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1. Introduction and statement of theorem. 1. In [1] Ambrose and Singer

gave a necessary and sufficient condition (Theorem 3 here) for a simply con-

nected complete Riemannian manifold to admit a transitive group of motions.

Here we shall give a simple proof of a more general theorem — Theorem 1 (the

proof of Theorem 1 became suggestive to us after we noted that the Tx of [1]

is just the ax of [6] when X is restricted to ft, see [6], p. 539). In fact after

introducing, below, the notion of one affine connection A on a manifold being

rigid with respect to another affine connection B on M and making some ob-

servations concerning such a relationship, Theorem 1 is seen to be a reformu-

lation of Theorem 2. But Theorem 2 may be obtained as a consequence of

some work of Nomizu and Kobayashi.1} Here we refer especially to the work

of these mathematicians on the theory of affine connections which are invariant

under parallelism. Such an affine connection was called locally reductive in [4].

(Since a slight elaboration of this theory was needed for our purposes, rather

than "fill in", we have preferred instead to give a somewhat different, almost

self-contained, account of the relevant portion of this theory here.)

Without any statement to the contrary it will be assumed throughout this

paper that the manifold M and any affine connection or tensor field to be con-

sidered on M is of class C00.

1.2. We shall need some definitions.

(a) The notion of a reductive homogeneous space was introduced by No-

mizu [7]. Assume that G is a connected Lie group and G is given as operating

transitively on a manifold M as a group of homeomorphisms in such a way

that the map G x M-> M defined by (g9 o) -+ g o is of class C*. Here g o

is the image of O E M under the action of g^M. Let 0 be the Lie algebra of

Received August 13, 1959.
*> We have been informed by correspondence that Nomizu has also obtained a similar

generalization of Theorem 3.
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G. We then say that M is a reductive homogeneous space with respect to the

action of G if for some point o e M (and consequently for every point of M)

the subgroup H of all elements of G which leave o fixed (the isotropy group

at o) has the following property. If | c g is the Lie algebra of H then there

exists a subspace meg such that (1) 9 = ϊ) + m is a direct sum and (2) m is

stable under AdH.

Note 1. The action of a connected Lie group G (or in fact a local group)

with Lie algebra 9 (which we shall understand brackets like right invariant

vector fields on G) on a manifold M induces a homomorphism r of 9 into the

Lie algebra of all vector fields on M by the relation γ(Xχ)=X where Xie9

and

where p^M and / is any function on Λf. When there is no danger of con-

fusion and γ is faithful we will usually identify 9 with γQ by the isomorphism γ.

(b) Let B be an affine connection on a manifold M. Let TB and RB be,

respectively, the torsion and curvature tensor fields on M with respect to B.

The affine connection B will be called invariant under parallelism in case TH

and RB are both covariant constant. (This is not the definition used by Nomizu.

Nevertheless Theorem 18.1 in [7] implies that it is an equivalent definition.)

Spaces with such an affine connection generalize locally symmetric spaces in

that the torsion tensor is not assumed to vanish. However, as shown in [4]

and [7] much of the formal aspects of symmetric space theory goes through.

In particular, as in the symmetric case, one easily shows that such spaces have

a "rich supply", locally, of infinitesimal affine transformations.

(c) Let A and B be any two affine connections on a manifold M. One

knows that A and B differ by a tensor field S of type f \ )• See §2.2 for

more details. We will say that A is rigid with respect to B whenever S is

covariant constant with respect to B.

(d) Finally an affine connection δ o n a manifold M is said to be complete

if every geodesic may be extended for arbitrary large values of its canonical

parameter.

Theorem 1 which will be shown in § 2 to generalize the result of Ambrose-

Singer gives a geometric characterization of an affinely connected simply'-
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connected manifold which admits a transitive group of affine transformations

with respect to which it is a reductive homogeneous space.

THEOREM 1. Let A be an affine connection on a simply connected manifold

M. Then M is a reductive homogeneous space with respect to a connected Lie

group G whose action leaves A invariant if and only if there exists an affine

connection B on M such that (1) RA and TΔ is covariant constant with respect

to By (2) A is rigid with respect to B and (3) M is complete ivith respect to B.

