ON ABSOLUTELY SEGREGATED ALGEBRAS
MASATOSHI IKEDA

Cohomology groups of (associative) algebras have been introduced (for
higher dimensions) and studied by G. Hochschild in his papars [2], [3] and [41.
1-. 2-, and 3-dimensional cshomology groups are in closest connection with some
classical properties of algebras, In particular, an algebra is absolutely segregated”
if and only if its 2-dimensional cohomology groups are all trivial. It is thus of
use and importance to determine the structure of algebras with universally
vanishing 2-cohomology groups, i.e. absolutely segregated algebras; they form
a class which is wider than the class of all algebras with universally vanishing
1-cohomology groups, i.e. separable algebras in the sense of the Diclkson-Wed-
derburn theorem.

In the present note we offer a structural characterization of absolutely
segregated algebras. As the preliminary we consider some simple lemmas on
M,-modules of an algebra (Definition 1) which have been studied by W. Gaschiitz™
in the case of finite groups and by H. Nagao, T. Nakayama.” and the writer'
in the case of algebras (§1). Combining theze lemmas with 2 criterion for an
algebra to have trivial m-dimensional cohomology groups, obtained by G. Hochs-
child in terms of Hochschild modules (Definition 3). we can refine Hochschild’s
criterion and show that the m-dimensional cohomology groups of an algebra
are all trivial if and only if the same holds for Ax. Where K is an extension
of the ground field of A (§2). Next. after showing that A is absolutely segre-
gated if and only if the basic algebra of A is so (§3), we show a direct de-
composition of the Hochschild module of the basic algebra of A into two-sided
modules (§4). Then, by the direct analysis of Hochschild modules, we have
our structural characterization of absoluiely segregated algebras (§3).

The writer wishes to express his gratitude to Professor T. Nakayama for
his valuable suggestions.

§1. Mymodules of an algebra
Let A be, throughout this paper. an associative algebra with a finite rank
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1) An algebra A is called absolutely segregated if any algebra B containing a two-sided ideal
C such that B/C= A contains a subalgcbra A’ with B=C+ 4",

%) Gaschiitz [1].
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over a field F. Moreover we assume, without mentioning each time, that A
has unit element 1. Let

n fik) n fix)

\1 \114&: i= 21 LeK,IA

5111 k=1 ¢=

be direct decompositions of A into indecomposable left or right ideals res-
n f(x)

pectively. Ilere e.,; are primitive idempotents such that ) >e.:=1 and Ae,;
k=14=1

= Ae,,;j (e, iA=e;;A) if and only if £k =A. For the sake of brevity, we write
e,1=e« for each x. We use, moreover, matric units c.i; with ¢« i, ;0 nk
=0, n0j, hCxisks Crjii=6xifore,A=1,...,m; &.7=1.. . f(«k)and b, k=1, ...
S

DeriNITION 1. Let MM be an A-module (one-sided or two-sided). M is called
an My-module if, for any A-module M containing an A-submodule N’ such that
N/ =M, there exists an A-submodule N” of N such that N is the direct sum
N=N+N"

Then we can easily verify

LemMA 1. Let M be an A-left module. If M =M1+ M. is a direct decomposi-
tion of M into A-left modules WM, and M., then M is an My-module if and only
if My and My are Mymodules.

Recently H, Nagao and T. Nakayama® proved

Lemma 2. If 1 asts as the identity operator on an A-left module M, then
WM is an Memodule if and only if WM is a restricted direct sum of A-submodules
isomorphic to indecomposable left ideals Ae. of A.

By Lemma 2 we have

Lemma 3. If M is an A-left module with finite rank over F on which 1
acts as the identity operator, then W is an My-module of A if and only if My is
an My-module of Ax, where K is an extension of F.

Proof. The “only if” part is trivial. We prove the “if” part. Assume
that Mg is an My-module of Ax. Then, by Lemma 2, Mk is a direct sum of
finite number of Agx-submodules isomorphic to indecomposable left ideals of A,

say M= _:111;, m; = Ax€.,. Now, since € is a primitive idempotent of Ax, we
can assurr;elthat Axe,, appears as a direct component of (Ae,)x for suitable ¢, .
Since (Ae) )k is a restricted direct sum of A-modules isomorphic to Ae,, it is
an My-module of A. Therefore, by Lemma 1, its direct component Axé,; is also
an ]lIo module of A. Then, being the direct sum of submodules isomorphic to

%) Cf. Nagao and Nakavama [6].
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Axéy;, My is an My-module of A. Since M is a direct sum of M and a suitable
A-submodule T, M is an My-module of A.
As for A-two-sided modules,” we can consider them as A X A'-left modules

where A’ is an algebra anti-isomorphic to A, and the above lemmas hold also
for them.

