FUNDAMENTAL EXACT SEQUENCES IN (CO)-
HOMOLOGY FOR NON-NORMAL SUBGROUPS

TADASI NAKAYAMA

In this paper we prove the fundamental exact sequence in (co)homology
for non-normal subgroups announced in our previous note [8]: Let H be a
subgroup of a group G. If M is a G-module and if, for a natural number n,
H.(U, M) =0 for m=1,..., n—1 and for every subgroup U of H which is
an intersection of conjugates of H in G,” then we have an exact sequence

¢
0<— Hy(G, H, M)<— H,(G, M)<—H,(H, M),
(4
< Huoi(G, H M) <— Huir(G, M) ;

the significance of the maps and the group H.(H, M), will be explained below.
(We have a dual result for cohomology groups). This generalizes, on one hand,
the Hochschild-Serre [6] (cf. also [2], [3]) fundamental exact sequence for the
case of a normal subgroup H and extends, on the other hand, the partial
sequence given by Adamson [11.

Our result for group (co)homology has in the meantime been extended to
a more general case of ring (co)homology by Hattori [4]. His proof is both
quite general and quite ingenious. In comparison with Hattori’s [4] proof the
writer’s one is quite clumsy, not only that merely the group case is considered.
Inspite of this (and notwithstanding that it might also be possible to prove our
exact sequences by spectral sequence method? as in [5], [2]) the writer dares
to assume that his original artless approach still retains some use, if small, in
the sense that for example it serves to make explicit and elementary what are
defined in [4] in highly theoretical constructions of advanced nature, parti-
cularly with respect to the residue group H,(H, M), and the transgression map

in homology case.

Received November 25, 1960.

1) The assumption can be weakened a little, with respect to the number of conjugates
of H to express U. See our Theorem in No. 7 for the exact form of assumption.

2) For this, however, a rather new sort of spectral sequences would perhaps be needed.

63



64 TADAS] NAKAYAMA

In describing the relative homology groups Ha.(G, H, M) (see [1], [51)
we use the standard complex X(G, H) of G relative to H; its n-component
X.(G, H) is the free module generated by the totality of (n+1)-tuples (oo H,

., on H) of right H-cosets in G and has the G-left-module structure defined
by 0(aH, ..., onH)=(0a0H, . .., conH). The differentiation in X(G, H) is
defined as usual, and by (g0, . - ., on) = (0 H, . .., onH) we obtain a homo-
morphism (of G-complexes) to X(G, H) of the standard complex X(G) of G.
Turning to the complexes M ® ¢ X(G, H), M ®¢X(G) of chains over M and
passing to homology, this homomorphism induces the deflation (or residuation)
map ¢ of homology groups, which appears in the above sequence as the second
and the fifth arrows. Denoting the said homomorphism of chain complexes
also by ¢, and denoting by ¢ the homomorphism M ® s X(H) - M ® ¢ X(G)
induced by the monomorphism (ao, . . ., oa) = (0o, . . ., an) (i€ H) of X(H)
into X(G), consider the correspondence between an n-cycle f in M QrX(H)
and an n+ 1-cycle 2 in M ®¢X(G, H) such that there exists an 72+ 1-element
(chain) g in M ® ¢ X(G) satisfying

of =(—1)"0og, h=gg.

The totality of f corresponding to k=0 is evidently a subgroup of the group
of n-cycles in M @xX(H). The residue group of the group of z-cycles in
M ® s X(H) by the subgroup generated by this subgroup and the group of z-
boundaries is denoted by H.(H, M),;. The ordinary injection map ¢: H,(H, M)
- H,(G, M), defined by the above map ¢ of chain complexes, induces evidently
a homomorphism of H,(H, M), into H,(G, M) which is denoted also by the
same letter ¢ in our sequence. Under our assumption, Hn(U, M) =0for m=1,

.., n—1, for every n+1-cycle h in M ® ¢ X(G, H) there is an #z-cycle f in
M ® s X(H) corresponding to & by our above correspondence, and by associat-
ing the homology class of h with the residue class in H,(H, M); of the homo-
logy class of f we obtain a homomorphism H,.\(G, H, M) - H,(H, M), trans-
gression, denoted above by r. Further, under the same assumption, our se-
quence is exact and, moreover, the kernel of the canonical homomorphism
H,(H, M) - H,(H, M); is the subgroup of H,(H, M) generated by the ho-
mology classes of form tnntus—s,uk — tuns-ps,n Tex (k € Hy(HN EHE™, M), where

a1

§ runs over G, T is the transformation isomorphism of H,(HNE&H: ', M) to
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H,(THHNEHEY)E, M) = H,(HN £ HE, M), and the injection maps are speci-
fied with suffices indicating the groups of references. This all is the content
of our fundamental exact sequence, and its proof consists of two parts. While
the second part is the induction part and is straight forward, the first part is
the verification of the case #=1 and is made by rather complicated computa-
tions. Thus, in proving the case n# =1, we first give our principal lemma which
shows, in explicit computation, that for every 2-cycle & in M ® ¢ X(G, H) there
are always a l-cycle f in M ®#X(H) and a 2-chain g in M ® ¢ X(G) satisfying
h=09g, «f= —0g. While merely the existence of f, g satisfying the relation is
used in establishing the case #=1 of our fundamental exact sequence in its
weak form, i.e. in the form where the residue group H,(H, M); is understood
in its first definition, our explicit description of f, g is used in order further to
show that the residue group thus defined can also be characterized by its second
definition as given above (by the property dual to stability).

We are thus mainly concerned with homology group case and cohomology
is ignored in the present exposition, since in our approach the homology case
is more troublesome to handle and demands some new technics while the co-
homology case is easier and can be handled by habitual means.?

In an appendix we consider the case of finite groups and discuss the rela-
tionship between our exact sequences and another similar series of exact se-
quences by means of the result in our previous note [9].

The writer is grateful to A. Hattori for his friendly cooperation during
the preparation of the present paper. His communications have been useful to

improve essentially the writer’s original form of result in several points.

1. Normal form of a relative chain -

Let G be a group, and H a subgroup. The n-component X»(G, H) of the
(relative) standard complex X(G, H) of G relative to H is, as explained in the
introduction, a free module generated by the totality of (s + 1)-tuples (oo H, 01 H,

., onH) of right H-cosets and has the G-left-module structure defined by
o(ooH, ..., onH) =(o00H, ..., donH). The set of all (n+1)-tuples of form
(H, aiH, . .., oo HY forms thus its generating system with respect to G. We

% The writer is communicated that in Hattori’s theory, which is exposed in case of
cohomology in [4], the treatments of homology and cohomology are rather, if not quite,
parallel,
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can further choose a subset
(1) §= (H, 0'1H, e sy dnH), s'= (H, U1'H, PR Uan), .« ..

of the set such that for every (»-+1)-tuple ¢ of form (H, v  H, . . ., t» H) there
is in the set one, and only one, element from which ¢ is obtained by the opera-
tion of an element of H, and therefore, for every (m+ 1)-tuple t= (roH, v H,
. ., tnH) there is in the set one, and only one, element, say s*, from which
t is obtained by the operation of an element of G, thus t=1s"* (r&G); here
r=rrmod H, =1,6/*" rmod ™ Ha'™™, ..., and r is determined uniqualy
up to rmod HN o™ Ha ™ N - - - Naoa™ Hax™"". Such a set (1) forms thus
a G-basis (or, more precisely, Z[Gl-basis, Z[G] denoting the group ring of G
over the integers Z) of X.(G, H).
For n =1, in particular, such a G-basis (1) of Xi(G, H) is a set (H, ¢H),
(H, /H), ... where g, ¢, ... form a complete representative system of double
coset decomposition of G mod H. For n=1, generally, the system a1, o/, . . .

may be chosen as such double coset representatives each taken with certain
iteration.

Let M be a G-right-module. The group of (relative) n-chains of G over
M relative to H is the tensor product

M®0Xn(G. H)

over G (or, more precisely, over the group ring Z[Gl). Each element of
M ®6Xa(G, H) is expressed in a form

(2) UQestu Qas'+ - - - (u, o', ... €E).

Set K=HNaiHo, "N -+ NonHon™', K'=HNo/Ha/7'N -+ No'Had™",

Let Mx be, as usual, the residue-module of M modulo its submodule
generated by elements of form u— ux(ue M, x € K), and similarly with Mg,
etc. Then the classes in the residue-modules My, Mk, . . . of the coefficients
u, o', ... in (2) are uniquely determined. With some fixed choice of the system
(1) we shall consider (2) as a normal form of n-chain in M Q¢ X(G, H).