Theorem 2 offers a characterization which says in effect that the affine

connection should not differ very much from an affine connection which is

invariant under parallelism.

THEOREM 2. Let A be an affine connection on a simply connected manifold

M. Then M is a reductive homogeneous space ivith respect to a connected Lie

group G tυhose action leaves A invariant if and only if there exists an affine

connection B on M such that (1) B is invariant under parallelism, (2) A is

rigid with respect to B and (3) M is complete ivith respect to B.

Theorem 2 will be proved in § 3 and § 4 as Theorems 4 and 5.

2. Preliminaries. 1. For k = 0, 1, . . . let J?K{M) be the space of all con-

travariant tensor fields of degree k and class C00 on M and let J?{M) be the

algebra, SKM) = Σ ^ A ' ( M ) . Let 3(M) be the Lie algebra of all derivations
fc = 0

of J?(M) which preserve degree and which on the space of scalar functions

reduces to differentiation by a vector field X^^HM). In fact let

S\M) (2.1.1)

be the mapping denned by setting (;(D) = I ε y 1 ( M ) where De.i^(Λf) and

Df^Xfίor all / e ^ 0 ( M ) . Let Jzf(M) be the kernel of a. Since an element

in J£(M) is determined by its action on JF\M) and ,3Fλ(M) it is clear that

we may identify jzf(M) with the space of all Cx fields of tangent space endo-

morphisms.

Now if A is an affine connection on M, A sets up (and is given by) a

,^α(M)-linear map

where ΓΓJ(X) =Γ;-|G,y:(M) is covariant differentiation by X with respect to A.
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Furthermore aπA is the identity map on

2.2. Now if A and B are any two C" affine connections on M then A

and 5 differ by a tensor field S of type ( * J in the following sense. For

any X<Ξ^\M) let S * e ^ ( M ) be defined by

(2.2.1)

But clearly SxtΞJzfiM). The tensor field S is then the S\M)-linear map of

^ ( Λ O into jzf(M) given by A"-» S*. When so defined we will write

S = B-A.

Conversely, if an affine connection A and a tensor field S, defining a

c^°(7kΓ)-linear map of ^ ( Λ f ) into J^(M), are given then 4̂ and 5 define an

affine connection B, where B - A = S, by the relation (2.2.1).

2.3. In [1] Ambrose and Singer proved the following theorem:

THEOREM 3. Let M be α simply connected complete Riemannian manifold.

Then the group {and hence its identity component) of motions of M is transitive

on M if and only if there exists a tensor field S [of type ί . , )) defining a

^\M)-linear map, X-* SXt of ^(M) into J^f(M) such that (1) (Sx)p is a

skew-symmetric operator on the tangent space at p^M with respect to the metric

tensor at p for all p e M and I ε J J ( M ) and S satisfies for X, Y, Z^^ι{M),

(2) (FiRAHY9 Z)^RAiSχY, Z) + RA{Y> SxZ)~ίSXi RA(Y, Z)Λ

and

(3) {rAχS)y = Ssxγ-lSXi SΓ]).

(Here A designates the Levi-Cevita connection with respect to the metric.)

We now observe that Theorem 3 is contained in Theorem 1. We first

note that (2) and (3) of Theorem 3 may be expressed, respectively, by the re-

lations VXR
Λ = - SXR

A and FίS= - SXS, or if the affine connection B is defined

by B-A = S, VχRΛ = Q and Γ|S = 0. That is, (a) A is rigid with respect to B

and (b) RΛ is covariant constant with respect to B. Conversely if an affine

connection B exists which satisfies (a) and (b) clearly S = B-A satisfies (2)

and (3).

Now assume that S exists satisfying (1), (2), and (3) of Theorem 3. Let
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B = A + S. Since TA = 0 it is clear that B satisfies (1) and (2) of Theorem 1.

