A 7-LOCAL IDENTIFICATION OF THE MONSTER

C. W. PARKER AND C. B. WIEDORN

Abstract. We identify the monster from two of its 7-constrained maximal 7-local subgroups.

§1. Introduction

All groups considered in this article are finite. Suppose that X is a group and p is a prime. Then X is p-constrained if $C_X(O_p(X)) \leq O_p(X)$. For a group $G, S \in Syl_p(G)$, and T a non-trivial subgroup of S, $N_G(T)$ is called a p-local subgroup. We say that G has local characteristic p if every p-local subgroup is p-constrained and we say that G has parabolic characteristic p provided every p-local subgroup that contains S is p-constrained. A \mathcal{K} -group is a group which has all its composition factors from among the known simple groups and a group G is \mathcal{K} -proper if every proper subgroup of G is a \mathcal{K} -group.

It is expected that the programme to identify the \mathcal{K} -proper groups of local characteristic p orchestrated by Meierfrankenfeld, Stellmacher and Stroth (see [20]) will soon have a list of possible amalgams within such groups. Some of these amalgams will uniquely determine the target group via its p-local geometry (for example via the building if G is expected to be a Lie type group in characteristic p of rank at least 3). For other groups, where for example there are only two p-local subgroups containing a Sylow p-subgroup, other methods will be needed. In this paper we investigate one of these exceptional configurations. Our main theorem is as follows.

THEOREM 1.1. Suppose that G is a \mathcal{K} -proper group, $S \in Syl_7(G)$, $Z_\beta = Z(S)$ has order 7, $Z_\alpha = Z_2(S)$ (the second centre of S) has order 49 and

(a) $N_{\beta} = N_G(Z_{\beta}) \sim 7^{1+4}_+ .2 \cdot Alt(7).6$ is 7-constrained; and

Received April 11, 2003.

Revised September 26, 2003.

²⁰⁰⁰ Mathematics Subject Classification: 20D05.

(b)
$$N_{\alpha} = N_G(Z_{\alpha}) \sim 7^{2+1+2}.GL_2(7)$$
 is 7-constrained.

Assume that $O_7(\langle N_{\alpha}, N_{\beta} \rangle) = 1$. Then G is isomorphic to the monster, the largest sporadic simple group. In particular, G is of parabolic characteristic 7 but not of local characteristic 7.

In Theorem 1.1 we have used the Atlas [5, page xx] notation for group extensions. We also use the Atlas [5] notation for the sporadic simple groups except that the baby monster is denoted by BM rather than B. Cyclic groups of order n will be denoted by n or \mathbb{Z}_n . To avoid confusion with Lie type groups of type A and D, we use Alt(n) and Sym(n) for the alternating and symmetric groups of degree n, respectively, and Dih(n) for the dihedral group of order n. We use p_{+}^{1+2n} to denote the extraspecial group of order p^{1+2n} and exponent p when p is odd and, when p = 2, the extraspecial group of order 2^{1+2n} which has elementary abelian subgroups of order 2^{1+n} . We write $G \sim A.B....Z$ or say that G has shape A.B....Z when G has a normal series with factors of shape A, B, \ldots, Z . Thus, for example, $G \sim 7^{1+4}_+ 2 \cdot Alt(7)$ indicates that G contains proper normal subgroups of order 7, 7⁵, 2.7⁵ and 2.7⁵. |Alt(7)|. It also indicates that the normal subgroup Q of order 7⁵ is an extraspecial group of exponent 7 and that G/Q is isomorphic to a non-split extension of Alt(7) by a cyclic group of order 2. The notation $G \sim 7^{2+1+2}$. $GL_2(7)$ indicates that G contains proper normal subgroups of orders 7^2 , 7^3 , and 7^5 but nothing further about the action of $G/O_7(G) \cong GL_2(7)$ on $O_7(G)$ is meant to be implicit in the notation. A p-element $x \in G$ is called *p-central* if $C_G(x)$ contains a Sylow *p*-subgroup of G.

The amalgam \mathcal{A} consisting of the triple $(N_{\alpha}, N_{\beta}, N_{\alpha} \cap N_{\beta})$ and the two inclusion mappings is an example of a *symplectic amalgam* and appears as \mathcal{A}_{48} in [22, Table 1.8]. Notice that we have not assumed that \mathcal{A} is isomorphic to the corresponding amalgam in M (though it may well be) nor have we assumed that G is generated by N_{α} and N_{β} .

Our strategy for identifying the monster from this 7-local information is to determine the structures of the centralizers of the involutions in G. Thus our objective is to find 2 involutions, one of which has 2-constrained centralizer of shape 2^{1+24}_+ . Co_1 and the other one has centralizer $2 \cdot BM$. Once this has been done, and after noting that the monster sporadic simple group possesses two 7-local subgroups as described in Theorem 1.1 (see [25] or [5, page 234]), the main result follows from [12]. As part of our proof we present some elementary results about \mathcal{K} -groups which characterize certain of the simple \mathcal{K} -groups by the structure of the centralizer of elements of order 7 or by the structure of their Sylow *p*-subgroups. These results are included in Section 2. Finally we mention that the monster has been characterized from the amalgam of its 2-local subgroups by Ivanov [15] and from the amalgam of its 3-local subgroups by Ivanov and Meierfrankenfeld [16]. These two results actually show that the universal completion of the amalgam under investigation is isomorphic to the monster.

There are other exotic amalgams related to the large sporadic simple groups. Four examples occur with p = 5 and are listed as \mathcal{A}_{20} , \mathcal{A}_{21} , \mathcal{A}_{46} and \mathcal{A}_{53} in [22, Table 1.8]. These four amalgams are related to HN, BM, Ly, and M, respectively, and are the subject of [21], [23], and [24]. A further remarkable example which occurs in the monster has $N_{\beta} \sim 13^{1+2}_+.12.Sym(4)$ and $N_{\alpha} \sim 13^2.4.L_2(13).2$. With respect to this amalgam the monster is of parabolic characteristic 13; unfortunately, as yet we have no idea how to characterize M from these two subgroups. The strategies used in [21], the present paper, [23] and [24] will not work in this particular case since the largest elementary abelian 13-subgroup in the centralizer of an involution in N_{α} and N_{β} has order 13. Thus the critical method of proof used in Propositions 5.6 and 6.5 to control $O_{p'}(C_G(t))$ for an involution t fails.

Dr. Corinna Wiedorn died on 25th February 2005 in Lingen, Germany. Her contribution to our mathematical community is greatly missed.

§2. Preliminaries

This section primarily contains characterizations of \mathcal{K} -groups by their 7-local structure. However, we begin with a result concerning the 4-dimensional GF(7)-module for $G = 2 \cdot Alt(7).2$ which, as we shall see, appears in N_{β} as $O_7(N_{\beta})/Z_{\beta}$.

Firstly we note that the smallest GF(7) representation of Alt(7) is 6dimensional (see [17, page 15]). So G contains a subgroup isomorphic to the non-split extension $2 \cdot Alt(7)$. Furthermore, as the multiplicative group of GF(7) has no elements of order 4, we have $G/Z(G) \cong Sym(7)$. We note also before we start that the smallest dimension of a faithful $2 \cdot Alt(7).2$ module over GF(7) is 4. Again this well-known fact can be read, for example, from [17, page 15]. LEMMA 2.1. Let $G \sim 2$ ·Alt(7).2, V be a faithful irreducible 4-dimensional GF(7)G-module, and denote by $\mathcal{P}(V) = \{W \leq V \mid \dim W = 1\}$ the set of one-dimensional subspaces of V.

