not zero if and only if y = wl. So v has to be the
longest element in its coset, and we have shown that this is equivalent to
the non-vanishing of T, T,|T, except possibly for v = wg. In this last case
TwoTsys5, | Ty = (¢ — 1)™ and Ty Tsy.os,, 1| Ty = (¢ — 1)1 and the sum
of these two coefficients is again non-zero. 0

The reduced-I elements are §;S;41 - Sn, for ¢ < n; their number is
n+1=|W/W;|. The elements v of maximal length in their cosets vW7 are
then s;s;41--- snw{) = s1---8;_1wg. They are in the coset Wiwg, except
81+ Spwy = w{). Let P denote the parabolic subgroup Pj; by Proposi-
tion 8.16 X (w) is the union of two P¥-stable pieces: |J, ¢y, X"*°(w), which
is an open subvariety as (J, ¢y, BowoB is open in |, ¢y, BvwoB U Buw{B,
and the closed subvariety X™0(w). As H{(X(w)/UE) = *RE(H(X(w)))
(¢f. e.g., [DM, 10.10]), we get, setting X1 = (U,ep, X"*°(w))/Up and
Xy = X (w))/ UL, the following long exact sequence of L x (F)-modules,
where L denotes Ly:

(1) -+ — HYX1) — *RE (H(X(w))) — Hi(X2) — HN (X)) — -

We now apply Proposition 8.17 with s = s; (indeed Yow = s,w’ where
w =s,_1- 598181 € B;r), whence

HY(Xy) =~ H72(Xg (ow'))(—1) @ HE (X (“0w')).

The element “ow’ = S1---Sn_9S,_15p—1 is the element of L analogous
to w. So by induction on n we get the equality of L x (F)-modules:

(1)

n—2
ST HHIX)) = (th? + h) (SWH) B3 It 1Y t"h2") .
7 b=2

To compute the L x (F)-module Y, h! H:(X3), we apply Propositions 8.21
and 8.23 with v = w{), with ¥ = n + 1 and with s1,s9,...,s,,s, for
Wi, ..., Wg. Let us check the assumptions: the assumption (iii) on v holds
by Lemma 9.3; assumption (iv) holds since ¥~ ' U = U, C U7; the other
assumptions to check are

(2) projy, (U NvBs;B- - Bs, 1Bs,Bs,Bv~") = [[ Us,
ael
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and that the fibers of 7 are affine lines. We have

projy, (UNvBsB--- Bsn,lBsnBsnBv_l)
= “(projy- (Y UNBs;B---Bs,Bs,B))
I
= ”(projU; (U7 -Up)NnBs;B---Bs,_1Bs,Bs,B))
="(U; NBs1B---Bs,_1Bs,Bs,B),

the last equality as, since Up C B we have

(U; -Up)NBsB---Bs,_1Bs,Bs,B
= (U; NBs;B---Bs,_1Bs,Bs,B) - Up.

But we have Bs1B---Bs,,_1Bs,,Bs,B =Bs;---s,_15,BUBs;---5,_1B.
By Corollary 8.15 we have Bsy--- s, 1BNU™ = szffl Ur,. c Uy, and
in the same way (or by [Lu2, 2.2]) we have Bs; ---s,BNU~ = [[.=} Lo
which has empty intersection with U} . So (2) is proved.

Let us compute the fibers of 7. We have UpN*U~ = UpN(U;.Up) =
1, so

73, ~ {(z,u1,. .., up+1) |2 € Ur, u; € Ug, (i =1,...,n), ups1 € U,

e P e vugsy - un_lén_lunénun+1énBv_1}.

Using the above description of the projection we see that the fibers of 7 are
those of the map from

{(ul,... ,un+1) ‘ U; € Usi (Z =1,... ,n), Un+1 € Usn,

ULST** Up—18p—1UnSpUnt15,B € Bsy -+ sn—lB}

to G/B given by (u1,...,Up+1) — w181 - UpSpUn+15,B. The condition on
the u; implies u,+1 = 1 and that the image of an n-tuple (u1,..., up—1,up)
does not depend on u,, and is injective on (u,...,u,—1). So the fibers are

indeed affine lines.

So we may apply Proposition 8.23: let us write 'yén) for the unipotent
character corresponding to the partition 1,...,1,b of a split group of type
A,; multiplying by th? the two variable polynomial which encodes the co-
homology of the Coxeter variety L, we get that the cohomology of X is

given by Y ;4 tbh”+b'yl§n71) as a L x (F)-module.
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We now compute the t’-isotypic part of the exact sequence (1). For
2 <b<n-—1we get the exact sequence

n—1 n—1 * n n—1
0 — p" D 4 pi" Y — (REHIT (X (w)))p — A"V — 0

which gives *RE H" (X (w)) = p" " + pl" 7 + 4"V The Littlewood-

Richardson formula allows to compute *RE of any unipotent character. In
particular it shows that the only characters of G¥ whose *RE’ contains

*yén_l) are pgn), 7{511 and 'yén); so H'"*(X(w)) contains one of these three
characters. But *RE (’yéi)l) and *RE ('yén)) contain characters different from
pénil), pl(;:l) and 'yén*l). So H"*b(X(w)) contains pl()"). But *Rf’(pén)) =

p,(,"’l) + p,(f:l) + 7,5"71). So H'" (X (w)) = pl()") as a Gf'-module.

