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1. Introduction

In the theory of modular representations of a finite group G in an alge-

braically closed field Ω of characteristic p, Brauer has proved a useful reduction

theorem for blocks [2, §§11, 12], [5, (88.8)], which can be reformulated as

follows:

THEOREM 1 (Brauer). Let P be an arbitrary p-subgroup of G let N = N0(P)

and W- PCQ(P). Then there is a natural one-to-one correspondence between the

set of all blocks of G which have P as a defect group and the set of orbits, under

conjugation by N/P, of those blocks Έ of WIP such that:

(1.1) B has defect 0, and

(1.2) |S : W/P\ΦO (mod p)t where S is the stability group of β in N/P.

The proof of this theorem can be divided into three parts: first a reduc-

tion from G to N by Brauer's first main theorem [2, (10 B)], then a reduction

from N to W which is obtained by analyzing relationships between N and its

normal ^-subgroup P [2, (11 B)], and finally a relatively easy reduction from

W to W/P. The arguments in [2] rely heavily on the theory of Brauer

characters. Rosenberg [12, Theorem 5.3] has given a proof of the first reduc-

tion which operates within centers of group algebras, thus avoiding the use

of character theory, and which eliminates the assumption that Ω is algebraically

closed; and Conlon [4, p. 166] and Reynolds [11, Theorem 1] have generalized

Rosenberg's argument to twisted group algebras, that is, to the case of pro-

jective representations.

It is the aim of the present paper to obtain a corresponding treatment of

the second reduction, and so to prove by character-free methods a version
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(Theorem 5> of Theorem 1 for twisted group algebras over arbitrary Ω, which

embodies the first two reductions. The generalization to the twisted case

causes almost no complications, while the generalization concerning Ω forces

us to replace the stability group by a certain smaller group. We also

perform the third reduction to obtain another version (Theorem 6) of Theorem

1 however we have not been able to avoid using character theory at one

point here (cf. the Remark preceding Theorem 2). In the twisted case, the

third reduction is not possible in general unless a purely inseparable extension

of Ω is allowed.

We develop our tools in sections 2 and 4, leading up to the block theory

for a group and a normal subgroup (cf. [6, § 1], [10, §10]). The heart of

the paper is in § 5, where we prove Theorem 5 by placing it in the setting of

this theory. Here the normal subgroup is PCG{P)t P being a normal ^-subgroup.

This situation is summed up in Theorem 4, which is closely related to a

theorem of Fong [6, ( I F ) ] ; then Theorem 5 is obtained as a corollary. The

final section is devoted to the third reduction.

2. Commutative algebras

Let A be a (finite-dimensional associative) commutative algebra with identity

1 over a field Ω. There are natural one-to-one correspondences between (a)

the block idempotents, i.e. primitive idempotents, of Λ, (b) the maximal ideals

of Λ, and (c) the irreducible representations of A in Ω, in which the idempotent

e corresponds to the ideal

(2.1) MA(e) = A(l - e) + rad A,

which in turn is the kernel of the corresponding representation [2, pp. 415-

416], [12, pp. 210-211]. (Here rad A denotes the radical of A.) We shall find

it convenient to emphasize the ideals rather than the representations, since

the latter need not have degree 1. We have 1 = Σe, summing over the set of

all block idempotents e of A. Each idempotent d of A is the sum over some

subset of this set we call the elements of this subset the summands of d in

A. Note that these summands are necessarily block idempotents of A.

Suppose that A is a subalgebra of A with 1 e J, that d is a block idempotent

of J, and that e is a summand of d in A. Then J( l - d)^A(l -d)^Λ(l -e),

so that in the notation of (2.1)
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MJd) = J ( l - r f ) + rad Jςz{jΓ\ Λ(l-e)} + {Δ Π rad Λ } c A Π MA(e).

Since MΛd) is a maximal ideal of J,

(2.2) MΛW) = J ί l M Λ ( Λ

Next we state some results involving field extensions, which we shall need

later to reduce our considerations to the case where Ω is a splitting field.

LEMMA 1. Let A be a commutative algebra with 1 over Ω. Let Ω* be a finite

extension of Ω which is a splitting field for Λ, and let Λn = Ω*®ςιΛ be the Ω*

algebra obtained from A by scalar extension. Let e be a block idempotent of A,

and e* a summand of e in A*. Let k be an Ω-automorphism of A such that

k(e) = e, and let k* be the extension of k to an Ω* -automorphism of A?. Then

(2.3) k(x)=x (mod MΛ(^)), x<zA,

if and only if k*(en) = e*.