§ 2. Hochschild modules and absolutely segregated algebras
Now we turn to lemmas from the cohomology theory.”

DerFINITION 2. Let M, M be A-two-sided modules. Then we call an A-two-
sided module & an extension module of | by M if LDON and Y/N=M. If a
direct decomposition € =N + DV holds with an A-right submodule MM, which is
necessarily (A-right) isomorphic to M, then we say that Q is a 7ight inessential
extension. If a direct decomposition € = N + M’ holds with an A-two-sided sub-
module M, which is necessarily isomorphic to I, then we say the extension
splits.

LemMmA 4. (Hochschild) Let M, N be A-two-sided modules. Then every right
inessential extension of M by M splits if and only if HY (4 ; ROM, N)) =0,
where RO, N) is an A-two-sided module consisting of right operator homo-
morphis:zs of M into N and the operation of an element a of A on R(IM, N)
is defined by (a*A)(m) = ai(m), (A*a)(m) = Aam) (meM, 1€ R(IMR, N)).

DerFINITION 3. Let Pr=A®...&A be the m-fold direct product of the
underlying vector space of A. We make P, into an A-two-sided module as
follows: Let A€ay, Pu2a1® ... am. Then we define

(@1®...0an)*;m=a1D ... Kamay and

a*(a1® ... ®am)=aoal® e Ran—aVaa:R ... 0an+ ...

veeH+ (=DVar®...8aaad...Q0amn+ ...
+(-D""3%@ai® . .. Ram-1am.
We call P, thus defined the m-dimensional Hochschild module of A.

In distinction from ordinary direct products, we use the notation & for
the Hochschild module P, while we use the notation X for ordinary direct
products of two-sided modules, that is, A™ = Ai1X ... X Am is an A-two-sided
module under the operation afa@iX ... Xam)=aaX...Xa, and (a1 %X ...
Xa,)aq=a1X ...Xa,a.

Lemma 5. (Hochschild) The m-dimensioncl cohomology groups of A are
all trivial if and only if every right inessential extension of any A-two-sided
6) « A-two-sided module” means “A-double module” (A-Doppelmodul). Namely a module I
is an A-two-sided module if 9% is an A-right as well as A-left module and satisfies (am)d
=a(mb). (a, be A, meM).

Lemmas 4, 5 and 10 are in Hochschild [4].

-
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module by P, splits.

Since Py is an Mymodule as an A-right module, every extension of any
A-two-sided module by P is right inessential. Therefore

Lemya 6. The m-dimensional coliomology groups of A are all trivial if and
only if the m-dimensional Hochschild module P of A is an A-two-sided My
modile.

LEmma 7. Let W be an A-two-sided module. If WM is an Mymodule as an
A-right module and if 1M =0, then M is an A-two-sided Mymodule.

Proof. Since every extension of any two-sided module N by M is right
inessential, it is sufficient to show that H(A ; R(M, N)) =0. From the de-
finition, we have (13a)(m) =21(am) =0 for every A€R(M, N) and meM.
Therefore RN, N)*A=0. Let p be a 1-cocycle from A into R(IM, N). Then
dola, b) =a=p(b) —plab) +pla)*b=0. Since R(M, M)*A =0, we have a*p(d)
=p(ad). This shows that p is an operator homomorphism of A into R(I, M.
Since A has unit element 1, p{a) = a*p(1) = @*p(1) — p(1)*a = (6p(1))(a). Thus
any l-cocycle is a coboundary.

Since P = 1%Py+ Py where Py is the two-sided submodule of P, consisting
of elements annihilated by 1 on the left-hand side, we have, by Lemmas 6 and 7,

LeEmMMA 8. The m-dimensional cohomology groups of A are all trivial if and
only if 1+Py is an A-two-sided Mymodule, that is, 1% Py is isomorphic to a direct
sum of indecomposable left ideals of AX A'.

On the other hand we have, from Lemmas 3 and 6,

LEMMA 9. Let K be an extension of F. Then the m-dimensional cohomology
groups of A are all trivial if and only if the m-dimensional cohomology groups
of Ax are all trivial.

DEFINITION 4. An algebra A is called absolutely segregated if any algebra
B containing a two-sided ideal C such that B/C= A contains a subalgebra A’
with B=C+ A.

Then

LevMma 10. (Hochschild) An algebra A is absolutely segregated if and only
if the 2-dimensional cohomology groups of A are all trivial.
By Lemmas 9 and 10, we have

ProrosiTioN 1. An algebra A iS absolutely segregaied if and only if Ax is
absolutelv segregeted, where K is an extension of F. If A is an algebra over
an algebraic closed field, then A is absolutely segregated if and only if 1%P; is
isomorphic to a direct sum of A-two-sided modules isomorphic to the modules
of the form Ae.Xe A.
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Now we give the next proposition which gives the relation between 1*P,;
and A7

PrerositioN 28 By the corresfondence aiX ... Xan=ar*(a:® .. . Nan),
A" s mapped homomarphically onto 1% Py and the kernel of this homomorphism
is isomoiplic to 1+Py.