For b =0,1,n,n + 1 we get respectively the exact sequences:
0 — St0) — (“"REHI M (X(w)))w — 0
0 — ("REH!M (X (w))r — 6" — 5t — (REH (X (w))): — 0
0— ("REHZ"(X(w)))en —1d"~Y - 1d"Y — ("REHZ"™ (X(w)))n — 0
0 — Id" Y — ("REHZ (X (w))) 1 — 0

We know that the only character y of G* such that *RE X is Stn=1)-
isotypic is St(™, and that the only character x such that *RE X is Id™=1-
isotypic is 1d™. So we see that the (H*(X(w)))p in the above exact se-
quences are Id(”)—isotypic or St(™-isotypic. The exact sequence for b = 0
(resp. b = n + 1) gives H" "1 (X(w)) (resp. H*"*2(X(w))). For b = 1 or
b = n, applying Propositions [DMR, 3.3.14] and [DMR, 3.3.15] we see that
the (H'(X(w)))p in the above exact sequences must be zero and the ar-
rows St~ — St and 1d®~Y — 1d™Y must be isomorphisms. This
completes the proof of the theorem. 0

Let us explain now why Theorem 9.2 implies Conjectures 2.4 to 2.6;
Conjecture 2.6 is immediate. Let us show Conjecture 2.4. By Section 5, the
centralizer Cg(w) is cyclic, generated by w, and Cy (w) = G(1,1,n). The
endomorphism Dy, acts as F' on X(w). Thus the value of the eigenvalues of
F given in Theorem 9.2 shows that the representation w — Dy, of B(1,1,n)
on Endgr (D, H.(X(w))) factors through an n-cyclotomic Hecke algebra
H(w) with parameters (1,22, 23,... 2"~ 2"). To show Conjecture 2.5, it
remains to see that the virtual representation Y, (—1)"H.(X(w)) of H(w) is

special. Proceeding as in Section 4, it is enough to show that |X(w)¥"| =0
fori =1,...,n — 1. But this is exactly the statement [BMi, 5.2].
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§10. Conjecture 2.4 in type A

We consider a group G of type A, _1 and a group G’ of type A4,,. We
keep the notation of Section 5: W (resp. W') is the Weyl group of G (resp.
G’) and we consider w = ¢” (resp. w' = ¢”), a d-th root of 7 in the braid
group B (resp. B’) of W (resp. W’). We have dr = n with d > 2.

In Section 5 we had two incarnations of the braid group B(d, 1,7): one
as Cp(w), with generators t,s1,...,s,_1 and one as Cp/(w') with gener-
ators t/,s1,...,s,_1; in both cases these generators correspond to braid
reflections of B(d,1,7).

The group G(d,1,r) has two orbits of reflecting hyperplanes corre-
sponding to reflections of order d and 2 respectively, so that for a choice
of indeterminates u = (ut,...,Ut,d—1;Us, 0, Us;,1) the generic Hecke al-
gebra Hy, of G(d,1,7) is the quotient of Q,[u]B(d,1,7) by the relations
(t —ugo) - (t —ugqg—1) =0 and (s1 — us, 0)(S1 — us,,1) = 0; we will write
the first relation as (t' —u¢0) - - - (t'—ug g—1) = 0 when considering the other
incarnation of B(d,1,r).

Next theorem proves that 2.4 holds.

THEOREM 10.1.

e The map x — Dx from Cg(w) to Endgr (@, H{(X(W))) factors
through the specialization x — q of a d-cyclotomic Hecke algebra 'H
for B(d,1,r) with parameters (1,z,22,..., x4z —1).

e The map x — Dx from Cp/(W') to Endgr (D, H{(X(W'))) factors
through the specialization x — q of a d-cyclotomic Hecke algebra H’
for B(d,1,r) with parameters (1,22, 23,... x4 gd+1l; 24 1),

With the notation of Section 5, we have to show that the operators
induced on the cohomology by Ds,, Dy and Dy satisfy the expected poly-
nomial relations. The end of this section is devoted to the proof of this
theorem.

The next lemma will allow us to compute by induction the relations
satisfied by the Dg,, using [DMR, 5.2.9].

LEMMA 10.2. Fori=1,...,r =1 letl; = {0, 0itr, ..., 0i1(g_1)r} aS

in Lemma 5.4; then we have a1, (w) = ar, (W) = o2.

Proof. As the elements of I; commute pairwise and as, by Lemma 5.3
(i), o; is the only divisor of w in I;, we have ag,(w) = o for some k. Now

k

o sSWE cri_kw € BT & ¢ loFe " e BY.
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But o1 does not divide c'~! on the right for i < n by the “right-side version”
of Lemma 5.3 (iv) so, by Lemma 5.2, ¥ < w if and only if o} < ¢" 71,
To prove the assertion about ag,(w) it is sufficient to show that o? < c?
and 3 £ c". The former statement follows from Lemma 5.3 (ii) which

gives o7%c? = a7'c®ol, € BT. To get the latter we write o3¢’

(67%c?) o, "2 and, as 0,1 % ¢ 2, we have to see by Lemma 5.2 that

n
01_2c2 % 0,1, which is equivalent to 0'1_2C20'T:£1 = 0'1_3c2 ¢ BT. But
o3 < c? is impossible by [Mi, 4.8] as v(o3) = 3 and v(c?) < 2 (recall that
v(b) =inf{k € N| b < wk} for b € B*).
The proof of the assertion about ag, (w’) follows the same lines, using
Lemma 5.3 (iv’) instead of Lemma 5.3 (iv) and Lemma 5.3 (ii’) instead

of Lemma 5.3 (ii). At the end we have to see that o3 % c/?>. But by

Lemma 5.3 (v), we have ¢? = c?0,_10,, which can be written c¢? =
(co1-+ 0, 1)(0n0,_10,). The two factors are in W, so that v(c’?) = 2,
and we conclude as in the w case. []

PRrROPOSITION 10.3. For i € {1,...,r — 1}, the image Ty, of Ds, in
either Endgr(@; H2(X(W))) or Endgr(@; HZ(X(W'))) satisfies (Ts, +
(T, — ) = 0.

