
FUNDAMENTAL EXACT SEQUENCES IN (CO)-
HOMOLOGY FOR NON-NORMAL SUBGROUPS

TADASI NAKAYAMA

In this paper we prove the fundamental exact sequence in (co)homology

for non-normal subgroups announced in our previous note [8] : Let H be a

subgroup of a group G. If M is a G-module and if, for a natural number n,

HmiUy M) = 0 for m = 1, . . . , n - 1 and for every subgroup U of H which is

an intersection of conjugates of H in G,υ then we have an exact sequence

Ot—HΛG, H, M)<£-Hn(G, M)^-Hn(Hf M)ι

<^-#Λ + 1(G, Hy M)^-Hn+ιiGt M)

the significance of the maps and the group Hn(H, Mh will be explained below.

(We have a dual result for cohomology groups). This generalizes, on one hand,

the Hochschild-Serre [6] (cf. also [2], [3]) fundamental exact sequence for the

case of a normal subgroup H and extends, on the other hand, the partial

sequence given by Adamson [1].

Our result for group (co)homology has in the meantime been extended to

a more general case of ring (co)homology by Hattori [4]. His proof is both

quite general and quite ingenious. In comparison with Hattori's [4] proof the

writer's one is quite clumsy, not only that merely the group case is considered.

Inspite of this (and notwithstanding that it might also be possible to prove our

exact sequences by spectral sequence method2) as in [5], [2]) the writer dares

to assume that his original artless approach still retains some use, if small, in

the sense that for example it serves to make explicit and elementary what are

defined in [4] in highly theoretical constructions of advanced nature, parti-

cularly with respect to the residue group Hn(H, M)ι and the transgression map

in homology case.

Received November 25, 1960.
*> The assumption can be weakened a little, with respect to the number of conjugates

of H to express U. See our Theorem in No. 7 for the exact form of assumption.
2^ For this, however, a rather new sort of spectral sequences would perhaps be needed.
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In describing the relative homology groups HniG, H, M) (see [1], [5])

we use the standard complex X(G, H) of G relative to H\ its w-component

Xn(G, H) is the free module generated by the totality of (w + l)-tuples (σoH,

. . . , anH) of right i/-cosets in G and has the G-left-moduIe structure defined

by σiσoH, . . . , onH) = {oσoH, . . . , aonH). The differentiation in X(G, H) is

defined as usual, and by (σoy . . . , σn) -> (tfo#, . . . , <JnH) we obtain a homo-

morphism (of G-complexes) to X(G, H) of the standard complex X(G) of G.

Turning to the complexes M®GX(Gf H), M®GX(G) of chains over M and

passing to homology, this homomorphism induces the deflation (or residuation)

map ψ of homology groups, which appears in the above sequence as the second

and the fifth arrows. Denoting the said homomorphism of chain complexes

also by φ, and denoting by t the homomorphism M®nX{H) -+ M0GX(G)

induced by the monomorphism (<r0, . . . • *n) -* (<̂o, . . . , <Jn) (σi^H) of X(H)

into X(G), consider the correspondence between an w-cycle / in M®HX(H)

and an w + 1-cycle h in M®GX(G, H) such that there exists an n + 1-element

(chain) g in M®0X(G) satisfying

The totality of / corresponding to h - 0 is evidently a subgroup of the group

of w-cycles in M®πX(H). The residue group of the group of w-cycles in

M®nX(H) by the subgroup generated by this subgroup and the group of n-

boundaries is denoted by HΛH, M)i. The ordinary injection map t: Hn{Ht M)

-* HniG, M), defined by the above map c of chain complexes, induces evidently

a homomorphism of Hn(Hy M)i into Hn(G, M) which is denoted also by the

same letter c in our sequence. Under our assumption, HmKU, M) =Ofor m= 1,

. . . , n-l, for every w + l-cycle h in M®GX(G, H) there is an w-cycle / in

M®nX(H) corresponding to h by our above correspondence, and by associat-

ing the homology class of h with the residue class in Hn(H, M)ι of the homo-

logy class of/ we obtain a homomorphism #n+i(G, H, M) -+ Hn(H, M), trans-

gression, denoted above by τ\ Further, under the same assumption, our se-

quence is exact and, moreover, the kernel of the canonical homomorphism

Hn(H, M) -* Hn(H, M)i is the subgroup of Hn(H, M) generated by the ho-

mology classes of form CHΠ\HX-I,ΉK - CH^-W.HT^K (K G Hn(HΓ\ ί/fς"1, Λf), where

ξ runs over G, T% is the transformation isomorphism of Hn(H ΠξHξ'1, M) tς>
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Γ1)*, M) = Hn(HΓ\ζ~ιHξ, M\ and the injection maps are speci-

fied with suffices indicating the groups of references. This all is the content

of our fundamental exact sequence, and its proof consists of two parts. While

the second part is the induction part and is straight forward, the first part is

the verification of the case n = 1 and is made by rather complicated computa-

tions. Thus, in proving the case n = 1, we first give our principal lemma which

shows, in explicit computation, that for every 2-cycle h in M®aX(G, H) there

are always a 1-cycle / i n M®πX(H) and a 2-chain g in M ΘσX(G) satisfying

h = <pg, tf- -dg. While merely the existence of/, g satisfying the relation is

used in establishing the case n = 1 of our fundamental exact sequence in its

weak form, i.e. in the form where the residue group Hn(H, M)i is understood

in its first definition, our explicit description of /, g is used in order further to

show that the residue group thus defined can also be characterized by its second

definition as given above (by the property dual to stability).

We are thus mainly concerned with homology group case and cohomology

is ignored in the present exposition, since in our approach the homology case

is more troublesome to handle and demands some new technics while the co-

homology case is easier and can be handled by habitual means.8)

In an appendix we consider the case of finite groups and discuss the rela-

tionship between our exact sequences and another similar series of exact se-

quences by means of the result in our previous note [91

The writer is grateful to A. Hattori for his friendly cooperation during

the preparation of the present paper. His communications have been useful to

improve essentially the writer's original form of result in several points.

1. Normal form of a relative chain

Let G be a group, and H a subgroup. The ^-component Xn(G, H) of the

(relative) standard complex X( G, H) of G relative to H is, as explained in the

introduction, a free module generated by the totality of (w+ l)-tuples (σoH, aiH,

. . . , onH) of right ff-cosets and has the G-left-module structure defined by

oiσoH, . . . , onH) = (σσoH, . . . , σσnH). The set of all (w + l)-tuples of form

(H, (TιH, . . . , σnH) forms thus its generating system with respect to G. We

3 ; The writer is communicated that in Hattori's theory, which is exposed in case of
cohomology in [4], the treatments of homology and cohomology are rather, if not quite,
parallel.
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can further choose a subset

(1) s = (Hy aiH, . . . , anH), s' = (Hy σi'H, . . . , σn'H), . . .

of the set such that for every (n+ 1)-tuple t of form (JET, rii/, . . . , r w # ) there

is in the set one, and only one, element from which t is obtained by the opera-

tion of an element of H, and therefore, for every (τί-fl)-tuple f = (τoH, τ\Hf

. . . , τnH) there is in the set one, and only one, element, say s(μ), from which

t is obtained by the operation of an element of G, thus t = τs(μ) (τ e G) here

τ Ξ τo r.mod ί/, s rκyi(μΓlr.mod tf/^jffί/1*'"1, . . . , and τ is determined uniqualy

up to r.moά HΠai^Ha^Π Γ W μ ί i W μ r l . Such a set (1) forms thus

a G-basis (or, more precisely, Z[G]-basis, ZCG] denoting the group ring of G

over the integers Z) of X,(G, # ) .

For Λ = 1, in particular, such a G-basis (1) of Xi(G, H) is a set (H, σH),

(H, σ'H), . . . where ^, σ\ . . . form a complete representative system of double

coset decomposition of G mod//. For Λ > 1 , generally, the system au σi\ . . .

may be chosen as such double coset representatives each taken with certain

iteration.

Let M be a G-right-module. The group of (relative) w-chains of G over

M relative to H is the tensor product

M®QXn(Gt H)

over G (or, more precisely, over the group ring ZlGl). Each element of

M®GXn(G, H) is expressed in a form

(2) U®GS + U'®QS'+ ••• («, « ' , . . . <Ξ£).