We assert that B also satisfies (3) of Theorem 1. In fact by Lemma 3 B is

invariant under parallelism and this follows from elementary facts concerning

such connections, indeed by Lemma 9, and in the notation of Lemma 9 it

suffices to show thet G is the Lie algebra of G. That is, it suffices to show

that any element of β generates a one-parameter of transformations of M. But

since M is assumed complete with respect to the connection A and since 0 is

a Lie algebra of infinitesimal A-affine transformations (see Lemma 8) one knows

that every element of 0 generates a one-parameter group. See Prop, p. 67 in

[8]. We can now apply Theorem 1 which asserts among other things that

there exists a connected Lie group which operates transitively on M as a group

of A-affϊne transformations. We wish to show the group of isometries is transi-

tive on M. But by the de Rham decomposition M is isometric to a direct pro-

duct Mo x Mi where Mo is isometric to Euclidean space and Mi is simply con-

nected, complete and is such that its holonomy group leaves no non-zero tangent

vector fixed. It clearly suffices to show that the group of isometries of Mi is

transitive. But if A\ is the Levi-Cevita connection on Λfi by Theorem 1, p. 104,

in [3] the group of Ai-affine transformations on Mi is clearly transitive. On

the other hand, by Theorem 1 in C3] and the Theorem, p. 39, in [5] any Aι-

affine transformation on Mi is an isometry.

Now conversely assume the group of motion is transitive on M. It is clear

then that M is a reductive homogeneous space with respect to a group whose

action leaves A-invariant (See [6], p. 539 for a canonical complement (p0) to

the Lie algebra of the isotropy group). Applying Theorem 1 there exists an

affine connection B on M satisfying the three conditions of Theorem 1. Let

S = B - A. Then as we have noted above S satisfies (2) and (3) of Theorem 3.

By now by Lemma 3 B is invariant under parallelism. Let β be defined by

(3.3.1). Now assume that the A-holonomy group leaves no non-zero tangent

vector fixed. Applying Theorem 1 in [3] and the Theorem, p. 39 in [5] again

the metric tensor on M is invariant under g and hence is covariant constant

with respect to B by Lemma 7. But then obviously S also satisfies (1) of

Theorem 1. For the general case consider, as above, the de Rham decomposition

M=M)XMi. The argument above applies to Mx and asserts the existence of

Si on Mi which satisfies (1), (2) and (3) of Theorem 3. But if S is the trivial
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extension of Si to M it is obvious that S also satisfies (1), (2) and (3) of

Theorem 3.

Note that the above argument shows condition (1) in Theorem 3 can be

eliminated.

2.4. Now given S = B— A we let S* denote the tensor field (also of type

'lh); w n * c n defines the alternating ^°{M)-bilinear map of ^ ( M ) into

given by

S*(X, Y)=SxY-SrX. (2.4.1)

(In effect S* is obtained from S by skew-symmetrizing the lower 2 indices of S.)

If A is an aίfine connection on M we will let TA and RA denote the corre-

sponding torsion and curvature tensors. One knows that TA and RA define

(and may in turn be defined by) alternating S*KM)-bilinear maps of J^HM)

into S'KM) and J^HM) into J*f(M) given by

TA(X, Y)=FίY-ΓAX-lXy Y] (2.4.2)

RA(X, D = C F l ΓyJ-ΓfA..yJ. (2.4.3)

We need some computational lemmas

LEMMA 1. Let A and B be two afflne connections on M. Let S — B — A

and let S* be defined by (2.4.1). Then

TB=:TA-\- S*.

Proof. Let X, Y^S\M). By (2.4.1) and (2.4.2)

Subtracting [..Y, Y] from both sides it follows that

TB(X, Y) = TA(X, Y) + S*{X, Y). Q.E.D.

COROLLARY 1. Assume that A is rigid with respect to B. Then TA is

coυariant constant with respect to B if and only if TB is coυariant constant

ivith respect to B.

Proof. Follows immediately from Lemma 1. Q.E.D.

LEMMA 2. Let A, Bt and S be as in Lemma 1. Assume now that A is

rigid with respect to B. Then for any X, ι
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Rn(X, Y)=RA(X, Y)-(ISX, SD-Sr/^.i^.