Proof. The above mapping is obviously “onto.” Since (@a)*(@® . . .
e Raen) =i (@ .. L& a,,,)) and @ (@ ... 8 amans) =ax((a: > ...
e Ram) @) = (e (@ X .. . ®am))*am+~, this is an A-homomorphism.
Smce (R ...0an)=a:N...8an— 15 (@a(a:& ... X an)), the rest of
the proposition is clear.

Remark. Since ar(aiR...Ra) =66 ... 8an— el (e la: . ..
®amn)), we see that the left multiplication of an element ¢f A to an element
of 1*P; coincides with the ordinary multiplication.

§3. The basic algebra of an absolutely segregated algebra

DerINITION 5. The subalgebra A, =FEAE of A is called the basic algehbra

of A, where E=>e.
x=1

Lemma 11, (Hochschild)® An algebra A is absolutelv segregated if and
only if anv algebra B containing a two-sided ideal C such tha: B/C= A and
C? =0, contains a subalgebra A' sucl that B = C -+ A

ProrosITION 3. An algebra A is absclutely scgregated i and only if ils
basic algebra A, is absolutely segregated.

Proof. First we prove the “if” part. Assume that A, is absolutely segre-
gated. Let B be an algebra containing o two-sided ideal C such that B/C=
Then, by Lemma 11, we can assume C’ =90 and consequently we can construct
mqtrxc units {¢,i,;} such that each ¢, & belongs to the class ¢4, mod C. Then

(EEK,],1)B(>JE.<,1,1) =Bo con'tains (ng,l,l)C(xgu,l,l) = Cl) and BQ/CO;AO
k=1 K=1 k=1 k-1
Therefore B, contains a subalgebra A} such that B, =Co+ Al. Since Al= A,.

n

Al contains idempotents ¢ corresponding to e = ¢y,1,1 and, since >.é, 11 is the
k=1

n n
unit element of B;, we have 2.8l =>) c‘ vi. Then Te.i (i%1) and & forms
=

k=1
mutually orthogonal primitive idempotents and therefore there exists matric
units {c!; ;} such that &, ;; belongs to the class ¢.;,; mod. C and ¢/, ;i = Cx, i, for

ix1 and ¢l,,1=¢. Now we consider A'= > ¢l 1Alch, ;. It is clear that
K, A Qg

8 Cf. Nakayama [7], Lemmas 4,1 and 4, 2.
9 Hochschild [2].
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A’ is a subalgebra and B=CUA'. From CyNA}=0, it is clear that CN A’ =0.
Thus A is absolutely segregated.

Next we prove the “only if” part. Assume that A is absolutely segregated
and B, is an algebra containing a two-sided ideal C, such that Bo/Co=A4,. Let
{&.} be a system of idempotents in B, constructed in such a way that &. cor-
responds to e. of Ay. Now let {Zx,ijt (¢k=1,...,7m; 4, j=1,...,f(k)) bea
system of symbols. Bo= KZ:EKBCEA + ;‘Bé”é; + ;méﬁ’ + B{®, where B\, B and

" consist of elements annihilated by left, right or two-sided multiplications of

n (2 . .
SV, respectively. Itis clear that B, B and B are contained in C,. Let
k=1

B be the direct sum of modules &,;,18B18,Cx,1,7, Bs €k 1,5, Cri18:BS and By :
~ | =D (1) =~ S L s e (3; ~ o~
B= 2)%4i,186Bo&,00 1,5 + 2, B6 8cCu,1,i + }_}Cx,i, 18.BY + BY. Now we set Ce,i jCo k. k
Kk, f K,

IR ¥
~ ~ ~ (1 (2 ~ (3 (3)
= 5:, Aaj,hcx,i. ks Ck,1,1 = €, C«,i,jB(l )= 09 BQ 'C&,i,j =0 and C.:,i.jBo ) = 0 Ck,i,j = 0.
Then it is clear that B becomes an algebra. Let C= 3 €i,18C08)C)1,i

g, A dy g

+ DOBYC e 1i + DG i18BE + B, then C is a two-sided ideal of B and it is
K, £ K, t
not hard to verify that B/C=~ A. Therefore B contains a subalgebra A’ such

that B = C + A’ and consequently (>¢.)B(>8,) = S_?KBOE,\ contains (32,) A'(3]2,)
k=1 k=1 x, k=1 k=1

= A} and ziExBoEA = Al + (3Je)C(>8,). Since By = EAE,BOE,\UCo and A/NC,
K, k=1 k=1 <,
=0, we have By= A}+ Cy. This shows that A, is absolutely segregated.