Proof. We prove the statement for w, the proof for w’ being exactly
the same. By [DMR, 5.2.9], which can be applied by Lemma 5.4 (i), the T,
satisfy the same relations as the Ds, on (P Hg(XLIi (o1, (W), wr, (W) F)).
By the above lemma we have ay,(w) = o2. The group Ly, has type A
where the components are permuted cyclically by wy, (w)F. If s denotes
the positive generator of the braid group of type Ai, through the isomor-
phism with A¢ we have o? < (s2,1,...,1), s; < (s,s,...,s) and w,(W)F
corresponds to (z1,...,24) — (Fzo,..., xg, Fx1). The variety we have
to study is Xy, (s%,1,...,1), which can be identified with the three-term
sequences of d—tzuples of Borel subgroups of Ly, of the form

D)

(B1,...,Bd)M> (101)

(B},...,B) ("Bs,..., "By, 'By),

where for two Borel subgroups B and B’, we write B = B’ to say that
(B,B’) € O(v) (we say that B and B’ are in relative position v). The
conditions on the relative positions imply B) = Bs,...,B/, = By and
B3 = Bo,...,'B; = By_1,"B; = By; so that XLIi(SQ,l,...,l) iden-
tifies with the three-term sequences By - B/ 5 FBy = FdBl, i.e., to
the variety X(s?) of a group of type A; with Frobenius endomorphism
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F4. Let us put s@ = (s,1,...,1,8,1,...,1) where the second s is at the
place ¢ with ¢ > 1. In the same way as above we identify the variety
XL, (s()) with the Variety X(s?) by identifying a sequence (Br,...,By)

such that (Bq, .. Bd) (FBQ, .., FBg_1, 'By) with the three-term se-
quence By = F B 5 F dB1 We can decompose the morphism Dyg ¢
as Dy o -+ 0 Dya o Dyuy, where s® = (1,...,1,s,1,...,1), with s at
the ith place. Then D1y sends X(s?,1,...,1) to X(s(q)) and Dy sends

X(s()) to X(s(i—1)) for i > 1. With the above identifications, one checks
that D a) sends By = B} > %, F'B; to B — 5, Fig, & P B} and that D
sendsB18F21B * BltoBliFZQ(FB)SFBlfori>1. So
that D(s ) identifies with the operator Ds on the variety X (s?) of a group
of type A; with Frobenius endomorphism F¢. This is a particular case of
[DMR, 5.3.4], where it is proved that the operator Ts induced by Dg on
H(X(s?)) satisfies (Ts — ¢%)(Ts + 1) = 0, whence the proposition. [

We will now prove that the operators induced on the cohomology of
X(w) and X(w’) respectively by Dy and Dy satisfy the claimed polynomial
relation.

LEMMA 104. Letl={o,...,0,1 42} andY ={o,..., 0,141}, as
in Corollary 5.8; we have

(i) ar(ywy ) =yty !,
1

) /<, /— 1) ylt/yl 1

(i) ar(y'w'y
(ii) wi(ywy 1) commutes with o1; for 0 <i<d—2,
)

(i) wr(y'w'y'™1) commutes with o,y for 0 <i<d—1.

Proof. Let us prove (i). As yty ™' = 0,442 € B}F and ywy ! =

yty 'c¢"!x;---x; by the remark which follows the proof of Lemma 5.5,
it is enough to see that ag(c" !x4---x1) = 1, d.e., that for i € 0,...,d —
2 we have o,4; # ¢ x4---x;. By Lemma 5.2, this amounts to prove
that for ¢ € 1,...,d — 1 we have o; £ x4---x;. But o; commutes with
x; for j > ¢+ 1, so that 0;1Xd~~x1 = xd--‘nga;lxiH---xl. As
o; is not in the support of x4---X;42, we have x4-- X412 ¥ 0, so by
Lemma 5.2 it is enough to see that o; £ x;11---x1. But 0';1Xi+1xl' =
Xz‘+1Xz‘0'i_+1r,11 indeed we can write this equality as oi41,i4+r—10iitr—1 =
Ciitr—10i,i+r—2, using Lemma 5.3 (i) in the parabolic subgroup generated
by oi,...,0i4r—1. S0, 88 Oj4r—1 & X;j—1---X1 because o;,—1 is not in
the support of this element, again by Lemma 5.2 it is sufficient to see
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that x;4+1%; % 0i+r—1. But this is the exact analogue in the parabolic
subgroup generated by o;,...,0;1,—1 of what we have proved at the end
of Lemma 10.2, as 0;20'12’”7471 = Xjt+1X;.

The proof of (i’) is along the same lines: we start with y'w’y’~! =
y't'y''el 'x411 - - x1 as noticed in the remark following Lemma 5.6. We
have to see that OJI/(C:d_IXd+1 -oxq) = 1, d.e., that o,4; # c:glxdﬂ S X
fort€0,...,d —1. By Lemma 5.2, this amounts to prove that for 1,...,d
we have 0; A Xg11---X1. But o; commutes with x; for j > i+ 1, and as
in the proof of (i) we are reduced to prove that o; £ x;41---x1. Then we
finish exactly as in (i).

Let us prove (ii). We have to see that o, ;¢" 1xg---x1 =" !x4---x1
o,4+i. This can be written

CT*le Cr X301 X2 X1 X = CT*le o X2 X410 X s X
So we have to prove that o 1X;10Xi41 = Xi42Xi410 44, 0.6, Oipitr
Oitl,itr—1 = Oi42i4r0it1r+i- Lhis last equality is a consequence of Lem-
ma 5.3 (i) applied in the parabolic subgroup generated by {oj+1,...,Titr}-

The proof of (ii’) is exactly the same, replacing I by I, ¢ by ¢4 and
X4+ X1 by Xgi1 - X1. 0

COROLLARY 10.5.

e The image Ty, of Dy in Endgr (D, H.(X(wW))) satisfies (Ty — 1)(Ty —
q)- (Te— g™ ') =0.

o The image Ty of Dy in Endgr (D; H (X (W'))) satisfies (T —1)(Ty —
)Ty — ¢*) - (Ty — ¢ )Ty — ™) = 0.

