Vol. 41 (1971), 135-148

ON ASYMPTOTIG VALUES OF SLOWLY GROWING ALGEBROID FUNGTIONS

JUNJI SUZUKI

1. Let $f(z)$ be a k-valued algebroid function in $|z|<\infty$ and

$$
\begin{equation*}
F(z, f) \equiv A_{0}(z) f^{k}+A_{1}(z) f^{k-1}+\cdots A_{k}(z)=0 \tag{1}
\end{equation*}
$$

be its defining equation such that the coefficients $A_{i}(z)(i=0,1, \cdots, k)$ are entire functions without any common zero and the left hand side is irreducible. We denote by \mathfrak{X} the k-sheeted covering surface over $|z|<\infty$ generated by $f(z)$ and by $\mathfrak{X}(r)$ and $\Gamma(r)$ the part of \mathfrak{X} over $|z| \leq r$ and the curves on \mathfrak{X} over $|z|=r$, respectively. We use the standard notations of the NevanlinnaSelberg theory [4]:

$$
\begin{aligned}
& m(r, a)=\frac{1}{2 k \pi} \int_{\Gamma(r)} \log ^{+}\left|\frac{1}{f\left(r e^{i \theta}\right)-a}\right| d \theta, m(r, f)=\frac{1}{2 k \pi} \int_{\Gamma(r)} \log ^{+}\left|f\left(r e^{i \theta}\right)\right| d \theta \\
& N(r, a)=\frac{1}{k} \int_{0}^{r} \frac{n(t, a)-n(0, a)}{t}+\frac{n(0, a)}{k} \log r, N(r, \infty)=N(r, f) \\
& T(r, f)=m(r, f)+N(r, f), \quad \delta(a, f)=1-\varlimsup_{r \rightarrow \infty} \frac{N(r, a)}{T(r, f)},
\end{aligned}
$$

where $n(r, a)$ is the number of zeros of $f(z)-a$ on $\mathfrak{X}(r)$ and $n(r, \infty)=n(r, f)$.
From now on, we consider the functions with the slow growth:

$$
\begin{equation*}
T(r, f)=O\left[(\log r)^{2}\right] . \tag{2}
\end{equation*}
$$

For such functions both of the number of deficient values and that of asymptotic values are at most k (Valiron [7], [9] and Tumura [5]). Especially, when $k=1$ i.e. the function is single-valued and meromorphic, it can prossess no deficient value without that value being an asymptotic value (Valiron [9] and Anderson-Clunie [1]).

For an algebroid function $f(z)$, a value α is an asymptotic value, if there exists a path $L_{\mathfrak{X}}$ on \mathfrak{X} stretching to the point at infinity such that $f(z)$
tends to α along $L_{\mathfrak{X}}$, in other words, if there exists a path L on the z-plane stretching to the point at infinity such that at least one branch of $f(z)$ can be continued analytically along L and the value taken by the branch tends to α along L.

Our main aim in this note is to give an extension of the above result of Anderson-Clunie to the case of an algebroid function:

Theorem 1. Let $\bar{f}(z)$ be a k-valued algebroid function in $|z|<\infty$ satisfying (2). If $f(z)$ has k deficient values $\alpha_{i}(i=1,2, \cdots, k)$, then each of $\alpha_{i}(=1,2, \cdots, k)$ is an asymptotic value of $f(z)$.

This theorem will be obtained as an immediate corollary of Theorem 2 stated in $\S 5$. In the last section, we shall give a condition for a deficient value to be an asymptotic value without the restriction that $f(z)$ has k deficient values.
2. First we shall give some lemmas. To prove them, we use the following results.
I. (Valiron [6]) If $f(z)$ is a k-valued algebroid function in $|z|<\infty$, then

$$
\begin{equation*}
\left|T(r, f)+\frac{1}{k} \log \right| C_{\lambda}|-\mu(r, A)|<\log 2, \tag{3}
\end{equation*}
$$

where $\mu(r, A)=\frac{1}{2 k \pi} \int^{2 \pi} \log A\left(r e^{i \theta}\right) d \theta$ with $A(z)=\max _{0 \leq i \leq k}\left|A_{i}(z)\right|$ and $C_{\lambda} z^{\lambda}$ is the first non-zero term of the Taylor development of $A_{0}(z)$ at the origin.
II. (Valiron [9]) If $f(z)$ is a k-valued algebroid function in $|z|<\infty$ satisfying (2), and if $a_{i}(i=1,2, \cdots, k+1)$ are $k+1$ distinct complex numbers (may be infinity), then we have

$$
\lim _{r \rightarrow \infty} \frac{N\left(r, a_{1}, a_{2}, \cdots, a_{k+1}\right)}{k T(r, f)}=1
$$

where $N\left(r, a_{1}, a_{2}, \cdots, a_{k+1}\right)=\max _{1 \leq i \leq k+1} N\left(r, \frac{1}{F\left(z, a_{i}\right)}\right)$ for each $r>0$.
III. (Valiron [8]) If $g(z)$ is an entire function of order zero with $g(0)=1^{1)}$, then

$$
\log M(r, g)=N\left(r, \frac{1}{g}\right)+\Theta(r) W\left(r, \frac{1}{g}\right) \quad(0<\Theta(r)<1),
$$