Set K^HDσiHσΓ'Π Π^ff^"1, Kf ^HΠσ^HaΓ1 Π ' ' ' Πσn'Hσn''1,

. . . . Let Λf* be, as usual, the residue-module of M modulo its submodule

generated by elements of form u-urc(u^M, ΛΓG/Γ), and similarly with Λfe/,

etc. Then the classes in the residue-modules MK, Mk>, . . . of the coefficients

u, u\ . . . in (2) are uniquely determined. With some fixed choice of the system

(1) we shall consider (2) as a normal form of w-chain in M®oX(Gy H).

2. Principal lemma

First we fix some notations to be used below. Let 8 be a complete re-

presentative system of right ϋ/-cosets in G. Deviating somewhat from the nota-
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tion in the preceding number, let (Si = {^i) be a complete representative system

of double H-cosets in G, and let for each # i e ® i a complete representative

system of right HΓ\ aiHcci'^cosets in H be denoted by £)(α:i). Thus

(3) {(H,

is a G-basis of X3(G, H), and

(4)

is a complete representative system of right H-cosets in G later we shall have

occasions to specify © to be this representative system (4), but for the moment

such a specification is not needed.

Further, let ®2 = {(tf2, &)} be a system of pairs of elements of G such

that the system

(5) {(H, a2H, β2H)\(a2, ft)e(&>}

is, as the system (1) for the case n-2, a G-basis of MΘσX2(Gt H). (One

way of constructing such a system (§2 is to start with ©i, take for each αiG@]

a complete representative system {Q(aι)} of double (Hi) aiHaι~1)Ή-cosets in

G, and to set ©2 = {(«!, βίαπ)) Γαi e Gi, j9(αi) e {j9(αi)>}. But we do not need

to take our ©2 in this special form.) Let, further, ξ)(α2, &) be a complete

representative system of right HΓ\ a2Ha2~1 Π &27&Γ^cosets in i7.

Now, consider 2-chain

(6) Σ v(ξ, y)®0(l, ϊ, y)^M®oX2{G) Wf.^eM)

of G over M Its boundary is given by

(7) Σ υ(ξ, ̂ )® β ((c, T?) — (1, y) + (l, ξ))

= Σ (#(??, y/haia)iq — viy, hoc\ά)

+ ^(^^iβ, y))h®G(h~\ aid).

The image of this by the canonical deflation (or residuation) map ί£: M®

-+M®GX(G9 H) is

(8) Σ Σ (v( η, -ηhaia)y-v(y}, hcc\a) + vihcaa, -η))h®Q(H>

If here this relative chain (8) is 0, then there exist, by our observation in the
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preceding number, functions q(aci, c) in M of cGHΠaiHaΓ1, depending on

cti e ®i, such that we have

(9) Σ (v(η, ηhaia) -v(y, hot\ά) + v(hctiaf -η))h

Σ (qicci, c)c-q(acu c))
G H H ~ ι

for each αi e ®i.

An element ft of Λf<g)(?.Xί(G, H) can always be expressed as the image by

φ of some element, say (6), of M®OX2(G). If in particular 3ft = 0, then, since

φ and 3 commute, the above consideration applies to the case. Now we prove

our principal

LEMMA 1. For every (relative) 2-cycle ft in M®QX(G, H) there are a 2-

chain g in M®OX(G) and a 1-cycle f in M®HX(H) satisfying

(10) h = φgt cf=-dg

(where c is the canonical injection map of M®HX(H) into M®QX(G)). More

precisely, if ft is the image of (6) by ψ> then we can take qiocu c) e

c (ΞHΠaiHacΓ1) so as (9) holds for every ocχ e ®i and with

(11)

and

(12)

-

+

Σ V(ξ, 7})®<

+ v(hacia, yj))

+ α i , « , ) -

-»(fc«xα!,))ί

β(l. 1, fl)

(r(i?, -ηhaia^-υi η, hana)
m veσ
h®a((h~1, «\, a

_t*«i, β)®β((l.

(1, c, cαi))

(v( ηy -ηhociύ

tαi®π(l, Λ)

Σ Σ (v(̂ » yhaiά)

Σ

(̂ [(αi, C)®H(1,

(^(αi, c) -^(«i»

jαί-fίft"1, 1, ax))

0^ — f(^, ha\ά)

— v(-ηt hociά) + v(hacιa,

c) - q(au c)ai®H(l, oc

c)a1)®B(l1 1)

h)

we have 3/= 0 and (10).

Proof. Though somewhat abruptly, we define g as in (11). Its image <gg
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by the map ψ is h, since the first sum in (11) is simply (6) (which is mapped

to h by φ) while the image of the second sum is, by (9),

Σ Σ (qiaiy c)c — q(au c)) ®a((H, aiH, aiH) ~ (H, H, aiH)) =0

and the image of the last two sums is

Σ • Σ ^q{au c)®a((H, ccιHt aiH) - (H, aiH,

+ (H, H, aiH) - {H, H, aiH)) = 0.

On the other hand, we have (cf. (7))

Σ a(h~ί

1 aid)

+ Σ (v(y, yhaia) -viη, haia) Λ vihaia, 7}))h(&G{(aι, a\a)

- (h~\ aid) + (h'\ cci) + (1, αi) - (ft"1, αi) + (A"1. D)

+ Σ flf(αi, c)®a((<xu CCCI) ~ (1, cαi) + (1, ai) - (αi, ai)

+ ( 1 , αj.) - ( 1 , α i ) + ( 1 , ai) - ( 1 , α i ) + ( 1 , 1 ) - ( c , c α i ) + ( 1 , cocχ) - ( 1 , c))

αO + ίft"1, D)

Σ α(«i, c)®β((αi, cαi) + (1, αi) - (au oci) + (1, l)

- (1, c))

Σ (v(vι y}haιa)η-~ v(rj, ha\ά)
A ε § ( ) τ i e G '

+ Σ (q(alt c)c-q(au c)) ΘG (1, ax)

+ Σ α(flfi, c)®σ((αi, cαi) + (l, αi)-(αi, αi) + (1,
αiG®i;cε iϊπctiί/αi x

- ( 1 , c))

by (9), and this is equal to - / , with / as in (12), since the sum of the latter

two sums is

Σ q(au c)®β((c, cai) - (1, oc\) + (au cαi) + (1, aci)

- (alf αi) + (1, 1) ~ (c, coci) - (1, c))

tfUi, c)®σ((α:i, ĉ αri) - (1, c) + (1, 1) - Ui,
1

Σ

Thus the relations in (10) have both been verified. From the latter of them
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we have cdf=d:/=0 and this implies 9/=0; it is also easy to verify this by

computing df explicitly from (12), using (9).

3. Fundamental exact sequence in weak form for the case w=l

In this number we use merely the first half of our fundamental lemma

its latter half, which gives not only the existence of/, g (satisfying (10)) but

the explicit forms of/, g (at least in their suitable choice), will be used in the

next number.

For any given 2-cycle h in M®GX(G, H) there exists, by our fundamental

lemma, a 1-cycle / in M®πX(H) such that there is a 2-chain g in M®oX(G)

satisfying (10), and here / is determined by h uniquely modulo the group formed

by those 1-cycles /0 in M®HX(H) which satisfy cf0 = -3^0 with some £0

εilίgflXIG) such that <pgo = O. We denote by r(0)h the residue class of /

modulo this last group, to obtain a homomorphism r(0J of the group of 2-cycles

in M®GX(G, H) into the residue group of the group of 1-cycles in M®HX(H)

modulo the said subgroup. The kernel of this homomorphism r(0) contains the

group of 2-boundaries in M®0X{Gi H), since if h = dk{k<= 'M®QXZ(G, H)),

then h = ψokι with kιGM®oX*(G) satisfying ψki = k, and -ddkiwO^ψO.

Hence r(0) is actually a homomorphism of H2(G, H\ M) into the above residue

group.

Further we denote by Hι(H> M)ι the residue group of Hi(H, M) modulo

its subgroup formed by those homology classes represented by cycles in the

above subgroup of the group of cycles, i.e. cycles /0 which satisfy cfo = - dgQ

with some go<= M®0X2(G) such that ψgo = O) thus HΛH, M)ι is the residue

group of the group of cycles in M®HXI(H) modulo its subgroup generated

by boundary cycles and cycles /0 as above. We denote by τ the homomorphism

of IUG, Hy M) into ft (if, M)i induced by τ(0).