- (1) Let $x \in G$, o(x) = 3. If x projects to a 3-cycle in $G/Z(G) \cong Sym(7)$, then $C_V(x) = 0$. If x projects to a product of two disjoint 3-cycles in G/Z(G), then dim $C_V(x) = 2$.
- (2) If $H \leq G$ with $H \cong SL_2(7)$, then H acts irreducibly on V.
- (3) G' ≈ 2: Alt(7) has just two orbits on P(V). They have lengths 120 and 280 and stabilizers 2 × 7 : 3 and 2 × 3 × 3, respectively.
- (4) G' has just two orbits on V[#]. They have lengths 720 and 1680 and stabilizers of order 7 and 3, respectively.
- (5) The orbits in (3) and (4) are preserved by G, the corresponding stabilizers being 2 × 7 : 6 and 2 × 3 × Sym(3) in (3) and 7 : 2 and Sym(3) in (4).
- (6) Let $P = \langle x, y \rangle \in Syl_3(G)$ such that $V = C_V(x) \oplus C_V(y)$. Let $W \in \mathcal{P}(V)$, $W \leq C_V(x)$. Then $N_G(W)$ acts irreducibly on $C_V(y)$. In particular, if $W \leq W_1 \leq V$ such that W_1 is $N_G(W)$ -invariant and dim $W_1 = 3$ then $W_1 = W + C_V(y)$.
- (7) For $S \in Syl_7(G)$, dim $C_V(S) = \dim V/[V,S] = \dim [V,S]/[V,S,S] = 1$.

Proof. First of all as V is a faithful module for G, we note that $\langle z \rangle = Z = Z(G)$ inverts each vector of V. This fact will be used without further comment below.

(1) Let x and y be elements of order 3 projecting to (567) and (123) in G/Z(G), respectively, and suppose $W = C_V(x) \neq 0$. Let Q be the preimage in G of the subgroup $\langle (12)(34), (13)(24) \rangle \leq Alt(7)$. Then $Q \cong Q_8$ and $\langle Q, y \rangle \cong Q_8 : 3$. Since $[\langle Q, y \rangle, x] = 1$, $\langle Q, y \rangle$ normalizes W, and since $Z \leq Q$ we see that $\langle Q, y \rangle$ acts faithfully and irreducibly on W and on V/W and that dim $W = \dim V/W = 2$. Since $\langle Q, y \rangle = \langle y^Q \rangle$, we have that dim $C_W(y) = \dim C_{V/W}(y) = 1$. Set $X = \langle x, y \rangle$. Then $X \in Syl_3(G)$, dim $C_V(X) = 1$, and consequently

$$V/C_V(X) = \bigoplus_{u \in X^{\#}} C_{V/C_V(X)}(u)$$

has dimension 3. Since $C_V(X)$ is normalized by $N_G(X)$, since x and y as well as xy and xy^{-1} are conjugate in $N_G(X)$, and since $\dim_{V/C_V(X)}(x) =$ 1, we infer that $\dim C_{V/C_V(X)}(u) \ge 1$ for all $u \in X^{\#}$. This means that $\dim V/C_V(X) > 3$, a contradiction. Thus we have that $C_V(x) = 0$ and as a consequence we have $\dim C_V(xy) = 2$. Hence (1) holds.

(2) Suppose that (2) is false and let $W \leq V$ be such that W is normalized by H. Since $Z \leq H$, we have dim W = 2 and H acts faithfully in its natural representation on W and V/W. Since 3-elements of $SL_2(7)$ act fixed point freely on the natural $SL_2(7)$ -module, they act fixed point freely on V. But the only 3-elements of G which are conjugate into H are those which correspond to a product of two disjoint 3-cycles in Alt(7) and these elements have fixed points by (1). Therefore, (2) holds.

(3) and (4) Let $P \in Syl_3(G')$. Then by (1) there are $x \in P^{\#}$ and $W \in \mathcal{P}(V)$ such that $[W, x] = 0 \neq [W, P]$ and such that W is normalized by P. Thus, $\langle z, P \rangle \leq N_{G'}(W), \langle z, P \rangle \cong 2 \times 3 \times 3$, and $\langle z, P \rangle \cap C_{G'}(W) = \langle x \rangle$. In particular, $\langle z, P \rangle$ realizes the full automorphism group \mathbb{Z}_6 on W. Hence, if $N_{G'}(W) > \langle z, P \rangle$ then $C_{G'}(W) > \langle x \rangle$. Now any subgroup of Alt(7) properly containing a Sylow 3-subgroup also contains an involution. But all involutions in Alt(7) lift to elements of order 4 in $2 \cdot Alt(7)$, whence they square to z and so cannot be contained in $C_{G'}(W)$. It follows that W is a representative for an orbit of length 280 for G' on $\mathcal{P}(V)$ and that the structures of $N_{G'}(W)$, and $C_{G'}(W)$ are as claimed in (3) and (4).

Since G' has an orbit of length 280 on $\mathcal{P}(V)$, it follows that any other orbit of G' on V has length at most 400 - 280 = 120.

Let $S \in Syl_7(G')$. Then there is $U \in \mathcal{P}(V)$ with $U \leq C_V(S)$. Certainly U is in a different G' orbit than W. Suppose that two distinct Sylow 7-subgroups of G' centralize U. Then U is centralized by a subgroup isomorphic to $SL_2(7)$ or by G'. This contradicts (2) or the fact that V is an irreducible G'-module. Hence we infer that U is centralized by a unique Sylow 7-subgroup and so $N_{G'}(U) \leq N_{G'}(S) \cong 2 \times 7$: 3. Since $|G': N_{G'}(S)| = 120$, we conclude that $N_{G'}(U) = N_{G'}(S)$. Clearly, $z \in N_{G'}(U) \setminus C_{G'}(U)$ and by (1) and the previous paragraph U is not centralized by a 3-element, either. So (3) and (4) are proved.

(5) Since 400 does not divide |Sym(7)|, we see that $G \sim 2 \cdot Sym(7)$ must preserve the orbits of G'. Since |G : G'| = 2 and, as we have seen that, for any $X \in \mathcal{P}(V)$, $N_{G'}(X)$ realizes Aut(X) on X, it is easy to deduce from (3), (4), and the structure of a group of shape $2 \cdot Sym(7)$ that the structures of $N_G(X)$ and $C_G(X)$ are as stated.

(6) In the proofs of (3), (4), and (5) we have seen that $N_G(W) \cong 2 \times 3 \times Sym(3)$. Further, $N_G(W) \leq C_G(y)$ and so $N_G(W)$ acts on $C_V(y)$. Since x acts fixed point freely on $C_V(y)$ and $C_G(W) \cong Sym(3)$ we see that $C_G(W)$ cannot normalize a 1-space in $C_V(y)$.

(7) Suppose that S centralizes two subspaces $U, W \in \mathcal{P}(V)$. Then by (3) we have $W = U^g$ for some $g \in G' \setminus N_{G'}(S)$. So $S < \langle S, S^g \rangle \leq C_G(W)$ and this contradicts (3) and (4). Hence dim $C_V(S) = 1$. It follows from [1, Lemma 5.5, Theorem 6.4] that as an S-module V embeds into the regular S-module of dimension 7. Since this module is uniserial the claims in (7) all hold.

COROLLARY 2.2. If $G \sim 2$ ·Alt(7).2 acts faithfully on a 4-dimensional vector space over GF(7), then $G \cong 2^{-}Sym(7)$.

Proof. By Lemma 2.1(5) there is an involution $x \in G \setminus G'$ such that x centralizes a non-zero vector in V and normalizes a Sylow 7-subgroup of G. The latter forces x to map onto a product of three disjoint transpositions in Sym(7). In other words, the involutions of Sym(7) which lift to involutions in G are the products of three disjoint transpositions whereas transpositions lift to elements of order 4 in G. By [5, page 236], this is just the definition of the group $2^{-}Sym(7)$ (in contrast to $2^{+}Sym(7)$).

The irreducibility of both conjugacy classes of subgroups isomorphic to $SL_2(7)$ in $2 \cdot Alt(7)$ on V proved in Lemma 2.1(2) will be a key point later and distinguishes the situation considered in this paper significantly from the corresponding 5-local case, which can be seen in the sporadic simple group discovered by Lyons. Indeed, in Ly we have the 5-constrained 5-local subgroup $5^{1+4}_+ \cdot 2 \cdot Alt(6) \cdot 4$. So $2 \cdot Alt(6)$ is acting on a 4-dimensional GF(5)space. Now $2 \cdot Alt(6)$ contains two conjugacy classes of subgroup $2 \cdot Alt(5) \cong$ $SL_2(5)$. It turns out that the module restricted to one of these subgroups is irreducible and restricted to the other one it is an indecomposable extension of two natural modules for $SL_2(5)$ (see [21] for further details).