Proof. Set h( x) = x-\- MA(e) e A/MA( e). Let h* be the irreducible representa-

tion of An in Ωn corresponding to e*. Then the kernel of h%\A contains, and

hence equals, MA(e) therefore there is an i2-monomorphism i of A/MA{e) into

Ω* such that i*h = h*\Λ. Then (2.3) is equivalent in turn to each of the

statements h°k-hy {h*\A)°k = h*\Λ, and tf^tf-h*. yl^/rad Λ* is a direct

sum of copies of Ω* and since the natural mapping of A9 onto ΛVrad A*

maps block idempotents on block idempotents (cf. [1, Theorem 9 . 3 d ) , one

of these copies is (ΛVrad Λ*)U* + rad Λn). Then h*°k* = h* if and only if

&*(#*) ΞΞ&# (mod radΛ*); and since k* permutes block idempotents, the latter

holds if and only if **U*) = k*.

LEMMA 2. (Noether) [7, §9], [13, §124]. Let Ω, A, Ω*y A*, and e be as in

Lemma 1. Assume in addition that Ω* is normal over Ω\ then the Galois group

^ of Ω* over Ω has a natural action on Λ#, which permutes the block idempotents

of Λ*. Then the set of all summands of e in A* is an orbit under ¥?.

Proof. The conclusion is equivalent to the following statement: if ^ is

the irreducible representation of A in £" corresponding to e, then the distinct

irreducible constituents h* \ A of h in Ω* form an orbit under algebraic conjuga-

tion by ^. We can take h as in Lemma 1 as in that lemma, these constituents

correspond naturally to the β-monomorphisms / of the field A/MA(e) into Ω*.
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The result is now clear.

COROLLARY. Let Λ be a commutative algebra with 1 over Ω, let Ω* be a finite

purely inseparable extension field of Ω, and let A* = St ® QΛ, Then A and Λ* have

the same block idempotents.

To prove this, apply Lemma 2 with ΩQΩ*^Ω*> using the fact that the

Galois groups of Ω* over Ω and over St are equal.

3. Twisted group algebras

Let G be a finite group and let Ω be a field of prime characteristic p. Let

Γ(G) be a twisted group algebra of G over Ω: that is, an associative Λ2-algebra

with a basis {(g) : g<=G} such that (g){h) = eg,h(gh), g, h<=Gt where 0^eg,h

ej? [1], [11], [14]. Here the mapping e : (g,h)->εgth must be a factor set

(or 2-cocycle) of G in Ω. For any x^Γ(G) and g&G, define

(3.1) x8=(grιx(g).

The mapping #->#s is an J2-automorphism of the algebra Γ(G). Furthermore

(xs)h = xsft for g, h&G, so that G is represented homomorphically by these

automorphisms. The set ( j ε Π G ) xg - x ίox all g^G) of fixed points of

this action of G on ΠG) is clearly the center A(G) of Γ(G). For any subgroup

X of G, let Γ(X) be the subalgebra of ΠG) with basis {(g) : g e l } , and let

Λ(Z) be the center of Γ(Jf).

An element ^ G G is called ε-regular (or, in the terminology of [4], a u-

element) if (^);i = (g) for all Λ e G such that gΛ = gy where we set ̂ A = h~ιgh.

By [4, § 1] we can assume without loss of generality that e has been chosen

so that

<3.2) (g)H=(gh), g, h<zG, g e-regular.

Then the class sums (K) = Σ g eκ(^) for all the e-regular conjugate classes K

of G (that is, all classes consisting of ε-regular elements) form a basis of Λ(G)

[4, p. 155], [14, p. 174].

For any g&K, any ̂ -Sylow subgroup of Cσ(g) is called a defect, group of

K in G. Each block idempotent e of Λ(G) can be written in the form

(3.3) *

summing over the e-regular classes K. The largest of the defect groups of
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those K for which aLKΊ Φ 0 are called the defect groups of e in G these make

up a full set of conjugate subgroups of G [4, § 3], [12, § 23.

Remark. In (3.3), aLKl = 0 unless K consists of p-xegular elements. This

can be proved as in [9, p. 1783, working in a splitting field of Λ(G) and using

projective Brauer characters [8, p. 593. This remark will be used in §6.

THEOREM 2. Let Ωn be a finite normal extension of Ω> let Λ*(G) = Ω*®QA(G),

and let en be a summand of e in Λn(G). Then the defect groups of e* in G

coincide with those of e.