2. Principal lemma

First we fix some notations to be used below. Let @ be a complete re-
presentative system of right H-cosets in G. Deviating somewhat from the nota-
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tion in the preceding number, let &; ={a:} be a complete representative system
of double H-cosets in G, and let for each a;=@®; a complete representative
system of right H N aiHa, *-cosets in H be denoted by H(a;). Thus

(3) ((H, 0(1H)l0(1€@1}
is a G-basis of X,(G, H), and
(4) {haila:e®y, he D(a))}

is a complete representative system of right H-cosets in G; later we shall have
occasions to specify & to be this representative system (4), but for the moment
such a specification is not needed.

Further, let ;= {(a2, B:)} be a system of pairs of elements of G such
that the system

(5) {(H, a:H, B2H)|(az, B2) € G}

is, as the system (1) for the case n=2, a G-basis of M®s Xo(G, H). (One
way of constructing such a system . is to start with @&, take for each a; =&,
a complete representative system {B(«,)} of double (H N aiHa;™')-H-cosets in
G, and to set G = {(ay, Bla)) |ar€ Gy, Bla)) € {B(a;)}}. But we do not need
to take our &, in this special form.) Let, further, $(a., B:) be a complete
representative system of right H(\ a:Ha, ' N B HB> "-cosets in H.

Now, consider 2-chain

(6) Mzeame, N1, & ) EM®R@e Xo(G) (v(£, ) € M)

of G over M. Its boundary is given by

(7) Eev(e, 7 Qe((& 1) = (1, 9) + (1, &)

% e

= 2 (o(n, 98 —0(n, &) +v(& 7)) Ral(l, &)
¥, 1eE6

= > (v(y, haia)y—v(y, haia)
WEH  E@GrrEH (21 NEG

+ov(haia, Qe (h™Y, ara).

The image of this by the canonical deflation (or residuation) map ¢: M® ¢ X(G)
> M®sX(G, H) is

8) > > (v(, nhaia)y —v(n, haia) + v(haia, P)hQe(H, atH).

IN=HON uEh‘;hES;)(dx);'IEG

If here this relative chain (8) is 0, then there exist, by our observation in the
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preceding number, functions g(ai, ¢) in M of c€ HN ayHa,™", depending on
a; € @, such that we have

9) Y (v(y, nhas1a) — v(y, haya) +v(kara, 7))k

CEHREQ(01)NER

= > (qlay, ¢)c—qlay, ¢))

cEHnaeyHay "t

for each a1 € @

An element % of M®¢ X:(G, H) can always be expressed as the image by
¢ of some element, say (6), of M®s Xz(G). If in particular 9k =0, then, since
¢ and o commute, the above consideration applies to the case. Now we prove

our principal

LemMma 1. For every (relative) 2-cycle h in MQ® ¢ X(G, H) there are a 2-
chain g in M®q X(G) and a 1-cycle f in M@ a X(H) satisfying

(10) h=vyg, of = —og

(where ¢ is the canonical injection map of MQ a X(H) into MR ¢ X(G)). More
brecisely, if h is the image of (6) by ¢, then we can take q(a:, ¢) € M(a: € Gy,
ce HNarHa™") so as (9) holds for every a;< ®, and with

1) g= ‘,nEeav(é, 1) ®a(l, & 1)

(v(n, nhara)y —v(x, haia)
HEPLRED(e1)iaEH;NEG

+o(haia, 1))hQe (7Y, as, aya) + (B, 1, 1))
1lJ(m, ) ®e((1, a1, car) = (1, as, a1)

@ EFicEHNa Hay™
+(1, 1, a1) (1, ¢, car))

and

12) f=-2X > (v(9, nhara)n — v(n, haia)

aEH 1E@1AEY(®1)i 1EG

+v(haia, 7))hai®@ (1, a)

- P > (v(y, nhasa) —v(y, haia) +v(hara, 7)) @=a(1, h)
O EQLEDH(a1) aEH; 1EG
+ > (glas, ¢)®r(1, ¢) —qlay, ¢)ar®@u(1, as ™ cay))

1 EQcEH NG Hay—t

- 2 (0(61'1, C) —q(“l; c)“l)@ﬂ(ly 1)

¢, EQi0EHNa Hay™t
we have of =0 and (10).

Proof. Though somewhat abruptly, we define g as in (11). Its image ¢g
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by the map ¢ is %, since the first sum in (11) is simply (6) (which is mapped
to k by ¢) while the image of the second sum is, by (9),

(g(eas, c)e—qlay, ¢))@e¢((H, i H, a1 A) — (H, H, arH)) =0

aEQ1 cEH N Hoy ™t

and the image of the last two sums is
q(ai, ¢)Qe¢((H, ayH, a1 H) — (H, a1 H, a1 H)
GEQ cEHNa Hay ™t

+(H H, ayH) —(H, H, a1 H)) = 0.

On the other hand, we have (cf. (7))

og = 3 (o(y, hara)n —v(n, hara) +v(hara, P Qe (R, ara)
GEH; 1 EQPLAEH () ER
+ > (v(y, nhara) —v(y, haia) +v(haia, 1))hRe (a1, a1a)

WEH; 4, EPREH (e EG
- wa)+ (B a)+ (1, a) = (7Y @)+ (BT 1))
+ > glar, ¢) @¢((a1, car) — (1, car) + (1, a1) = (a1, ai)

@ EG1CEHNe Hay ™t
+(L, a) = (1, a) + (1, a1) = (1, ) + (1, 1) = (¢, ca)) + (1, cay) = (1, ¢))
= > (v(n, hara)y—ov(y, haia) +v(haia, 7))h Qs (a1, a1a)

EH:uE@hED () inER
+ (1, ar) + (B7, 1))
glay, ¢)Qe((a1, car) + (1, a1) — (a1, a1) +(1,1)

e ceEdna Hay™1
— (¢, car) = (1, ¢))

= > (v(n, nhar@)g—v(y, haia)
aEH; i EQHrEH (1) 1ER

+ovihaia, 7))@ (i, aia)+ (R, 1))
(qlay, cde—qlay, ¢))®e(1, ar)

yEP1icEHNa Hay ™t

d(ai, ¢)Qe((ar, car) + (1, 1) — (a1, 1) + (1, 1)

¢ EFicEHNe Hay ™t

— (¢, car) = (1, ¢))

by (9), and this is equal to —f, with f as in (12), since the sum of the latter

two sums is

Ala, ¢) @6 (e, ca) = (1, ar) + (a1, car) + (1, a)

yEWGcEHNa Hay™
— (a1, a1)+ (1, 1) = (¢, car) = (1, ¢))
= > lay, ) @¢((ar, ca) = (1, €)+ (1, 1) = (a1, ar)).

G EGCEHN Hay™

Thus the relations in (10) have both been verified. From the latter of them
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we have 9f =93¢/ =0 and this implies 5/ =0; it is also easy to verify this by
computing 9f explicitly from (12), using (9).

3. Fundamental exact sequence in weak form for the case 7=1

In this number we use merely the first half of our fundamental lemma;
its latter half, which gives not only the existence of f, g (satisfying (10)) but
the explicit forms of f, g (at least in their suitable choice), will be used in the
next number.

For any given 2-cycle & in M® X(G, H) there exists, by our fundamental
lemma, a 1-cycle f in M® » X(H) such that there is a 2-chain g in M ® ¢ X(G)
satisfying (10), and here f is determined by % uniquely modulo the group formed
by those 1-cycles fo in M®x X(H) which satisfy ¢fo = —0g with some g
€ M® s Xe(G) such that ¢go=0. We denote by ” % the residue class of f
modulo this last group, to obtain a homomorphism '® of the group of 2-cycles
in M@« X(G, H) into the residue group of the group of 1-cycles in M® x X(H)
modulo the said subgroup. The kernel of this homomorphism «® contains the
group of 2-boundaries in M® ¢ X(G, H), since if h=2k(ke MQ s X:(G, H)),
then k=¢ok with ke M®sX:(G) satisfying ¢k =k, and 20k 0= ¢0.

Hence ¥ is actually a homomorphism of H:(G, H; M) into the above residue

group.

Further we denote by Hi(H, M), the residue group of H.(H, M) modulo
its subgroup formed by those homology classes represented by cycles in the
above subgroup of the group of cycles, i.e. cycles f, which satisfy ¢fo= —9g
with some g€ M® ¢ X;(G) such that ©g,=0; thus H,(H, M); is the residue
group of the group of cycles in M®x X:(H) modulo its subgroup generated
by boundéry cycles and cycles f, as above. We denote by r the homomorphism
of (G, H, M) into H,(H, M), induced by «'”.

We observe the injection ¢ induces a homomorphism of our group Hi(H, M),
into Hi(G, M). For, if f, is as above, then :fi( = —2g,) is evidently a boundary
(and, further, + commutes with ). We denote the induced homomorphism of
H.(H, M), into Hi(G, M) also by . Now we have

ProrositioN 1. For any G-module M the sequence
9[)
(13) 0<—H\(G, H, M) <—H/{(G, M)<—H(H, M),

T @
<« H.(G, H, M)<—H,(G, M)
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is exact.