§4. A direct decomposition of 1*P, into two-sided submodules

In this section we assume that A is an algebra with rank m over an alge-
braically closed field £ and coincides with its basic algebra, i.e. satisfies the

n n
condition (B): if A= Ae.=>.A are direct decompositions into indecom-
k=1

k=1

posable left and right ideals of A, respectively, then Ae.Z Ae, (e.A3eA) for
k%A

LemMa 12. (1*P; : 2) =’ — .
Proof. By Proposition 2, A®/M=1+P,=A and M=1+P,. Therefore
(1xP:2)=(A®:2) - (A:2) =m" — m.

Lemma 13. Let {ui(x, 1)}, £ %1, be an 2-basis of e.der., and let {ui(x, )}
be an 9-basis of eNe.. Then, if we put vk, 1) =eQui(x, X) —ui(x, 1) ey,
A+vilk, 1) and vi(x, A)*A are contained in 1+P,, A*vi(x.2) is A-left-isomorphic
to Ae. and vi(k, A)*A is A-right-isomorphic to exA. Moreover the sums‘,LAJ :4*0,-(::,

1) and L}J?‘J,‘(IC, D*A are direct.

Proof. Since a+vi(x,2) = ae.Qui(x,d) — aDui(k, 1) — aui(k,2) Der+ aui(x,
D) =azQui(r, 1) — aui(x, ) ex, 1*vi(k, ) =vi(x, A)E1*P,. Therefore A*vi(x,



ON ABSOLUTELY SEGREGATED ALGEBRAS 69

2y and vi(k, 2)*A are contained in 1xP,. If Ea(fc, 2, ©)*vi(k, ) =0 for some

alk, 1, ) EA, then(}_.a(;c, i Dk, 2)=)0= Z(a(x, 2, Dec& uilk, 1) —alk, 2,

ik, A)Oex)—-Za (£, 2, Dex®uilr, 2)— D Ea £, A, Dui(k, 1)) ®ex. Since
i A K, i

K, A, &
u:{r, 2) and e, form an £2-basis of A, we have a(x, 2, i)ec =0 and consequently
alr, 2, ©)#v:(k, 1) =0. This shows that the sum UA*w(x, 1) is direct. At

Ky Ay &

the same time, this shows that A*v;(k, ) = Ae*vilk, A) = Aec. By the same
way we have that the sumUv;(x, 1)*A is direct ard vi(k, 1)*A= e, A.

K, N, @
For the sake of brevity, we put (Ae. : 2) =5, (e.A:2) =7 and (e.Aey: Q)
=Cx, re

LeMMma 14. 1P, = ‘__JAeK\,e;A—!—ZA ik, A)—}dAeA\\)e;A—r}_ﬂ)l(r A=A,

K, A, &

Proof By direct computation, we see Ae.& exAC 1P, if x=1. Since P;

5 e A and since }JAeK\X e.A contains }_A*v,(lf 1) and }_Jvl(f:, A *A,
the sum (LAeK\,eAA)UQ_,A*v,(x 1)) and (LAEKS)Q)\A)U(ZU(F, /1) <A) are
KF A K, A, ¢

direct. We show that tbese dxrect sums coincide with 1«P.. To prove this, we
compute the ranks of ZAe,c ReA + }_.Av,(:r 2) and DAecKe A + EZ’ (r, 2)*A.
By Lemma 13 and thKe:F definition Of u,(/:, 1), ((LAE:-\FXA\ exA—%-zA vz(lf, A)):
—Zisxn + %sx(m, A= Ocn) = Lsm + }_,sK(ZCK A 1 )= }JstrZsK(n 1= ?_:su
- gsx =m —m=(1xP, : !2). In the same way, we have ((K}:‘AA&‘ RerA %:";2?1)[(/{,

MDxA) 1 2)=(1xP,: Q).
LEMMa 15. ZA v (k, 2) = >wilk, )*A =M is a two-sided module.

K, A i
Proof. Svnce }_,4*2) (k, /I)CZAW,(K,A) AC(ZAP ReA)N1#Ps, we have
1+ Po=> Aw;(k, )*A+2Ae“>< eAA andc’)nsequentlv ?A*v, (i, )% A—vA vi(k,
Ky A, & KFA
2. By the same way, we have ZA*T/:(IC N*A = }_ﬂh(h A *A.

Ky Ay L

By these two lemmas and the fact that > Ae.DerA=> Aecxe)A, A is
KEX KA
absolutely segregated if and only if M is isomorphic to a direct sum of A-two-

sided modules Ae, X e, A.

LemMma 16 -ecax0i(A, 1) = (e S aui(}, v) — ecaw, (2, 1) De,) — (e D ecaer — ecaen
Ken)cui(h, v).