Proof. Observe that A*(G) is the center of a twisted group algebra over

Ω*. We can assume without loss of generality that Ω* is a splitting field for

A(G) : cf. the proof of the corollary to Lemma 2. By that corollary, we can

then replace Ω by its purely inseparable closure in Ω*, and so assume also

that Ω* is separable over Ω. By Lemma 2, e = Σσe f tσ where a runs over a certain

subset of &.

Let D be a defect group of en, and hence of each e*σ, in G, and let N =

NG(D). There is an algebra-homomorphism s, the Brauer homomorphism [4,

p. 1563, [12, Lemma 3.33, of Λ*(G) into Λ*(N) such that

(3.4) s((K))= Σ (g), # e-regular

here we assume (3.2). Then s(e) = 'Σisie*'3) = "Σ*,(s(e*))9. By the reduction

from G to N [11, Theorem 13, [12, Theorem 5.33, the elements s(e*σ) are

distinct block idempotents of A*(N) with defect group D in N, and )& permutes

the subsums of the sum Σ ^ * ' and those of the sum 'ΣnSie^) in corresponding

ways. Any summand of s(e) in A{N) in the sense of §2 is a subsum Σ-sU^)

of Σ'jsίe*'') which is invariant under ^ then Στ^^ τ is invariant under ^ ,

and so is in AKG) (by separability), and therefore equals e. In other words,

s(e) is a block idempotent of A(N). By [4, p. 1663, [12, Proposition 4.43,

s(e*") is a linear combination of class sums of N corresponding to classes with

defect group D then the same holds for s{e), so that s(e) has defect group

D in N.

The expression (3.3) for e involves only class sums of classes of G with

defect groups conjugate to subgroups of D in G, since the same holds for e*

by the definition of D. But by (3.4) and the fact that s{e) has defect group
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D in N, some one of these classes of G contains a class of N with defect

group D in N, and hence has a defect group containing D in G. Therefore

D is a defect group for e in G, and the theorem is proved.

4. Normal subgroups

Under the assumptions of §3, let AT be a given normal subgroup of G.

Then ΠH) is stable under the action (3.1) of G on Γ(G), and the algebra

J(G, H) of fixed points of Γ(H) under this action is given by

(4.1) Δ(G, H) = Λ(G) Γϊ Γ(H) = Λ(G) Π Λ(H).

Clearly this action of G permutes the block idempotents / of Λ(H), and

the block idempotents of Δ(G, H) are the sums

(4.2) d

over the orbits of this permutation representation [6, p. 266], [10, p. 3461 In

(4.2), / i s fixed and g runs over a set of right coset representatives in G of

the stability group (or inertial group)

(4.3) W/) =

of / in G. Each such d can also be expressed as a sum

(4.4) rf = Σ *

of some of the block idempotents e of Λ{G), namely the summands of d in

Λ(G) in the sense of §2. By (2.2),

(4.5) MMQ.B){d) = Δ(G, H)ΠMMG)(e)=Λ(Gt H)Γ\MMHAf).

For each u<Ξlo(f), the action x->xu of (3.1) maps MMn){f) onto itself,

and hence induces an J2-automorphism

of the field Λ(H)/MA{H)(f), regarded as containing Ω in the natural way. The

set of those u for which this automorphism is the identity is a subgroup of

/β(/) which we call the small stability group of / in G (relative to H). If Ω

is a splitting field for Λ(H), then Λ(H)/MA(H)(f) = 42 and this group is simply

/«(/). For general Ωt the following theorem is an immediate consequence of

Lemma 1,
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THEOREM 3. Let Ω* be a finite normal extension of Ω which is a splitting

field for^ Λ(H), and let Λ*(H) = Ω*<8>ΩΛ(H). Iff9 is any summand of f in

A*iH), then the small stability group of f in G is equal to loif*).

Accordingly, we shall denote the small stability group of / in G (relative

to H) by / ! , * ( / ) .

5. Normal P-subgroups

Now assume that Γ(G) is a twisted group algebra of a finite group G over

a field Ω of characteristic p, and that P is a normal /^-subgroup of G. We

shall study the situation of §4 for the normal subgroups C~CQiP) and W =

CP of G.

LEMMA 3. The algebras Λ(G), J(G, W), and A(G, C) have the same set of

block idempotents.

Proof Since AiG, C) Q AiG, W)^AiG), we need only show that every

block idempotent d of A(G, C) is a block idempotent of A(G). For any such

d we have d=*Σe, summing over certain block idempotents of AiG), by (4.4).