In the following theorem we determine all the simple \mathcal{K} -groups which have an extraspecial Sylow *p*-subgroup of order p^3 for some prime *p*. In this paper, of course, we will then just make use of the case p = 7 but we will use the case p = 5 in [24]. We remark that the simple groups with dihedral Sylow 2-subgroups have been determined by Gorenstein and Walter (see [10], [11]) independent from the \mathcal{K} -group hypothesis. A shorter proof has been established by Bender and Glauberman (see [2], [3]). It was shown by Brauer and Suzuki (see [4]) that there are no finite simple groups with quaternion Sylow 2-subgroups. It is also a pleasure at this stage to acknowledge the assistance of our referee who pointed out that our original

proof of our next theorem could be dramatically shortened by citing [9, 4.10.3 (c)].

THEOREM 2.3. Let G be a simple \mathcal{K} -group, p a prime, and $S \in Syl_p(G)$. Assume that S is extraspecial of order p^3 . Then one of the following holds.

- (1) $G \cong L_3(p)$ or p is odd and $G \cong U_3(p)$.
- (2) p = 2 and $G \cong Alt(7)$ or $G \cong L_2(q)$ where $q \equiv \pm 7 \pmod{16}$.
- (3) p = 3 and $G \cong G_2(2)' \cong U_3(3)$ or $G \cong G_2(r^a)$ for some prime r where $r \equiv \pm 2, \pm 4 \pmod{9}$, a is not divisible by 3, and a > 1 if r = 2.
- (4) p = 3 and $G \cong {}^{2}F_{4}(2)'$ or $G \cong {}^{2}F_{4}(2^{a})$, where $a \ge 3$ is odd and not divisible by 3.
- (5) G is a sporadic group and
 - (i) p = 3 and G is one of M_{12} , M_{24} , J_2 , J_4 , He, Ru; or
 - (ii) p = 5 and G is one of HS, Co_3 , Co_2 , McL, Ru, Th; or
 - (iii) p = 7 and G is one of He, O'N, Fi'_{24} ; or
 - (iv) p = 11 and $G \cong J_4$; or
 - (v) p = 13 and $G \cong M$.

Proof. For the case p = 2 we simply refer to [4] and to [10, Theorem 2] (see also [6, page 462]). So from now on we assume p is odd.

Suppose first that $G \cong Alt(m)$ for some m. Then p > 3 since there are no alternating groups with Sylow 3-subgroup of order 3^3 . Further, as $|S| = p^3$, we must have $3p \leq m \leq 4p - 1$. But for such m the Sylow p-subgroups of Alt(m) are elementary abelian, generated by three disjoint p-cycles. So G is not an alternating group.

If G is a Lie type group in characteristic p with associated root system Φ , then, since the order of S is at least $p^{a|\Phi|/2}$, we deduce that G is isomorphic to either $L_3(p)$ or $U_3(p)$.

Suppose now that G is a group of Lie type defined over a field of order r^a where r is a prime with $r \neq p$. By a result due to Huppert [8, 15.21] the exponent of S is p and so S contains p+1 maximal elementary abelian subgroups. Using [9, 4.10.3 (c)] we infer that p = 3 and that G is isomorphic to one of $A_2(r^a)$ with $r^a \equiv 1 \pmod{3}$, ${}^2A_2(r^a)$ with $r^a \equiv -1 \pmod{3}$, ${}^2F_4(2^a)'$, $G_2(r^a)'$, or ${}^3D_4(r^a)$. In the first two cases a Sylow 3-subgroup of the universal group of Lie type is contained in a subgroup $(r^a - 1) : Sym(3)$ when $G \cong A_2(r^a)$ and in a subgroup $(r^a + 1) : Sym(3)$ when $G \cong {}^2A_2(r^a)$.

Thus, a Sylow 3-subgroup of the simple group G (which is the universal group factored by its centre of order 3) has order either 3^2 or strictly greater than 3^3 . So these cases do not occur. Also, by [7, 10-1(4)] we have that $G \not\cong {}^3D_4(r^a)$. Therefore, to conclude the proof of (3) and (4) we only have to establish the assertions about r and a. First let $G \cong {}^2F_4(2^a)$. Then a is odd since the groups ${}^2F_4(2^a)$ are only defined for odd a. To prove that a is not divisible by 3, we examine each of the possibilities $a \equiv 0, \pm 1 \pmod{3}$ and look when

$$2^a \equiv -1 \pmod{3}$$
, but $2^a \not\equiv -1 \pmod{9}$.

If a = 3b for some b then b must be odd (since a is odd). So

$$2^a = 2^{3b} \equiv 8^b \equiv (-1)^b = -1 \pmod{9}.$$

Hence this case cannot occur. If a = 3b + 1 then b is even. So

$$2^{a} = 2^{3b+1} \equiv 2 \cdot 8^{b} \equiv 2 \cdot (-1)^{b} = 2 \pmod{9}$$

and

$$2^{a} = 2^{3b+1} \equiv 2 \cdot 2^{b} \equiv 2 \cdot (-1)^{b} = 2 \equiv -1 \pmod{3}.$$

Similarly, if a = 3b + 2 then b is odd. So

$$2^a = 2^{3b+2} \equiv 4 \cdot 8^b \equiv 4 \cdot (-1)^b = -4 \pmod{9}$$

and

$$2^a = 2^{3b+2} \equiv 4 \cdot 2^b \equiv 1 \cdot (-1)^b = -1 \pmod{3}.$$

So when 3 does not divide *a*, the Sylow 3-subgroups of ${}^{2}F_{4}(2^{a})$ are at least of order 3³. As ${}^{2}F_{4}(2^{a}) \geq {}^{2}F_{4}(2)' \geq L_{3}(3)$ (see [5, page 74]) they are seen to be extraspecial and (4) is shown.

The proof for $G_2(r^a)$ is an easy exercise and goes in the same way, distinguishing the cases $r \equiv \pm 1 \pmod{3}$ and $ord_3(r^a) = 1, 2$. We leave the details for the reader and just mention that $G_2(r^a) \ge G_2(2)' \cong U_3(3)$ for all r (see [5, page 14] for r = 2 and [18] for r odd). This again shows that the Sylow 3-subgroups are extraspecial in the respective cases.

Finally, if G is a sporadic group the statement follows by inspection of [9, pages 262-287]. This concludes the proof.

COROLLARY 2.4. Assume that G is a simple \mathcal{K} -group and $S \in Syl_7(G)$. If $N_G(S) \sim 7^{1+2}_+ : (3:6) \sim 7^{1+2}_+ : (3 \times Sym(3))$, then $G \cong He$. Proof. Since S is extraspecial of order 7^3 , $G \cong L_3(7)$, $U_3(7)$, He, O'N or Fi'_{24} by Theorem 2.3. The groups $L_3(7)$ and $U_3(7)$ have $N_G(S)/S \cong 6 \times 2$ and $N_G(S)/S \cong 48$, respectively. So G is neither of these two groups. We now consult [9, Tables 5.3s and 5.3v] to see that the only possibility is that $G \cong He$.

THEOREM 2.5. Let G be a simple K-group and $S \in Syl_7(G)$. Assume that $|S| = 7^2$ and, for any $x \in S^{\#}$, either

- (1) $C_G(x) \cong 7 \times Alt(7)$, or
- (2) $C_G(x) \cong 7 \times L_3(2)$ or $7 \times 2^6 \cdot L_3(2)$,

and that S contains elements of type (1) as well as of (one of the types in) (2). Then $G \cong Co_1$ and the possibility that $C_G(x) \sim 7 \times 2^6 L_3(2)$ does not occur.

Proof. Again we examine each of the possibilities for G. If G is an alternating group Alt(n), then, as $|S| = 7^2$, $n \ge 14$. Taking x to be a 7-cycle we have $C_G(x) \cong Alt(n-7) \times 7$ and so n = 14. Now take x to be a permutation of cycle shape 7^2 . Then $C_G(x) = S$, a contradiction. Thus G is not an alternating group.

Suppose that G is a Lie type group defined in characteristic r. From [9, Theorem 4.9.6], for $x \in S$, the components of $C_G(x)$ are Lie type groups in characteristic r. Since Alt(7) is not a Lie type group in any characteristic, we have a contradiction in this case.

