ON THE DIMENSION OF MODULES AND ALGEBRAS, 1V

DIMENSION OF RESIDUE RINGS OF HEREDITARY RINGS
SAMUEL EILENBERG, HIROSI NAGAO and TADASI NAKAYAMA

A ring (with unit element) A is called semi-primary" if it contains a
nilpotent two-sided ideal N such that the residue ring "= .1/N is semi-simple
(iie. LgldimI'=r.gl.dimI'==0). N is then the (Jacobson) radical of A. Aus-
lander [1] has shown that if / is semi-primary then

lL.gl.dimA=r.gl.dim 4 =1.dim, I'=1+L.dim, N.

The common value is denoted by gl.dim 1. On the other hand, for any ring
A the following conditions are equivalent: (a) l.gl.dim .f =1, (b) each left ideal
in A is projective, (c) every submodule of a projective left .1-module is projective.
Rings satisfying conditions (a)-(c) are called hereditary. For integral domains
the notions of “hereditary ring” and “Dedekind ring” coincide.

If a is a two-sided ideal in 4, there is in general very little relation between
lL.gl.dim 4 and l.gl.dim (.1/a); it was however proved, substantially, in Eilen-
berg-lkeda-Nakayama [4] that if .f is semiprimary and a is contained in the
radical NV then

gl.dim .1 = gl.dim (.1/a) + 1. dim, (A/a).

Now, we show in §1, of the present note, that if .1 is hereditary and the
sequence o (=1, 2,...) becomes constant then gl.dim (.1/a) < . Thus if
A is hereditary and semi-primary then gl.dim (.i/a) < «, and we are able to
give, in §2, rather precise estimates for gl.dim (.1/a).

In §3 we show by examples that the above results are the best possible;
thus for each pair (m, #) with 0<m <= o, 0<n= o, (m, n) = (1, ©) we
construct a semi-primary ring 4 and a two-sided ideal a of A such that

gl.dim 4 = m, gl.dim (4/a) = n.
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1) Our notion of “semi-primary” does not coincide with “halbprimidr” of Deuring,
Algebren, Ergebn. Math.
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In §4 we consider an algebra A over a field K with (4 : K) < «. Here
we consider the number dim A which is the highest integer n such that the
cohomology group H"™(4, A) is not zero for some two-sided A-module A. If no
such integer exists then dim /4= . We show that results analogous to those
of §§2-3 hold.

§1. Residue rings of hereditary rings

ProrosiTiON 1. If A is a ring (with unit element), a a two-sided ideal in

A and B a projective left A-module, then the left (A/a)-module B/aB is projective.

Proof. The conclusion is trivial if B= 4. Thus by a direct sum argument
it is also valid if B is A-free. Again by a direct sum argument, the conclusion

follows for B projective.

ProrositTion 2. Let A be a ring, a a nilpotent left ideal in A, A a left A-
module and B a submodule of A. If A=B+aA then A= B.

Proof. Assume C=A/B=0. Then since a is nilpotent we have aC = C.
But aC=(B+aA)/B. Thus B+aA=x A, a contradiction.

ProrosiTioN 3. Let A be a hereditary ring, let a be a two-sided ideal in
A and b a left ideal containing a. The following conditions are equivalent (for
i20);

(i) 1. dimaq (b/a) = 24,
(ii) a'b/a’*t is (A/a)-projective,
(iii) there exists a left ideal ¢ in A such that

¢+ ot =q'p, ¢Na'*l= gty

Similarly, the following conditions are equivalent (for i > 0):

(i) L.dim,, (b/0) €24 -1,
(ii") a'/a’b is (A/a)-projective,
(iii") there exists a left ideal ¢ in A such that

i 1 1 i+1
c+a'b=a, cNa'b=a""