Proof. Let

g= T uld) @ (H, $H)
be a l-cycle in M®¢X(G, H); we have thus 0 =0g = > (u(8)¢ — u(8)) @« (H),
IEG

which means the existence of elements g(a) in M depending on a< H such
that > (u(£)8 —u(2)) = > (gla)a—g(a)). Setting

tEG [d=3:4

(14) f= g}u(éﬂza(l, )~ 2},‘1(“)@"(1’ a),

we obtain a l-cycle fin M®@q X(G). As (H,H) =3(H, H, H), ¢f is homologous
to g in M®¢ X(G, H). This proves the exactness of (13) at Hy(G, H, M).

Consider next a 1-cycle

f= ;ﬂu((l)@Jn(l, a)

in M@uX(H). We have ¢:f = >, ula) @ (H, H) =3( Zlu(a)@\(;(H, H, H))
(=954 a&= ki

~ 0. Conversely, if
g= 2 ul8) ®e(1, 5)
EEG

is a l-cycle in M®e¢X(G) such that ¢g~0 in M®eX(G, H); thus ¢g
= E%Gu(E)éba(H, ¢H) =3( Egu(é‘, 7) @e(H, £H, yH)) with some 2-chain (6)
e

in M®eX(G). Putting

(15) &= E}ul(é)@)a(l, £€) =g—a(=§énv($, 7 ®e(l, & ),

we have ¢gi=0. Hence there are elements p(a;, ¢) of M depending on a; € &,
ce HNayHay™" such that
ulhaia)h = > (plai, c)e—plai, €))

oEH;hEH(ay) ¢EHna a1

for each a; € ®;. So

g1= >) u(hara) Qe ((h, hay) + (1, hara) — (B, hai))

d1€®1;hE@(al);aEH

= 2 2 l(p(aly C)C—P(lxh C))®G(1: “l)

@ EG < Edne Hey ™

+ > w(haia) ®a((1, hara) — (h, hay))

alecﬁx,;he,@(a;);uEH

!p(m, ) Qele(l, a) = (1, ar))

I EYcEH N Hay™
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“

ul(h dla) ®G((1, h(lxa) - (h, hlh)).

OQEFUrESH(an)eEN

As 3((1, ¢, car) = (1, ar, ca)) =(¢, car) = (L, car) + (1, ¢) — (a1, car) + (1, cay)
-1, a) =¢(1, a1) + (1, ¢) = (a1, car) — (1, @1) and 3((1, hara, hay) — (1, b, hay)
=(hara, ha)) = (1, hay) + (1, haia) = (h, ha) + (1, hay) = (1, b) = (hara, hay)
+ (1, hata) = (h, hay) -~ (1, k), we have

&1 = M (oplas, c)@e((1, ¢, car) — (1, a1, car))

o E@cEHne Hey ™!
“1’(6(1, C)@G(l, C)-I-P(Cn, C)d1®a(1, dl—lcax))
Gu(haia) @e((1, hara, hay) + (1, k, k)

HEFLREDH(a1)iaEH

—wmhaia)hai®ela, 1) +uhaia) @e(1, k)
So g~gi~tf in M®« X(G) with

(16) f= 2 (—19(0(1, C)®H (1, C)+ (P(d], C)“l@y(l, 0(1_16111))

aEQcEHNeHey ™t

(—uhaia)ha1@ula, 1)+ u(haa)@n(1, h)).

HEGIEH(a1);0EH

Here f is a cycle, since 0=02=0g:1=0¢/=¢3f and ¢: MQu X(H) » MR ¢ X(G)
is monomorphic. The sequence (13) is thus exact at Hi(G, M).

Let & be a 2-cycle in M®¢ X(G, H). TIts homology class is mapped by =
to the element of Hi(H, M), represented by the homology class of a 1l-cycle f
in M@ r X(H) such that there is an element g of M® ¢ X2(G) satisfying (10).
The homology class of the cycle f is mapped by ¢ to 0, because of the latter
relation of (10). Consider next conversely any l-cycle f in M®u X(H) such
that f is a boundary in M®X(G), say —0g(g=e M®¢ X:(G)). We have
ovg=¢og= —¢f. As (H, H)=0o(H, H, H), ¢f has a form o¢ik with
ke M uX:(H). Set h=¢(g+ k). Then h is a 2-cycle in M®¢ X(G, H) and
((f—2k) = —0(g+ k). Hence the class in Hi(H, M); of the homology class of
f (i.e. that of f—0ok) is the image of the homology class of the cycle & by r.
So (13) is exact at Hi\(H, M),.

Let next g be any 2-cycle in M® ¢ X(G). Then i =¢g is mapped by ¢ to
0 since 0 = —3g. Consider conversely any 2-cycle k& in M®sX(G, H) such
that its homology class is mapped by r to 0 in H:(H, M). This means the
existence of elements 2, g in M Qs X:(H), MQ s X2(G) respectively such that
h=9g, —og=:k Here ¢:k=0 since ¢k has a form u®e(H, H, H) and o¢k
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=¢ok= —¢og= —3¢g= —oh=0 implies x=0. Hence h = ¢(g— k) and here
g—tk is a cycle. This proves the exactness of (13) at H:(G, H, M), and com-

pletes the proof of our proposition.

4. Supplement to the principal lemma

Let M be, as hitherto, a G-module. Let K be a subgroup of G, and ¢ an
element of G. For an element

(17) k= Eexu(KO; Kly o « « K’l)®K(x0: Kiy « « o K")(u(KOI e ey 'Cn) EM)

of MQx X»(K) we set
(18) Tsk= > Ku(;co, Ky o ooy Kn) Qu1ge (87 k08, 7018, .. ., £ kn8).

Ky eooy =

This is an element of M® t-ix: Xx(6™'K¢€) and is determined uniquely by &,
independently of the special choice of the form (17) expressing k. - If kis a
cycle, so is T:k.

Now, let H be a subgroup and % an element of M®x X»(K) with K=H
NéHE™', where ¢ is, as above, an element of G. Then T is, thus, an element
of M@ t-1xx Xa(6 7' K¢) and here 8 ' K& = HN ™ HE. If tuntnt, m, tunt-1ax, u denote
the injection maps of M® unsut-1 Xu(HNEHE™), M@ nnt-1ar Xa(HN ™ HE) into
M® s Xa(H),

(19) lHnEHE-\,Hk — (HA%-!'HY, H T:k

is an element of M@ X,(H). In case f is a cycle our element is a cycle too.
So, we consider, taking #=1, the subgroup of M® » X:(H) generated by boun-
daries and cycles of form (19) with cycles & in MQuntus- Xi(HNEHE™), &

varying in G, and we supplement our principal Lemma 1 with the following

LemMA 2. Let h be a 2-cycle in MQ ¢ X(G, H). If we take, as in Lemma
1, @ 2-chain (6) in MQ ¢ X(G) having h as its image by ¢ and consider the
expression f in (12), f is determined by h uniquely modulo the above subgroup
of MQ uXi(H), i.e. modulo‘boundary cycles and cycles of form (19) with 1-cycles
kin M@ unsus-+ X(HNEHE™).

Proof. First fix a choice of (6). Then we have merely to consider differ-
ent choices of ¢ in (9). If g, ¢ are two different choices and if we set s(ay, ¢)
= g(ay, ¢) = ¢'(as, c)(a; € 81, c € HNayHa;™"), then we have > 1(s(ar,l, c)e

cEHNneHa;™
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—s(ai1, ¢)) =0 for every a; = ®,. This shows that, for each a; € ®,,

(20) S slay, ¢)

c€Hna1Hay™t

is a 1-cycle in M® paups,-r X(IHN a1 Ha™). The difference of f by our two
choices ¢q, ¢' of q is, on the other hand,

(21) P 1(5(a'1, ) ®r(l, ¢) —slay, )ar@u(l, ai™'cay))

a1EQ1 cEHNae Hay™

- > l(8(61'1, ¢) —s(a1, )a)) @& (1, 1).

¢ EQ1;cEHNa Hay ™

Here the latter sum is a boundary (since (1, 1) =9(1, 1, 1)) while the former
sum is a sum of cycles of form (19) with cycles %2 (since (20) is, for each

a € @;, a cycle).
Next we turn to examining the change of / by different choices of a 2-chain

(6) in M® ¢ X(G) having h as its image by ¢. If Eg}eov'(s, 7)Q®ea(l, & 7)isa
second choice, and if we set w=(¢§ ) =0(§ ») —2'(¢, 7), then we have

S w8, 3) ®e(H, £H, nH) =0, or, what is equivalent to that for every pair
%, "6

(@, B3:) in @ the class of
| w(haza, hBb)h

6, VEH hEH (@2, B2)

in the residue module Myuno,zo,-1npmp,-2 iS 0.  Every such system w(&, ) is a

sum of systems of following forms:

i) wlaz, B:) =uk—u with uc M, ke HN a: Hay ' N B HB,™* for one pair
(az, B2) in ., and w(§, ) =0 for (&, 7) = (a2, B);

ii) wlaz, B:)= —w(hiazas, hoBeb)ho=uc M for one system (az, B:)
€ Gz, Hoe Dlaz, B2) and ao, bo = H, with (hoazas, hoBebo) = (az, Be),
and w(&, ») =0 for all (¢, ») different from (a2, ;) and (hoazao, hoB2bo).