Finally assume that G is a sporadic simple group. Since $|S| = 7^2$, by considering group orders we see that the only possibilities are $G \cong Co_1$, $G \cong Th$ or $G \cong BM$. Consulting [9, Tables 5.3 l, 5.3 x and 5.3 y] and using the fact that G has at least two conjugacy classes of cyclic subgroups of order 7, we immediately obtain $G \cong Co_1$. Since Co_1 does not possess a 7-element with centralizer $7 \times 2^6 L_3(2)$, the remaining part of the theorem follows.

THEOREM 2.6. Assume that G is a simple \mathcal{K} -group and $S \in Syl_7(G)$. If $|S| = 7^2$ and, for some $x \in S^{\#}$, $C_G(x) \cong 7 \times 2 \cdot L_3(4).2$, then $G \cong BM$.

Proof. Once more we consider the possibilities for G. If $G \cong Alt(n)$ with $n \geq 5$, then, as the minimal permutation representation of $2 \cdot L_3(4).2$ has degree at least 21, we have $|G|_7 \geq 7^3$, a contradiction.

Suppose that G is a Lie type group defined in characteristic r. Since G is not of local characteristic 7, $r \neq 7$. From [9, Theorem 4.2.2 (ii)], for

 $x \in S$, the components of $C_G(x)$ are Lie type groups in characteristic r. Since $2 \cdot L_3(4).2$ is not a Lie type group in any characteristic, we have a contradiction in this case.

Finally assume that G is a sporadic simple group. Then, as $|S| = 7^2$, looking at [9, Tables 5.3 l, 5.3 x and 5.3 y] we immediately see that $G \cong BM$.

LEMMA 2.7. Let F be a group and H be a non-trivial subgroup of F such that $H \leq R$ whenever R is a non-trivial subgroup of F which is normalized by H. Then F has a unique minimal normal subgroup N, N is simple, and either

- (1) F embeds into Aut(N), or
- (2) $H = N \ cong\mathbb{Z}_p$ for some prime $p, \ C_F(N)$ is cyclic of order p^k for some $k \ge 1$, and $F/C_F(N)$ embeds into $Aut(\mathbb{Z}_p)$, or
- (3) $H = N \cong \mathbb{Z}_2$ and $F = C_F(N)$ is a quaternion group.

Proof. If N and M are minimal normal subgroups of F, then $1 \neq H \leq N \cap M$ and so N = M. Therefore, F has a unique minimal normal subgroup N.

Since N is a minimal normal subgroup of F, N is a direct product of simple groups, say, $N = N_1 \times N_2 \times \cdots \times N_k$. But as $H \leq N \leq N_G(N_i)$ for $1 \leq i \leq k$, we get $H \leq \bigcap_{i=1}^k N_i$ and so we conclude that N is simple. If N is a non-abelian simple group then (1) holds. So assume $H = N \cong \mathbb{Z}_p$ for some prime p. Set $K = C_F(N)$. Of course, F/K embeds into $Aut(\mathbb{Z}_p)$. Let $S \in Syl_r(K)$ for some prime $r \neq p$. Then $H = N \leq C_F(S)$ and so $H \leq S$ by hypothesis, a contradiction. Hence K is a p-group. Finally, if $x \in K$ is an element of order p then again $H = N \leq C_F(\langle x \rangle)$ and so $H = N = \langle x \rangle$. This shows that K contains a unique subgroup of order p. Now by [6, Theorem 4.10] either N is cyclic and (2) holds or p = 2, F = Kis a quaternion group, and (3) holds.

§3. Some general properties of the amalgam

In this section we set up some more notation and we prove some general properties of the amalgam $\mathcal{A} = (N_{\alpha}, N_{\beta}, N_{\alpha} \cap N_{\beta})$ described in the hypothesis of Theorem 1.1. These results will be used without further reference in the remaining sections.

For $\gamma \in \{\alpha, \beta\}$ we set $L_{\gamma} = N_{\gamma}^{\infty}$ and $Q_{\gamma} = O_7(N_{\gamma})$. Also, we usually write $N_{\alpha\beta} = N_{\alpha} \cap N_{\beta}$ and $L_{\alpha\beta} = L_{\alpha} \cap L_{\beta}$. The results in the next lemma

follow from the information presented in the statement of Theorem 1.1 with a little help from Lemma 2.1.

LEMMA 3.1. (1) $S = Q_{\alpha}Q_{\beta}, Z_{\beta} \leq Z_{\alpha} \leq Q_{\beta}.$

- (2) Q_{β} is extraspecial and Q_{β}/Z_{β} is an irreducible module for $L_{\beta}/Q_{\beta} \cong 2 \cdot Alt(7)$.
- (3) $Q_{\alpha} \cap Q_{\beta} = C_{Q_{\beta}}(Z_{\alpha}) = [Q_{\alpha}, Q_{\beta}] \text{ and } Z_{\alpha}/Z_{\beta} = C_{Q_{\beta}/Z_{\beta}}(S).$
- (4) Z_{α} is elementary abelian, $|\Phi(Q_{\alpha})| = 7^3$, $\Phi(Q_{\alpha}) \leq Q_{\beta}$, and Z_{α} and $Q_{\alpha}/\Phi(Q_{\alpha})$ are natural modules for $N_{\alpha}/Q_{\alpha} \cong GL_2(7)$; in particular, all elements in $Z_{\alpha}^{\#}$ are conjugate in N_{α} .
- (5) $N_{N_{\beta}}(Z_{\alpha}) = N_{\alpha\beta} = N_{N_{\alpha}}(Z_{\beta})$ and $N_{\alpha\beta}/Q_{\alpha} \cong 7: 6 \times 6 \cong N_{\alpha\beta}/Q_{\beta}$.
- (6) $L_{\beta} = C_{N_{\beta}}(Z_{\beta})$; in particular, N_{β} realizes the full automorphism group \mathbb{Z}_{6} on Z_{β} .
- (7) $N_{\beta} = L_{\beta} N_{N_{\alpha}}(Z_{\beta}) = L_{\beta} N_{\alpha\beta} \text{ and } N_{\beta}/Q_{\beta} \sim 2 \cdot (3 \times Sym(7)).$
- (8) $N_{\alpha} = L_{\alpha} N_{N_{\beta}}(Z_{\alpha}) = L_{\alpha} N_{\alpha\beta}.$
- (9) Q_{β} and Q_{α} are both characteristic subgroups of S.
- (10) Q_{β} contains representatives of at most two G-conjugacy classes of cyclic subgroups of order 7.

Proof. (1) Since $O_7(\langle N_\alpha, N_\beta \rangle) = 1$, the statements $S = Q_\alpha Q_\beta$ and $Z_\beta \leq Z_\alpha$ are immediate from the definitions. Furthermore, as $Z_\alpha = Z_2(S)$ and Q_β is normal in $S, Z_\alpha \leq Q_\beta$.

(2) Since, by [17], the smallest dimension of a faithful representation of $2 \cdot Alt(7)$ over GF(7) is 4, (2) holds.

(3) Observing that $[Q_{\alpha}, Q_{\beta}] \leq Q_{\alpha} \cap Q_{\beta}$ and that the latter is of order 7⁴ the statement in (3) follows from (1), the fact that N_{β} is 7-constrained and Lemma 2.1(7).

(4) If $N_{\alpha} \leq N_{\beta}$, then $Q_{\beta} \leq O_7(\langle N_{\alpha}, N_{\beta} \rangle) = 1$, which is a contradiction. Thus N_{α} does not normalize Z_{β} . In particular, Z_{α} is not cyclic, for otherwise Z_{β} would be the unique cyclic subgroup of Z_{α} of order 7 and as such would be normal in N_{α} . Furthermore, we see that $N_{\alpha}/Q_{\alpha} \cong GL_2(7)$ acts as $GL_2(7)$ on Z_{α} . Since $\Phi(Q_{\alpha}) \geq [Q_{\beta} \cap Q_{\alpha}, Q_{\alpha}] = [Q_{\beta}, Q_{\alpha}, Q_{\alpha}]$ which has order 7³ by Lemma 2.1(7) and $Q_{\alpha}/\Phi(Q_{\alpha})$ admits N_{α}/Q_{α} faithfully, the remaining parts of (4) follow easily.