Proof. By (2.2.1)

Lri, ^ ] = [r£-&, vS-Syl

= CΓ5, Fy] + ESγ, S,]-(F5(S*)-P?(&r)) (2.4.4)

since ZΓXi Syl = Px(Sy) and similarly when Z and F are interchanged. But since

S is covariant constant with respect to B

Jχ(Sy) - F§(Sx) = SF«Y-tfX.

On the other hand

Γ̂A .yj = ^ i . i - S C ϊ f y j . (2.4.5)

S u b t r a c t i n g ( 2 . 4 . 5 ) f r o m ( 2 . 4 . 4 ) i t f o l l o w s f r o m ( 2 . 4 . 2 ) a n d ( 2 . 4 . 3 ) t h a t

RA(X, Y) = RB(X, Y) + ZSX, Srl-Sτ*tχ,>). Q.E.D.

Now Corollary 1 and Lemma 2 imply

LEMMA 3. Assume that A is rigid ivith respect to B. Then TΛ and RΛ are

covariant constant with respect to B if and only if B is invariant under paral-

lelism.

Lemma 3 proves that the statements of Theorems 1 and 2 are equivalent.

Theorem 2 will be proved in the following sections.

3. Affine connections which are invariant under parallelism. 1. Let M be

a manifold and let Z e ^ t M ) . Let L.γG J ( M ) designate Lie differentiation

with respect to X. One has Lxf=Xf for any f^S\M) so that a(Lx) = X

and for any Y^SΉM)

LJY=ZX, F l (3.1.1)

Now assume B is an affine connection on M. Let X&^HM) and let

BX<Ξ3(M) be denned by

Bχ = Lx-Vx. (3.1.2)

Since σ(Lx) = a(Pχ) = X it follows that 5Λ- is a field of tangent space endomor-

phisms, that is BXG J^{M).

Now let F e j ^ ί M ) . A simple straight forward computation using (2.4.2),

(3.1.1) and (3.1.2) vields the relation
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FBX=TB(X, Y)-BχY. (3.1.3)

Now X is an infinitesimal J5-aίfine transformation if and only if for all

ILX, Γ?] = Ff!γ,1J. (3.1.4)

Again, one knows that X is an infinitesimal J9-aίϊΐne transformation if and only if

r?(Bx)=RB(X, Y) (3.1.5)

for all y e ^ ( M ) . Indeed if (3.1.4) is satisfied then

F?< A ) = [F?, Bx]

= RB(X, Y)

and conversely.

It follows immediately from the linear differential equations (3.1.3) and

(3.1.5) that when X is an infinitesimal Z?-afline transformation, the pair X and

Bx are uniquely determined over M by their values at one point. Let ΰB be the

Lie algebra of all infinitesimal''B-affine transformations. Let X, y e f . It

follows immediately from (3.1.2) and (3.1.3) that

BxY-ByX+TB{X, Ϋ) = ΪX, Yl. (3.1.6)

On the other hand [Z,x, Ly] = L[Λ>y] That is

[Pί + A , VY + BYΛ = Ffx, v] + BίXt y j . (3.1.7)

Recalling that [Fjf, By] - F?(By) (and again when X and Y are interchanged)

it follows then from (3.1.5) and (3.1.7) that

IB*, Bv~]-RB(X, Y)=Bίx,Y]. (3.1.8)

3.2. Now assume that B is invariant under parallelism. It follows im-

mediately then from (2.4.3) that BxR
B = BxT

B=-0 for all I e 8 B . For any

p^M let cip be the Lie algebra of all linear endomorphisms b of the tangent

space Vp at p such that b{(RB)p) -^b((TB)P) =0. It follows immediately from

(3.1.8) that RB(u, v)^ap for all «, v^Vp. It is clear that RB(u, υ) and

T'\uy v) for u, V£ΞVP are well defined since RB(X, Y)p and TB(X, Y)P depend

only on Xp, Yp. In fact it is clear that the set
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«M Vi), Uiy ViϊΞ Vp) (3 .2 .D
i