We first consider w(&, ) as in i). For them we have for each a;®;

(w(n, phaia)y —w(y, hara) +wlhaia, 7))k

AEHhEP(0);"EG
= OHa,H, Ha,—lp,HW(az, azlh aia)az ! — 511«;13, H[iZHW(az, h'a a")h"
+ Onroym, Ha,n W (B ara’!, B2) B
= OHayH, Hogtp,8 (UK = U) A h' — Onouu, np,u(uK — u) '

+ Ona,H, pau(ur — w) '

where ¢'s are Kronecker ¢'s and A, h", B € (ay) and a', @', @' = H are,
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when exist, such that h'aia@' = a2 B, h'ai1a" =Bz, K" a@" = as; each of the
equation is solvable (indeed uniquely) if and only if the corresponding ¢ is 1.
This is expressed also as CE”E’“ _1(7(00, c)e—7(e, ¢)) with 7(ai, ¢)
= Ona,b, Hoy-15,2 7" (@1, €) +611¢1H,m,yr”za:, ¢) + Onaym, o, "' (ay, ¢), where 7'(a;, ¢)
=uah' or 0 according as ¢=h'""a; " ka:h' or not, 7'(ay, ¢) = —uh" or 0 ac-
cording as ¢=h""'kh" or not, and 7"'(a1, ¢)=uh" or O according as c¢=
R"'ER'" or not; observe that we have, by ke HNa,Hay ' N BgHﬂz" and the

defining properties of &', ", n', a', a", o',

h’_ldg.-lkdzh’ = h/_l Hp' n (110' Ha'—locfl = Hr‘ 071H£t1—l,
R''ER' €T HRHR' Naya"Ha" *a ' = HN aHay ™,
W ER = R LR a ma"'Ha’"—loq_l =HN (XIH“l—l'

Thus ¢'(as, ¢) = glai, ¢) —7(ay, ¢) satisfy (9) with v(&, 4) replaced by v/(¢, %)
=v(¢, 7) —w(&, 7). So the expression (12) for »/(£, ) in place of v(&, 7) differs,

with our choice of ¢’'(ai, ¢), from the original one, f, by

(22) wlas, axWal@)as W al @ull, @) —wlas, B'aab"a Qull, a)
+w(R" @@, BB @ @ (1, @)
+wlas, azhaa)a:Q@ull, b') —wlas, B'a'a") Qu(l, ')
+w(h'"d1"'a”', BZ)®H(1) h”l)

- > (rlas, ) @u(l, ¢) —7(ay, )ai®u(l, ar” ' cay))
G EQcEHNalHg, "L

‘(f(tll, C)“"f(d], C)d1)®11(1, 1)

@1 EQicEHN a1 M~
= wlaz, Blash'ar @ull, @) —wlaz, B)h"a" @r(1, a")
+ W((Zz, ﬁz)h”’ao’”@ll(l, a“’)
+wlas, Bla.@u(l, B') —wlaz, F2) ©u(l, B') +wlas, B)Qu(l, B")
—7(ar, W s kao ) @ u(1, B @ ko k')
— 7"y, " RR"Y@u (1, K" RR)
=7, W RRY Qu (1, RMTURRM)
+7(ar, W Rash)ad @ (1, af B e han b a')
+ 7"t B"TTRR oy @ u (1, al' T R T R )
+ 7" (", B TURR ) e @u (1, a T R T R R oy
+ (FMar, W' ko) — v/ (et B ko D at) @ n (1, 1)
+ (P!, BRI = 7 (!, BTTRRD @) @1 (1, 1)
+ (7""(ar, RTRRY = " (et RYTRR) ) © n (1, 1)
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= (uk —w)azh' a/ ®nu(1, a') = (uk— w)h"a" @u (1, a")
+ (uk—w)h'" a)"@xu (1, @)
+ (uk—w)a: @u (1, B') = (uk— ) @u(1, B") + (uk — u) ®u (1, B")
—ua: ®u(l, W '@ ' kauh!) + uh" @xu (1, ' kD)
—uh" u(1, RMER")
tuaha’@u(l, af A ar  kar W ')
—uha!"Qx (1,. aq"—‘ h"“kh"m")
+uha a1, alm'l )y B o))
+ (warh' — v a!) @u(1, 1) — (uh" —uh"a) (1, 1)
+ (uh"’—uh"'m’")@;;(l, 1) )

where ay, ay”, a,/"' €@, are such that

(23) Hoa/H=Ha,"': H, Ha)" H=HB{ H, Ha' H= Ha: H

and '€ H(ay), B €H(a)"), b € H(a/") and a', a", @'’ € H are such that
(24) Ma'ad =a:"'B, B'a)'a" =R, Wa"a" =a:;

ths B, B, B, a', a', a'" are the same as what were denoted, when they
existed, by the same letters a few lines above.

The last three terms in the last sum are evidently boundaries. The sum
of the 1., 4., 7. and 10. terms, concerned with a//, ¥/, @', is
uka:Way@u(l, @) —uah'ay Qu(l, @)+ uka2Q@u(1, W) —ua:@u(1, h')
—ua: W @u(1, W 'a ' kash!) + uash' a) @u (1, ar b ez " kash' ay')
=uka M al Q@u(1, a') —o(uarha) @u(l, d, dl'—lh'dz_lka‘zh'a'l'))
+uacha! ®@r(d, af W e ks b ar!) + uka:®@n(1, b') —ua:@nu (1, ')
—ua:h' @u(l, ' ' kanh') =uka: b a/ @n((1, @', 1) + (1, 1, 1)))
—ukazha!@u(a, 1) —3(uash'a/ @u(l, @, air ‘b s ko b i)
+ukarha!@ula! B e R okl ala!, 1) + uka:@u (1, B')
—uka;Q@ua ' kas, a; ' kash!) —uka:@u(az 'k a2 !, h')
=o(ukarba/®@u((1, @, 1)+ (1, 1, 1)))
+o(ukaWa@nu(a, ad ' W s 'k ah' al a, 1))
—ukarhay @u(d, ay "W e ko b et @)
—o(uahay @u(l, @, cxh' xRk ar!)) +0(uka: @ (e k  ax ', 1, ')
—(:  kaz, ax kash!, 1)) —uka:@ula: ' kaz, 1) =0(ukarh a’ @u((1, @', 1)
+(L 1L, D+ (d, ar ' ek o b @, 1)
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~(a W T Rt !y R e R s i ' al, 1))
+ukas@u((a B k!, 1, 1) = (a  kae, ax  kazh!, 1)))
—~ukB®u(1, B kB —uka:Quas  kar, 1).

The sum of the 2. 5., 8. and 11. terms (concerned with a,”, A", a@") of the
above sum is, on the other hand,

—ukla"@u(l, @) +uh"a)"@u(l, a") —ukQu(l, #") +uQnu(1, 1")
+ul"@u(l, BT ER") —uk"a' @u (1, & R T RR &) = —ukhal' @u(l, @)
+o(uh" a"@u (1, @', a7 h" T RR ai")) — uh" a)" @y (", al R T RR @)
—uk@n(1, M) +o(u@u(L, B, k")) + uQ@u(1, Eh")

= —3(ukh"a)" @5 ((1, @", ) = (1, 1, D)) + ukh” a @ula", 1)
+o(uha" @n(La", a)" BRI @) — ukh" a) @ulal T R R T W 0y, 1)
—uk®u(l, ") +2(u®@a(1, B, kh")) +ukQ@u k™, B")

= —o(ukh"a"®@u((1, ", 1) — (1,1, 1)))
+o(ukh"a)" @ula "k W' ay a", @', 1))
—ukha) Q@ula' B R W ) a", a") + o(uh o @u(l, @, a "B R ar'"))
+o(uk®u (1, 7% ") —uk@u(l, ) +0(u®xu (1, b, kR"))
=o(ukhay"@u(—- (1, a", D+ (1, 1, D+ (a" " 'm"E 'R @, a", 1)

+ (a" TR R &, TR T R R« a, 1)) +uk @ (1, B R

+u@u(l, W, kR")) —ukB@u(B By 1) —uk@u(l, B,

Further, the sum of the 3, 6., 9. and 12. terms (concerned with «"', A'",
a") of the above sum is, similarly,
ukh ;" @u(l, @) —uh" a!" @u(l, @) +uk@s (1, K" —uQru(l, K")
—uh"@u (1, B"TRRM) 4 uh" " @ u (1, a' T R T RR 2")
=3(ukh"a" @n((1, @, 1) = (1, 1, 1) — (/" W B B i @, @™, 1)

+ (ad"RTRT R oM, @RI R " @, 1)) —uk@a (1, k7Y R
~u@u(l, W, k")) + ukas@n (o kaz, 1) +uk@u(1, k7).