[^0]where $M(r, g)=\max _{|z|=r}|g(z)|$ and $W\left(r, \frac{1}{g}\right)=r \int_{0}^{\infty} n\left(t, \frac{1}{g}\right) \frac{d t}{t^{2}}$.
In particular, if $\log M(r, g)=O\left[(\log r)^{2}\right]$, then
$$
\log M(r, g)<K(\log r)^{2} \quad(K: \text { constant })
$$
\[

$$
\begin{aligned}
& n\left(r, \frac{1}{g}\right) \log r=\int_{r}^{r^{2}} n\left(r, \frac{1}{g}\right) \frac{d t}{t} \leq \int_{r}^{r^{2}} n\left(t, \frac{1}{g}\right) \frac{d t}{t}<K\left(\log r^{2}\right)^{2} \\
& =K^{\prime}(\log r)^{2} \\
& W\left(r, \frac{1}{g}\right)<K^{\prime} r \int_{0}^{\infty} \frac{\log t}{t^{2}} d t=K^{\prime} r \frac{\log r+1}{r}=O(\log r),
\end{aligned}
$$
\]

so that we have

$$
\begin{equation*}
\log M(r, g) \sim N\left(r, \frac{1}{g}\right) \quad(r \rightarrow \infty) \tag{4}
\end{equation*}
$$

IV. (Hayman [3]) If an entire function $g(z)$ satisfies

$$
\log M(r, g)=O\left[(\log r)^{2}\right],
$$

then

$$
\begin{equation*}
\log M(r, g) \sim \log |g(z)|, \tag{5}
\end{equation*}
$$

uniformly in θ as $z=r e^{i \theta} \rightarrow \infty$ outside an \mathscr{E}-set.
Here we call an \mathscr{E}-set any countable set of circles not containing the origin and subtending angles at the origin whose sum s is finite. We note the following two facts about \mathscr{E}-sets.
a) The union of two \mathscr{E}-sets in again an \mathscr{E}-set.
b) Given any \mathscr{E}-set then for almost all fixed θ and any $r>r_{0}(\theta)$, where $r_{0}(\theta)$ depends only on $\theta, z=r e^{i \theta}$ lies outside the \mathscr{E}-set.

We consider a system $\mathbb{S}(z)=\left(S_{0}(z), S_{1}(z), \cdots, S_{k}(z)\right)$ of $k+1$ entire functions $S_{i}(z)(i=0,1, \cdots, k)$ having no common zero and satisfying

$$
\begin{equation*}
\log M\left(r, S_{i}\right)=O\left[(\log r)^{2}\right] \quad(i=0,1, \cdots, k) \tag{6}
\end{equation*}
$$

We define $\mu(r, S)$ by

$$
\mu(r, S)=\frac{1}{2 k \pi} \int_{0}^{2 \pi} \log S\left(r e^{i \theta}\right) d \theta
$$

where $S(z)=\max _{0 \leq i \leq k}\left|S_{i}(z)\right|$ for each z and set

$$
1-\varlimsup_{r \rightarrow \infty} \frac{N\left(r, \frac{1}{S_{i}}\right)}{k \mu(r, S)}=\delta_{i}(\Im) \quad(i=0,1, \cdots, k)
$$

Particularly, when $\lim _{r \rightarrow \infty} \frac{N\left(r, \frac{1}{S_{i}}\right)}{k \mu(r, S)}$ exists, we set

$$
1-\lim _{r \rightarrow \infty} \frac{N\left(r, \frac{1}{S_{i}}\right)}{k \mu\left(r, S_{i}\right)}=\bar{\delta}_{j}(\Im) .
$$

Then we have $0 \leq \delta_{i}(ভ) \leq 1(i=0,1, \cdots, k)$, since by Jensen's formula

$$
\begin{aligned}
& N\left(r, \frac{1}{S_{\imath}}\right)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \log \left|S_{i}\left(r e^{i \theta}\right)\right| d \theta-\log \left|S_{i}(0)\right|^{2)} \\
& \quad \leq \frac{k}{2 k \pi} \int_{0}^{2 \pi} \log S\left(r e^{i \theta}\right) d \theta+O(1)=k \mu(r, S)+O(1)
\end{aligned}
$$