(5) The first claim follows directly from the definition of N_{α} and N_{β} and (4) and the structure of $GL_2(7)$ imply the structure of $N_{\alpha\beta}/Q_{\alpha}$. The structure of $N_{\alpha\beta}/Q_{\beta}$ can be inferred from the action of $GL_2(7)$ on the natural module $Q_{\alpha}/\Phi(Q_{\alpha})$ involved in Q_{α} and (1). (6) A cyclic group of order 6 which normalizes Z_{β} and acts faithfully on it can be observed in the quotient $N_{\alpha}/Q_{\alpha} \cong GL_2(7)$.

(7) The first statement follows from parts (5) and (6). Further, since $Aut(Alt(7)) \cong Sym(7)$ either $N_{\beta}/Q_{\beta} \sim 2 \cdot (6 \times Alt(7))$ or N_{β}/Q_{β} is as claimed. But the first possibility obviously contradicts the structure of $N_{\alpha\beta}/Q_{\beta}$ stated in (5).

(8) To see this we note that $N_{\alpha} = L_{\alpha}N_{N_{\alpha}}(S) = L_{\alpha}N_{N_{\alpha}}(Z_{\beta})$ by a Frattini argument.

(9) Because $|S| = 7^6$, $Z_\beta = Z(S)$, and $Z_\alpha/Z_\beta = C_{Q_\beta/Z_\beta}(S)$, we have that Q_β is the unique extraspecial subgroup of order 7^5 in S. To see that Q_α is characteristic in S we simply note that Z_α is characteristic in S by its definition and that $Q_\alpha = C_S(Z_\alpha)$.

(10) By Lemma 2.1(3), N_{β} has two orbits on the cyclic subgroups of Q_{β}/Z_{β} . Since for each subgroup $F \leq Q_{\beta}$ of order 49 containing Z_{β} , Q_{β} has two orbits on the cyclic subgroups of F, we infer that there are 3 N_{β} -conjugacy classes of cyclic subgroups in Q_{β} . One of these conjugacy classes consists of Z_{β} and we have seen in (4) that Z_{β} is N_{α} -conjugate to a cyclic subgroup of Q_{β} not contained in Z_{β} . Hence (10) is true.

We now exploit the previous lemma to deduce some information about the structures of N_{α} and N_{β} . We have that $N_{\alpha\beta} \sim S : (6 \times 6)$. Let Tbe a fixed complement to S in $N_{\alpha\beta}$. So $N_{\alpha\beta} = ST$ and $T \cong 6 \times 6$. Let t_1, t_2, t_3 be the three involutions in T. From the structure of N_{α} and N_{β} we may assume that $t_1Q_{\beta} \in Z(N_{\beta}/Q_{\beta})$ and $t_2Q_{\alpha} \in Z(N_{\alpha}/Q_{\alpha})$. We set $J_{\beta} = C_{N_{\beta}}(t_1), K_{\beta} = J_{\beta}^{\infty}$ and, similarly, $J_{\alpha} = C_{N_{\alpha}}(t_2), K_{\alpha} = J_{\alpha}^{\infty}$. So

$$J_{\beta} \sim (7 \times 2^{\cdot} Alt(7)) : 6, \qquad K_{\beta} \cong 2^{\cdot} Alt(7)$$
$$J_{\alpha} \sim (7 \times SL_2(7)) : 6 \qquad \text{and} \quad K_{\alpha} \cong SL_2(7).$$

LEMMA 3.2. We have $t_2, t_3 \in N_\beta \setminus L_\beta, t_1, t_3 \in N_\alpha \setminus L_\alpha$. In particular, $\langle L_\beta, t_2 \rangle = \langle L_\beta, t_3 \rangle \cong 2^- Sym(7)$.

Proof. Since the involutions in Alt(7) lift to elements of order 4 in 2 Alt(7), L_{β} does not contain an elementary abelian group of order 4. Therefore the first statement holds for N_{β} . By Lemma 3.1(7) and Corollary 2.2 we have that $\langle L_{\beta}, t_2 \rangle = \langle L_{\beta}, t_3 \rangle \cong 2^{-}Sym(7)$. Since $SL_2(7)$ contains a single involution, the lemma also holds for N_{α} .

§4. The centralizer of a non 7-central element

In this section we pick a certain subgroup of S of order 7 and show that it is not contained in the center of any Sylow 7-subgroup of G. We prove that its centralizer in G is isomorphic to $7 \times He$ and so is not 7-constrained. In particular, we note that G is not of local characteristic 7. The existence of the subgroup $7 \times He$ in G will be exploited in Sections 5 and 6 to obtain information about the 2-local structure of G.

LEMMA 4.1. Let $U_{\alpha} = C_{Q_{\alpha}}(t_2)$. Then $|U_{\alpha}| = 7$, $U_{\alpha} \leq Q_{\beta}$, and U_{α} is not 7-central in G.

Proof. As Q_{α} involves two natural modules for N_{α}/Q_{α} and t_2 acts fixed point freely on such modules and L_{α} centralizes $\Phi(Q_{\alpha})/Z_{\alpha}$, which by Lemma 3.1(4) is of order 7 and contained in Q_{β} , we have $|U_{\alpha}| = 7$ and $U_{\alpha} \leq Q_{\beta}$. Suppose $U_{\alpha} = Z_{\beta}^{g}$ for some $g \in G$. Then $C_{G}(U_{\alpha}) \leq N_{\beta}^{g}$. But $Z_{\alpha}U_{\alpha}K_{\alpha} \leq C_{G}(U_{\alpha})$ and K_{α} acts irreducibly on Z_{α} . This shows that $Z_{\alpha} \leq Q_{\beta}^{g}$ and that $K_{\alpha} \cong K_{\alpha}Q_{\beta}^{g}/Q_{\beta}^{g} \cong SL_{2}(7)$ does not act irreducibly on $Q_{\beta}^{g}/Z_{\beta}^{g} = Q_{\beta}^{g}/U_{\alpha}$, a contradiction to Lemma 2.1(2).

For $\gamma \in \{\alpha, \beta\}$ let $X_{\gamma} = C_{N_{\gamma}}(U_{\alpha})$ and $Y_{\gamma} = N_{N_{\gamma}}(U_{\alpha})$. Let $X = \langle X_{\alpha}, X_{\beta} \rangle$, $Y = \langle Y_{\alpha}, Y_{\beta} \rangle$, and let $X_0 = C_G(U_{\alpha})$, $Y_0 = N_G(U_{\alpha})$. Obviously,

$$(*) X \le X_0 \cap Y \le X_0 Y \le Y_0.$$

LEMMA 4.2. Let $C = C_{Q_{\beta}}(U_{\alpha})$. Then $C \in Syl_7(A)$ for $A \in \{X, Y, X_0, Y_0\}$; in particular, the 7-part of the order of A is 7^4 .

Proof. We first note that $|C| = 7^4$ by Lemma 4.1 and as Q_β is extraspecial. Also, since $C \leq X$, (*) shows that it suffices to prove the statement for $A = Y_0$. Let $R \in Syl_7(Y_0)$. We may assume that $C \leq R$, so $R \cap Q_\beta = C$. Since U_α is not 7-central by Lemma 4.1, we have $|R| \leq 7^5$, so $|R : C| \leq 7$ and $C \leq R$. Hence also $Z_\beta = Q'_\beta = C' \leq R$ and therefore $R \leq N_G(Z_\beta) = N_\beta$. If $|R| = 7^5$, then $R \not\leq Q_\beta$ and so $C \leq Q_\beta R = R_1 \in Syl_7(N_\beta)$. But then $U_\alpha Z_\beta = Z(C) \leq R_1$ and Lemma 2.1 applied to Q_β/Z_β implies that $Z(C)^g = Z_\alpha$ for $g \in N_\beta$ with $R_1^g = S$. As all elements in $Z_\alpha^{\#}$ are 7-central we get a contradiction to Lemma 4.1. So R = C and we are done.

LEMMA 4.3. (1)
$$X_{\alpha} = U_{\alpha} \times Z_{\alpha} K_{\alpha} \cong 7 \times 7^2$$
: $SL_2(7)$ and $Y_{\alpha} = U_{\alpha} Z_{\alpha} J_{\alpha} \sim (7 \times 7^2 : SL_2(7)) : 6.$

- (2) $X_{\beta} \sim 7 \times 7^{1+2}_+ .(Sym(3) \times 3)$ and $Y_{\beta} \sim (7 \times 7^{1+2}_+).(Sym(3) \times 3 \times 6);$ in particular, $O_{7'}(X_{\beta}) = 1.$
- (3) X_{β} acts irreducibly on $O_7(X_{\beta}/U_{\alpha}Z_{\beta})$ and $|X_{\beta}: X_{\beta} \cap L_{\beta}| = 6$.