§ 5 Structure of absolutely segregated algebras

Consider an absolutely segregated algebra A over an algebraically closed
field £ satisfying (B). As was mentioned above, M in Lemma 15 is a direct sum
of submodules isomorphic to Aecxe 4, say M= >t (Ae.x e A) as we wankt

Ky A

to write.
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Now we assume that the indices 1, ...,z are so arranged as S;< ... =5,.
Then,

LEMMA 17, si=1+4 20428 and 7, =1+ 2t s7a. ter=02f k2.
K Iy

Proof. Since M =2 Axvilk, 2) = >wi(k, A) v A= Sjlx »(Ae.x e A), we have,

K, A, i K, A, T

comparing indecomposable summands isomorphic to eAA, SHewn—0er) =s—1
K
= >t 1Sc. Since sy=s. for 1<k, t,2=0 if A=x. By the same way, we have
X

¥k = 1 -+ th, AA .
A

COROLLARY. s =1, that is, Aei= Re;.
By this corollary, I = ZA*vg 1,2)+ Z;}\A*Z)i(lc, 2) = }_,,Qv,(l )+ S_‘Axv,(h,

k=15 A,

2). We denote L A v,(/c, /1) by M;. On the other hand ‘JJ&:}JK >‘(Ae,(><e;A)

and consequentiy 9)2 }J‘m,(x, 2), where, for each pair («, 4), 5)32 (k, ) are .
two-sided submodules of 9R isomorphic to Ae, x e, A. Let mi(«, 2) be the element
of M;(k, X) corresponding to e.x e, by the above isomorphism, then Mi(x, 1) is
generated by mi(x, ).

Lemma 18. M = >_J 932 (k, A); in particular, W is a two-sided meodule.

k¥l
Proof. Since 932—}_.011,(1 D +My, if ex1, milk, 2)*a=esmi(x, )*a is

contained in et = e (C‘m) for any a=A. Therefore mi(k, 1)*ACM,; if
x=1 and consequently mn 2 L A ik, A)*A = > Mi(k, ). On the other hand

LOU (1L, 292 —L(c; A= 01, x) =rn—1= Zt:t;:_‘(ZSJL(l £): 2)=M: 2)
— ( ?_ﬂ)l (k, A): ). Therefore M; = 2,9)2,(::, ).

- By Lemma 18, W/M=~ }_t; K(Aé; Xe.(A) Etl ( Qe xeAd). Since M
= %'_,:Qv;(l, A)+9t, we can, for each k, take £« elements, say xa(1, &) = };w;(x,

hvi(1, £)wi(k, h)E 2), as the representatives of the 1, classes corresponding
to t,«e1Xe’s. Then, since Ae =8e;, W= >uxi(l, £)*A+M,. We donote
K, h

Dlwilk, Bui(1, k) by wi(l, ). Then wi(l, k) EesAec and x4(1, k) = e; O wn(1, &)
—wi(l, k) Sex.

Lemma 19. elsziﬂ;,(l, )A and wi(l, K)A=e.A if t,.x0.

Proof. Assume that Lw;.(l K)ec,n =0 for some a., < Ae,, where v is an

arbitrarily fixed. Since t1 1=0, th(l et n= >, wi(l, r)e«t,r=0. Then

k¥x1;h

) xh(l E)% el k=€, ( Z wh(l K)elcan B — > wh(l £) Qe n=— > wr(l,

k¥1, K¥Li h k¥l h
r)&Xewan. We can erte Celle, b = €, 10, = 2L [k, B, Flui(k, v)+8c-.B(h)ey,
J
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where 3(. ..)E%2. Hence — Z;w;,(l £) e, n= — 5__,3(::, h, ) Gen(1, k) & 2k,
v))—(}_,,@(h)wh(l ) &e,. 1\IOW let a(k, flec= —Zﬁ(h h, NDwi(1, k). Then
m 3 La(/c, ok, v)= La(:c, e uik, y)—( Z.a(/c, Nuile, ) &e,

K=1:3 el g

= — 218k, B, /) (w1, x)(‘é u,(/c, v))+(121 B, h, Nwnll, ©uii, v))Xe,.
k%1,h, 7 k¥15h, 9

Since Ewh(l, £)eax, i = EB(K B, Hwal, ©)uix, v)+23(h)wh(1 p) =0,

k¥1

> B(x h Dwn(1, )ik, u): —LB Rwn(l, v). Therefore Lx/,(l K)¥Celie, i

k%13 h, g 5

=>Valk, j)*vilk, v) =M and consequent]y e, n=0.
k¥1;3

Thus the sum Uw;,(l. k)A is direct. If #1,.%0, then ws(1, ¥) % 0 and, as was
shown above, wi(1, /c)A e.A. On the other hand e;NDEwh(l, VA and (elN: Q)
=r—1=2>2t,a= (2 wn(l, £)A : 2). Therefore elN }_,wn(] K)A.