So, in altogether, the above sum (which is the change of the expression
(12) corresponding to the change of v (and gq) to o' (and ¢')) is ~ —ukB@nu
(1L, Bk ' B) — ko ®@u (B kB, 1) = —0(ukB@u((L, B R B, D)+ (1,1, 1))
~0.

Next we consider w(¢, ») as in ii). For them we have for each a;=®;

0EH;ME@(G‘MEG(w(r/, rha1a)n —w(n, ha1a) + whaia, 7))k

= 0Ha,H, Hurlmu(w(a’z: Bazh' + w(hoaza, hoBabo)hoazah™)
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= OHa,H, Hﬂ,_,H(w(dz, BB+ whoaza, hy ﬁzb)}—l")
+ 5Ha1H,HaZH(lU(£lz, Bz)h”’ -+ W(ho(xza, ho sz)ii”’)
= Ono,11, oy, (U Q2 B — Utz @oh™") — Onaym, mp, (" — who ' B)

1
+ Ortoymr, oo (B — 2wy B

where 1!, 1!, 1", B", b, B" < H(a;) are, when exist, such that a:h'a,H= fH
(ie. WarH= ;"' B H), hoazah' a:H = hoBe H (ie. WaH=a"ay o H), h''asH
=RH, WWaiH=hBH, Mo H=aH, I'""a;H=haH. This is expressed also
as cengnrl(f(m, ce—r(ay, ¢)) with 7(a1, €)= — Oen, tay-1p1 Oc, hr-1ayi? Uatzh!
+ 8HalH,HﬂzH Oc, hor=thy=thin Wh'" — Org 1, Ha,b Oc, hri=Lhy=thir uh". ¢(ay, c)= glay, ¢)
—7(a1, ¢) sitisfy (9) with »(, 1) replaced by v'(§, 7) = v(§, 9) —w(§, 7).

The expression (12) for #'(&, %), with this choice of ¢'(ay, ¢), differs from
the expression (12) for v(&, %) by

(25)  wlaz, Blazh'al!@u(1, @) +wlhazas, hBb)hazah'a)@u(l, @)
—wlaz, BIA a"@u(l, a") —w(haza, hBeb) " ar! @n (1, @)
+wlaz, B a"@u(l, @) +w(haza, heBab) W /' @u (1, @)
+wlaz, Bla@u(l, &) +w(hoazas, hofbo)haza®@n(l, K')
—wlaz, B)Q@u(l, B") —w(hiarao, hoBb) @ n(l, 71.”)'
+wl(az, B) @u(l, B") + w(hoazao, hoBeby) @u (1, B'")

- > (r(as, )@r(1, ¢) —7(ai, ai®@n(1, ai ' car)

ayEWcEHNa Hay ™t

(r(asy, ¢) —7(ay, c)a) @u(l, 1)

G EF;0E HnayHa~!
=ua:ha/!Ru(l, @) —uawaa' @u (1, @) —uh"a! @u(1, a")
+uhd ' R'a @u(l, @) +ub a/"Q@u(l, @)
—uh 'R ®@u(1, @)
+ua@nu(l, B') ~sara®@u (1, B') —u@n(l, 1)
+uh ' @u(l, W) +u@a(l, ") —uh” @u(l, B'M)
+uah Qu(l, W 'ah') —uh" @u(l, B hoh")
+uh" @p(1, K" he R)
—uarh'a! @ (L al "W @ ar) +uha" @u(L, al T R R T R ")
—uh" " @ n (L, e R o T ) + (— ek + wht! — wh

Ffuashal —ub"a! +uh" a")Qu(l, 1)

where ay, ai”, a;'"' € &, are the same as in (23) and &' € H(ay), '€ H(as"),

e 9(a") and @', @', a"' = H are the same as in (24) while 7' 9(ay'),
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ey, BeH(a") and o, @', @’ € H are such that

26) hoazaoh' ) @ = hoBeb (ie. Wt @ = ac o Babo),

7" @" = hoPaby, B'"ai"a@" = hoasao.

The last term of the above sum is evidently a boundary. The sum of the
1, 2,7, 8, 13, 14. terms is

uﬂza"1®n(1, a) - uﬂzboa'ﬂ@H(l, a)+tua:@u(l, i) —ua:Qulay, ah')
+ua:@u(b, ah') —upa ' Qn(l, aboa'™")
=uB@u((a@™, 1) = (bd ™, bo) — (@', bo@'™))
+ ua’z@H((l, h’) — (aOy a()ﬁ,) + (h’) aOZ,))
=o(—uf®@u((a, ba@™, 1)+ (b@™, by, 1))
+ua:@n ((a, W, aoI’—L') + (ao, 1, ) +uB®@ulbe, 1) —ua:®ulas, 1).
The sum of the 3, 4, 9., 10, 15., 16. terms is
—uBa" ' @u(l, @)+ upba" ' @u(l, @) ~u@r(1, K" +uh ' Qu(l, i)
—uh"Q@u(l, W' hyT'R") +ufed’ ' Qu(l, a'bya""t)
= ~uB®u((a", 1) = (ba"™", b) — (@', ba"™"))
—u@u (A, B = (b ReTUR) 4 (BT, ReTIR))
and is, by exactly the same computation as in the last stage of the above cal-
culation,
=0(uB@u((@"™, bo@"™", 1) + (by@" ™", by, 1)) —a@u((he™", hd', ho™'R')
+ (™ L) —uB@ulby, D+u®@u(h, 1).

Similarly the sum of the 5., 6., 11., 12, 17, 18. terms is

N —ua@u (@™, @a" ™, 1)+ (a@" ™", as, 1)) +u@u((h, W', ha 'R')
+ (e, L, M) +uae®@nulan, 1) —uQ@u(h, 1).

Hence, in altogether, the above sum is~0.
Having thus examined the change of the expression f in (12), first by a
fixed choice of (¢, »), in (6), and then by different choices of v(%, 7), we have

proved Lemma 2.

5. Characterization of H,(H, M),

Now we prove

ProrosiTioN 2. The kernel of the canonical map H(H, M) - H{(H, M),
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i.e. the subgroup of H\(H, M) formed by the homology classes represented by
cycles fo which satisfy ¢fo= — 08 with some go€ M® ¢ Xo(G) such that ¢g,=0,
coincides with the subgroup of H\(H, M) generated by the homology classes of
(19) with cycles k in M@ parns—: Xi(HNEHE™") (£ varying in G).

Proof. Let k be a 1-cycle in M@ ynwme-1 X(H N EHE™) where £ is an ele-
ment of G. We may assume without loss in generality that &, is taken so as
to contain £, and thus £ is some a; in §&;. When & = vEHnEH-IE"llI(C) ®nams-1(1, ¢),
we set glai, ¢) =0 for a; €@y, ar> & ceHNaHay ', and g(¢, ¢) =q(c) for
ceHNEHE™Y.  Then (9) holds for every a;e @, with all v(& %) =0. The
cycle f in (12) for the present »(£, %), g(ay, ¢) coincides up to the last sum
in it, which is evidently a boundary cycle, with (19). Hence the image by
(M@ uXi(H) > MQe X:(G) of (19) plus some boundary cycle is —9g with
g in (11) for our v(&, ), g(as, ¢). Since here all v(¢, ) =0, we have ¢g=0.
Thus (19) is a cycle £, as in our lemma modulo boundary cycles, and one half
of the proposition is proved. Our proof, which depends on a part of the proof

of Lemma 1, may simply be summarized in the equation

(> (@(e)®@u(l, ) —ale)e@n(l, £7¢8))

cENNYIY™

-2 2 (ge) - ge)®)®x(1, 1, 1))

cENEHE™L

=-2 21 qe)®ae(((L, & ¢8)— (1, ¢ eN+(L 1,8~ (1, ¢ cé)))

cENNnEdE~1

which can naturally be verified directly.

To prove the other half of the proposition, we assume, as we may, that
®; is chosen so as to contain 1 and (1) ={1}. Let fi, g be as in the pro-
position. If we express g, in the form (6), the relation — 9g, =/, implies that
%(v(n, nhaja)y—v(y, haia) +v(haia, 7)) =0 for all ac€H except when
(a1, 1) =(1, 1) (cf. (7)). It follows that the image by ¢ of the first sum in f
of (12), for the present v(£, 7), is —2g (which is equal to ¢f;). Hence f—f;
is equal to the sum of the 2., 3., and 4. sums in (12), where g(ay, ¢) are chosen
so as to satisfy (9) for the present »(§, ). By virtue of the above relation
we may simply set g(ay, ¢) =0 except in case a;=1. Hence, with this choice
of glas, ¢), the 3. and 4. sums, in question, are 0. As to the 2. sum, it is a
boundary cycle, since, again by the above remark, only k& =1 matters there.