is an ideal of O/,. Now let Qp be the direct sum of ap and Vp, to be written

as the set of all pairs (b, v) where b<sap, z e Vp. The space 9% is made into

a Lie algebra by having the usual bracket in ap, Jetting [&, v~\-b(v) = - lv, bl

where £ e α̂ ,, veVp and letting C«, «;] = ( - RB(u, v)f TB(u, v)). See [7], p. 62

for the proof of the Jacobi identity. The Lie algebra Q£ is obviously isomorphic

to the Lie algebra defined by Nomizu on p. 62 in [7] under the isomorphism

(by v) -> (b, -υ). It follows then from (3.1.6) and (3.1.8) that if

ctp : flβ-»αj? (3.2.2)

is the linear mapping defined by a(X) = ((Bx)p, Xp) then ap is an isomorphism

of Gβ into Up.

3.3. Let W be any open set in M and let fl£ be the Lie algebra of all

infinitesimal #-affine transformations defined on W. For /> e FT we may regard

α/, as defined on 0ίκ by replacing M by FF in the previous definition. In [7],

p. 62 Nomizu has shown that if W is a sufficiently small neighborhood of p e M

then α:/, defines an isomorphism of fl,r onto 0Λ> and furthermore M is a locally

J9-afτΊne homogeneous space with QB as the Lie algebra of the local group of

B-afϊine transformations mapping p into W. It follows then that M has an

underlying analytic structure and that the afϊine connection is analytic with

respect to it. But then a theorem of Nijenhuis asserts that the Lie algebra of

the restricted holonomy group at p (the holonomy algebra at p) is obtained

by contracting successive covariant derivatives of RB at p. Since RB is con-

stant this implies (See [7], p. 50).

LEMMA 4. Let B be an affine connection tυhich is invariant under paral-

lelism on a manifold M. Let p& M and let the Lie algebra %p of endomorphisms

of the tangent space Vp at p> be given by (3.2.1). Then %p is the holonomy

algebra at p.

Let X ε 8 B and let P&M. Then if {Bχ)p&Z/> it follows from the equation

(3.1.5) that (Bχ)QG$Q for any point Q<=M. Let

vl = ( X e ^ ' i (β.γ)oe§o at some (and hence any) point o^M) (3.3.1)

and for any p^ M and let §p e Qp be the subspace spanned by §>p and Vp. Since

3/, is an ideal in cιp it follows from the equation (3.1.5) that § is an ideal in
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9* and Qp is an ideal in 9* and that

<xp : Q-+QP. (3.3.2)

LEMMA 5. Let the notation be as above. Assume M is simply connected.

Then for any p^M the map ap defines an isomorphism of 9* onto 6̂  and an

isomorphism of 9 onto Qp.

Proof. Given b^ap> v^Vp it suffices to show that there exists I E O "

such that (Bχ)p = b, Xp = v. Let o ε M a n d let c be a piecewise differentiate

curve joining p and o. By solving the linear differential equations(3.1.3) and

(3.1.5) along the curve c with initial value (ft ι;) we obtain at o an element

(b\ v') G(ί0. The fact that b0 in ao follows from (3.1.5) and the fact that ^ ϋ c ^

for all points q. Assert that the element (b\ v1) is independent of the curve c.

To prove this it suffices to assume c is a closed curve, that is p = 0, and to

show that b = V and v - v'. But now since M is simply connected by a standard

deformation argument it suffices to assume that c lies in an arbitrarily small

neighborhood W of p (recall that p is an arbitrary point of M and (b, v) is an

arbitrary element in gp). But now, as noted above, W can be chosen so that

ap(Q?r) = Qp. It follows then that b' = b and υ' = υ.

Now let X^J^HM) be the vector field defined by letting Xo = v'. Now if

W is a neighborhood of 0 such that ao(Qn") = Qo then it is clear from the equa-

tions (3.1.3) and (3.1.5) that the restriction of X to W lies in β£. This proves

that X is of class C00, {Bx)0 = bl and that Z e g B . It also follows that αr/,(X)

- (ft v). Q.E.D.