Proof. (1) is a straightforward consequence of the definition of U_{α} and (2) follows easily from Lemmas 4.1, 4.2, and 2.1. (Note that $t_1, t_3 \in (Y_{\alpha} \cap Y_{\beta}) \setminus (X_{\alpha} \cup X_{\beta})$.) Finally, the first statement of (3) holds by Lemma 2.1(6), the second one by (2) and Lemma 2.1(4).

LEMMA 4.4. $N_{X_0}(C) = X_{\beta} = N_X(C).$

Proof. Let $N = N_{X_0}(C)$. As $C \leq Q_\beta$ and $|C| = 7^4$, $C' = Z_\beta$ and therefore

$$N \le N_{X_0}(C') = N_{X_0}(Z_\beta) \le N_G(Z_\beta) = N_\beta$$

Since $U_{\alpha} \leq Z(X_0)$ we get $N \leq C_{N_{\beta}}(U_{\alpha}) = X_{\beta}$ and so $N_{X_0}(C) = X_{\beta} = N_X(C)$.

PROPOSITION 4.5. $C_G(U_\alpha) = X \cong 7 \times He \text{ and } N_G(U_\alpha) = Y \sim (7 : 3 \times He) : 2; in particular, N_G(U_\alpha) is not 7-constrained and G is not of local characteristic 7.$

Proof. With $C_G(U_\alpha) = X_0$ as above, by Lemma 4.2 we have $C = C_{Q_\beta}(U_\alpha) \in Syl_7(X_0)$. We are going to apply Corollary 2.4 and Lemma 2.7.

Let $K > U_{\alpha}$ be a subgroup of X_0 which is normalized by X. Suppose first $K = U_{\alpha} \times O$, where $O = O_{7'}(K)$. Then

$$O = \langle C_O(z) \mid z \in Z^\#_\alpha \rangle.$$

Since all elements in Z_{α} are conjugate in X into Z_{β} , we may assume that $C_O(Z_{\beta}) \neq 1$. But $C_O(Z_{\beta}) \leq X_{\beta}$ and so $C_O(Z_{\beta}) \leq O_{7'}(X_{\beta}) = 1$, a contradiction.

Hence 7^2 divides |K| and $K \cap C > U_{\alpha}$. Since Z(C) is not normal in X_{α} we have $K \neq Z(C)$ and then Lemma 4.3(3) shows that $C \leq K$. Now X_{α} is generated by its Sylow 7-subgroups and so $X_{\alpha} \leq K$, too. Finally, $X_{\alpha} \cap X_{\beta} \sim$ $7 \times 7^{1+2}_+.(2 \times 3)$ which shows that X_{β} is generated by its conjugates of $X_{\alpha} \cap X_{\beta}$. We thus get $X = \langle X_{\alpha}, X_{\beta} \rangle \leq K$.

This shows that $F = X_0/U_{\alpha}$ and $H = X/U_{\alpha}$ satisfy the hypothesis of Lemma 2.7. So Lemma 2.7 tells us that X_0 has a unique normal subgroup N which is minimal with respect to properly containing U_{α} , that N/U_{α} is simple, and as N/U_{α} is obviously not cyclic, that X_0/U_{α} embeds into

 $Aut(N/U_{\alpha})$. Furthermore, as $N/U_{\alpha} \geq X/U_{\alpha}$, Lemma 4.4 and Corollary 2.4 imply that $N/U_{\alpha} \cong He$. Since the Schur multiplier of He is trivial (see [5, page 104]) this implies $N \cong 7 \times He$. Moreover, [5, page 104] reveals that X_{α} and X_{β} are both maximal subgroups of N and so $N = \langle X_{\alpha}, X_{\beta} \rangle = X$. Finally, $X_0 = NN_{X_0}(C) = NN_X(C) = X$ by a Frattini argument and Lemma 4.4.

From the definition of Y and the structures of Y_{α} , Y_{β} we further see that $X \leq Y$ and that $Y = \langle X, x \rangle$ for some element x of order 6 whose cube does not centralize X'. Together with the fact that |Out(He)| = 2 this shows that the structure of Y is also as stated and that $Y = Y_0$. (Otherwise we would get $X_0 > X$.)

Comparing Proposition 4.5 with the list of *p*-local subgroups of the monster M in [5, page 234] we see that Y is isomorphic to a 7*A*-normalizer in M.

§5. 2-Central involutions

The main goal of this section is to prove that G contains a unique conjugacy class of 2-central involutions and to show that the centralizer of such an involution is of shape $2^{1+24}_{+}.Co_1$. As a consequence, we also get that the 2-part of |G| is 2^{46} .

Recall our fixed complement $T \cong 6 \times 6$ of S in $N_{\alpha\beta}$ and its three involutions t_1, t_2, t_3 .

LEMMA 5.1. t_1 , t_2 , and t_3 are all conjugate in G.

Proof. By Lemma 3.2 and Corollary 2.2, t_2 and t_3 both project to a permutation conjugate to (12)(34)(56) in $\langle L_{\beta}, t_2 \rangle / O_{7,2}(\langle L_{\beta}, t_2 \rangle)$. In particular, they are conjugate in N_{β} . Further, it follows from the structure of $GL_2(7)$ that there is some $g \in N_{N_{\alpha}}(T) \setminus N_{\alpha\beta}$ such that $Z_{\alpha} = Z_{\beta}Z_{\beta}^g$. As $[t_1, Z_{\beta}] = 1 \neq [t_1, Z_{\alpha}]$ we get $[t_1, Z_{\beta}^g] \neq 1$ and so $t_1 \neq t_1^g$. Since g normalizes $\langle t_1, t_2 \rangle = \langle t_1, t_3 \rangle$ and $t_2^g = t_2$ we must have $t_1^g = t_3$ and the lemma follows.

Set $E = C_{Q_{\beta}}(t_2)$.

LEMMA 5.2. $|E| = 7^2$ and $C_{N_{\beta}}(t_2)$ has two orbits $\{U_i \mid i = 0, 1, 2, 3\}$ and $\{Z_i \mid i = 0, 1, 2, 3\}$ on the set of cyclic subgroups of order 7 in E, where $U_0 = U_{\alpha}$ and the Z_i are conjugates of Z_{β} . *Proof.* We have

$$Q_{\beta}/Z_{\beta} = C_{Q_{\beta}/Z_{\beta}}(t_2) \oplus [Q_{\beta}/Z_{\beta}, t_2]$$

as a decomposition invariant under $C_{N_{\beta}}(t_2)$. Since

$$C_{\langle L_{\beta}, t_{2} \rangle}(t_{2})Q_{\beta}/Q_{\beta} \sim 2 \times 2 \cdot Sym(4)$$

and t_1 inverts Q_β/Z_β we conclude that both factors must be 2-dimensional. So $|E| = 7^2$ as $Z_\beta \leq E$.

Clearly $U_0 = U_{\alpha} \leq E$. Now let $g \in N_{\alpha}$ with $t_1^g = t_3$ as in the proof of Lemma 5.1 and choose $h \in \langle L_{\beta}, t_2 \rangle$ with $t_3^h = t_2$. Then $t_1^{gh} = t_2$ and so t_2 centralizes $Z_0 = Z_{\beta}^{gh}$. Since

$$Z_0 = Z_{\beta}^{gh} \le Z_{\alpha}^{gh} = Z_{\alpha}^h \le Q_{\beta}^h = Q_{\beta}$$

we see that $Z_0 \leq E$. Finally, the length of the orbits follows from the facts that Z_0 and U_0 are not conjugate in G by Proposition 4.5, that E contains precisely eight cyclic subgroups of order 7, and that $t_1 \in N'$ for any subgroup $N \leq C_{N_\beta}(t_2)$ with $|C_{N_\beta}(t_2): N| < 4$.

Set $N_0 = N_G(Z_0)$, $L_0 = C_G(Z_0)$, $Q_0 = O_7(N_0)$, $J_0 = C_{N_0}(t_2)$, and $K_0 = J_0^{\infty}$. Then $J_0 \sim (7 \times 2 \cdot Alt(7)) : 6$ and $K_0 \cong 2 \cdot Alt(7)$. Let $K = C_G(t_2)$.