We observe the injection : induces a homomorphism of our group Hi(H, M)i

into Hi(G, M). For, if /0 is as above, then r/0( = - dgo) is evidently a boundary

(and, further, 1 commutes with d). We denote the induced homomorphism of

Hι(H, M)i into Hι{G, M) also by c. Now we have

PROPOSITION 1. For any G-module M the sequence

(13) 0<—Hι(G, Ht M)<?-Hi(G, AD^—H^H, Mh

<~H2(G, H, M)^—H2(G, M)
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is exact.

Proof. Let

g= *Σu(ξ)®o(Hf ξH)

be a 1-cycle in M®GX(G, II); we have t h u s θ - a ^ = Σ («(£)£ - «(?)) Θ<? (H),

which means the existence of elements #(<z) in M depending on a^H such

that Έ(u(ξ)ζ-u(ξ))= *Σ(q(a)a-q;(a)). Setting

(14) /= Σ«(f)®σ(l, ς) - Σ

we obtain a 1-cycle / in Λf® <? X(G). As (//,#) = a (77, H, H), ψfis homologous

to g in M®oX(G, H). This proves the exactness of (13) at Hι(G, H, M).

Consider next a 1-cycle

/ = Σ W(Λ)®H(1, a)

in MΘπX(H). We have ψtf= Σ u(a)0G(H, H) = d( Σ u(a)®a(H, H, H))

~ 0. Conversely, if

1, I)

is a 1-cycle in M®GX(G) such that φg~0 in M®OI(G, H) \ thus ^

= Σ«(f)®σ(H, fff)=a( Σ «(f, V)ΘG(H, ξH, 7}H)) with some 2-chain (6)

in M 0 6 I ( G ) . Putting

(15) tfi= Σ«i(£)®σ(l, f ) = # - 8 ( Σ ϋ(f,

we have ψg\ = 0. Hence there are elements ί(α:i, c) of M depending on

ί1 such that

Σ ui(haia)h= Σ (ί(αri, c)c—p(ait c))
/ / e i / ( ) ί / / ί - 1

for each #i e ©i. So

^i= Σ ui(haίa)®o((h, hai) + (1, 7/αiέi) - (ft,
αie©i;λe^(αi);αe//

= Σ Σ (ί(«i» c)c-/>(αri, c))®G(l, an)
«ie($h (eί/ncϊifίΓcti"1

+ Σ ui(hocia) ®σ((l, hoc\ά) - (h, hoc\))
βie©i;Λe§(ai);«eiτ

Σ ί>(ai, c)® σ(c(l, ari)-(1,
e ^ 1
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+ Σ ui(hccia)®0((l, hccia)-(h, hάi)).

As 3((1, c, coci) - (1, αi, coα)) = (c, cαi) - (1, c#i) + (1, c) - (aclt cαi) + (1,

- (1, <χι) = c(l, αri) + (1, c) - (au caci) - (1, #i) and 9((1, ft#i#, ftαri) - (1, ft,

= (AαriΛ, hcci) - (1, ftαπ) + (1, hcciά) - (ft, hat) + (1, hoci) - (1, h) =

-f (1, hociά) - (A, Λαri) - (1, A), we have

gi= Σ (3£(αi, c)® G ((l, C, cai)-(lt

-p(ocχy c

+ Σ

l, ft))

So g-^gi^tf in M® βI(G) with

(16) / = Σ ( - ί U i , c)Θ//(l, c) + (^(αr,, C)O:1®H(1, α

+ Σ ( -u(haιa)hai<&H(a, 1) -f «i(ftα3α)®ίz(l, ft)).

Here / is a cycle, since 0 = dg=Bgι = 9f/= <9/ and ?: M®HX(H)

is monomorphic. The sequence (13) is thus exact at Hι(G, M).

Let ft be a 2-cycle in M®GX(G, H). Its homology class is mapped by τ

to the element of Hi(H, M)i represented by the homology class of a 1-cycle /

in M®HX(H) such that there is an element g of M®0X2(0 satisfying (10).

The homology class of the cycle / is mapped by ε to 0, because of the latter

relation of (10). Consider next conversely any 1-cycle / in M®HX(H) such

that / is a boundary in M®0X(G), say -dgigtΞ M®GX2(O). We have

d<pg=zψdg= -ψcf. As (H, H)=d(H, H, H), ψcf has a form dψck with

k£ΞM®HX2(H). Set h = ψ(g+ck). Then ft is a 2-cycle in M®GX{G, H) and

c(f-dk) = -d(g+ck). Hence the class in Hι(H, M)ι of the homology class of

/ (i.e. that of f—dk) is the image of the homology class of the cycle ft by τ.

So (13) is exact at Hι(H, Mh.

Let next g be any 2-cycle in M®GX(G). Then ft = <pg is mapped by τ to

0 since 0= -dg. Consider conversely any 2-cycle ft in M®QX(G, H) such

that its homology class is mapped by τ to 0 in Hi(H, M). This means the

existence of elements k, g in M®HX-ΛH), M®GX2(G) respectively such that

}ι = ψg} -dg= idk. Here ψtk = 0 since ψck has a form u®0(H, H, H) and dψik
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= ψidk = - ψdg = - dψg = - dh = 0 implies u = 0. Hence fc = ? (# - <fc) and here

g-ck is a cycle. This proves the exactness of (13) at H2(G, Ht M), and com-

pletes the proof of our proposition.

4. Supplement to the principal lemma

Let M be, as hitherto, a G-module. Let K be a subgroup of G, and £ an

element of G. For an element

(17) k= ΣΣ

of Af®jcXι(/iΓ) we set

(18) Tξfc= Σ «(«o, itu - . , JCnί

This is an element of M®ι-iκ\Xn(ξ~ιKξ) and is determined uniquely by k,

independently of the special choice of the form (17) expressing k. If k is a

cycle, so is Txk.

Now, let -if be a subgroup and k an element of M®κXΛK) with K = H

Π ξHξ'1, where f is, as above, an element of G. Then 7\/is, thus, an element

of M® τ-ικ\ Xniξ^Kξ) and here Γ'Kζ ^HDζ^Hξ. If ιHnw-*,n. ^ovm.» denote

the injection maps of M®Hnw-iXn(HΓ\ξHΓ1), M®πn\-wXn{HΓ\ξ~1Hξ) into

(19) t

is an element of M®HXn(H). In case / is a cycle our element is a cycle too.

So, we consider, taking Λ = 1, the subgroup of M®BXΛH) generated by boun-

daries and cycles of form (19) with cycles k in M^Hn^HX-iXiiHΠξHξ'1), ξ

varying in G, and we supplement our principal Lemma 1 with the following

LEMMA 2. Let h be a 2-cycle in M®GX(G, H). If we take, as in Lemma

1, a 2-chain (6) in M®oX(G) having h as its image by ψ and consider the

expression f in (12), / is determined by h uniquely modulo the above subgroup

of M®HXI(H)> i.e. modulo boundary cycles and cycles of form (19) with 1-cycles

k in 1

Proof First fix a choice of (6). Then we have merely to consider differ-

ent choices of q in (9). If q, q' are two different choices and if we set s(αi, c)

= q(ocι, c) - q'{au c)(aι G®i,ceHΠaiHaΓ1), then we have Σ (s(au c)c
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— s(αri, c)) = Q for every α i e β i . This shows that, for each

(20) Σ 5(α:i, c)

is a 1-cycle in M®Hrsaxu<iX-
ί-^BC\ociHaΓι). The difference of / by our two

choices q, q1 of # is, on the other hand,

(21) Σ (sUi, c)®β(l, C)~S(OΊ, c)αi®fl(l, aι'ιcai))

®fl(l, 1).

Here the latter sum is a boundary (since (1,1) =9(1, 1, D) while the former

sum is a sum of cycles of form (19) with cycles k (since (20) is, for each

αiβίSi, a cycle).