3.4. An element Z G 9 Λ will be called an infinitesimal transvection at p if

(Bχ)p = 0. It is clear that if X is an infinitesimal transvection at p then X^g.

The following lemma is an immediate consequence of Lemma 5.

LEMMA 9. Assume M is simply connected. Let p^M. Let 111^9 be the

space of all infinitesimal transυections at p and let ' ^ c 9 be the set of all I G 8

such that Xp = 0. Then mp = apι{ Vp) and l)p = apι(zp) so that Q = hp + mp is a

direct sum with \)p a subalgebra of 9 and [_fyp, 1%] c mp. Furthermore mp gener-

ates α. In fact Q = [ΪΠ£, xt\p~} + xt\p {non-direct in general).

The reason for restricting attention to 9 instead of 9/? from this point on

is given in



A CHARACTERIZATION OF INVARIANT AFFINE CONNECTIONS 45

LEMMA 7. Let the ideal 9 in the set of all infinitesimal B-affine transfor-

mations be defined by (3.3.1). Let S be a tensor field on M. If S is covariant

constant tvith respect to B then S is invariant under g (that is, LXS~O for all

l e g ) .

Furthermore if M is simply-connected then S is covariant constant tvith

respect to B if and only if S invariant under g.

Proof Assume F?S = 0 for all YZΞJTΉM). But then for any />eΛf, Sp

is invariant under the restricted holonomy group at p, Thus b(Sp) =0 for all

be$p. NowletXeg. Then (LχS)p = {V%S)p + (Bx)pSp. But P £ S = 0 and since

(Bx)p^% it follows that {Bx)pSp-Q. Hence S is invariant under 9. Now as-

sume M is simply connected and S is invariant under 9. Let F e J Γ H M ) and

p<=M. Then by Lemma 5 there exists JYe mp such that Xp = Yp. But (Sχ)p = 0.

Thus (FΪS)P = ίVχS)p = (LxS)p. But LXS = 0. Thus (FyS)P - 0 and hence S is

covariant constant. Q.E.D.

Assuming only that M is simply connected we now prove a part of Theorem

2 in the infinitesimal sense.

LEMMA 8. Let A be an affine connection on a manifold M. Assume thai

there exists an affine connection B on M such that (1) A is rigid tvith respect

to B and (2) B is invariant under parallelism. Let 0 be the ideal in the. Lie

algebra of infinitesimal B-affine transformation defined by (3.3.1). Then 8 is a

Lie algebra of infinitesimal A-affine transformations.

Proof. Let S = B - A. By definition S is covariant constant with respect

to B. But then by Lemma 7 S is invariant under 9. Writing V\ = Γ? - S/ for

any F G ^ ί M ) one immediately verifies (3,1.4) for any XeQ when A is sub-

stituted for B in (3.1.4). Q.E.D.

3.5. Now one knows that the group of all β-aflfine transformations of M

is a Lie group. See [23. Let GB be the simply connected covering group of

the identity component of this group. We may regard GΊi as operating on M

by passage to the group of i3-affine transformations, It is clear then that we

may identify the Lie algebra of GD with a subalgebra β' of 8B. (See Note 1 in

§1). Now 9Π0' is an ideal in Q'. Let G be the subgroup of GB corresponding

to 9 Π 9'. Since G7i is simply connected and G is normal one knows that G is

also a simply connected closed subgroup of Gu
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Now assume M is simply connected. Then one knows that every element

I E O B generates a one parameter subgroup of J5-affine transformations, that is

9' = 9β, if and only if M is complete with respect to B and that in such a case

GB is transitive on M. (See [4], p. 35 and [8], p. 77). We wish to observe

now that in this statement 9 may be substituted for 9β and G for GB. Indeed

if M is complete then it is general theorem (see Prop. p. 67 in C8]) that every

element in 9 (and in fact in 9β) can be integrated. Conversely if X^Q is an

infinitesimal transvection a t ^ e M and X generates a one parameter group g(t)

then git) p is the geodesic through p with the tangent vector Xp and it is

defined for all values of the canonical parameter ί. This is immediate since

(Bx)p = 0 implies (FXX)P= (LxX)p = lX, X]p = 0. Furthermore LX(BX)=O so

that (Bχ)Q = Q for all q=g(t) p with t arbitrary. Finally to show that G is

transitive on M it is enough to show that G carries an arbitrary point into an

open and closed set. This, however, is immediate under the condition of com-

pleteness since the group generated by an element X e \wp for (See Lemma 6)

any p^M lies in G.