LEMMA 5.3. We have $X \cap K = C_X(t_2) \sim 7 \times 2^{1+6}_+ L_3(2)$, $Y \cap K = C_Y(t_2) \sim (7: 3 \times 2^{1+6}_+ L_3(2)).2$,

and $O_2(X \cap K)/\langle t_2 \rangle$ is irreducible as module for $(Y \cap K)/O_2(Y \cap K)$.

Proof. We know that $X \cap K \ge K_{\alpha} \cong SL_2(7)$ and so [5, page 104] shows that $X \cap K$ is as stated (since the other involution centralizer $2^2.L_3(4).2 \le He$ does not contain $SL_2(7)$). The structure of $Y \cap K$ follows immediately.

LEMMA 5.4. $E \in Syl_7(K)$.

Proof. We have $E \leq K$ by the definition of E and K. Let $E \leq E_1 \leq E_0 \in Syl_7(K)$ such that $E \leq E_1$. Then $C_E(E_1) \neq 1$ and by Lemma 5.2 we may assume that either $Z_0 \leq Z(E_1)$ or $U_\alpha \leq Z(E_1)$. In the second case we get $E = E_1 = E_0$ from Lemma 5.3. In the first case, as $t_2Q_0 \in Z(L_0/Q_0)$, t_2 inverts Q_0/Z_0 whence $E_1 \cap Q_0 = Z_0$ and $E_1Q_0 = EQ_0 \in Syl_7(L_0)$. So $E = E_1 = E_0$ as $|S:Q_\beta| = 7$.

COROLLARY 5.5. $O_7(K) = 1$.

Proof. This can easily be deduced from Lemmas 5.2, 5.3, and the structure of J_0 .

PROPOSITION 5.6. $K \sim 2^{1+24}_{+}.Co_1.$

Proof. Let $R = O_{7'}(K)$ and $\overline{K} = K/R$. Let \overline{N} be a minimal normal subgroup of \overline{K} and N its full preimage in K. Then 7 divides $|\overline{N}|$. Now Lemmas 5.2 and 5.4 immediately imply that $E \leq N$ and that \overline{N} is simple. From the structures of $X \cap K$ and K_0 we infer further that

$$O^7(\overline{K}) = \overline{N} \ge \langle X \cap K, K_0 \rangle R/R$$

In particular, $C_{\overline{N}}(\overline{Z_i}) \cong 7 \times Alt(7)$ and $C_{\overline{N}}(\overline{U_i}) \sim 7 \times 2^6 L_3(2)$ or $C_{\overline{N}}(\overline{U_i}) \cong 7 \times L_3(2)$ for $i = 0, \ldots, 3$. Applying Theorem 2.5 to \overline{N} now shows that $\overline{N} \cong Co_1$ and also that $C_{\overline{N}}(U_i) \cong 7 \times L_3(2)$ must hold for $i = 0, \ldots, 3$. In particular, $R \neq \langle t_2 \rangle$.

On the other hand, as $R = \langle C_R(e) \mid e \in E^{\#} \rangle$ and we also see that $C_R(Z_i) = \langle t_2 \rangle$ and $C_R(U_i) \cong 2_+^{1+6}$ for $i = 0, \ldots, 3$ we conclude that R is a 2-group of order $|R| = 2^{25}$. Also, $t_2 \in R'$. Since $R/\langle t_2 \rangle$ admits \overline{N} faithfully and the dimension of the smallest nontrivial representation of Co_1 over GF(2) is 24, we get that R is extraspecial with $R' = \langle t_2 \rangle$ and R/R' is irreducible as \overline{N} -module. Moreover, by [13] the 24-dimensional representation of Co_1 over GF(2) is absolutely irreducible and uniquely determined. So our representation of \overline{N} on $R/\langle t_2 \rangle$ must be identical to the known one which embeds Co_1 into $O_{24}^+(2)$ and R must be extraspecial of +-type. Finally, we get K = N since the outer automorphism group of Co_1 is trivial (see [5, page 180]).

COROLLARY 5.7. Let $P \in Syl_2(K)$. Then $Z(P) = \langle t_2 \rangle$ and $P \in Syl_2(G)$; in particular, $\{t_2^g \mid g \in G\}$ is the unique conjugacy class of 2-central involutions in G.

Proof. Since $K/O_2(K)$ acts faithfully on $O_2(K)$ and $O_2(K) \leq P$ we have $Z(P) \leq C_K(O_2(K)) \leq O_2(K)$. So $Z(P) \leq Z(O_2(K)) = \langle t_2 \rangle$, which is the first assertion. Now let $P \leq P_1 \leq P_0 \in Syl_2(G)$. Then $P_1 \leq N_G(Z(P)) = N_G(\langle t_2 \rangle) = C_G(t_2) = K$ and so $P = P_1 = P_0$.

§6. The centralizer of a non 2-central involution and the proof of Theorem 1.1

To establish the isomorphism $G \cong M$ we also need to find an involution with centralizer isomorphic to $2 \cdot BM$ in G. By [13], as a $K/O_2(K)$ -module, $O_2(K)/\langle t_2 \rangle$ is isomorphic to the Leech lattice reduced mod 2. Let $s \in$ $O_2(K)$ be an element such that $s\langle t_2 \rangle/\langle t_2 \rangle$ corresponds to a vector of type 2. Then from the Atlas [5, page 180], we have that s has order 2, $C_K(s) \sim$ $2^{1+1+22}.Co_2$ and $C_K(s)/\langle s \rangle \sim 2^{1+22}_+.Co_2$ is perfect.

LEMMA 6.1. s and t_2 are not conjugate in G.

Proof. Suppose that s is conjugate to t_2 . Then $C_K(s) = K \cap C_G(s)$ and

$$C_K(s)O_2(C_G(s))/O_2(C_G(s)) \cong Co_2,$$

as Co_2 is a maximal subgroup in Co_1 . Thus $O_2(C_K(s)) \leq O_2(K) \cap O_2(C_G(s))$. But

 $[O_2(K) \cap O_2(C_G(s)), O_2(K) \cap O_2(C_G(s))] \le \langle t_2 \rangle \cap \langle s \rangle = 1$

so $O_2(K) \cap O_2(C_G(s))$ is abelian. Since $O_2(C_K(s))$ is not abelian, we have a contradiction. Thus s is not conjugate to t_2 .

LEMMA 6.2. The elements of order 7 in $C_G(s)$ are not conjugate into Z_β . In particular, we can choose $s \in K = C_G(t_2)$ such that $s \in X$ and $C_X(s) \sim 7 \times 2^2 \cdot L_3(4).2$

Proof. Since all the involutions in $C_G(Z_\beta) = L_\beta \sim 7^{1+4}_+ .2$ Alt(7) are conjugate to t_2 , the first claim follows at once from Lemma 6.1. Consequently, since 7 divides $|Co_2|$, Lemmas 5.2 and 5.4 imply that we may choose $s \in O_2(C_K(t_2))$ so that $[s, U_\alpha] = 1$. Now $C_X(s) \sim 7 \times 2^2 \cdot L_3(4).2$ follows from [5, page 104] and Lemmas 5.3 and 6.1.

Set $L = C_G(s)$, let $F_0 \in Syl_7(X \cap L)$ and $F_0 \leq F \in Syl_7(L)$. Observe that $|F_0| = 7^2$.

LEMMA 6.3. $F = F_0$ and all the elements of F are conjugate in L to elements of U_{α} .

Proof. We have already seen that F does not contain any 7-central element. In particular, the same holds for F_0 . Since by Lemma 4.2 $C_{Q_\beta}(U_\alpha) \in Syl_7(X)$ and as by Lemma 3.1 all elements in Q_β are either 7-central or conjugate into U_α , we conclude that all elements in F_0 must be conjugate into U_α . Thus, Sylow 7-subgroups of $C_G(f)$ are isomorphic to $C_{Q_\beta}(U_\alpha) \cong 7 \times 7^{1+2}_+$ for any $f \in F_0^{\#}$. We hence conclude that any 7-group containing F_0 properly contains 7-central elements and that $F = F_0$.