K K, h

LeMMma 20. ;= EA“v,(:c N = Z’U(h MNxA+ D0 wa(l k) =vi(k, A=A,
k&1

k¥1; KE1; A hy i
Proof. By Lemma 19, we can take wx (1, &) and wn(1, £)u(x, 2) (k1)
as an Q-basis of elN. By Lemma 16, will, «)+oie, 7) ={ec®will, ©)elxs, 1)
= wi(l, Bk, D &e)) —xu(1, £)*u;(k, ). Consequently, using the above -
basis, we have Lz,(l N*A = Ex,(l K)=A+ Siwi(l, £)sv,(k, ))*A. Since

Kk¥1ih, i

= 2 x4(1, £)* A—Lgﬂl and (2 wh(l k) *vi(k, x)*A)U(L v,(;c N+A)EM,, we

x#l 13

have 9721 th(l £)* v,(x, l)kA)U(}_, 7/,(/:, A)=A). It is easy to see that
“JE]_ >_.v1(rc, }) <A+ Lwh(l E v,(ic, /1) A

k=l A,
Lemma 21, The following conditions (i), (ii) and (ii) hold for everv «.
(i) M, = EAle(,u )= 2“)?(/& ).

MK WKL A
(ii) There exzst e elements wrk, 2) in e Ae, such that e.N = }_,w;;(:c, DA,
Ne.(— 20 Awi(d, &) and if tex0, Awi(2, k) is A-left -isomorplic to Ae,, and

Ak h

if terx0, walk, )A is A-right-isomorphic to e A.
(111) My = }Jvl(u, DxA+ > w;.(/z, v)*vi(p, A)¥A+ ...+ Z (thx(/lly

Bk UK VoG PR =3
/12)1,01;2(,&2, 23 oo cws (e, p))30in, M)A+ .. + 23w (1,2) . . caon (k, 2)) 30l o,
A D T Jik,
MxA.

FProof. We assume that (i), (ii) and (iii) are satisfied for indices x = p.
(p is a fixed integer.) We want to prove that (i), (ii) and (iii) hold for x =p

+1. From (ii), we can see, for x=p, sx—1+2t;,,(+ 2t wtinn + -

M=o~k

+ 2.! tu potuz u3 . ty.,-x+ +t1 PIZ I T Ao 1,k From (1) and (iii) A’f'l’i(j)

Mi<... <pypik

+1,2) 2020i(p+1, x)+252wh(u,p+1)w,(p+1 D+ ...+ E«Q(u)hl(/h w) ...

=170 Ri< oo SUpEP;
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cwi(pry, DI *0i(p+1, )+ . - > sz(wh,(l 2). . .wn (D, p+1))*vi(p
+1, 2).
The rank of the right hand side is equal to 1+ > f,, p+1+ . + D3] AW
u=Dp

..... <upZ=p

tur,prit « o o« Fiolss. o cIppt1s Since SK=1+EI‘H,K + ... +t1,2t2,3 . be-1,x for
p=x »

kD, 1+>_|t,¢ p1t . Ztm uge o Lurprri+ o oo Flieles. . .tp,p+1=1+21ty,p+1sy,
RED M\P e Spp =Y w=

=s,.1=(A*i(p+1, 1) : ). This shows that A*v;(p+1, 2)=Quv(p+1,2)
+ 2wl p+Dx0i(p+ LD+ . .. + Eﬂ(whl(m, ) . o cwaCu, p1))*0i(p

HEpih AR \W =pihy,

+1, 04+ . +ZQ(M(1 2). .Why(P,P+1))*Ux(ﬁ+1 2). Since A*vi(p+1,2)

.....

= Aey.1, Ae,,+1~96,u+ Ewh(u P+ ..+ 20 -Q(th,(/xl, w2) o o wn

REpP:ih u1\~ . <prEpih,

pP+1N)+. + > [)(whl(l 2)...wn(p, p+1)). Then it is easy to see that

.....

Nep.1 = 2 Aw;,(:c»]’ + 1) and Awi(k, p+1) = Aeawn(k, p+1) = Aec. This proves

K~p+1lih

the second part of (ii) for k=9 + 1.
As was shown above, ZA*'U,‘U) +1L, D) =202u(p+1,0)+ . + 2 Q(whl(l
At A

2), ., wa,(p, p+1))*v:(p+1, 2). Since 9RP=Z}_A*vi(p4— 1, X)+9)¢p+1, wel have
MWy = (Sip+1, D+ . - .+ DLwi(1,2). . wn (5, p+D)#0ilp+1, 1)+ Dy

s hp
Then, by the same way used in Lemma 17, we have Mip1=2 >) 9) g, ). On
K>p+1;
the other hand, (LA’Z)K? +1,4):82)= Sp+1(2(€p+1 2= Ope,n)) = 5p+1(?’1>+1 -1
= Sp+1(2tp+y )_7’)\) = (29)?,(174— 1, X) ..Q) = (SJRI) .Q) - ( E 9)(;(/6, X)) Therefore

K>p+1;
Mps1 = E‘JJ? (k, 1). Thﬁs proves (i) for k =p 4 1.