LEMMA 9. Let B be an affine connection, which is invariant under paral-

lelism, on a simply-connected manifold M. Let the group G and the Lie algebra

of vector fields 9 be defined as above. Then M is complete with respect to B if

and only if 9 is the Lie algebra of G.

Furthermore if M is complete with respect to B then M is a reductive homo-

geneous space with respect to G. In fact if p^M and HpΩG is the isotropy

group at p then 9 = % -f \x\p is direct sum where §p is the Lie algebra of Hp and

xtip is the space of infinitesimal transvections at p and mp is invariant under

AdHp. Moreover the linear group defined on the tangent space at p by Hp {this

is equivalent to the action of AdHp on κ\p) is the homogeneous holonomy group

at p.

One of the two statements of Theorem 2 is an immediate corollary of

Lemmas 8 and 9.

THEOREM 4. Let A be an affine connection on a simply connected manifold

M. Assume that there exists a second affine connection B on M such that (1)

B is invariant under parallelism (2) A is rigid with respect to B and (3) M is

complete ivith respect to B,



A CHARACTERIZATION OF INVARIANT AFFINE CONNECTIONS 47

Let 8 be the Lie algebra of infinitesimal B-affine transformations X on M

such that (Bx)p^%p for some (and hence every) point p^M where sp is the

(B) holonomy algebra at p. Then M is a reductive homogeneous space with

respect to a connected simply connected Lie group G operating as A-affine {and

also B~affine) transformations on M. Furthermore G can be chosen so that 8 is

the Lie algebra of vector fields on M defined by the action of G {See Note 1).

4. The definition of S on a reductive homogeneous space. 1. To prove

the second statement of Theorem 2 we shall assume in this section that M is

a reductive homogeneous space with respect to a connected Lie group d . Let

9i be the Lie algebra of Cι.

Now let O G M and let HxQGi be the isotropy group at o and let hi be

the Lie algebra of Hi. By assumption there exists a subspace mi QQi such that

(a) 8i = fyi + mi is a direct sum and (b) rru is stable under AdHi.

We will now show how the complement m3 to % defines a tensor field S of

type y * ) on M as soon as an affine connection is given on M.

Let γ be defined as in Note 1, §1.2. Let 8τ = r(8i). Since γ is a homo-

morphism it is clear that we may regard AdGi as operating on 8r. Now let

ί> = r(ϊ)i) and m = γ(\x\i). Since the kernel of γ is contained in f)i note that (1) γ

is faithful on mi, (2) 8r = Ij f m is a direct sum and (3) m is stable under AdHu

For any point p e M let Vp designate the tangent space at p and let τp be

the mapping

τp : 0r -* Vp

defined by putting τpX= Xp where Xp is the value of X at p.

Now for each p^M define the subspace mP e g by the relation

mp=Adg(m) (4.1.0)

where g e d is such that g o=p. It is clear that mp depends only on the

coset gHL and not solely on g. Now by (1) and (2) above it is clear that r0

defines an isomorphism of m onto Fo. But since Adg{Hι) is the isotropy group

at p where g o ~p it is clear, more generally, that the restriction of τp to m̂

is an isomorphism n\p onto Vp. Let

ψp * Vp-* mp

be the map which is inverse to the restriction of τp to n\p. That is, <fp is such
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that τpψp is the identity on Vp.