Proof. We prove first the result for t. Using conjugation by Dy
we see that it is equivalent to prove that the image of Dy¢y-1 in
Endgr (@, H{(X(ywy'))) satisfies the same relation. By [DMR, 5.2.9]
and Lemma 10.4 this operator satisfies the same relations as Dy -1 on
@, Hi(Xy, (axlywy ™), wi(ywy 1) F)) = @; Hi(Xy,(0rr+4-2)). The el-
ement o, .42 is the lift of a Coxeter element in the braid group of Wi.
The group L; has type split Ag_1, and Dy, -1 acts as F'on Xp, (07 r14-2)-
The eigenvalues of F' in the case of a Coxeter element are given in [Lu2]
and gives the relation we want for Tg.

We follow the same lines for proving the assertion on t’. We are reduced
to compute the relation satisfied by Dygry—1 on @, H(Xy,, (o (y'w'y' 1),
wr(yw'y " ")F)) = @, H:(XL,, (01 r+a-10r4da-1)). The element o141
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o,14—1 relatively to the group Ly is an element as studied in Section 9.
The group Ly is split of type Ay and Dyyry-1 acts as F' on Xy, , (0 rqd-1
0,r14-1). We end the proof by noticing, as in the end of Section 9, that the
eigenvalues of F' given in Theorem 9.2 give the relation we want for Ty/. []

811. Conjecture 2.4 in type B

In this section we keep the notation of Section 6; we prove Conjec-
ture 2.4 in a group G of type B, for a d-regular element with d even. So
we have w = ¢” with dr = 2n and d even.

THEOREM 11.1. The map x +— Dy from Cg(w) to Endgr (6D,
Hi(X(w))) factors through the specialization x — q of a d-cyclotomic Hecke
algebra H for B(d,1,r) with parameters

2 d/2—1 .d/2 2 d/2-1. ,.d/2
(1,22, ..., a7 g2 g g2 271092 1),

With the notation of Section 6, we have to show that the operators
induced on the cohomology by Ds, and Dy satisfy the expected polynomial
relations.

The end of this section is devoted to the proof of this theorem. The
next lemma is the analogue of Lemma 10.2.

LEMMA 11.2. Fori = 2,...,7 let I; = {04,0i1r,...,Oi1(g/a—1)r} S
in Lemma 6.4; then we have a1,(W) = 0.

Proof. As the elements of I; commute pairwise and as, by Lemma 6.1
(iv), o; is the only divisor of w in I;, we have ag,(w) = o¥ for some k. But
c is a good root of 7, so for any r < n we have v(c") = 1. Asv(o?) =2 we
cannot have 0’? < w, whence the result. 0

COROLLARY 11.3. For i € {1,...,r — 1} the image Ty, of Ds, in
Endgr (D, HY(X(w))) satisfies (Ts, +1)(Ts, — ¢¥?) = 0.

Proof. The proof is similar to that of Proposition 10.3, except that
here Ds, eventually identifies with the operator Dg on the variety X(s) for
a group of type A; with Frobenius endomorphism F%2, whence the result.

a

LEMMA 11.4. Let 1 ={0o1,...,04/2} be as at the end of Section 6; we
have
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(i) ar(ywy ™) =yty '

(ii) wi(ywy™!) commutes with a; for 1 <i < d/2.

1 1

Proof Let us prove (i). As yty ! = o4 dj2 and ywy ' = yty~
Hll /2 %ic" ! by the remark which follows the proof of Lemma 6.5, it is
enough to see that o; % [[i_ a2 %ic€" Vfor i = 0,...,d/2. We use the

following lemma which is an immediate consequence of Lemma 5.2:

LEMMA 11.5. Assume that a,b € BT, that o; < ab, that o;a = ao
and that o; # a; then o; < b.

By this lemma, for ¢ > 1 we have o; < H;:d/ijc’”*l & o X
H}:i xjcr_1 S Ol X H}:z‘—2 xjcr_1 & oi4r-1 < €71, the second
equivalence as, by the proof of Lemma 10.4, we have a;lxixi_l = X;X;_1
U;_:T_l. But o4, 1 < ¢" ! is false by Lemma 6.1 (iv).

For i = 1 we get 01 < H;:d/ijc’”*l s o < xic e o? ¥
oo ¢ = 01 < , the last equivalence as o, - ol = ¢!
09 0p_ri1. But 0? < c” is impossible as v(c”) = 1.

Let us prove (ii). By (i) we have wi(ywy™!) = Hil:d/g x;c" 1. For
i > 1, we have

1 1 i+1
r—1

H X;C 0= H on'iJrrflC H XiXi—-10j+r—1 H X]

j=d/2 j=d/2 j=d/2 J=i—2
i+1 1

— r—1

H O;X;X;—-1 H X] —O'i H X;C
j=d/2 j=i—2 j=d/2

For ¢ = 1, we prove by induction on ¢ that o5 - - - 0'Z'+1Ci0'1 =01 0i+1
c’; this equality for i = r — 1 gives x;¢" 1oy = o1x1¢"~!; then we use that
o1 commutes with x; for 7 > 1. 0

As for Corollary 10.5, we deduce the following corollary which ends the
proof of the theorem.