Finally, let $f \in F^{\#}$ and $g \in G$ with $f \in U_{\alpha}^{g}$. Then $s, s^{g^{-1}} \in C_{G}(U_{\alpha}) = X$. Since by [5, page 104] He just contains two conjugacy classes of involutions and as s is not conjugate to t_{2} there must be some $h \in X$ such $s^{h} = s^{g^{-1}}$. Then $hg \in L$ and $U_{\alpha}^{hg} = U_{\alpha}^{g} = \langle f \rangle$.

LEMMA 6.4. $C_X(s) \cap C_K(s)$ contains a Sylow 2-subgroup V of $C_X(s)$.

Proof. From the identification of $O_2(K)$ in Proposition 5.6, we have that $C_{O_2(K)}(U_\alpha) \sim 2^{1+6}_+$ and so $C_{O_2(C_K(s))}(U_\alpha)$ has order 2⁶. Now, by [5, page 154], the centralizer of a Sylow 7-subgroup in $C_K(s)/O_2(C_K(s)) \cong Co_2$ is $7 \times Dih(8)$. Thus we infer that $C_{C_K(s)}(U_\alpha) \sim 7 \times V$ where V has order 2⁹. By Lemma 6.2, $|C_X(s)|_2 = 2^9$. This proves that $V \in Syl_2(C_X(s))$.

PROPOSITION 6.5. $L \cong 2 \cdot BM$.

Proof. Clearly, $O_7(L) = 1$. Let $U = O_{7'}(L)$, $\overline{L} = L/U$, let \overline{N} be a minimal normal subgroup of \overline{L} , and N its full preimage in L. Since 7 dives $|\overline{N}|, F \cap N \neq 1$ and so $F \leq N$, as all cyclic 7-subgroups of F are conjugate in L by Lemma 6.3. A similar argument shows that \overline{N} must be simple.

By Lemmas 6.2 and 6.3 we now have $C_{\overline{N}}(\overline{f}) \sim 7 \times 2.L_3(4).2$ or $7 \times L_3(4).2$ for any $f \in F^{\#}$.

In the first case, Theorem 2.6 gives $\overline{N} \cong BM$. Furthermore, $L \cap C_G(F) \leq N$ and so L/N embeds into $Out(\overline{N})$. Since Out(BM) = 1 by [5, page 219] we get L = N. Also, as $U = \langle C_U(f) \mid f \in F^{\#} \rangle$ and now $C_U(f) = \langle s \rangle$ for any $f \in F^{\#}$ we get $U = \langle s \rangle$. Hence $L \cong 2 \cdot BM$ since $s \in C_X(s)' \leq L'$.

It remains to exclude the second case, that is, that $2^2 \cong O_2(X \cap L) = U$. Now $U \leq V \leq C_K(s)$ where $V \in Syl_2(C_X(s))$ as in Lemma 6.4. As U is normalized by $C_K(s)$ we infer that $U = \langle s, t_2 \rangle$. On the other hand, by [5, page 104] all involutions in $O_2(X \cap L)$ are conjugate in X. This contradiction to Lemma 6.1 completes the proof.

Proof of Theorem 1.1. This now follows from Propositions 5.6, 6.5, [12], and [25].

We remark that in [25] Wilson proved that M contains just one conjugacy class of maximal 7-local subgroups which is not mentioned in [5]. This additional 7-local subgroup was discovered by Chat Yin Ho [14] it is isomorphic to 7^2 : $SL_2(7)$ and so does not contain a Sylow 7-subgroup of M.

Acknowledgement. We would like to thank the anonymous referee for his remarks which improved the proof of Theorem 2.3 and considerably simplified Section 5.

References

- J. L. Alperin, Local representation theory, volume 11 of Cambridge Studies in Advanced Mathematics, Cambridge University Press, Cambridge, 1986. Modular representations as an introduction to the local representation theory of finite groups.
- [2] H. Bender, Finite groups with dihedral Sylow 2-subgroups, J. Alg., 70 (1981), no. 1, 216–228.
- [3] H. Bender and G. Glauberman, Characters of finite groups with dihedral Sylow 2-subgroups, J. Alg., 70 (1981), no. 1, 200–215.
- [4] R. Brauer and M. Suzuki, On finite groups of even order whose 2-Sylow group is a quaternion group, Proc. Nat. Acad. Sci. U.S.A., 45 (1959), 1757–1759.
- [5] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, and R. A. Wilson, Atlas of finite groups, Clarendon Press, Oxford, 1985.
- [6] D. Gorenstein, Finite Groups, Harper and Row, New York, 1968.
- [7] D. Gorenstein and R. Lyons, The local structure of finite groups of characteristic 2 type, Mem. Am. Math. Soc. 42(276), 1983, vii+731.
- [8] D. Gorenstein, R. Lyons, and R. Solomon, The Classification of the Finite Simple Groups, Number 2, volume 40 of Mathematical Surveys and Monographs, American Mathematical Society, Providence, RI, 1996.
- [9] D. Gorenstein, R. Lyons, and R. Solomon, The Classification of the Finite Simple Groups, Number 3, volume 40 of Mathematical Surveys and Monographs, American Mathematical Society, Providence, RI, 1998.
- [10] D. Gorenstein and J. H. Walter, The characterization of finite groups with dihedral Sylow 2-subgroups. I, J. Alg., 2 (1965), 85–151.
- [11] D. Gorenstein and J. H. Walter, The characterization of finite groups with dihedral Sylow 2-subgroups. II, J. Alg., 2 (1965), 218–270.
- [12] R. Griess, U. Meierfrankenfeld, and Y. Segev, A uniqueness proof for the Monster, Ann. Math., 130 (1989), 567–602.
- [13] R. L. Griess, A remark about representations of .1, Comm. Algebra, 13 (1985), 835–844.
- [14] C. Y. Ho, A new 7-local subgroup of the Monster, J. Algebra, 115 (1988), no. 2, 513–520.

- [15] A. A. Ivanov, A geometric characterization of the Monster, Groups, combinatorics & geometry (Durham, 1990), volume 165 of London Math. Soc. Lecture Note Ser., Cambridge Univ. Press, Cambridge (1992), pp. 46–62.
- [16] A. A. Ivanov and U. Meierfrankenfeld, Simple connectedness of the 3-local geometry of the Monster, J. Algebra, 194 (1997), no. 2, 383–407.
- [17] C. Jansen, K. Lux, R. Parker, and R. Wilson, An atlas of Brauer characters, volume 11 of London Mathematical Society Monographs, New Series, The Clarendon Press Oxford University Press, New York, 1995. Appendix 2 by T. Breuer and S. Norton, Oxford Science Publications.
- [18] P. B. Kleidman, The maximal subgroups of the Chevalley groups $G_2(q)$ with q odd, the Ree groups ${}^2G_2(q)$, and their automorphism groups, J. Algebra, **117** (1988), no. 1, 30–71.
- [19] H. Kurzweil and B. Stellmacher, Theorie der endlichen Gruppen, Springer-Verlag, Berlin, 1998. Eine Einführung. [An introduction].
- [20] U. Meierfrankenfeld, B. Stellmacher, and G. Stroth, *Finite groups of local charac*teristic p: An overview, Groups, combinatorics & geometry (Durham, 2001), World Sci. Publishing, River Edge, NJ (2003), pp. 155–192.
- [21] C. W. Parker and P. J. Rowley, A characteristic 5 identification of the Lyons group, J. London Math. Soc. (2), 69 (2004), no. 1, 128–140.
- [22] C. W. Parker and P. J. Rowley, Symplectic Amalgams, Springer, London, 2002.
- [23] C. W. Parker and C. B. Wiedorn, A 5-local identification of the Monster, Arch. Math., 83 (2004), 404–415.
- [24] C. W. Parker and C. B. Wiedorn, 5-local identifications of the Harada Norton group and of the Baby Monster, in preparation (2003).
- [25] R. A. Wilson, The odd local subgroups of the Monster, J. Austral. Math. Soc. Ser. A, 44 (1988), no. 1, 1–16.

C. W. Parker School of Mathematics and Statistics University of Birmingham Edgbaston Birmingham B15 2TT UK C.W.Parker@bham.ac.uk

C. B. Wiedorn School of Mathematics and Statistics University of Birmingham Edgbaston Birmingham B15 2TT UK wiedornc@for.mat.bham.ac.uk