Thus f -/, is a boundary cycle.
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On the other hand, the present f is an expression (12) for k= ¢g, = 0, and
is hence, by virtue of Lemma 2, modulo boundary cycles a sum of cycles of
form (19) with l-cycles kB in M@ uotee-+ X(H N EHE™). The same holds for
fo(=f=(f=/2)) by the above observation. Our proposition is thus proved.

6. Transgression map in higher dimensions

A G-module A is called (relatively) (G, H)-regular when there exists an
H-module B such that A is G-isomorphic to BQ#rZ[G], the G-module struc-
ture of the last module being defined by (b®@#x8)o=b®@ués. For every n=1,
the homology group H.(G, H, A) in such a module A vanishes. To prove
this (well-known) fact, we recall that we have x=03¢nx+ ¢n-10x% for every
%€ Xa(G, H) with the H-homomorphisms ¢um: Xm(G, H) - Xm+:(G, H) (m
=n—1,n) defined by ¢;n(aeH, . . . ,omH) = (H, 00H, . . . , omH). If

tEFaEXn(G, H)

b(¢, x) Qué®ex is an n-chain in B »Z[G1® ¢ X(G, H), we have
:L.:b(&‘. ) @né@ex= g_}b(é, 2)QulQetx
= g‘a_‘:b(e, %) ®rl®¢ (0¢nlx + ¢n-196 1) =a(§b(5, %) @ul®¢¢ntx)
+ 235(8, 2) @1 @0 ¢n-160%.

Now, for each element §b(5’ 2)QréRex in BQuZ[Gl® e Xa(G, H) the ele-
ment E.2:1)(5, ) Rul®e¢dn-1£% is uniquely determined (independent of its
special expression) as we readily see from the H-allowability of ¢»-;. The last
sum in the right-hand side of the above equation is the image of gb(;‘, x)
®@ut'®@0ox by the endomorphism of By Z[G1® e Xx(G, H) thus obtained.
It is, hence, 0 in case the chain 236(¢, x) ®ré®cx is a cycle. The above
equation thus shows that every n-z;cle in B s Z[G1® s X(G, H) is a boundary,
as was asserted. (A (G, H)-regular module A is a (G, H)-projective module
in the sense of relative homological algebra (Hochschild [5]), and that H.(G,
H, A) are 0 follows also from the relation Hx(G, H, A) = Ext,®>7(4, 2)).

A (G, 1)-regular module is called G-regular, and is (G, H)-regular for every
subgroup H. Now, with any G-module M a G-regular module A7 is constructed
as follows: M =M® Z[G] and its G-module structure is defined by (#®¢£)s
=us®¢&s. Indeed, the totality of elements of form #®1 in A forms a (not
G-, but mere) module B and we have M=B® Z[G] in the sense of the con-

struction as in the opening of this number (by the correspondence %#®§¢
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>(#8'®1)®%&). Further the map #®¢& -» u(ucs M, £ G) defines a G-epi-
momorphism of A/ to M. Denoting the kernel of the epimorphism by N we

have an exact sequence

(27) 0->N->M->M-0.

Since M is G-regular, we have H,(U, M) =0 (r=1) for any subgroup U of
G. Hence we have

(28) H,(U, M) = H,-(U, N) (r=2)

for any subgroup U of G.
We next prove

Lemma 3. Let
(29) 0-N->R->-M-0
be an exact sequence of G-modules, and assume
(30) H(U, M)=0
for every subgroup U of G which is an intersection of H and its r—1 conju-
gates in G. Then we obtain an exact sequence of relative homology groups

(381)  H,(G, H, N) > H,(G, H, R) > H(G, H, M) > H,-(G, H, N)
- H,-«(G, H, R) » - - - > Hi(G, H, M)
where the maps are those induced by maps in (29) and the conmecting homo-

morphisms of an exact sequence of relative chains corresponding to (29) (which

exists because of our assumption).

Proof. From H(U, M) =0 we get an exact sequence
(32) (H«(U, M) =)0-> Ny > Ry(—> My > 0)
with maps induced by those in (29). It follows that the sequence
(33) 0-> NQeX:(G, H) » RQ®e Xt(G, H) » MQ6 X:(G, H) > 0

is exact, for every t =7 —1, where the maps are again induced by those in
(29). For, it suffices to show that the second arrow is monomorphic, and this
last follows, by our consideration in the number 1 applied to N, R in place of
M, from that the map Nv — Ry is monomorphic for every subgroup U in G of
form HNaiHoy "N - -+ NatHo™'. The exactness of the sequence (31) of
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homology groups follows now in the usual manner (from this and the trivial
exactness of R®q X, (G, H) > M@ X,(G, H) - 0).

LemMma 4. Let M be a G-module such that for every i=1,..., n—1 we
have Hi(U, M) =0 for every subgroup U of G of form U=HNaHs N - -
N on-ir1iHon-iv1 . Then, for every cycle h in M@ ¢ Xn+:(G, H) there exist an
element g in M@ ¢ Xn+1(G) and a cycle f in MQu X(H) satisfying

(34) r=og, f =(—-1)"og.

Proof. M=M®Z[G] is a regular G-module. Hence we have H,(G, H, M)
=0 forall r=1,2,.... Also H, (U, M) =0 (r=1,2,...) for every subgroup
U of G. Denoting the kernel of the natural epimorphism Af— M by N, we
have thus H,(U, M) = H,-(U, N) for =2, 3,. .., as has been observed
before too. Hence, because of our assumption on M, we have H;(U, N) =0
for i=1,..., n—2 and for every subgroup U of G of form U=HNo;Hao™
N - Non-iHon-i"*. So the G-module N satisfies the assumption of our
lemma for »—1 in place of # (and N in place of M). Now, our lemma for
n=1 is settled by Lemma 1. So, assume % > 1, and assume that it is true for
n—1 in place of #n. Then it can be applied to N with n—1 in place of =.
Further, as H.(U, M) =0 for every subgroup U of G which is an intersection

of H and its » conjugates, by assumption, the sequence
(35) 0> N®¢Xn(G, H) » M® s Xn(G, H) > M@ e Xa(G, H)( - 0)

is exact, as has been seen in the proof to Lemma 3.

Now, let % be an n+ 1-cycle in M®; X(G, H). Take any counter-image
7 of k by the map M Qs Xn+1(G, H) > M® ¢ Xn+1(G, H). Since the kernel of
the map M® ¢ Xa(G, H) » M® . X.(G, H) is NQsX,(G, H), ok belongs to
N@ e Xa(G, H). Denote it by 7.

Since &' is evidently a cycle, there are, by assumption, an element g of
N®:Xn(G) and a cycle /' in NQ » Xu-1(H) such that

(36) K =¢g, fl==(-1)"2g"
Let f be a cycle in M® » X,(H) whose homology class is mapped, by the
connecting isomorphism H,(H, M) ~ H.-:(H, N), to the homology class of f".

Thus, if £ is a counter-image of f by M © y Xa(H) - MQ x X»(H), then of =/"
+9f with an element f of N©y X,(H). Replacing f with f—~f, we may as-
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sume af=f’.

Hence, by (36), — (—1)"9g' = ¢f' = (df = 0¢f showing that (—1)"g'+ ¢f is
a cycle in MQ®q X(G). Since H,(G, M) =0, there exists an 7+ 1-chain Z in
MQ s X(G) satisfying

(37) (-1D)"g' +¢f =02

Then 2¢Z—¢cf=(~-1)"¢g' = (~1)"k' =(-1)"0k and ¢/ =0o(pg—(-1"R)
is a cycle. Since ¢.f is of form ¥®¢(H, H, . . . , H), this implies, as we see
by writing down its boundary, ¢:f=0 in case » is even. In case » is odd, on
the other hand, ¢:f is a boundary and is in fact equal to o¢ck = ¢ock with &

=@, 1,...,1)E MO uXne(H). Setting 2=0 in case n is even, we
have
(38) oef=¢ok (k€ MQuXne:i(H))

in either case. Hence 9o =0(¢g— (—1)"h) and ¢&— (- 1)"h — ¢¢k is a cycle
and, since Hy+:(G, H, M) =0, an n+2-chain 7 in M ®«X(G) satisfying

(39) $8—(—1)"h— 9k =0¢1.

Let 2, 7 be mapped to g, I by MQ@sX(G) » MR X(G), and % to k by
M®¢X(H) > M®sX(H). Then, by (39) and (37)

(40) h=(-1)"¢(g—k-23l), (g—tk—0l)=0g—0ok=:f— k.

Denoting ( = 1)"(g—tk—3l) € M® ¢ Xn+1(G) and f — ok & M® u X»(H) anew with
g and f, we have (34). Our lemma is thus proved by induction with respect
to n.