Next we turn to examining the change of / by different choices of a 2-chain

(6) in M®QX(G) having h as its image by φ. If Σ v'(ξ, ^ ) ® G ( 1 , £, 77) is a

second choice, and if we set w~(ξ, -η) = v(ξ, y})-v'(ξf y), then we have

Σ tt>(?> y)®o(H, ζB, f}H) =0, or, what is equivalent to that for every pair

(α:2, βz) in ®2 the class of

Σ Σ w(ha,a, hβzb)h
a, bGH fceφ(»2, β2)

in the residue module MHn^H^-^^π^-^ is 0. Every such system w(ξ, η) is a

sum of systems of following forms:

i) w(a2, ft) = uk-u with « ε M J G i ϊ Π ^ ^ " 1 Π fcHβz'1 for one pair

(0:2, ft) in ©2, and α>(f, 7) = 0 for (f, •>?) ^ (0:2, ft)

ii) ^(0:2, ft) = - w(ho<X2ao, ho@2bo)ho~u& M for one system (0:2, ft)

e©2, /^oeξ>(o:2, ft) and #o> bt^H, with (/&oo:2tfo, hoβ2bo) Φ (o:2, ft),

and w(£, ̂ ) = 0 for all (f, ^) different from (0:2, ft) and

We first consider w{ξ, -η) as in i). For them we have for each 0:1 <

Σ (w(~η> yhaicfiy — wiy, haia) +w(hcciaf -η))h

2, <X.Ί W

where <S's are Kronecker ^'s and h\ h", W" <=%>(<xι) and a1, a", af" <ΞH ar.e,
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when exist, such that h1 ccia1 = a2~
1β2, h" oaa" = β2, A '"a x a w = a2) each of the

equation is solvable (indeed uniquely) if and only if the corresponding δ is 1.

This is expressed also as Σ (K<*i, c)c-r{ocu c)) with r(au c)

= δHaiH,Ha2-^2Hrf(au c) + δH*ιH,Hp2Hr"(aci, c) -f δHΛιHtn^nrin{aιy c), where r'Cαri, c)

~u<x2h
! or 0 according as c - hrluCιka2h

f or not, r"(alf c) = - uh" or 0 ac-

cording as c-hfΓlkhn or not, and rfn(ctu c)-uhnt or 0 according as c =

h'"kh'" or not; observe that we have, by &e HO ctzHccf1 Π βoMβz'1 and the

defining properties of h\ W\ h"f, a\ a11, a1",

hf~1a2"
1ka2hf e hΓιHW Π

hfΓlkh" e h"-ιHh"Hh" Π

Thus β'(αi, c) = g(α:i, c) - r ( α i , c) satisfy (9) with υ{ξ, η) replaced by v'(ξ, y)

= v(ί, y) - w(ξ, -η). So the expression (12) for v'iξ, -η) in place of v(ξ, η) differs,

with our choice of qf(ai, c)t from the original one, /, by

(22) w(a2, a2h'ai'a')cc2ht(xit®n(l, a')-zv{a2, h"oa"a")h"*x"®ιAl, a")

+ ιv(h"'ai"faf", ,

w((x2, oc2.lt1 cti1 a')

+ w(h'"ai>"a>", ι

β i e β i . β Σ n β Λ β r l (

, *)«>*'«,'»,<
-f- w\ct2, β2)hltr(X(

U)((X2t β z)OC-i 0 //(1

rf(ccif, h'~1<x2~
1kι

- r"(#i", hn~ιkl

-rtff(aιtn, h'"'1!

β>)h"fai"f®n(

<X2®H(1, k1) —

S2)®π(l9 hf")

ricci, c) ®u(l

riociy c) - r(a

1, a1) — z#(#2,

ί, A') —w(a2} i

X2h')®π(l, ¥

1, β'")

tt'(«2, A"Λ]

, c) - r(ocu

u cWβ.

82) 0 H ( 1 , Λ'

'ίafιkocih'

V')®fl(l, hιrlkh")

kh'»)®H(l, h'

x2h')ai'®H(l,

"''kh'")

["a") 0

c)αi®.

(1,1)

»(1, α"

") + «;(.
)

~ιka2h
f

«d,

)

α / )

h")

aci~ιcai))

"1 AA") -
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jϊ(l, a')-(uk-u)h"aι"®H(l, a")

(uk-u)h"fa1'"®H(l, a'")

u)®H(l, h") + {uk-u)®n(X ft'")

+ uh"®H(l, hιrlkh")

, h'"kh'")

aιιrlhιrlkhffocin)

, ccχ"l~ιh'"-ιkh'"x1!")

ι

f)®H(l, 1) - (uh" - uh"cti")

where ccι'y ax", ccif" e ®! are such that

(23) Ha1Ή=Ha2~1β2H, H*i«H= H02H, Hoc^'H^ Ha2H

and ft'e©(ai'), ft"e©(αi"), F e O ( « / " ) and α', α", α ' " e # a r e such that

(24) h'a1'a' = a2'ιβ2i λ'W'a" = ft, A'"α:i'"βw = αa;

tb s ^;, λf/, ftf", «', Λ", β"f are the same as what were denoted, when they

existed, by the same letters a few lines above.

The last three terms in the last sum are evidently boundaries. The sum

of the 1., 4., 7. and 10. terms, concerned with aχ\ hf> a\ is

tι9®B(l> af)~ua2h'cci'®n{l, af) + »*0C2®H(1, fc')-«α2®fl(l, ft')

ii{l, h') - U(X2®H{1, W)

ua2h
f®H(l, h'~1a2~

1kcc2h')=d(uka2hfcc1

f®H{{l, a\ 1) + (1, 1, 1 ) ) )

> A')

(1, 1,1)))

, 1))

d{ua2h
fcc1'®H{l, a\ a1h'~1cc2~1kcc2h'ait)) +td{uka2®H((ct2~1k~1cc2h\ 1, ft')

(af1kcc2, a2~1ka2h'i 1))) - 1 * * * 2 ® * ( α * " 1 * ^ , 1) =a(w*α2ft'αi '® f l ((l, β', 1)

(1, 1, 1) + U;, al^W^at^k^cczh'cci'a', 1)
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a\ D)
~1k-1oc2h', 1, h')-~(a2~

1kcc2, cc-^haiW, 1)))

-ukfa®H(l, β2~1kβ2)-~uka2ΘiΛcc2~1ka2, 1).

The sum of the 2., 5., 8. and 11. terms (concerned with od", A", a") of the

above sum is, on the other hand,

h"aJf®H{l, a")-uk®H(h hff)Jru®H{li h")

h"ai"®H{liai"~1h"~1kh"a1

ί0^ -ukh"aι"®π{l, a")

"α1"®fl(l, β", caIΓlh"~1khffai"))-uh"oc]"®H(a"> *l

irlh"~1kh"(Xi")

3(«0fltt A", *Λ")) + »®flα AA")

jϊ((l, Λ", 1)-(1, 1, l))) + ukh'"ai"®n(a", 1)

1''® f l(α:i''^

H(k-\ h")

= -a(«AA"αri"®fl((l, Λ", 1) - (1, 1, 1)))

"αri"®fl(αi""1A""1A"1A"α:1"fl", βf', D)

α r 1

/ / ® f l ( l , ^

l, A"1, h11)-uk®H(li A"1) + a(«®fl(l, A", AA"))

(1, 1, 1) + (α1""1A""1A"1A"α:1"α", β", 1)

1
 H ( 1 , A"1, A")

Further, the sum of the 3., 6., 9. and 12. terms (concerned with αY", A'",

of the above sum is, similarly,

H U α ' Ό - w F α / ' ^ f l d , o"0-h«A®H(l, A'")-w®fl(l, A'")

- MA'" ® ̂  (1, A'""1*A'") + uh'"aι"> ®H (1, ΛTI'""1 A'""^A'"αrif")

αi'"®fi((l f «'", 1 ) - ( 1 , 1, 1) - (ai"rlh"rlk~ίh'"*i'"a'", a'", 1)

" 1 Λ"'"1 ft"1 Λf"αri"', α:1"Ά/'nlft~1A/"α:1'"βίf', 1)) -« f t® f l ( l , ft"1, A'")

H ( 1 , A'", ftA//0)+wft^2®H(α:2"1ft^2, l) + «A® f f(l f A"1).

So, in altogether, the above sum (which is the change of the expression

(12) corresponding to the change of υ (and q) to v1 (and Q1)) is ukβ2®π

(1, fc~1k-1β2) -ukβ2®iΛβz~1kβ2y 1 ) = - a ( w A f t ® H ( ( l , β2~1k~1β2y 1) + ( 1 , 1 , 1 ) )

- 0 .

Next we consider w(ξ, -η) as in ii). For them we have for each oc\ e ®i

, -η))h

, Aθ /52 ^ θ
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tf, hoβ2b)hn)

)

"1 A'O

where ft', A', ft", ft", ft'", F G § U I ) are, when exist, such that cah'cctH^ β2H

(i.e. h'cc1H=af1$2H), h0a2ah'cciH ^hβ2H (i.e. WcaH^ aQ~1X2~1 β2H), h"aiH

= ftff, Tι"a1H = hoβ2H, h"'a1H^a2H, h("ccxH ^h0a2H. This is expressed also

as Σ (Kit!, c)c-r(αri, c)) with r(au c) = - δH<x1H,H*2-^2Hδc,h<-iaΰh'ua2h'
ceilnctina—L

+ dHaιH,π?2Hδc,h"-ihfrih»uhn - δΐiaιH,πcι2Hδc,h»'-ih(r
ιh>''Uhfn. qf(oci, c) = q(ocu c)

- r(au c) sitisfy (9) with z;(f, η) replaced by v'(ς, -η) =v(ζ, -η) —w(ξ, ̂ ) .