COROLLARY 11.6. Let T be the image of Dy in Endgr (€D, Hi(X(w)));
then we have (Tg—1)(Ty —q) -+ (T —q"*)(Te+ @) (Te+6%) -+ (Te+¢¥*71) =
0.
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Proof.  Using conjugation by Dy, we see that it is equivalent to prove
that the image of Dy¢y—1 in Endgr(€D; Hi(X(ywy!))) satisfies the same
relation. By [DMR, 5.2.9] and Lemma 11.4 this operator satisfies the same

relation as D, t,—1 on

yty

D HiXu, (axlywy ™) wrlywy™)F) = D Hi(Xx, ([T 01)).

The element Hfi 21 o; is the lift of a Coxeter element in the braid group of
Wi. The group Ly has type B/ and Dy -1 acts as F' on XLI(H?ﬁ o).
The eigenvalues of F' in the case of a Coxeter element are given in [Lu2]

and give the relation which we want for Tg. 0

§12. The 4-th roots of w in Dy

We use the same numbering for the reflections of W = W (Dy) as in
Bourbaki: we will study the 4-th root of 7 given by w = s983815354S83.

52

O—0—0

S1 83 S4

The centralizer of w is the complex reflection group G(4,2,2). We show
Conjectures 2.1 to 2.6 for w.

ProproSITION 12.1. The element w verifies Conjectures 2.1 and 2.2.
In particular, the map which sends the standard generators of the braid
group B(4,2,2) to by = (s182)%, by = si84 and by = (s284)%% is an
isomorphism B(4,2,2) ~ Cp(w).

Proof. A 4-th root of w is an element of length 6 whose image is a
4-regular element. As all twelve 4-regular elements of W are of length 6, all
4-th roots of 7t are in W. There are thus 12 good roots of 7, and a direct
check shows that there are morphisms in D' between any two of them, thus
proving Conjecture 2.2 in this case. We may show Conjecture 2.1 using the
programs written by Franco and Gonzalez-Meneses to compute centralizers
in braid groups. They give that by, by and bs generate Cp(w). How-
ever, one sees that the elements wbi = s189838189848183, bo and wbs =
S9S3S18283848383 are in Endp+(w) by using the decompositions wby =
(s1528351)(s284)(s183), bo = (s1)(s4) and wbz = (s2s351)(s4)(s25384)(s3).
We get thus that by, by and bs are in Endp(w) whence Conjecture 2.1.
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Let us show that the elements by, by, bs are the image of braid re-
flections around hyperplanes of Cy (w). We start with bg; let V' be the
reflection representation of W, and let V; be the eigenspace of w in V for
the eigenvalue ¢. This is a 2-dimensional space, and the set of fixed points of
5184 on this space has dimension 1 and is of the form H NV} for some reflect-
ing hyperplane of W. We use now the constructions at the end of Section 3:
the group By is the parabolic subgroup of B generated by s; and s4, and
the element sy is a square root of the element 7r of this parabolic subgroup,
so is equal to sys4; thus this element is indeed the image in B of the braid
reflection tz of B(w). To handle the other elements we use the triality
automorphism of G. This automorphism corresponds to an automorphism
of V which induces on B the automorphism given by sg — s1 — 84 — So
and the corresponding automorphism on W. Let @ be the automorphism
of B which is the triality followed by conjugation by sos3 and let ¢ be the
corresponding automorphism of V. Then 1 fixes w and does the permuta-
tion by — by — bg +— b;. Thus ¢ induces an automorphism of V;, and the
braid reflections which are images of t i by the powers of this automorphism
have images b; and bs.

The fact that the images of these braid reflections generate Cp(w)
implies that they generate B(w); thus Conjecture 2.3 holds. They sat-
isfy the defining braid relations for the braid group of G(4,2,2), that is
b1bsbs = bobsb; = bsbiby (all three products are easily checked to be
equal to w). []

The next proposition shows Conjecture 2.4.

PROPOSITION 12.2. The map b; — Dy, factors through a represen-
tation Hy(w) — End(, Hi(X(w))) of the specialization x — q of a 4-
cyclotomic Hecke algebra H(w) for G(4,2,2) with parameters 1 and 2.

We note that the above algebra is indeed a 4-cyclotomic algebra since
the parameters specialize to 1 and —1 by the specialization x — 1.

Proof. 1t is enough to prove the quadratic relations (Dy, — 1)(Dyp, —
q*) = 0.

For by = s;s4, we use proposition [DMR, 5.2.8] with x =y = s; and
I = {s1,54}. The subgroup L; is of type A; x Aj; The element z = sflw
normalises L, exchanging the two A; components. The variety Xy, (s1, 2F)
is mapped by Ds,, which acts as ZF, to X, (s4,2F). Then Ds, maps
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Xy, (84, 2F) to Xy, (s1,2F), and Ds, o Dg, induces F? on Xr,,(s1,2F); by
e.g., [DMR, 3.3.16] this variety has two non-zero cohomology groups with
compact support: H! on which F? acts as 1 and H?2 on which F? acts as ¢*.
Thus Dy, satisfies the quadratic relation (Dp, — 1)(Dp, — ¢%) = 0 on the
cohomology of Xp,,(s1,2F'), and thus by [DMR, 2.3.13] and the Kiinneth
formula, it also satisfies the same relation on the cohomology of X (w).

To show that Dy, satisfies the same quadratic relation we use [DMR,
3.1.8] applied to the triality automorphism of G. The triality maps w to
S18384838283 and Dy, to Ds,s, acting on X (s;s3s48382s3) which by the same
argument as above, with x =y = s4 and I = {s2, s4}, satisfies the expected
quadratic relation. The conjugation by ses3 € Homp (W, s1838483S283) com-
posed with the triality is equal to 7; and the conjugation by sos3 maps back
Dsg,s, to Dy, which thus satisfies the quadratic relation.