Under the assumption of Lemma 4 we obtain thus, as in the case n=1, a
homomorphism r of the homology group Ha.«:(G, H, M) to the residue group
H.(H, M), of H,(H, M) modulo the subgroup consisting of homology classes
containing cycles f such that ¢f = ( —1)"5g, ¢g =0 with some g€ M® ; Xn+1(G).

We remark that the kernel of our residue homomorphism H.(H, M)
- H.(H, M), is contained, evidently, in the kernel of ¢ : H,(H, M) -~ Hn(G, M).
Thus we obtain a homomorphism Hn(H, M); -» Hn,(G, M) which we denote
also by ..

LEmMA 5. Under the assumption of Lemma 4, the kernel of H.(H, M)
~ Hq.(H, M); corresponds to the kernel of Hn-(H, N) > Hy-(H, N); by the
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connecting isomorphism H,(H, M) = H,-(H, N).

Proof. Let /' be an n—1-cycle in N@x X(H) such that there exists an
n-chain g’ in N®¢ X(G) satisfying ¢f/ = — (—1)"5g', 0¢'=0. We may apply
our proof to Lemma 4 to &' =0, =0, k=0 and to the present f'. Thus, there
is an z-chain 7 in M@y X(H) with of=7', and for the image f of f in
M@y X(H) we have (f—k=2(g— k-2, (=1)"¢(g—:k—02]) =h=0 with
suitable elements g, &, I of M®@¢Xn+1(G), M@ pu Xne:(H), MRy Xn2(G), re-
spectively. Hence the homology class of f, i.e. that of f — 3k, which corresponds
to the homology class of /' by the isomorphism Hn-(H, N) = H.(H, M), is in
the kernel of H.(H, M) > H,(H, M),.

Let conversely f be an n-cycle in M® n X (H) such that (f=2g with an
n+1-chain g in M®q X(G) satisfying ¢g=0. Let fEM@uXu(H), FEM
® ¢ X»+1(G) be mapped to f, g by the maps of respective complexes induced
by 7M. Since (f=0g we have (f — 9= Ne ; X,(G). Further, since df =0,
we have 0/ N® y Xn-1(H). We denote 9f by f'. Then we have ¢:f' = @Ok
with an element %' in N® » X»(H) ; cf. the similar argument we made in our
proof to Lemma 4 with respect to ¢:7 there. f'—9k is an m—1l-cycle in
N®u X(H) and satisfies (f'—ok)=0g withg' = (1F—28) — (k' & ND s Xa(G).
Here o¢g' = ¢¢f' — ¢k’ =0 and ¢g' is an n-cycle in N®o X(G, H). To prove
¢g' ~0 (in NQe¢X(G, H)), let & be an n+ 1-chain in M R¢ (G, H) satisfying
¢g'=0h and & be its image in M® s X(G, H). (The following argument is
to recast our proof to Lemma 4 with respect to the present h). Since
agﬂz(f- E) =¢cf'— @0k =0, there exists, by an argument we have made above
already twice (with respect to ¢¢f, in the old notation, and to o), an n+1-
chain & in M@ » X(H) with —(=1)"¢«(f— k') =¢ock. Then,aso( - (—-1)"0g
—(=D"h—¢k)=—(=1D"¢og~ (-1 ¢g'+ (= 1D)"¢(F— k)= — (-1)"¢0Z
—(=D"¢(f=28— k) + (= 1)"¢(F— k') =0, there exists an 7+ 2-chain 7 in
M®eX(G) with -~ (-1)"¢g—(—-1D"h—¢:k=2¢7. LetIbe the image of
1 in M® X(G), and & the image of % in M® » X(H). Then

h=—¢g—(=1D"¢ck—(=1D"0¢l= —(—-1)"(¢ck+0¢l);

observe that ¢ g=0. ¢k is a cycle and ~0 by the argument we have used
repeatedly. Hence 2~ 0. Since the homology class of h corresponds to that
of ¢g’ by the isomorphism of H,: (G, H, M) and H,(G, H, N), we have ¢g’
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~ 0. It follows that the homology class of /' =3k, ie. that of s/, belongs to
the kernel of H,-1(H, N) > Hu-1(H, N),.
We have further

LemMma 6. Under the assumption of Lemma 4, the kernel of the residue
class homomorphism Hn(H, M) -» H.(H, M): coincides with the subgroup of
Hx(H, M) generated by the homology classes of cycles of form (19) with n-cycles
kin M@ nasns X(HNEHE™), & ranging in G.

Proof. Assume the assertion for #n—1 in place of n. Then the kernel of
the homomorphism Hu-;(H, N) » Hn-1(H, N); is the subgroup of Hn-:(H, N)
generated by the cycles of form (19) with cycles %2 in NQ® ugntns-1 Xn-1(H
NE&HE). This subgroup of H,-(H, N) evidently corresponds by the iso-
morphism H,-(H, N) = Hu.(H, M) to the subgroup of H,(H, M) in our lemma.
On the other hand, the said kernel corresponds, by the same isomorphism, to
the kernel in our lemma in virtue of Lemma 6. Hence the kernel and the

subgroup in our lemma coincide, and the lemma is proved by induction.

7. Fundamental exact sequence for higher dimensions

Now we have our main

TueoreM. Let M be a G-module such that for i=1,..., n—1 we have
HAU, M) =0 for every subgroup U of G of form U=HNoHs ‘N -
N on-iviHon-i+:"". Then the subgroup of Hn(H, M) generated by homology
classes of cycles of form (19) with n-cycles b in M@ a2 X(HNEHE™), &
ranging in G, coincides with the totality of homology classes represented by cycles
f satisfying ¢f =0g wilth some g€ M® ¢ Xn+1(G) such that ¢ g=0, and we have,
when we denote the residue growp of Hn(H, M) modulo this subgroup by
Hu(H, M);, the exact sequence

(11) & ¢
0(—_’Hn(G: H: M) <_H"(Gy M) (“"'"'Hn(H, M)I

T 14
<—Hn+i(G, H, M) <—Hn+:(G, M)

where © is the map which maps a homology class in Hn+:(G, H, M) represented
by a cycle I to the class in Hn(H, M): of a homology class represented by a
cycle f satisfving (34) with some g in M® ¢ Xni1(G), and where ¢ is the map‘
induced by the ordinary injection map ¢ : Ha(H, M) - H.(G, M).



FUNDAMENTAL EXACT SEQUENCES 87

Proof. The case n=1 is settled by Proposition 1, and we want to prove
our theorem by induction on n. Thus, let #» > 1. Consider again the G-module
M =M® Z[G] and let N be the kernel of the natural epimomorphism A7~ M.

As in (28) we have an isomorphism
(42) o*: H,.U, M) - H,-(U, N)

for every =2 and every subgroup U of G. In particular, we have isomor-

phisms
(43) Hn(G, M) - Hn—l(G, N), Hn(H, ﬂl) - Hu—1<H, N),

HnH(G, M)_‘Hn(G, N),
which we denote all by o*. Further, the isomorphisms (42) for »=2, ..., n
and for subgroups U of form HN¢;Hao "N -+ * Non-rs1Hon-rr1 - shows, in
combination with our assumption, that H;(U, N) =0 for i=1,..., n—2 and

for subgroups U of form HNao1Ho ' N * -+ Non-iHon-i %

Moreover, by Lemma 3 we obtain the exact sequence

‘Hn'\‘-l(Gy H; ]r{) - H'I+1(G) Hy M) - Hﬂ(G’ H) N) - [Iﬂ(Gy Hy ]TI)
d Hﬂ(G) H) M) - Hn—x(G, H’ N) - Hll—l(G) H7 M)-

Here the 1st, 4th and 7th terms are 0, again because A7 is G-regular. Hence

we have isomorphisms

(44) HnH(G, H, M) - H?l(cy H, IV);
H”(G! Hy M) - Hn-l (G; H, N)

which may be denoted both by * too.
Now, the isomorphism 3™ between H.(H, M) and Hn-,(H, N) induces a
same of the residue groups H.(H, M), and H.-,(H, N), as was seen in Lemma

5. It is seen from our proof to Lemma 4, that the diagram

Ha-i(H, N), <— Hu(G, H, N)
(45) a*T Ta*

Ho(H, M); <—Hni(G, H, M)

is commutative, where the left vertigal arrow, denoted by 9 too, is the iso-
morphism induced by the isomorphism 9% of H,(H, M) and H.-(H, N). In
fact, we see readily that also other squares in the diagram connecting the
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sequence

P
(46) 0<—Hu-i(G, H, N)—Hu-r(G, N)<—Hp-i(H, N)

(4
<—H.(G, H, N)<—Hu(G, N)

with our sequence (41) by the isomorphisms 2" are commutative; thus the
said diagram is commutative. Now, the sequence (46) is exact, by our induc-

tion assumption. It follows that (41) is exact too. Our theorem is thus proved.