The expression (12) for v'(ζ, γ), with this choice of qf(ai, c)t differs from

the expression (12) for v(ξ, -η) by

(25) w(a2, @2)<X2h'ait®n(l, a1) + w(hoa2ao, hβ2bo)hoa2ah'aif<S>π(lt άf)

-w{<X2, ft)F«i"®fi(l, a")-tv(hocc2a, foβ2bo)h"ccx"'®n(l, a")

+ w(a2, β2)h"ai'"®u(l, a"')+ w(hoa2a} h,β2b,)Ίι'"aim®H(1, άf")

n(l, h') + w(ho<xzao, Λo/52^o)Λoα:2«o®?/(l, SO
_ ψ

( 1 , h") -iv(hQa2ao, hQβ2bϋ) ® f l ( l , Λ'O'

hoβ2bo) ®H(1, h'")

Σ (r(au c) -r(au c)aι)®π{l9

, af) -ua2aoh'a1'®H{l, όO - ffΛ"a:i"®»(l, β'O

i"®jϊ( l , β'0 + «Λ"'a:i"'®fl(l, a'")

n( l, ft'O

W~ιa,W) - uh"®ιΛ\ h"~ιh,h")

A'"-1A<f1A"O

l,ar1'"
1A'"1aoFa:1) + MA' 'a i ' '®i ί ( l ,a 1 ' ' " 1 A' ' "%' 1 ^^^

+ uaih'ca' - uh"ai" + uh'"ccl") ΘH(1, 1)

where or/, ai", aV" e ©! are the same as in (23) and A ' e ^ W ) , h"(Ξξ>(ai"),

lϊ" <Ξ ®{oci"*) and αf, β", fl'»eff are the same as in (24) while /?e €>(#/),



FUNDAMENTAL EXACT SEQUENCES 79

δ"€=©(αi"), i ' " G § W " ) and a1, a", aw^H are such that

(26) hoa2aohta1'ά
f = hoβ2b (i.e. Wctt'a1 ^a^az^βzbo),

The last term of the above sum is evidently a boundary. The sum of the

•1., 2., 7., 8., 13., 14. terms is

arί®H(l, a1) -f wα2®H(l, ft') -

j92β'"1®fl(l, a'boa
rl)

"'"\ 6o) - X<Γ\ boa''1))

fl((l, h')-(aQ, OoftO + (ft', aQ¥))

= d(-uβ2®H((a', boa'-K'lj + iboa'-1, bo, D)

H((aϋy A', βoS') +(flo, 1, A')) + κft®jϊ(&Q, D~wα2®//Uo, 1).

The sum of the 3., 4., 9., 10., 15., 16. terms is

(l, h") + uho~Λ0//(l, A")

( α ft")-(Ac"1, Ao-'A'O-HA"-1, fto-'ft"))

and is, by exactly the same computation as in the last stage of the above cal-

culation,

""1, 6o, D)-wΘir ίUo" 1 , fto',

«®fl(fto"1, 1).

Similarly the sum of the 5., 6., 11., 12., 17., 18. terms is

l, aoaa"Γ\ (aQa"Γ\ β0, D ) + «® f l((ft0"
1, A',

, D-«®fl(fto" 1 , 1).

Hence, in altogether, the above sum is^-0.

Having thus examined the change of the expression / i n (12), first by a

fixed choice of v(ξ, rj), in (6), and then by different choices of v(ξ, y), we have

proved Lemma 2.

5. Characterization of Hi(H, Λf)7

Now we prove

PROPOSITION 2. The kernel of the canonical map Hi(H, M) -* HΛH, M)i,
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i.e. the subgroup of H\(H, M) formed by the homology classes represented by

cycles /0 which satisfy cfo- -Bgo with some go^M®GXΛG) such that ψgo = O,

coincides tvith the subgroup of Hχ(H, M) generated by the homology classes of

(19) ivith cycles k in M®Π^H^XΛHίλξHΓ1) (ς varying in G).

Proof Let k be a 1-cycle in M®flΛte«-iX(ffΠ iff?"1) where ξ is an ele-

ment of G. We may assume without loss in generality that ®i is taken so as

to contain ξ, and thus ξ is some an in ®i. When k = Σ q(c) ®HΠ\H^^(1, C),

we set q(ccu c) = 0 for ^ ε β i , α i ^ ί , ceHΠaiHaΓ1, and ρ(f, c) = <?(c) /or

cGHΠξHξ'1. Then (9) holds for every one©! with all v(ξ9 -η) = 0. The

cycle/in (12) for the present #(?, ?), <7(#i, c) coincides up to the last sum

in it, which is evidently a boundary cycle, with (19). Hence the image by

i : M®nXχ(H) -» M®GX1{G) of (19) plus some boundary cycle is -dg with

g in (11) for our v(ξ, η)t q(au c). Since here all v(ξ, -η) =0, we have ψg = 0.

Thus (19) is a cycle / 0 as in our lemma modulo boundary cycles, and one half

of the proposition is proved. Our proof, which depends on a part of the proof

of Lemma 1, may simply be summarized in the equation

c( Σ

~d Σ
ceJ/nξi

= - 3 Σ

which can naturally be verified directly.

To prove the other half of the proposition, we assume, as we may, that

®i is chosen so as to contain 1 and £>(1) = {1}. Let /0, go be as in the pro-

position. If we express £0 in the form (6), the relation - dg0 = cf0 implies that

Σ iv{rj, 7}ha1a)yj-v{'ηy hcaa) + v(haia, 7/))=0 for all a^H except when

(αi, h) = (1, 1) (cf. (7)). It follows that the image by c of the first sum in /

of (12), for the present v(ξ, η), is - dgϋ (which is equal to f/0). Hence /~/o

is equal to the sum of the 2., 3., and 4. sums in (12), where q{au c) are chosen

so as to satisfy (9) for the present v(ξ, y). By virtue of the above relation

we may simply set q(cci, c) = 0 except in case α:i = l. Hence, with this choice

of q(cci, c), the 3. and 4. sums, in question, are 0. As to the 2. sum, it is a

boundary cycle, since, again by the above remark, only h = l matters there.

Thus /-/o is a boundary cycle.
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On the other hand, the present / is an expression (12) for h = ψgo = 0, and

is hence, by virtue of Lemma 2, modulo boundary cycles a sum of cycles of

form (19) with 1-cycles k in M®Hnwx^X(H Π ζHΓ1). The same holds for

/o( = / — (/ —/o)) by the above observation. Our proposition is thus proved.

6 Transgression map in higher dimensions

A G-module A is called (relatively) (G, tf)-regular when there exists an

//-module B such that A is G-isomorphic to BΘHZIGI, the G-module struc-

ture of the last module being defined by (b®Hξ)σ-b®Hζσ. For every n>l,

the homology group H«(G, H, A) in such a module A vanishes. To prove

this (well-known) fact, we recall that we have χ-dψnx + ψn-idx for every

x<=Xn(Gy H) with the H-homomorphisms ψm' Xm(G, H) -> X«+i(G, H) (m

= n - 1, n) defined by ψm(ΰoH, . . . , amH) = (H, ooR, . . . , amH). If Σ
t x)®Hξ®QX is an w-chain in B®πZlGl®βX(G, H), we have

Now, for each element Σδ(£. *)®πf ®GAΓ in JB®flrZ[G]®GX»(G, iϊ) the ele-

ment Σ#(5, ^)®Hl®(?^n-i?ίc is uniquely determined (independent of its

special expression) as we readily see from the H-allowability of φn-i- The last

sum in the right-hand side of the above equation is the image of Σ#(c» x)

®H$~1®BX by the endomorphism of B®HZZGl®GXn(G, H) thus obtained.

It is, hence, 0 in case the chain ΣM£» X)®R$®GX is a cycle. The above

equation thus shows that every w-cycle in B ® π ZZG1® G X(G, H) is a boundary,

as was asserted. (A (G, #)-regular module A is a (G, #)-projective module

in the sense of relative homological algebra (Hochschild [5]), and that Hn(Gt

H, A) are 0 follows also from the relation Hn(G, H, A) = ExtnG'*(A, Z)).