Proof. Since in the ring 4 every left ideal ¢ is A-projective, it follows from

Prop. 1 that ¢/ac is (A4/a)-projective. Consider the sequence of ideals

c . CadtPC AT Cdh CdC ... Ca*CahCaCh,
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The inclusion maps induce an exact sepuence
(1) s a'b/a T > d/at T s aT b/ b > L. s a/a® > b/ab - b/a— 0

which is a projective resolution of b/a as a (4/a)-module. Now replace the
term a'b/a’"'b (occuring in degree 2i) by the image of a'b/a’*'b - a’/a’*! ie. by
a‘p/a’*!, and replace the higher terms by zero. There results an exact sequence
which implies the equivalence of (i) and (ii). Condition (iii) is simply an ex-
pression of the fact (equivalent with (ii)) that the exact sequence of (A/a)-
modules
0-a'"/a"* b > a’b/a’ b - a'b/a" ™ > 0

splits.

The second part is proved similarly by replacing the term a'b/a’*! by d/a’b.

ProposiTION 4. Let A be a hereditary ring and b a nilpotent two-sided ideal
in A. Then for k> 1 we have:

1. dim,pe (b/0%) = 24 & v =, Sfor i =0;
L dim,ge (b/0%) = 2i -1 & ¥ =0, For i> 0.

Proof. We apply Prop. 3 with a =0 Condition (iii) then reads ¢+ b*¢*"

=L N pRETD S pRETORL Gince £ > 1 we have b¥TY C po¥*. Thus by Prop.

kit i+1
bx 1. bk(z )

2 the first condition becomes ¢ = The second condition then becomes

=b*¥*D* Since b is nilpotent, this is equivalent with 6" =0,
Condition (iii’) reads: ¢+ 0¥ =¥ cN¥" =" By Prop. 2, the first
condition becomes ¢=1b0". Thus the second condition becomes B*"*=p* ™",

Since k> 1, this is equivalent with 6" =0,

TueoreM 5. Let A be a hereditary ring and let a be a two-sided ideal in

n+1

A such that o =a""" for some integer n> 0. Then

l.gl.dim (4/a) =2n— 1.

Proof. Let b be any left ideal in A containing a. Since in the projective

resolution (1) of b/a the term a”/a™"

occuring in degree 2n—1 is zero, it fol-
lows that

l.dim,je (b/a) £ 2n —2.

Since b/a is the most general left ideal in .4/a it follows from a theorem of
Auslander [1] that l.gl.dim (A4/a) £ 2n— 1.
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CoroLLARY 6. Let A be a hereditary ring satisfying minimum condition
for two-sided ideals. Then for any two-side ideal a in A
Lgl.dim (A/a) < wo,
§2. Residue rings of hereditary semi-primary rings

ProrosiTION 7. Let A be a semi-primary ring and o a left ideal in 1. For
n sufficiently large we have o" =a""'. Denoting @ =a" for n sufficiently large

we have (a)’=7 and
=a+@nNN¥, k=1,2,....
Proof. Since . is semi-primary there exists an idempotent ¢ such that
o= Ade+Db, b=aNN.
We assert that
(2) o = dea + 1, E=1,2....
For =1 we have
Aea+ b= Adede+ Aeb+ b= Ae+b=a.

Arguing by induction we find

0! = a0® = Aedea + Aeb® + bAea + b = Aea + bF*,

Relation (2) implies a”=0a"*' for # large, since b-is nilpotent. It follows that

@ = Jdea and the proof is complete.

TueoreM 8. Let A be a hereditary semi-primary ring. Then for any two-

sided ideal a tn A we have

gl.dim (4/a) < oo,

This is an immediate consequence of Theorem 5 and Prop. 7. More precise
results concerning gl.dim _.{/a) will be given in this section.

Consider the representation a=a+(a N N), a°=a given in Prop. 7. It
follows from Theorem 5 that the ring A/@ is still hereditary. Thus if we
replace 4 by 4/d and a by a/d, the problem is reduced to the cr;lse aCN
where N is the readical of .{. This reduction however does not seem to simplify

the discussion materially.
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Prorosition 9. Let A be a hereditary semi-primary ring and let o be a

two-sided ideal in 1. The following conditions are equivalnet (for i =0):