Let s be the Brauer homomorphism of AiG) into AiNGiP)) = AiG) thensίiK))

= Σ (g) (cf. (3.4)). Then 5 maps A(G) into J(G, C) and fixes each element

of JIG, C), so that

(5.1) J = 5(ίί)=Σ5U).

By the "twisted" generalization, implicit in [4, §3], of [12, Proposition 4.4],

the defect group in G of each e contains the normal subgroup P. Hence the

expression (3.3) for e contains some term with aLKl? Oand/ΓsC; this implies

that s(e)^ 0. Thus (5.1) expresses the block idempotent d of J(G, C) as a

sum of non-zero orthogonal idempotents of J(G, C). Hence the sum in (5.1)

contains only one term, and the same must hold in (4.4). This proves the

lemma.

Remark. Lemma 3 is of the same type as [10, Lemma 12 D], which asserts

that if H is a normal subgroup of G and if G/H is a />-group, then A(G) and

AiG, H) have the same block idempotents.

LEMMA 4. Let e be a block idempotent of AiG), and hence also of AiG, W) I

let f be a summand of e in Λ(W), and let S = /σ(/). Then
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(5.2) e = Σgf8,

where g ranges over a set of right coset representatives of S in G. Furthermore

f is a block idempotent of Λ(S), and each defect group of f in S is a defect group

of e in G.

Proof By Lemma 3, e is a block idempotent of J{G; W). Then (4.2)

yields (5.2), with / a block idempotent of Λ(W). By the definition of S, / is

a block idempotent of J{S, W), and hence also of A{S) by Lemma 3 for S.

This proves everything except the statement about defect groups.

We can assume that the condition (3.2) and its analogues hold simultaneously

for e and for its restrictions eIS and ε\W. To see this, apply Conlon's procedure

[4, pp. 154-155] first to the e-regular classes of G, then to the (ε| S) -regular

classes of 5 whose elements are not ε-regular, and finally to the (e| W)-regular

classes of W whose elements are not (ε\S)-regular. Then we can write

(5.3) e « Σ * α D G ( i O , / = Σ L / 9 L £ H L ) ,

summing over e-regular classes K of G and (e| W)-regular classes L of W

respectively. (In fact we need sum only over classes contained in C, by Lemma

3.)

By (5.2) and (5.3), e= ΣsΣ^IZIKL)*. Comparing this with (5.3), we

see that the value of this sum is unchanged if we restrict the summation to

those L which consist of ε-regular elements. Making this restriction, we have

by (2.3) that (L)8 = {LS), where L* = {w* : w<=L}. Hence for L^K(^W)

and K ε-regular, we have

(5.4) αC/n-ΣfflZO,

with g as in (5.2).

For u e S and y e Nβ{D, 0Wusy)~ll = βUrlartu'ιl - βίL^^l = βίL8'1! (cf.

(5.3)) hence βίL8*! actually depends only on the double coset SgNG{L). For

any weL, N0(L) = WC0(w)f so that SgNG{L) = SgWCo(w) ^SWgCQ(w) =

SgCG(w). Then if z ranges over representatives of the distinct double cosets

SZCQ{W), (5.4) can be rewritten as

(5.5) a\JΩ = T>Z\CG(W) : CA

By the definition of defect group, we can choose K here so that <xlKl ψ 0
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while each £-Sylow subgroup of CG(W) is a defect group of e in G. Then for

some zl i9[L2~1]v^0 and \CQ(w) ' Csz(w) l # 0 (mod p). Replacing w by wz and

L by ZΛ we have WGLQK such that

(5.6) βίHf 0, |C<?(w) : Cs(w)\φ0 (moάp).

Then any ^-Sylow subgroup of Cs(w) is a defect group of e in G, and, since

/3LL] =*F 0, it is contained in some defect group of / in 5.

By [12, Proposition 3.2], which carries over to the twisted case, we can

impose on K the further restriction that

(5.7)

By (4.5),

W)

W) ΠMA(»(/) = J(S, WO

By (5.7), (β$Mi ( ( ? > ( r ,W; since (X) e J(G, WO, (-K)ΦΛfΔ(iF)(/), whence

MM8.w)(f). But ( i f )eJ(S, TF), whence (iΓ)^MΛ(5 )(/).