K~pAT:

Now 9}?{)/9}}1}1—1:EA:tp+l,)\(Aep+1><e)\A). Since My = Z‘Qv,(ﬁ+1 A+ .
A—kz% Q(M’hl(l 2) . cwny( D, P+ 1)) #0i(p 41, 2) + Mp+1, we can take tp i1, elements,
say x;,(p+1, K) =§w;(fc, Wvilp+1, £)(wilk, B) ER) as the representatives of
the classes corresponding to #p:1,« €p+1Xe’s. Then Mp=>1A*x5(p+1, £)*A
+Mp+1. As before, we denote 2 wilk, R)ui(p+1, k) by w;,(;’i‘r 1, ) (Eepriden).
If th(p+1 Dexar, n =0 for so;ne e,ar, nE A, then, since tp+1,, =0 for 1 <p+1,
sz(erl Newan, n = Ew,,(ﬁ%—l Newan,r =0 and consequently, by the same

way used in Lemmal]\g+ we hav}e\% xi(p+1, MD*erarn =0 (Mp+1) which implies
eyay,» =0. This shows that e N2 Ew W(p+1, DA and wr(p+1, DA=eA if
tp+1,2 0. Comparing the ranks of equ and ;wh(p—}«l, MA, we have ey iV
= %wh(ﬁ—f— 1, 2)A. This proves the first part onf (ii) for k=p+ 1.

Now we consider (iii). From the facts that ep+1N= 2 wi(dp+1, ¥)A and
K, A
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that fp+1,« =0 for k=1, ..., p+1, we can take wr(p+1, ) and wa(p +1, k) uix,
A (kx1,...,p+1) as an £-basis of e,+;N. Using this £-basis, we have
epr i Rwi(P+1, ©)uik, A) —wa(p+1, B)uix, ) ®er=wn(p+1, £)*vi(k, 1) +24(p
+1, )*ui(k, ). Consequently EL,(j)-i—l g)*A= D xa(p+1, K)xA+ ) wh(P

k>p+l:h K=prliA i,
+1, g)*vi(x, A)*A and E(Wh(m, M) . . cwn e, P10+, k)xA
=>) (wh,(/u, ). wh,(/tr, 1b+1))*xh P+, E)xA+ }_Jw;.l(m, m) .. cwnp,
k>prl; k> p+1

b+ l)wh(p—i-l k))*vi(k, A)*A. Then, by the facts that‘JJt,,..ZA xn(p+1, k)*A
+‘m,,+1_[2‘.v (p+1, k)*A+ 2wn(/e,p+1)*v,(p+1 x)*A+ 4+ D, (e,

uEpic, i, h l-lx\'-~ <x‘r\}1 K, 3
hy, e oo,
22) « o walur, pF)x0i(p+1, K)* A+ ... -‘{-hz(whl(l 2) ... zv;,p(p ?
+ 1)) *0(p+1, IC)*A]-!—-[ZU;(IC, YA+ . +Z(w;.,(u,, 12) . o cwp (ptr, k) )50k,
x>p+1; k>p+1; p)“\....‘.’\,.lr;—p A i
N*A+ . +3 2 (thl(]. 2). . .wn(p, £))*vi(x, 2)*A] and that S'Rp+13[§]v.(x
K\P+ K>+
MNxA+ . 1-I— 2 (whl(l 2) . . wn(p, £))xvi(k, A)* A]+[Ezu/,(p+1 k) *vilk,
x>p+ PRy ST 7 K>p+1;
AD*A4 . + > (whl(l 2).. ZUhP(P,_P-*l- Dwn,,(p+1, x))*v,(x,l)*A], we have
x\p+1 » %, Ry, shpyt
that Mp+; = Ev,(x, DA+ .o+ D (wa (g, po) . o cwn G, £))50ilk, A)+A
k>p+1;A, ¢ K\p+1 [.L1< .“TL’::—p+1:A,i
F oo+ D2 (we(1,2). . .whm(p+ 1, «))*vi(k, 1)*A. This proves (iii) for &
k>p+1i A, €, hy, .00, hpyy

=p+1. Therefore we have Lemma 21 by induction.

ProrosiTION 4. Let A be an absolutely segregated algebra over an algebraically
closed fleld satisfying (B), then there exists a system of non-negative integers
{te,n} such that e N=D\t.erA and Ne;(z;t),er)\ for each k. Moreover e Aex

N

= Qe for each k.