One proceeds similarly for Dy, , using the square of the triality auto-
morphism which maps Dg, s, to Dg,s, acting on X(s4S3s2838183). One has
that 12 is the square of triality followed by conjugation by sosssiss, and
conjugating by sas3sis3 € Homp(w, s4s382838183) maps Ds,s, to Dp,. [l

If we denote by T4, Ts, T3 the images in H,(w) of by, by, bs, we thus
get a representation p of H,(w) on @ H:(X(w)) which maps T; to Dy,.
We note that triality commutes with the automorphism of H,(w) given by
T1I—>T2l—>T3l—>T1.

The next proposition and Theorem 12.4 show that Conjecture 2.5 holds.

PROPOSITION 12.3. The representation induced by p on > (—1)°
Hi(X(w)) is special.

Proof. Let ® = T1T5T5. It follows from the computation of the generic
degrees and the character table of H,(w) in [BMa, 5.A] that a representation
is special if (and only if) the elements {(T})i=1,2,3, (13T})i=1,2,3, j=1+ (i mod 3)
(®*)i=1,2,3} have trace zero on it. The quadratic relations show that B =
{(T3)i=1,2,3, (TiP)i=1,23, ((I)i)izl,lg} generates the same subspace of H,(w)
as these elements. We shall show that the trace of any element in 55 vanishes
on Y (—1)"H{(X(w)). Tt is enough to check this on just one element in each
orbit of B under triality, e.g., for Ty, T1®, ®*. We have p(®) = Dy = F.
Thus Dy, as well as its square and cube verify the trace formula, and by
[DMR, 5.2.3] they all have trace zero on Y (—1)*H.(X(w)). Thus it only
remains to compute the traces of Dy, and Dy, w.

To compute the trace of Dy, = Dg,s,, we apply [DMR, 5.2.10] with
g =1, I = {s1,s4} and x = s1s4, which gives that the trace of Dg,s, on
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S (—1)Hi(X(w)) is the value at 1 of the class function

RE (z o S (- 1) Trace(Das, | Hi(X, (51, z‘F>,@>>),

%

with z as in 12.2. By a general result on Lusztig induction (see e.g., [DM,
12.17]), this value is a multiple of

Z(_l)i Trace(Ds,s, | Hé(XLI (SlaéF)a@Z))'

%

But this last trace is zero since Dy, s, acts as F? on Xy, (s1,2F), thus has
no fixed points.

Using the square of the triality automorphism as in the proof of 12.2,
we see that the trace of Dy, on > (—1)'H:(X(w)) is equal to the trace
of Dg,s, F on Y (—1)"H!(X(s3s283818384)). By [DMR, 2.3.13] and [DMR,
5.2.9] applied with I = {s1, s2} this trace is equal to

LI 0 > (—1) Trace(IDsys, F' | HA(Xy, (52, 2F), Qy))
leLZF {

XZ Ti"ace IF | HZ( 1) (2), Q)

where z = s359818354 and where X(I)(Z) ={gU; | g7'F(g) € U;2F(U))}
(the action of F' decomposes as a product since Uy is F- stable). By
the Lefschetz trace formula one has Y, (—1)" Trace(IF | H{(X () (%), Qp)) =

\X(I ()W = H{gU;r | g7'Fg € (U;2U;)N(1U7)}|. But this last intersection
is empty since z ¢ Wr so that P; does not intersect U;2U;. Thus the trace
vanishes. []

We shall now prove Conjecture 2.6 by giving a full description of
H}(X(w)) as a GI' x (F)-module. To give the result, we first introduce a
notation for the irreducible characters of W(Dy): they are parametrized by
the pairs of partitions of total sum 4, except that a pair of equal partitions
corresponds to 2 characters. We shall thus denote the characters by

124, 12—, 1.13, 14, 12.2, 1.21, 212, 24, 2—, 22, 1.3, 31, 4

LL ”

where a missing means that one of the partitions is empty. If A is

a parameter as above, we shall denote by v, the corresponding unipotent
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character of the principal series, except that we denote respectively by St
and Id the characters ;4 and 74. There is one more unipotent character
of Dy, a cuspidal one, that we shall denote by 8. We will use the same
convention as in Theorem 9.2 to describe the cohomology by a two variable
polynomial. With these notation, we have

THEOREM 12.4. The cohomology of X(w) is given by

WO St +47h7 (124 4+ Yi2— + Yo12) 4+ 22170 + 263h%y1 91
+ 0% (ya4 +y2— +31) + t°A121d.

Proof. We will use the parabolic subgroup of type A3 generated by I =
{s1,53,84}. Let w’ = s351535453. We will need the value of the sets defined
in Lemma 8.11: they are Eyw, (w') = {1, s1, 53, s4} and Ew (w) = Ew, (w')U
{s2s3}. The value for w’ is obtained by a direct computation in the Hecke
algebra of W; and the value for w = sow’ comes from Proposition 8.12
whose assumptions are easily checked.

We first compute the cohomology of X(w'™0) = X(sgsss3s1s3) in the
Levi subgroup L; corresponding to I. We use [DMR, 3.2.10]; with the
notation of the proof of Theorem 9.2 (po corresponds to the partition 2,2,
2 to 1,1,2; and 73 to 1,3) we know by [Lu2] the cohomology of the Coxeter
variety X(s48381):

Z h' - HY(X(s48381)) = h3 St +h'tye + hot%~3 + h31d

and since s3sys3s; is a 3-rd root of w; we know its cohomology by Theo-
rem 9.2

> b Hi(X(sgsas381)) = h* St +2h%py + A5 1d.