A (G, l)-regular module is called G-regular, and is (G, £Γ)-regular for every

subgroup H. Now, with any G-module M a G-regular module Λf is constructed

as follows! M-M®ZIG~\ and its G-module structure is defined by (u®ξ)a

= uσ®ξσ. Indeed, the totality of elements of form u®l in M forms a (not

G-, but mere) module B and we have M^B®ZίGl in the sense of the con-

struction as in the opening of this number (by the correspondence u®ξ
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-*(uξ~1®l)®ξ). Further the map u®ξ -> «(«e M, f e G ) defines a G-epi-

momorphism of Λ/ to M Denoting the kernel of the epimorphism by N we

have an exact sequence

(27) 0-*iV-*M-*M->0.

Since M is G-regular, we have Hr(U, M) = 0 ( r ^ l ) for any subgroup ί/ of

G. Hence we have

(28) HΛU, M)~Hr-ι(U, N) (r>2)

for any subgroup U of G.

We next prove

LEMMA 3. Let

(29) 0-* ΛΓ-»/?-» ikf->0

#£ «w £*#££ sequence of G-modules, and assume

(30) Hi(

for every subgroup U of G which is an intersection of H and its r — 1 conju-

gates in G. Then we obtain an exact sequence of relative homology groups

(31) HAG, H, N) -* Hr(Gt H, R) -* Hr(G, H, M) -* Hr-i(G, H, N)

- Hr-i(G, H, R) - - Hi(Gt H, M)

where the maps are those induced by maps in (29) and the connecting homo-

morphisms of an exact sequence of relative chains corresponding to (29) (which

exists because of our assumption).

Proof. From Hι(Ut M) = 0 we get an exact sequence

(32) (HΛU, M) = )0 -» Nυ -* Rσ( -> Mu - 0)

with maps induced by those in (29). It follows that the sequence

(33) 0-*N®σXt(G9 H) -+R®βXt(G, H)-*M®QXt(G, H) -> 0

is exact, for every t ^ r — 1, where the maps are again induced by those in

(29). For, it suffices to show that the second arrow is monomorphic,.and this

last follows, by our consideration in the number 1 applied to N, R in place of

Mt from that the map Nu -> Rυ is monomorphic for every subgroup U in G of

form H ΠσiHσf1 Π * # Γ\atHσt~\ The exactness of the sequence (31) of
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homology groups follows now in the usual manner (from this and the trivial

exactness of R®oXr(G9 H) -* M®GXΛGt H) -» 0).

LEMMA 4. Let M be a G-module such that for every i = 1, . . . , n — 1 we

have Hi(U, M) = 0 for every subgroup U of G of form U= H Π σiHΰΓιΠ *

Πσn-i+iHΰn-i+i'1. Then, for every cycle h in M®GXn+i(G, H) there exist an

element g in M®0Xn+i(G) and a cycle f in M®HX(H) satisfying

(34) h = φg, cf=(-l)ndg.

Proof M = M®ZίGl is a regular G-module. Hence we have HAG, H, M)

= 0 for all r = 1, 2 Also Hr(U, M) = 0 (r = 1, 2, . . .) for every subgroup

U of G. Denoting the kernel of the natural epimorphism M->M by N, we

have thus HΛUy M) ~ Hr-i(U, N) for r = 2, 3, . . . , as has been observed

before too. Hence, because of our assumption on M, we have Hί{U, N) =0

for i = 1, . . . , n - 2 and for every subgroup U of G of form U~ H C\ oiHσi'1

Π * (Λon-iHΰn-f1. So the G-module iV satisfies the assumption of our

lemma for n - 1 in place of n (and iV in place of M). Now, our lemma for

n — 1 is settled by Lemma 1. So, assume n > 1, and assume that it is true for

n — 1 in place of w. Then it can be applied to N with n — 1 in place of n.

Further, as Hi(U, M) = 0 for every subgroup U oί G which is an intersection

of H and its w conjugates, by assumption, the sequence

(35) 0-» N®GXn(G, H) -> M®GXΛG, H) -»M®GXn(G9 H)( -> 0)

is exact, as has been seen in the proof to Lemma 3.

Now, let h be an w+1-cycle in M®σX(G, H). Take any counter-image

h of h by the map M®GXn+i(Gi H) -> M®σXi+i(G, # ) . Since the kernel of

the map M®aXn{G, H) -+ M®aXn(G, H) is N®GXn(G, H), dh belongs to

N®0Xn(G, H). Denote it by hf.

Since /z' is evidently a cycle, there are, by assumption, an element g* of

N®oXn(G) and a cycle/' in N®nXn-i(H) such that

(36) h> = ψg\ f'= -{-l)ndgf.

Let / be a cycle in M®uXn(H) whose homology class is mapped, by the

connecting isomorphism Hn(H, M) -+ Hn-ΛH, N), to the homology class of / ' .

Thus, if / i s a counter-image of / by MΘiiXn(H) -* M®riXn(H), then 3/ = / '

+ a/with an element / of N®ffXn(H). Replacing / wi th/-/ , we may as-
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sume a/=/' .

Hence, by (36), - ( - l)ndg' = tf = cdf = dcf, showing that ( -1) V + tf is

a cycle in M®QX(G). Since Hn(G, M) = 0, there exists an w + 1-chain g in

Af®0<ϊ(G) satisfying

(37) ( - l ) V + </=9&

Then a ? £ - ^ 7 = ( - l ) Λ p £ ' = (-l)Λft ' = (- l ) Λ aί ϊ and φ,f=d(φg- ( - 1)ΛS)

is a cycle. Since ^ / i s of form v®o (Hy H, . . . , H), this implies, as we see

by writing down its boundary, φcf= 0 in case n is even. In case n is odd, on

the other hand, ψcf is a boundary and is in fact equal to dψc% = ψdck with k

= V®H (1, 1, . . . , 1) &M®HXΠ-H(H). Setting % = 0 in case w is even, we

have

(38) φcf= ψdck (k<ΞM®HXn+i{H))

in either case. Hence ψdι% = 3 ( ^ - ( - 1)WS) and φg-(~ l)nh - ^ ^ is a cycle

and, since Hn+ι(G, H, M) =0, an w + 2-chain 7 in JEΓ®GJΓ(G) satisfying

(39) φg- ( - l ) w % - p #

Let g, 1 be mapped to g, I by ikrΘβXίG) - M®GX(G), and ί to AJ by

M®0X(H) ->M®oX(H). Then, by (39) and (37)

(40) ft = ( - D w f ( # - ^ - a/),

Denoting ( - l)n(g-ιk - a/) e Af® 0-Y«+i(G) a n d / - a# e M ® H I M ( H ) anew with

# and /, we have (34). Our lemma is thus proved by induction with respect

to n.

Under the assumption of Lemma 4 we obtain thus, as in the case n = 1, a

homomorphism r of the homology group Hn+i(G, H, M) to the residue group

Hn(H, M)ι of Hn(H, M) modulo the subgroup consisting of homology classes

containing cycles / such that tf= ( - l)ndg, ψg = 0 with some g<Ξ M®QXn+i{G).

We remark that the kernel of our residue homomorphism Hn(H, M)

-»Hn{H, M)ι is contained, evidently, in the kernel of c : Hn(H, M) -> Hn(Gy M).

«Thus we obtain a homomorphism Hn(Hy M)i -> Hn(G> M) which we denote

also by t.

LEMMA 5. Under the assumption of Lemma 4, the kernel of Hn(H, M)

-»Hn(H, M)i corresponds to the kernel of Hn-i{H, N) -+ Hn-i(H, N)i by the
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connecting isomorphism Hn(H, M) ~ Hn-ι(H, N).

Proof. Let / ' be an n - 1 -cycle in N®HX(H) such that there exists an

w-chain g1 in N®GX(G) satisfying if = - ( - l)ndgf, dg'^O. We may apply

our proof to Lemma 4 to ft' = 0, % - 0, ft = 0 and to the present /'. Thus, there

is an w-chain / in M®HX(H) with 9/=/', and for the image / of / in

M®HX{H) we have if- cdk = d(g- ik-dl), ( - lYφ(g- ck -dl) = ft = 0 with

suitable elements gt k, I of M®GXn+i(G), M®nXn+i(H), M®aXn+z(G), re-

spectively. Hence the homology class of /, i.e. that of /— dk, which corresponds

to the homology class of/7 by the isomorphism Hn-i(H, N) ^ Hn(Hy Λf), is in

the kernel of Hn(H, M) -» Hn{H, M)ι.