Now assume that an affine connection A is given on M (A is not as yet

assumed to be invariant under the action of G). For any X^^iM) let Ax

^^f{M) be defined by

Aχ = Lχ-Fi. (4.1.1)

Now if YCΞSΉM) let Sy^J^fiM) be defined by

(4.1.2)

where Yp e Vp is the value of Y at p. It is obvious that the mapping Y -* Sy

(unlike X-* Ax) is a ^°(Λί)-linear from ^ ( M ) into Jzf(Λf) and hence de-

fines a tensor S of type f .*, j

We now define a new affine connection B on M. The connection B is such

that 5 - A = S. That is J5 is given by the relation

Ff = Γ^-hSr (4.1.3)

for all Γ G / H M ) . The principal relation between the affine connection B and

the action of Gi on M which concerns us now is given in

LEMMA 10. Let M, d and B be as above. Then any tensor field on M

ivhich is invariant under Gι is covariant constant with respect to B.

Proof. This is practically immediate from the definition of S. Assume U

is a tensor field on M which is invariant under d . That is LχU=0 for all

τ. Now let Y^S'KM) andptΞM. Let X=φpYp. Then

- 0

and hence U is Z?-covariant constant. Q.E.D.

Now assume that the elements of Gi act as .A-affine transformations of M.

One knows that this is the case if and only if

for all

LEMMA 11. Let M, Gι and A be defined as above. Let the tensor field'S
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on M be defined by (4.1.2). Then if Gi acts as a group of A-affine transfor-

mation S is invariant under the action of &.

Proof Let g^d. If U^J^iM) or J2ΛM) we let g U be the tensor

field or derivation into which U is carried under the diffeomorphism of M defined

by g. To prove the lemma it suffices to show that g S* = S8.Y for all Y e K

and g&Gi. In fact it suffices to show that if g o=p

for all g<^G, X e m c g r . But if l ε m , (S*)o = (AA where Ax is defined by

(4.1.1). Hence (g Sχ)p = (g Ax)p. But since g defines an A-affine transfor-

mation Fg.x - g* Vx and in any case Lg.x = g β Z x. Thus g Ax = Ag.*. Conse-

quently to prove the lemma it suffices only to show that (Ss.x)p = (Ag.x)p for

any l e w . But to show this it suffices to show that g X^mp. But this is

immediate since g* X = AdgX. Q.E.D.

THEOREM 5. Let M be a manifold provided with an affine connection A.

Assume that M is a reductive homogeneous space with respect to a connected Lie

group G acting as A-affine transformations on M. Let B be the affine con-

nection on M defined by (4.1.3). Then (1) B is invariant under parallelism (2)

A is rigid with respect to B and (3) M is complete with respect to B.

Furthermore if g is defined by (3.3.1), ivith respect to B then for any point

p the map (3.3.2) is an isomorphism onto. Moreover β<ΞQr where 9T is defined

as in § 4.1. In fact if p is any point of M then mp defined by (4.1.0) is the

set of all infinitesimal (B) transvections at p (in other words the definition of

nip in § 4.1 is consistent with the definition of \x\p in §3.4) and 9 = [.nip, nip'] + mp.

Proof By Lemmas 10 and 11 S is covariant constant with respect to B.

That is, B is rigid with respect to A. On the other hand since S is invariant

with respect to A. On the other hand since S is invariant with respect to G{

it is obvious that [Lx, F£] = Ffz,yJ for all l E δ r and Y^S'KM). Thus B is

invariant under the action of Gi. But this implies RB and TB are also invariant

under Gx. But then by Lemma 10 RB and TB are covariant constant with re-

spect to B, That is B is invariant under parallelism. Now if nip is defined by

(4.1.0) and I e % is clear that Bχ^Lx-FB vanishes at p. That is X is a B

infinitesimal transvection at p. Thus n\p c g and by Lemma 6 ccp maps fl onto
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Qp and 0 = Ctti/,, m/J + πfy. But now as in §3.5 to prove M is complete with

respect to B it suffices to show that every element I E 9 generates a one-

parameter group of diffeomorphisms of M. But JYΊ̂ δx exists such that r(-XΊ)

= X. It is clear then that the action of exp tXi on M is such a one parameter

group. Q.E.D.
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