(i) gl.dim (/a) = 2¢+1,
(ii) a'la+ N)/a'™t is (A/a)-projective,
(iii) there exists a left ideal ¢ in .1 such that
c+a Mt =da+ N, cNna ™t =a" a4+ N).
Simnilarly the following conditions are equivalent (for 1 =0):
(i) gl.dim (.1/a) = 24,
(ii") a'/alla+ N) is (.t/a)-projective,
(iii")  there exists a left ideal ¢ in A such that

c+a(a+ N) =a, cNa'ta+N) =a""
Proof. Let A'=./a. The radical of .I' is then N'=(a+ N)/a. Thus
gl.dim .I' =1+ 1.dim, N' =1+ 1Ldime (a+ N)/a.
The result now follows from Prop. 3 applied to the ideal b =a+ N.

Remark. The last condition in (iii") implies '™ C¢. Thus the conditions

in (iii') may be rewritten as follows
(3) ¢+a'N=ad, cNa'NCa'
Iterating the first condition of (3) we find ¢+ cN+a'N*=a'. Further iteration

yields ¢+ N+o'N¥=q" and thus ¢+ cN=qa". In particular, a’N=cN and (3)

may be rewritten as
(4) c+cN=a cN N Tt
If further aN C Na then o'N C Nd', and, by Prop. 2, the first condition of (3)

becomes ¢ =a’. The second condition becomes a’N C a'*!. Thus in the case
aN C Na we find that for ¢=0 gl.dim (.{/a) £ 27 is equivalent with

(iii") o' N Cath
ProrosiTioN 10. Let A be a hereditary semi-primary ring and let o be a
two-sided ideal in .1 such that a CN*® oN C Na. Then for i =0 we have
gl.dim (.1/a) £2i+1& a7 =0,
gl.dim (.1/a) £ 2i & d'N=0.

Proof. The conditions stated in (iii) of Prop. 9 read
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c+ af'i'l — alN, cN az+1 — al+1N.

Since a'*'=a'a Ca'N*C Na'N, it follows from Prop. 2 that the first condition

it+1

becomes ¢ =a'N. Since o' C a’N C¢, the second condition becomes o' =a’"'N.

This is equivalent with a’**=0.
For the second part we may use the simpler condition (iii’"). The relation
a'N C a'*! implies o!’N C a'a C a’N?® and this is equivalent with o'V = 0.

Remark. In the case =0, the condition aNC Na is not needed.

CoroLLARY 11. Let A be a hereditary semi-primary ring. Then, for n =0,
gl.dim (4/N?*) =né& NP =0, N x0.
§3. Triangular matrices

ProrositioN 12. Consider the ring A= Tnii(K) of all triangular matrices

of degree n+1

am, 0, , 0

A, A11 e e 0
a(au) — y ) >

Anoy An,1y, « « « » Ann

with cozfficients tn a semi-simple ring K. Then A is semi-primary, hereditary
(gl.dim A =1) and gl.dim (1/N?) =n, where N is the radical of A.

Proof. Consider the elements e, c € A defined by

e=alan=1, a;y=0 for (s, 7) % (0, 0)),
c=alaiv,i=1, a;j=0 for i j+1).

We obtain an exact sequence

0—> e > 425 N—>0

where ¢ is the inclusion while ¢2=1ic (A€ 4). Since e is an idempotent /e is
a direct summand. Thus the exact sequence splits and therefore N is .I-pro-
jective. Since N = 0 we have l. dim, N =0 so that gl.dim .1 =1. The assertion
gl.dim (1/N?) = n now follows from Cor. 11 since N” = 0= N"""

ProrosiTioN 13. Let A bz any ring, A a left A-module and let

dn da- " d
0 XS X S LS XS A—0
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be a projective resolution of A (n < x) such that d;i %0 and X; is indecom-
posable for all i =n. Then l.dim, A =n.

Proof. Assume l.dim, A =k < n, and denote
Zp=Ker dp = Im dj41.
Then 0= Z; % X;. From the exact sequence
0—>Xp/Zr— Xp-1— ... > X—>A—0
it follows that Xi/Zr is A-projective. Therefore the exact sequence
0—>Zr—> Xp—> Xr/Z,—> 0
splits. This contradicts the indecomposability of Xg, since Zp = 0 % Xi/Z.