Let conversely / be an #-cycle in M®HX(H) such that cf=dg with an

w + 1-chain g in M®QX(G) satisfying c^^=0. Let f <z Kf ®πXn(H), g^M

<S>βXn+i(G) be mapped to/, g by the maps of respective complexes induced

by M^M. Since tf^dg, we have if- dg^N<= GXn(G). Further, since 3/ = 0,

we have 9/e N®HXn-i(H). We denote a/ by / ' . Then we have ψif = <?<a&'

with an element ^' in N®HXΠ{H) \ cf. the similar argument we made in our

proof to Lemma 4 with respect to ψ:f there. ff — dkf is an n — 1-cycle in

N®HX{H) and satisfies t{f -dk') =dg' with g1 = {>f-3g) - :k' ε= N®oXn(G).

Here dφg1 = φιf-ψcdk'= 0 and f̂ ' is an n-cycle in JV(g)<?.X(G, H). To prove

φg9 *0 (in N®GX(G, H)), let % be an tί+1-chain in ίϊfΘσίG, ff) satisfying

ψg'^dh and ft be its image in M<g)GX(G, # ) . (The following argument is

to recast our proof to Lemma 4 with respect to the present h). Since

dψc(f— kf) = ψcf - ψcdk' ~ 0, there exists, by an argument we have made above

already twice (with respect to ψtf, in the old notation, and to ψcf'),' an 72+ 1-

chaink in M®HX{H) with - ( - l)nψt(f- k') = ψdck. Then, as d{ - ( - X)nψg

~(-lYh-ψck)= - ( -lYφdg- (-lYφg' + ( -lYφ<{f- k') = -(-lYφdg

- ( -lY<f(ιf-dg-ιk') + (-lYφc(f~k') =0, there exists an /ί + 2-chain Tin

MΘσXίG) with ~(-lYφg-(-lY%-φιk = dφΊ. Let / be the image of

7 in M®GX(G), and ^ the image of k in M®HX(H). Then

observe that ψg = 0, ψck is a cycle and ^ 0 by the argument we have used

repeatedly. Hence h — 0. Since the homology class of ft corresponds to that

of ψgf by the isomorphism of Hn±i(Gy H, M) and ffΛ(G, H, N), we have ^ ^ ;
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^ 0. It follows that the homology class of /' ~dkf, i.e. that of /', belongs to

the kernel of Hn-i(H, N) -> Hn-i(H, N)£.

We have further

LEMMA 6. Under the assumption of Lemma 4, the kernel of the residue

class homomorphism Hn{H> M) -> Hn(H, M)i coincides with the subgroup of

Hn(H, M) generated by the homology classes of cycles of form (19) with n-cycles

k in M<S> πn\π%-i X(H Π ξHξ"1), ς ranging in G.

Proof. Assume the assertion for n-1 in place of n. Then the kernel of

the homomorphism Hn-i(H, N) ~» Hn-i(H, N)i is the subgroup of Hn-i(H, N)

generated by the cycles of form (19) with cycles h in N®unXΆ\-iXn-\(H

ΠξHξ'1). This subgroup of Hn-ΛH, N) evidently corresponds by the iso-

morphism Hn-ΛH, N) ^ Hn{H, M) to the subgroup of Hn(H, M) in our lemma.

On the other hand, the said kernel corresponds, by the same isomorphism, to

the kernel in our lemma in virtue of Lemma 6. Hence the kernel and the

subgroup in our lemma coincide, and the lemma is proved by induction.

7. Fundamental exact sequence for higher dimensions

Now we have our main

THEOREM. Let M be a G-module such that for z = l, . . . , n — 1 we have

Hi(U, Λf)=0 for every subgroup U of G of form U = HΓ\ σiHσi'1 Π

Π on-i+iHon-i+i'1- Then the subgroup of Hn(H, M) generated by homology

classes of cycles of form (19) with n-cycles k in M®HrΛ\HX-^X(HΓ\ξHξ~1)iξ

ranging in G, coincides with the totality of homology classes represented by cycles

f satisfying cf-dg with some g^M®GXn+i(G) such that ψg-Q, and we have,

lϋhen ive denote the residue group of Hn(H, M) modulo this subgroup by

Hn(H, M)i, the exact sequence

( 4 1 ) 0<—Hn(G, H, M)<^-Hn(G, M

<—Hnn(G, H, M)<r—Hn + i(Gt M)

ivliere τ is the map which maps a homology class in Hn+i(G, H, M) represented

by a cycle h to the class in Hn(H, M)i of a homology class represented by a

cycle f satisfying (34) ivith some g in M®aXn+i(G)t and where ι is the map

induced by the ordinary injection map < : Hn(H, M) -> Hn(G, M).
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Proof. The case n = 1 is settled by Proposition 1, and we want to prove

our theorem by induction on n. Thus, let n > 1. Consider again the G-module

M = M® Z [G] and let N be the kernel of the natural epimomorphism M -* M

As in (28) we have an isomorphism

(42) 3*: &(£/; M) ~> ffr-iίϋ", Λθ

for every r ^ 2 and every subgroup £/ of G. In particular, we have isomor-

phisms

(43) Hn(G, M) -> Hn-ι(G, N), Hn(H, M) -* Hn-i(H, N),

Hn+i(G, M)-*Rn(Gy N)9

which we denote all by 3*. Further, the isomorphisms (42) for r = 2, . . . , n

and for subgroups U of form HΓ) aiHof1 Π * * (Λσn-r+iHΰn-r+f1 shows, in

combination with our assumption, that Hi(U, N) = 0 for 2 = 1, . . . , n-2 and

for subgroups C7 of form H Π t f i H ^ Π * * ΓUn- fftfn-Γ1.

Moreover, by Lemma 3 we obtain the exact sequence

Hn+AG, H, M) ~> ff*+1(G, F, M) -> ffn(G, ff, iV) -> ffn(G, /f, Kί)

-> Hn(G, H, M) -» ^ - ! ( G , ff, iV) -* firw-i(G, ff, M).

Here the 1st, 4th and 7th terms are 0, again because M is G-regular. Hence

we have isomorphisms

(44) flWG, H, M) -> Hnia H, N)>

Hn(Gt H, M) -> ZΓn-l (G, ff, iV)

which may be denoted both by 9* too.

Now, the isomorphism a* between Hn(H, M) and Hn-i(H, N) induces a

same of the residue groups Hn{H, M)ι and Hn-i(H, Ar)/ as was seen in Lemma

5. It is seen from our proof to Lemma 4, that the diagram

Hn-i{H, N); <^ Hn(G, H, N)

(45)

M)i <^-Hn+ι{G, Hy M)

is commutative, where the left vertical arrow, denoted by a* too, is the iso-

morphism induced by the isomorphism 3* of Hn(H, M) and Hn-ι(H, N). In

fact, we see readily that also other squares in the diagram connecting the
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sequence

0<—flΓ«-i(G, H, N)<?-Hn-i{G, N)<r~Hn-i(H, N)

<^-Hn(G, H, N)<^-Hn{G, N)

with our sequence (41) by the isomorphisms 3* are commutative; thus the

said diagram is commutative. Now, the sequence (46) is exact, by our induc-

tion assumption. It follows that (41) is exact too. Our theorem is thus proved.

Remark. As our proof shows, a partial exact sequence

0<— Hn(G, H, M)<^-Hn(G, M)<L~Hn(H, M)

holds under a weaker assumption that for * = 1, . . . , n- 1 we have Hi(U, M)

= 0 for subgroups U of form U= H ΠaiHσi"1 Π * * Πσn-iHan-Γ1.

Appendix. Fundamental exact sequences for finite groups

Let now H be a subgroup of finite index in G. Then both the homology

and cohomology groups Hn(G, H, M), Hn(G, H, M) are defined for all values

n^O. In our previous note [9] we gave a certain condition under which we

have the relation Hn(G, H, M)^H~n~\G, H, N) (n^O) for two G-modules

M, ΛΓ. In re-examining our proof and in observing the dimensions concerned

in its steps, we see the followings:

1) Let first n>0. Let for each subgroup K in G of form K~o0Hσ<Γι

Π * - (ΛΰnHσn'1 there be given a homomorphism tc(K): Λ/-> N (written as

right operator on M contrary to [9]) which naturally induces a homomorphism

Mκ -» Nκ (or, more precisely, such that the kernel of κ(K) contains that of

M-> Mκ and the image of κ(K) is contained in Nκ) and let tc(σ~1Ka) = o~ικ(K)σ

hold for all σ^G (and such K). Then a natural homomorphism

(48) M®GXn-» (NΘzXnY

is defined (by (9) -* (11) in the notation of [9]), where Xn stands for Xh(G, H).