Proof. As was shown above, we have that, for each «, Nex =§,Awh(1, K).
Since #),« =0 for 4>« and Awr(A, )= Ae, if 1, %0, we have Ne,‘z;t;,,‘Aex .

Then it can easily be seen that Ne, has only Ae,\(1 <) as its composition residue-
modules. This shows that e.dec= fe¢. In the same way, we have eV
= %} e, 282 A.

Now we consider a general algebra over an algebraically closed field, and
prove

ProrosiTiON 5. Let A be an algebra over an algebraically closed field. Then
A is absolutely segregated if and only if there exists a system of non-negative
integers {te,»} such that NengtheA, that is, N is an A-left My-module.

Proof. By Proposition 2 and the fact that there exists such a system {Z, .}
for A if and only if the same holds for the basic algebra A, of A, it is sufficient
to prove our assertion for an algebra satisfying (B).
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As the “only if” part has been settled above, we prove the “if” part. As
before we assume that s;<...=s,. Then, by the above relation, we have
that sc—1= gt;,.m and t,.=0 if A2 x. Therefore Ne, ;AEtA,KAe)\ . Now let

wi(2, k) be £, « elements corresponding to e, by the above isomorphism. Then it is
not hard to see that e., wn,(k1, k2),wa, (K1, K2)wn, (K2, £3), « . ., wa, (1, 2)ws,(2,3).
wn,(n—1,n) (ki=1,...,n; xi>ri-1) form an 2-basis of A. By this 2-basis
we can decompose M (of Lemma 15) into indecomposable left modules. Here,
by Lemma 16, e, @ wa,(k1, k)wn,(ke, k3) . . .wnlkr, Kri1) —wn k1, £2). . .05 (xr,
lfr+1)®3x,.“= (whl(lﬂ, lifz) [ ZUh,.-l(ICl—r, Ifr))*(exr@whr(lfr, Kr+1) —wlx,‘(ﬂr, Kre1)
Re.) + (e & wp ke, k2) o o wWh (kro1, k7)) — wa (K1, k2) o o . wi_(Kro1, &7)
®e.)*wnkr, kr+1). Therefore, by induction, we have e, Rwn,(r1, k).

Wi, (kry Krit) — w1, k2) o o cwn (kr, Krie1) e, is contained i in UA (e« R wnlx, 1)

—wn(k, 1) ®ey)*A. This shows that M = UA’ (e« R whlk, /1) - wh(:c, NRe)*A.

On the other hand, (A*(e.Dwnlx, 1) -wh(x, D ®e)*A : 9) =s7, and conse-
quently Z-A(’f’-l*(eké)w;,(x, D —wile, ) ®e)*A : 2) ézxtx, lsm=§n(2tx,xs‘)

= ZA]n(sx -1) = }l.lr,m - (}:‘;Ae,cébexfl :2)—m=(M: Q). Therefore the sum
«, €3

UAA*(e,,CX)wh(;r_ D) —wile, D Re)*A is direct and Ax(e.Dwrlk, 2) —wplk, 1)

K, A h

Xe)xA=Ae.xe A. Thus A is absolutely segregated.

TueoreM. Let A be an algebra with unit element over a field F. Then
A is absolutely segregated if and only if

(i) A/N is szparable,

(ii) the A-lzft-module N is directly decomposed into submodules isomorphic
to some left-ideal direct components Ae. of A, i.e. there exists a system of non-
negative integers {t., .} such that

Ne.= }}:_‘;t)\, Aey .

Proof. We prove the “if” part. Assume that A satisfies (i) and (ii).
Then from (ii), Nis an A-left My-module, therefore No(£ is an algebraic closer
of F), the radical of Ao, is also an Ag-left My;-module. Therefore Ag is absolutely
segregated and consequently A is absolutely segregated.

Next we prove the “only if” part. Assume that A is absolutely segregated
and A/N is inseparable. Then (A/N)q contains a nilpotent element belonging
to the centre of (A/N)a. Let ¢ be a representative of that class. Then ¢
belongs to the radical N’ of Ao and there exists a primitive idempotent of A,
say e, such that cegs No. Since the residue class of ¢ mod Ne is in the centre
of (A/N)o, ece=0. Therefore eAgeDeN'ex0. This contradicts eAge = Le.
Thus A/N is separable, and Ng is an Ag-left My-module. Hence N is an A-left
My-module. This completes the proof.
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ON ABSOLUTELY SEGREGATED ALGEBRAS

COROLLARY. Let A be an algebra without unit element, then A is absolutely
segregated if and only if A*= (1, A), the algebra obtained by adjunction of 1
to A, has the properties stated in our Theorem.

Added note. T. Nakayama and H. Nagao have given simpler proofs of our
theorem. These will appear in this journal.
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