ProrosiTioN 14. Constder the ring of all matrices of the form

2w O
R oo

a(a, Br 7 51 E)':"ii ;
|

(2 3 S

with coefficients in a semi-simple ring K. Then A is semi-primary, gl.dim 4 =2
and gl.dim (4/N*) = .

Proof. Consider the elements
er=a(l,0,0,0,0), e2=a(0,1,0,0,0),
c=a(0,0,1,1,0).

Clearly e; and e; are orthogonal primitive idempotents and e;+e:=1. We ob-

tain an isomorphism
0 : Adex = N21

by setting 0e.=ce;; this shows that Ne; is projective and indecomposable.

Further we obtain an exact sequence

0 —> Ney —q’—) Ae; "g*)—) Ne; —> 0

where ¢ is the inclusion while ¢e; =ce.. Since both Ne; and /e are indecom-
posable and projective and ¢ = 0 = ¢ it follows from Prop. 13 that 1.dim, Ve,
=1. Since N=DNe;+ Ne: is a direct sum, we obtain lL.dim, N=1 so that
gl.dim 4 =2,

Now set ' =4/N? and let e, e, ¢' denote the images of e, e, ¢ in A’
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Then e} and e} are still orthogonal primitive idempotents in A’ with ]+ es= 1.
We obtain exact sequences

P ) P ’ P, ) Ps '
0—> N'eh —5 Ales—5> N'ey—>0, 0—> N'e} —> A'e; —> N'e; —> 0

. . . ! ...
where ¢; and ¢. are inclusion while ¢,e;=cel, ¢.ei =ce;. By composition we

obtain a projective resolution
! /
. —> Aey—> Mey—> Aes—> ... —> el —> Aez—> N'ei —> 0

where none of the maps is zero. Again by Prop. 13 we have 1.dim, (N'e;)
It follows that gl.dim A'= .

I
8

ProposiTION 15. For each pair (m, n) where 0<m= o, 0<n = «,
(m, n) x (1, =), there exist a semi-primary ring A and a two-sided ideal a of

.1 contained in the radical of A such that
gl.dim 4 = m, gl.dim (A/a) = n.

Proof. The case m =1 is settled by Prop. 12. Assume m > 1. We define

A as a direct product A;+ 4. where 4; and 4, are semi-primary rings such that
gl.dim A, = m, gl.dim (A4;/N;) =0,
gl dim As £ 2, gl dim (A?/N?j) =n.

The existence of such rings follows from Prop. 12 and 14. Using the general
fact that gl.dim 4 = sup (gl.dim .;, gl.dim 4.) (see [2], Ch. VI, Exer. 8) we find
gl.dim .4 =m. Now consider the two-sided ideal a= N;+ N3 C N. we have

Ala= A/Ni+ 42/ N3
so that applying the general rule we obtain gl.dim (4/a) = 2.

§4. Algebras
Let A be an algebra over a (commutative) field K such that (4 : K) < .

Then A is a semi-primary ring. Consider the following statements :

(a) dim 4 < o,
(b) I'=A/N is separable (ie. dim I"'=0),
(c) dim 4 =1+1.dim, N =1.dim, I'=gl.dim 4.

The implications

(@)=> (b) = (c)
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have been established in Ikeda-Nagao-Nakayama [5] and Eilenberg [3]. We
further note that if (b) holds for .1 then it also holds for A’= .1/a where a is
any two-sided ideal in .. Thus also (c¢) holds for 4. These remarks imply
that if in $2 .1 is an algebra as above then all the propositions stated hold with
gl.dim .1 and gl.dim (.1/a) replaced by dim .t and dim (.1/a).

In Propositions 12 and 14 of §3 we may take K to be the ground field,
and then the rings constructed satisfy (b). Thus the conclusions remain valid
with gl.dim replaced by dim. This incidentally supplies examples of algebras
with ((1: K) <> and dimA=#2n for any 0 =n < »; such examples have
been given by Rose [6] and Shih [7].
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