Remark. As our proof shows, a partial exact sequence

@
(47) 0<—Ha(G, H, M) <— Hu(G, M) <— H(H, M)
holds under a weaker assumption that for i=1, ..., n—1 we have H;(U, M)
=0 for subgroups U of form U=HNaoHa "N -« Non-iHon-i "

Appendix. Fundamental exact sequences for finite groups

Let now H be a subgroup of finite index in G. Then both the homology
and cohomology groups H,(G, H, M), H*(G, H, M) are defined for all values
n=0. In our previous note [9] we gave a certain condition under which we
have the relation H,(G, H, M) ~x H " '(G, H, N)(n=0) for two G-modules
M, N. In re-examining our proof and in observing the dimensions concerned
in its steps, we see the followings:

1) Let first #=0. Let for each subgroup X in G of form K=¢,H a0
N - - NouHan"' there be given a homomorphism «(K): M- N (written as
right operator on M contrary to [9]) which naturally induces a homomorphism
My - N* (or, more precisely, such that the kernel of x(K) contains that of
M - My and the image of #(K) is contained in N*) and let x(¢™'Ko) = o~ r(K)a
hold for all s= G (and such K). Then a natural homomorphism

(48) M®6Xn"’ (N®2Xn)a

is defined (by (9) - (11) in the notation of [9]), where X, stands for X;(G, H).
If the homomorphism Mg - N* induced by x(K) is an epimorphism (resp. a
monomorphism) for every such K, then the homomorphism (48) is also an

epimorphism (resp. monomorphism). Further, if #=1 and if

(49) > k(K t=x(L)

L3pr.madK
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always holds for K=awHa N - NasHon' and L=aHa 'O ---
Non-1Hon-1~%, then the diagram

M®eXn — (NQ: Xn)o < Homg (X-n-1, N)

(50) ) &

M®G Xn-l'—’) (N® z Xn-1)a = Homg (X—n, N)

is commutative (where the horizontal arrows are the homomorphisms for =
and 7 —1 just introduced and the isomorphisms < are canonical ones).

2) Let next n< —1. Let for each subgroup K in G of form K= g Ha
N -+ No-n-1Mg-n-y~* there be given a homomorphism «(K) : M > N which
naturally induces a homomorphism Mx -~ N¥, and let k(¢ K o) = o™ k(K)s hold
for all g€ G. Then a natural homomorphism (48) is defined (again by (9)
- (11) in the notation of [9]), where X, stands for the s#-component X.(G, H)
of the complete standard complex of (G, H) and is thus the G-module
Hom; (X-»n-1, Z). Again, if the induced homomorphism Mx - N® is an epi-
morphism (resp. a monomorphism) for every such X, the homomorphism (48)
is an epimorphism (resp. a monomorphism). Also, if (49) holds for every pair
K=aHao N  No-nHo-n', L=asHay ' N\ * -+ No-n-1Ho-n-1"", then the
diagran (50) is commutative (where the horizontal arrows are the homomor-
phisms for #n and n—1).

3) Let there be given a normal subgroup K, of finite index in G which is
contained in H and a G-homomorphism &, : M - N which induces as homomor-
phism Mg, > N¥. Set x(K) = Kspgmm kop~! for every subgroup K in G of form
K=agHas '. Then the diagram (50) with #=0 is commutative when the
horizontal arrows are the homorphisms defined (with respect present (X)) in
1), 2) for n=0, —1 respectively. ‘

Now, assume that G itself is finite. For M= N we can then get a system
of endomorphisms £(K) of M for subgroups K in 1), 2) or 3) (and K,=1 in
3)) by setting x(K) = ?E_;za; it is evident that x(K) induces a homomorphism
My - M¥X, The (sufficient) condition for the commutativity of (50), in 3) and
in the latter parts of 1), 2), holds also evidently. Let first = =0. If H*(X, M)
=0 (resp. H'(K, M) =0) for every K of form K=aHa '\ * - NonHon ",
then our homomorphism «(X) for K induces an epimorphism (resp. a monomor-
phism) (of Mx to MX whence) of M®s Xn to Home(X-n-1, N). Hence, if
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n=1 and if H'(K, M) =0 for every Kof form K=aoHoo* N\ * - + Nons1Honr1
and H (K, M) =0 for every K of form K=gHoy ' -+ NonHon !, then
we obtain, as we can see easily, Hn.(G, H, M) ~ H "G, H, M). Let next
n=1 If H'(K, M) =0 (resp. H (K, M) =0) for every K of form K= gyH "
N - No-n-yHo-y-1"", then our homomorphism x(K) induces an epimorphism
(resp. a monomorphism) (of Mk to M* whence) of M® ¢ X» to Homg (X-»-1, N).
Hence if #< —2 and if H(K, M) =0 for every K of form K=gHas ‘N - - -
N o-n-1Ho-n-1* and H™'(K, M) =0 for every K of form K=agHa™ N - - -
No-nHo-»"", then we obtain H.(G, H, M) < H " (G, H, M). Further, taking
also the case n= —1 or 0 respectively into consideration in the case »=0 or
—1, we see that the above statement for #=1 rep. < —2 remains valid for
n=0 or —1 respectively.

Now, we continue to assume that G is a finite group. Then, besides the
exact sequences given in our theorem and their cohomological duals, we have

the following sequences:

Let M be a G-module such that for i=0,...,n—1 we have H-;(U, M)
=0 for every subgroup Uof Gof form U=HNa:Ha '\ -+ - Non-it1Hon-i+1 "
Then the subgroup of H-.(H, M) generated by homology classes of (trans-
gressive) cycles f satisfying f = pg, Ah=(—1)""'0g with some element g in
M® ¢ X-»(G) and some cycle k in M® ¢ X-4-1(G, H) coincides with the sub-
group of H-»(H, M) consisting of all stable homology classes, i.e. homology
classes of cycles f such that gy, pas-1avf — pe-1my, mre-mx Tif ~ 0 for every £€G,
and if we denote this subgroup by H-»(H, M)’ then we have the exact sequence

(51) 0—> H-n(G, H, M) > H_o(G, M) "> H-n(H, M)*

T 2
'_)H-n‘l(G; H; M) _"’H—n—l(G’ M)

where 7 is the map mapping the homology class of a transgressive cycle f as

above to the homology class of the cycle .

Dually: Let M be a G-module such that for i=0,..., n—1 we have
H™(U, M) =0 for every subgroup U of G of form U=HNoHo ') -+
N on-i+1H on-i+1"". Then the subgroup of H "(H, M) generated by coliomology
classes of cocycles f satisfying (f = dg with some g such that ¢g=0 coincides

with the subgroup of H™"(H, M) consisting of all cohomology classes of cocycles
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of form (19) with cocycles % in Homuntnz-: (X-n(H N EHE™), M), and we have

the exact sequence

¢
(52) 0«—H"G, H, M)<—H""(G, M)<—H""(H, M),

(4
SH "G, H, M)<—H "G, M)

where H™"(H, M), is the residue group of H "(H, M) modulo the said sub-
group, ¢ is the map induced by the ordinary injection, and r is the map mapping
the cohomology class of a cocycle 2 in Home (X-»-:(G, H), M) to the class in
H™™(H, M), of the cohomology class of acycle f in Homy (X-,(H), M) such
that there exists an element g in Homg (X-,-1(G), M) satisfying ¢f= (—1)"dg,
h=¢g.

But, by virtue of the refinement of the result in [9] we made above the
case #=2 of (51) can be derived from the sequence (41) (with n—1 instead
of #) in our theorem and similarly the case n=2 of (52) can be derived from
the dual of (41). Indeed, if »=2 the above assumption for (52), for example,
includes H*(U, M) =0 for every subgroup U of G of form U=HN\aHo™'N
<o Nopt1Honey ™t and H (U, M) =0 for every U of form U=H N o Ha, ' N
-+« NonHo,'. In particular, H'(U, M) = H™(U, M) =0 for every U of form
HNoHo " N+ -+ Non-1Hon-"". Under this condition, however, the remain-
ing part of our assumption is that for s=1,--, n—2 we have H;(U, M) =0
for every subgroup U of G of form U=HNoiHo '+ Non-iHon-i .
Then we have, by our theorem, the exact sequence (41) with z replaced by
n—1. This sequence is, however, nothing else than (52) because of the rela-
tions H(U, M) =0, H U, M) =0 for U=HNo;Ho: N+« NonriHone1™,
U=HNoHoy ' N -+ - NonHos " respectively, as our refinement of the result
in [9] we made above shows.

The case n=0 can be verified directly (cf. [7] where the normal case of
the sequences (51) and (52) was treated), and the case # =1 may be derived
from it by the argument similar to our transision to higher dimensions in 6, 7.
(and the case n=2 can be derived from these again by the same recursive

argument).
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