Write (iί) =Σ(-KΌ, where each K' is a conjugacy class of 5. Then we

can choose Kf so that (ϋC0^'MΔ(s)(/). K1 contains some conjugate wf of w

in G. Since (2Γ)ΦMΛ(s)(/), the argument of [12, Proposition 3.2] shows that

any ^-Sylow subgroup D of Cs(w') contains a defect group of / in S. On the

other hand, D is contained in a conjugate in G of a />-Sylow subgroup of

Co(to). Combining these facts with those following (5.6), we see that D is

both a defect group of / in 5 and a defect group of e in G. This completes

the proof of the lemma.

THEOREM 4. Let ey f, and S be as in Lemma 4. Then f is a block idempotent

of Λ(S*), where S* = 1%, w(f). If D is a defect group of f in Sn, then :

(5.8) D is a defect group of e in G,

(5.9) WΓi D is a defect group of f in W, and

(5.10) WDIW is a p-Sylow subgroup of SV W.

Proof In the case that Ω is a splitting field for Λ(W), S* = S and (5.8)

follows from Lemma 4. In the general case, let J2tt be a finite normal extension

of Ω which is a splitting field for Λ(W). Set Λ*(X) = Ω*®QΛ(X) for each

subgroup X of G. Let / # be any summand of / in Λ*(W). Then / # is a
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summand of e in Λn{W), and so there is a summand e* of e in J#(G, W) = Λn(G)

Γ\Λ*(W) such that /* is a summand of e* in Λ#(Wθ. By Lemma 3, en is a

block idempotent of Λn(G).

By Theorem 3, S* = /<?(/*). Then Lemma 4 shows that /* is a block

idempotent of Λ^CS*), and that each defect group of /* in Sn is a defect group

of e* in G. The same lemma, with S* in the role of G, shows that / is a

block idempotent of Λ(S#). By Theorem 2, e and ## have the same defect

groups in G, and / and / # have the same defect groups in S*. Combining

these results, we obtain (5.8).

In view of (5.8), we see that in proving (5.9) and (5.10) we lose no

generality by supposing that G = S# then also e = /. As in the proof of

Lemma 4, we have K such that aZKl^Q and (K)ΦMAuv)(f)> while for each

w<=K, each ^-Sylow subgroup of C0{w) is a defect group of / in G. We can

choose w so that the given defect group D is a ^-Sylow subgroup of CG{w).

The straightforward equation

\CQ(W) : D\ = \Cw{w) : TΓΠfll | WCβ(w) : FZ>!

shows that WΓί.D is a ί-Sylow subgroup of Cw(w), and that | WCQ{w): WD\ # 0

(mod p). Let L be the conjugate class of W containing w. Then βZL2 - a\_K~}

v̂ O since e=f; therefore WΠD is contained in some defect group D of / in

We have {K) = Sy(^) v , summing over right coset representatives v of

NQ(L)=WCG(W) in G. Since G = S*, ( i ) s ( L ) t t and then 0#(i f ) =

\G : WCG(w;)|(L) (mod AfΔ(ir)(/)). Then \G : WCG(w)\φ0 (mo$p), so that

\G : W^D|#0 (mod£), which yields (5.9); and (L) $ M A ( I D ( / ) , which implies

that WΠDΏD [12, Proposition 3.2] and yields (5.10). This completes the

proof of Theorem 4.

At this point we drop the assumption that P is normal in G, and apply

Theorem 4 for No{P)t in conjunction with the reduction froni G to NG(P) [11,

Theorem 1] (cf. [2, (10 B)], [12, Theorem 5.3]), to obtain our main theorem.

THEOREM 5. Let Γ(G) be a twisted group algebra of a finite group G in a

field Ω of characteristic p. Let P be an arbitrary p-subgroup ofG; let N= N0(P)

and W— PCQ(P). Then there is a natural one-to-one correspondence between the

set of all block idempotents of A(G) with P as a defect group in G and the set of
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orbits, under the action (3.1) of N, of those block idempotents f of A{W) such

that:

(5.11) / has P as its unique defect group in Wy

and

(5.12) Hlw(f) : W\φO (mod/>).

Proof By the reduction to N, the Brauer homomorphism of A(G) into

Λ(N) gives a one-to-one correspondence between the block idempotents of Λ(G)

in question and the set of the block idempotents of Λ(N) with defect group P

in N. By Lemma 3 and (4.2), all the block idempotents e of Λ(N) are in one-

to-one correspondence with all the orbits of block idempotents /of Λ(W) under

the action of N, where the orbit of / corresponds to e if and only if / is a

summand of e in A(W).