The exact sequence given by [DMR, 3.2.10] then completely determines
HE(X(s384838183)), except for the Id-isotypic and St-isotypic parts; we get
these by [DMR, 3.3.14} and [DMR, 3.3.15], and we obtain

th HY(X(w')) = h® St +t2h8(vo + pa) + t3h7 (3 + p2) + 2R 1d .
We now determine the principal series part of the cohomology of X(w)

by the same method as in the proof of Theorem 9.2. The value of Eyw (w)
shows that

X( Xwo H Xw051 ) H X wos3 (’U)) H X Wos4 (’U)) H X wos2s3 (’U))
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We may apply Proposition 8.17 with s = so. If we set

(Xwo H Xw051 ) H Xwosg H Xw054 ) /UPN

we have thus an equality of Lf -modules:

th HY(Y) = (th> + h) x (Zhl H{(X (whw wo)))

= O St+h"(t St +1% (72 + p2)) + h*t* (72 + 73 + 2p2)
+ ROt (y3 + p2) 4+ PR Id +15h1%1d .

To study the remaining piece X"0%2%3(w) we use Proposition 8.25 with
v = wpses3 and taking for w’ the element w” = s9s3515453. We show that
w and w” satisfy the assumptions of Proposition 8.25.

We first check the assumptions of 8.21 (iii) for w and w”. We check on
Ew (w) that v is the only element of Wrv such that X¥(w) # 0. On the other
hand, one gets by Proposition 8.12 whose assumptions are easily checked
that Ew (w”) = Ew, (s3s184583) U {s283, $2835154}, where Ey, (s3515483) =
{1, s1, s3, S4, 5154, S35154}, which results from a direct computation in the
Hecke algebra of W;. Thus v is indeed the only element of Wjv such that
Xv(w//) £ ().

We check now the assumption 8.21 (iv) for w and w”. If ay, as, a3, ay
are the simple roots of Dy, we have v™'({a1,a3,a4}) = {—a1 — a3, —as,
—ag — oy}, thus v"'U; ¢ U™ . The projection onto ¥ 'Uj of *'UN
(BwB [ Bw”B) is the same as that of ' UNU~N(BwB [ | BwB); indeed
each double coset is invariant by right multiplication by vlun U, thus its
intersection with *" U is the product of its respective intersections with
v'UNU™ and 'UNU. As ¥ 'U; € U™, the part in * ' UNU has a
trivial projection.

Let us compute * U N U~ N (BwB[[Bw”B). By Proposition 8.13
we have BuBN U~ = U* _.(Bjw'By N U;) and Bw”’B N U_ =U",.
(BrsgsisassBr N U ), whence, from the decomposition ¥ 'Unu- =
(*UNUR).(" UNUY) we get

“'UNUT N (BwB ][ Buw'B)
_ Uia2.<”_lU NU; N (Bw'B; HB153515453B1)>.

We have U N U; = Haé@j—{—ag} U,. In order to make explicit com-
putations, we may replace L; by the group GL4 as the Borel subgroup
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varieties, as well as the groups Uy and U, depend only on the isogeny

type together with the Frobenius action on the root system. The variety
1

_ 000
v'un U is thus isomorphic to the variety of matrices <I 59 ?).
k %k %
We now determine the variety of matrices in GL4 representing elements

of *'UN U, N (Brw'B; [[BrsssisassBy). For this we use the following:

LEMMA 12.5. Let B be the Borel subgroup of GL,, of upper triangular
matrices; let W be the Weyl group relative to the torus of diagonal matrices;
let (wi;) be the matriz for w € W then (a;j) € GLy, is in BwB if and only
if the ranks of the submatrices (aij)i=k,...n,j=1,..0 and (Wij)izk,...n, j=1,...1
coincide for all k and .

Proof. The condition on ranks is invariant by left multiplication (resp.
right multiplication) by B since this replaces each line (resp. column) by a
non-zero multiple of itself plus a linear combination of the following lines
(resp. columns). This condition defines thus a union of double B-cosets.
It remains to see that elements of W are determined by the rank condi-
tions: but indeed, in line k, the position [ of the non-zero coefficient is the
smallest integer such that the rank of the matrices (wij)l-:kw’n,j:lw,l and
(Wij)imkt1,....n, j=1,...,; differ. [

We thus obtain, characterizing w’ and s3s1s453 by rank conditions, that
1000

”71UﬂUI_ N(Brw'B; [ Brsss1s483By) is the variety of matrices (g é ;11 8) ,
03 f1
with o, 3, d and f in F, such that ‘ 0 g ‘ = (; the open subset corresponding

to Byw'By is given by the condition %tl)(l]‘ % 0. These matrices may

1000 1 000 -

be written as <g 59 8> < d 6?8) € “71U1”71Up1. The projection on
0801/ \-dgof1

v'U; of U N U~ NBwB as well as that of * UN U~ N Bw”B is thus

U, U* U The assumption 8.21 (iv) thus holds for w and w”.

—agy © —a1—a3 ~ —az—ag”

To check the assumptions of Proposition 8.25, we must compute the
fibers of the maps 7 and 7 [ [ 7 of Proposition 8.25.

The above computations show that for i € ”_lUpIﬂU* andz € ¥ Uy,

we have y.z~1Fz € BwB[[Bw"B if and only if 27 1.7z € [Toco1vu, Us

and F:”_l:‘y isin U_,, U_,,U_4,—qa, and are such that the latter element
1 000

corresponds to the matrix ( d 1o 8> where the projection of 7'z on
f1

,d[@
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1000
U; is given by the matrix (g é 0 8>. The closed subset corresponding to
030

=

Bw”B is given by d3 + fa = 0. We see thus that the fibers of the map
T[T of Proposition 8.25 are 2-dimensional affine spaces corresponding
to the d and f coordinates of the matrix for y and that the fibers of the
map 7 are l1-dimensional affine subspaces corresponding to the equation
df + fa=0.