If the homomorphism MK -* Nκ induced by κ(K) is an epimorphism (resp. a

monomorphism) for every such K, then the homomorphism (48) is also an

epimorphism (resp. monomorphism). Further, if n^l and if

(49) Σ
£3p r.raad K
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always holds for K= σoHσf1 Π (ΛanHan~
ι and L = σoHσo"1 Π *

n-Γ1, then the diagram

M®QXn—> (N®zXn)
Q ^

(50)

is commutative (where the horizontal arrows are the homomorphisms for n

and n — 1 just introduced and the isomorphisms ^ are canonical ones).

2) Let next n^ — 1. Let for each subgroup K in G of form ϋΓ= σoHσf1

Π Π tf-n-iiWί -n-Γ1 there be given a homomorphism *(K) : M-+ N which

naturally induces a homomorphism MK -» iV*, and let κ(a~ιKo) =a"1κ(K)a hold

for all σ e G. Then a natural homomorphism (48) is defined (again by (9)

-* (11) in the notation of [9]), where Xn stands for the ̂ -component Xn(G, H)

of the complete standard complex of (G, H) and is thus the G-module

Komz(X-n-i, Z). Again, if the induced homomorphism MK-*NK is an epi-

morphism (resp. a monomorphism) for every such K, the homomorphism (48)

is an epimorphism (resp. a monomorphism). Also, if (49) holds for every pair

K^σoHσo^Γ) Γ\σ-nHσ-n~\ L^aoHof1^ Π a-n-iHo-n-f1, then the

diagran (50) is commutative (where the horizontal arrows are the homomor-

phisms for n and n-ϊ).

3) Let there be given a normal subgroup ϋΓ0 of finite index in G which is

contained in H and a G-homomorphism tco: M-+ N which induces as homomor-

phism Mκ0 -* Nκ°. Set κ{K) = Σ Kop'1 for every subgroup K in G of form
<&=3ρ r.iuodκ0

K-atHaf1* Then the diagram (50) with w = 0 is commutative when the

horizontal arrows are the homorphisms defined (with respect present κ(K)) in

1), 2) for w = 0, —1 respectively.

Now, assume that G itself is finite. For Λf = N we can then get a system

of endomorphisms κ(K) of Λf for subgroups K in 1), 2) or 3) (and /Γ0 = l in

3)) by setting κ(K) = Σ < ; ; it is evident that κ{K) induces a homomorphism

MK -> Λf*. The (sufficient) condition for the commutativity of (50), in 3) and

in the latter parts of 1), 2), holds also evidently. Let first n = >0. HH\K, M)

= 0 (resp. H~\Kt Λf)=O) for every iΓ of form /fstfoflV^Π f\unHan"\

then our homomorphism κ(K) for JK" induces an epimorphism (resp. a monomor-

phism) (of Mκ to Mκ whence) of M®oXn to Hom« (X-n-i, N). Hence, if
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n>l and if H°(K, M) = 0 for every Kof form K^aoHσo'1 Π Γ\σn+iHσn+Γι>

and H~\K, M ) = 0 for every i£ of form K^otHof1^ C\ΰnHan"\ then

we obtain, as we can see easily, Hn(G, H, M) ^H~n^1(G) H, M). Let next

n^l. If H\K, M) = 0 (resp. tf"1^, M) = 0) for every K of form ϋΓ = σoHσo'1

f\ - - - Γ\ a-n-xHo-n-f1, then our homomorphism κ{K) induces an epimorphism

(resp. a monomorphism) (of Mκ to Mκ whence) of M® 0 Xn to Home (X-n~lt N).

Hence if n^ - 2 and if H\Ky M) = 0 for every if of form K^^Hσf1^

n^Λ-iHtf-n-Γ1 and H'HϋΓ, M ) = 0 for every K of form ϋC= ̂ oHί o"1 Π

Γ\ a-nHt-n'1, then we obtain #«(G, /ί, Λf) - H~n~\G, H, M). Further, taking

also the case n = - 1 or 0 respectively into consideration in the case w = 0 or

- 1 , we see that the above statement for n^l rep. ^ —2 remains valid for

w = 0 or — 1 respectively.

Now, we continue to assume that G is a finite group. Then, besides the

exact sequences given in our theorem and their cohomological duals, we have

the following sequences:

Let M be a G-module such that for ι' = 0, . . . , n- 1 we have H~i(U, M)

= 0 for every subgroup U of G of form U=H ΠσiHaΓ1 Π * Πσn-i+iHσn-i+Γ1-

Then the subgroup of H-n(H, M) generated by homology classes of (trans-

gressive) cycles / satisfying / = pg, λh- ( — l)n~1dg with some element g in

M®σX-n(G) and some cycle h in M0GX- n-i(G, H) coincides with the sub-

group of H-n{Hy M) consisting of all stable homology classes, i.e. homology

classes of cycles / such that PH,Hn?-»flί/- Pϊ-w.HnTs-wΓϊ/^ 0 for every f e G ,

and if we denote this subgroup by H-n(H, M)1 then we have the exact sequence

( 5 1 ) 0—>H-n{Gt H, M)-^>H-n(G, M) ~>H-n(H, MY

-^H-n-ΛG, H, M)-^H-n-i(G, M)

where τ is the map mapping the homology class of a transgressive cycle / as

above to the homology class of the cycle h.

Dually: Let M be a G-module such that for i = 0, • . . , n — 1 we have

Ή~\Uy M) =0 for every subgroup U of G of form U = H Π oiHax'1 Π

C\ an-i+iHan-i+f1* Then the subgroup of H~n(H, M) generated by cohomology

classes of cocycles / satisfying r/= dg with some g such that ψg-Q coincides

with the subgroup of H~n(H, M) consisting of all cohomology classes of cocycles
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of form (19) with cocycles k in HomHnΐnτ-ι (X-n(H Cλ ξHΓ1), Λf), and we have

the exact sequence

fe oN ψ t
yx>Δ) 0<—H~n(G, H, M)+—H~n(G, M)<?—H~n(H, M)i

<?—H~n~\Gy H, M)<r—H~n~\G, M)

where H~n(H, M)ι is the residue group of H~n(H, M) modulo the said sub-

group, i is the map induced by the ordinary injection, and τ is the map mapping

the cohomology class of a cocycle h in HomG {X-n-i{G> H), Λf) to the class in

H~n(H, M)ι of the cohomology class of acycle / in Horn// (X-n(H), Λf) such

that there exists an element g in Home? (X-n-i(G), M) satisfying r/= ( - l)nδg,

h = ψg.

But, by virtue of the refinement of the result in [9] we made above the

case n>2 of (51) can be derived from the sequence (41) (with « - l instead

of n) in our theorem and similarly the case w>2 of (52) can be derived from

the dual of (41). Indeed, if w>2 the above assumption for (52), for example,

includes H\U9 Λf) =0 for every subgroup U of G of form U=Hί\ axHσi1 Γ\

- - Πσn+iHσn+i'1 and H~X(U, Λf) =0 for every U of form U=HΠ όiHσΓ1 Π

• Π ΰnHon'1. In particular, H°{U, M) = H~\Uy M) = 0 for every U of form

HΓ\ ΰ\Hΰ\ι Π Πσn-iHσn-i'1. Under this condition, however, the remain-

ing part of our assumption is that for i = 1, , n-2 we have #;(£/, Λf) =0

for every subgroup U of G of form U=HC\aχHafι Π Γ\σn-iHσn-Γ\

Then we have, by our theorem, the exact sequence (41) with n replaced by

n - 1 . This sequence is, however, nothing else than (52) because of the rela-

tions H\U, Λf)=0, H~\U, Λf)=0 for U=HΠσiHσi~iΠ - - - Πσn^Hσn+Γ\

U-HΠΰiHσΓ1 Π C\σnHθn~x respectively, as our refinement of the result

in [9] we made above shows.

The case « = 0 can be verified directly (cf. [7] where the normal case of

the sequences (51) and (52) was treated), and the case n = l may be derived

from it by the argument similar to our transision to higher dimensions in 6, 7.

(and the case n^2 can be derived from these again by the same recursive

argument).
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