We must show that if / is a summand of e, then e has defect group P in

N if and only if (5.11) and (5.12) hold. Let D be a defect group of / in

il.Af) then by (5.8), e has defect group P in N if and only if D = P. If

(5.11) and (5.12) hold, then (5.12) implies that D^W, and (5.9) shows that

D is a defect group of / in W, so that D = P by (5.11). Conversely if D = P,

then (5.9) gives (5.11), and (5.10) gives (5.12).

6. Reduction to W/P

Suppose again that"P is a normal ^-subgroup of G, and that Γ{G) is a

twisted group algebra over Ω. After replacing Ω by a suitable purely inseparable

finite extension field, we can change C4, p. 154] the factor set e of Γ(G) to

achieve that the elements U), z e P , form a normal subgroup of the multipli-

cative group consisting of all elements ω(g), g^ G, 0 =* ω e Ω. (We do not require

that (3.2) still hold.) Then the JZ-subspace of Γ(G) spanned by all elements

(g)((z) - (1)), g<= G, Z G P , is a nilpotent ideal of Γ(G). lit is a homomorphism

of Γ{G) with this ideal as kernel, then the image t(Γ(G)) is a twisted group

algebra Γ(G/P) [4, p. 166], [12, Lemma 4.2]; similarly t(Γ(W)) =Γ( W/P)

where W= PCQ(P). Changing factor sets again, we can suppose that the factor

sets ε and F of Γ(G) and Γ(G/P) have been so chosen that the analogues of

(3.2) for e and τ\(W/P) (but not necessarily for e) hold, while for all # e G,

t((g)) = (gP). Then under the actions (3.1) of G and G/P,
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(6.1) /(**) = (t(x))8P, x<=ΠG), g&G.

LEMMA 5. (Cf. [3, (2 G)3). The restriction oft to A{W) induces a one-to-

one correspondence f*>t(f) between the block idempotents of Λ(W) and those of

Λ{W/P). In this correspondence, orbits under the action (3.1) of N correspond to

orbits of N/P, Io/p(t{f)) = I0(f)/P, and ll,P, w,p(t(f)) = ZS>(/)/P. A subgroup

D of G is defect group off in W if and only if DIP is a defect group of

t{f) in W/P.

Proof By [1, Theorem 9.3 C], t\ Λ(W) induces a one-to-one correspondence

between the block idempotents of Λ(W) and those of t(A(W)). So we will

obtain the desired correspondence if we show that every block idempotent /

of Λ(W/P) lies in t(Λ(W)). By the remark preceding Theorem 2, / is a linear

combination of ^-regular (? | TF/P)-regular class sums (Γ) of Λ(W/P). By [2,

(11 A)], it is easy to show that each such class sum can be expressed uniquely

in the form (Z)=ί((L)) for some /^-regular (ε\W)-regular class sum (L) of

Λ(W), and that for each weL, Cwtp{wP) = Cfv(w)/P. Then / e l U ( ί f ) ) , so

that / has the form t(f).

Now (6.1) implies the statements on orbits and stability groups. Applying

our results for a suitable splitting field Ω* of Λ(W), together with Theorem 3,

we obtain the statement on small stability groups. The statement on defect

groups follows from a comparison of the expressions (5.3) for/ and /(/).

Again dropping the assumption that P is normal in G, we obtain our final

result by using Lemma 5 to reformulate Theorem 5.

THEOREM 6. Under the assumptions of Theorem 5, let ΛiNIP) be defined as

above, after making a suitable purely inseparable finite field extension. Then there

is a natural one-to-one correspondence between the set of all block idempotents of

Λ{G) with P as a defect group in G and the set of orbits, under the action (3.1)

of NIP, of those block idempotents f of A(W/P) such that:

(6.2) f has defect group {1} in W/P, and

(6.3) \ll,P,w,p{f) : W/P\^0 (mod/>).

In general it is impossible to avoid the purely inseparable extension in

Theorem 6, as the following simple example shows. Let G = iV=P={l, a}%

have order 2; let Ω = Z2(λ) be the field of rational functions over the field
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with 2 elements; let en = εί>a- εa,i = 1, εa,a~λ. Then e is a factor set, but

Γ(G) = Γ(Λ0 is a field, and hence has no homomorphic image which is a twisted

group algebra Γ(N/P). This example also illustrates that in the course of

Conlon's proof of the first reduction theorem Π4, p. 166], it is necessary to

make a purely inseparable extension. This extension causes no further com-

plications in the proof, since it does not change the block idempotents by the

corollary to our Lemma 2. Of course none of these difficulties arise in the

case that e is trivial.
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