The assumptions of Proposition 8.25 thus hold, and we get the coho-
mology of XV (w)/Ugl as an L x (F)-module by multiplying by th3 +2h*
the two-variable polynomial encoding the cohomology of the Coxeter variety
for L;. We get

> nt HI(X () Y1 = KOt St +hTt2 (4 + St) + K53 (32 + 13)
i
+ 12t (43 +1d) + R4 1d .
The long exact sequence of LY x (F)-modules
i i Up i () ) UP i+1
= Ho(Y) — Ho(X(w)) P11 — Ho(X (w))"F1 — H(Y) — -
gives

0— St — H?(X(w))Ugl —— St — t*(y2 + p2) + St
— HI(X(w)) "% — #2(35 + St) — 0
F
HE(X(w)7P1 = 13(272 + 2p2 + 273)

F
HY(X(w))"Pr = t4(pa + 273 + 1d)

0 — HOX(w)"Fr — O1d — £°1d — H'(X(w))"F1 — 0
H2(X(w))YPr = 61d

To obtain the non-cuspidal part of H}(X(w)), we first use [DMR, 3.3.14]
and [DMR, 3.3.15] which give the Id and St isotypic parts. We then con-
sider for each b the tb-isotypic part of the above exact sequences arguing
as the proof of Theorem 9.2 and using the following table which describes
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(Ind’* x, ) p,:

124 12— 113 St 122 121 212 24+ 2— 22 13 31 1d
Id 0 0 0 0 0 0 o 0 1 0 1 0 1
v 1 0 1 0 1 1 1 0 0 0 O 0 O
p2 0 1 0 0 0 1 o 0 1 1 0 0 O
v3 0 0 0 0 1 1 o 1 0 0 1 1 o0
St 0 1 1 1 0 0 0O 0 O 0O 0 0 O
We get:

Z hz : HZ(X(w))non-cuspidal = h6 St +t2h7(712+ + v2- + 7212)
[
+ 263181 01 + 7 (yar +y2— + y31) + t°R121d.

To study the #-part of the cohomology of X(w), we will use the variety
X (w). One may check that all Kazhdan-Lusztig polynomials Py, for y < w
are 1, thus X(w) is rationally smooth (cf. [DMR, 3.2.5]), which by [DMR,
3.3.8 (ii)] allows to compute Y. ht - (H(X(w)))g = t3h°0.

By [DMR, 3.1.3], if y lies in a proper standard parabolic subgroup,
H{(X(y)) cannot have a cuspidal part. The only y < w for which this does
not hold are the elements of

C= {52535154537 5251538483, 5251535154, 52535154, 525158483, 52515354}-

Thus X(w) = X(w) [[X]]Y where X = [],.. X(v) and where Y is a
union of Deligne-Lusztig varieties, closed in X (w) and such that H (Y ) =0
for any i. The long exact sequence corresponding to X(w) = Y [[(X(w) —
Y) shows thus that for any i we have H(X(w))g = HY(X(w) U X)j.

The varieties X (s2535154), X(S2515453) and X (s2515354), corresponding
to Coxeter elements, satisfy (cf. e.g., [Lu2]) >, h' - (Hl)g = t?h?, and they
are connected components of their union, thus

Z Bt Hé(X(82838184) U X(82818483) U X(82818384))9 = 3t2ht.
)

The elements 5253515483, S251535453 and S281535154 are conjugate by cyclic
permutation respectively to s953515452, S489515354 and s152838481 Which,
by [DMR, 3.1.6] and [DMR, 3.2.10], allows to compute the cuspidal part of
their cohomology For each of them we get >, h' - (H!)g = t*h° + t3h%, thus
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for their union (of which they are connected components) >, h' - (Hl)y =
3t2h° + 3t3hS. The union

X(s283515483) H X(s251535483) H X(s281835184)
is open in X; the corresponding long exact sequence gives
0 — H}(X)g — 3t%0 — 3t%0 — H>(X)g — 0,

and HS(X)y = 3t30. There exists thus an integer n < 3 such that >_; A’ -
H{(X)g = nt?(h* + h5)0 + 3t3h0. The long exact sequence corresponding
to the union of X and X (w) shows then that only the characters t2 and ¢3 of
(F') may occur in the cohomology of X(w), and gives for the corresponding
isotypic parts of the cohomology: HZ(X(w))g. = HE(X(w))g e = nt?0,
and

0 — HS(X(w))gs — 30 — 3t30 — HI (X(w))g s — 0.

By [DMR, 3.3.22] we have H?(X(w)) = 0, thus also HS(X(w))g 2 = 0.

To lift the ambiguity on (0,t3), we now use [DMR, 3.3.21]; we take
for w’ a Coxeter element, which is not conjugate to w; thus any eigenvalue
of Fon H5(X(w))s must have a module less than ¢3. This shows that
HS(X(w))g = 0, thus H] (X(w))g s = 2t36. [

From the values of the generic degrees of H,(w) (see [BMa, 5.A]), we
see that if we denote by p(x1, 72, z3) where z; € {1,¢?} the 1-dimensional
representation of Hy(w) given by T; — x;, and p* (resp. p~) the ir-
reducible 2-dimensional representation where 1717573 acts as the scalar

q* (resp. —¢%), we have the following equalities, if we denote by m, the

multiplicity of p in Y, (=1)"H{(X(w)): my,11) = dimSt, Mp(g?,q2,q7) =
dimId, m,2 2.1) = Mp,42,42) = Mpg2,1,42) = — dimy2y = —dim~y2_ =
—dim’)/212, ’mp(q27171) = mp(17q271) = mp(1717q2) = —dim”)/2+ = —dim’)/g_ =
—dim~s1, m,+ = dimy;.21 and m,- = —dim#. Thus we can determine

D, H:(X(w)) as a GI" x Hy(w)-module up to an ambiguity on the cor-
respondence between characters of G and of Hq(w) which appear in the
same degree.
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