Lemma 1. For a system $\mathbb{S}(z)=\left(S_{0}(z), S_{1}(z), \cdots, S_{k}(z)\right)$, if $\delta_{j}(\mathbb{S})>0$ for some $j(0 \leq j \leq k)$, then

$$
\lim _{r \rightarrow \infty} \frac{-\log \frac{\left|S_{i}(z)\right|^{2}}{\sum_{0}^{k}\left|S_{i}(z)\right|^{2}}}{2 k \mu(r, S)} \geq \delta_{j}(\Xi)>0,
$$

uniformly in θ as $z=r e^{i \theta} \rightarrow \infty$ outside an \mathscr{E}-set.
Proof. From our hypothesis, we have

$$
N\left(r, \frac{1}{S_{i}}\right)<\left(1-\delta_{j}(\varsigma)+o(1)\right) k \mu(r, S) .
$$

Since $\Im_{(z)}$ satisfies (6), we can apply (4) and (5) to $S_{j}(z)$ and have

$$
\begin{equation*}
\log \left|S_{i}(z)\right|<\left(1-\delta_{j}(\mathbb{S})+o(1)\right) k \mu(r, S), \tag{7}
\end{equation*}
$$

uniformly in θ as $z=r e^{i \theta} \rightarrow \infty$ outside an \mathscr{E}-set.
By Cauchy's inequality, we have for all $\nu(\nu=0,1, \cdots, k)$

$$
\begin{aligned}
\log \left(\sum_{i=0}^{k}\left|S_{i}(z)\right|^{2}\right) & \geq \log \left\{\frac{1}{k+1}\left(\sum_{i=0}^{k}\left|S_{i}(z)\right|\right)^{2}\right\}=2 \log \left(\sum_{i=0}^{k}\left|S_{i}(z)\right|\right)+\log \frac{1}{k+1} \\
& \geq 2 \log \left|S_{\nu}(z)\right|+\log \frac{1}{k+1} .
\end{aligned}
$$

[^1]Applying (5) to $S_{\nu}(z)$, we have for all $\nu(\nu=0,1, \cdots, k)$

$$
\log \left(\sum_{i=0}^{k}\left|S_{i}(z)\right|^{2}\right) \geq 2(1+o(1)) \log M\left(r, S_{\nu}\right)+\log \frac{1}{k+1},
$$

and hence

$$
\log \left(\sum_{i=0}^{k}\left|S_{i}(z)\right|^{2}\right) \geq 2(1+o(1)) \max _{0 \leq \nu \leq k} \log M\left(r, S_{\nu}\right)+\log \frac{1}{k+1},
$$

uniformly in θ as $z=r e^{i \theta} \rightarrow \infty$ outside an \mathscr{E}-set.
On the other hand, by definition of $S(z)$,

$$
S(z) \leq \max _{0 \leq \nu \leq k} M\left(r, S_{\nu}\right) \quad(|z|=r)
$$

so that $\mu(r, S)=\frac{1}{2 k \pi} \int_{0}^{2 \pi} \log S\left(r e^{i \theta}\right) d \theta \leq \frac{1}{k} \max _{0 \leq \nu \leq k} \log M\left(r, S_{\nu}\right)$. Thus we have

$$
\begin{equation*}
\log \left(\sum_{i=0}^{k}\left|S_{i}(z)\right|^{2}\right) \geq 2 k(1+o(1)) \mu(r, S) \tag{8}
\end{equation*}
$$

uniformly in θ as $z=r e^{i \theta} \rightarrow \infty$ outside the \mathscr{E}-set.
We combine (7) and (8) and have from the property a) of \mathscr{E}-sets,

$$
\begin{aligned}
\log \frac{\left|S_{j}(z)\right|^{2}}{\sum_{i=0}^{k}\left|S_{i}(z)\right|^{2}} & =2 \log \left|S_{i}(z)\right|-\log \left(\sum_{i=0}^{k}\left|S_{i}(z)\right|^{2}\right) \\
& \leq 2 k\left(-\delta_{j}(\Im)+o(1)\right) \mu(r, S)
\end{aligned}
$$

uniformly in θ as $z=r e^{i \theta} \rightarrow \infty$ outside an \mathscr{E}-set. Thus we obtain the desired result.

By using the property b) of \mathscr{E}-sets and the fact that the function $\mu(r, S)$ of r is unbounded, we have that

$$
\frac{\left|S_{j}(z)\right|^{2}}{\sum_{i=0}^{k}\left|S_{i}(z)\right|^{2}} \rightarrow 0
$$

as $z=r e^{i \theta} \rightarrow \infty$ for almost all fixed $\theta(0 \leq \theta<2 \pi)$.
3. Before giving the next lemma, we shall state some about the distance between two systems, which was introduced by Dufresnoy [2].

We consider only the systems consisting of $k+1$ complex numbers, all of which are not zero simultaneously. Here if two systems

$$
w^{(1)}=\left(w_{0}^{(1)}, w_{1}^{(1)}, \cdots, w_{k}^{(1)}\right) \text { and } w^{(2)}=\left(w_{0}^{(2)}, w_{1}^{(2)}, \cdots, w_{k}^{(2)}\right)
$$

are proportional i.e. $w_{i}^{(1)}=c w_{i}^{(2)}(i=0,1, \cdots, k)$ for some constant $c(c \neq 0)$, we identify $w^{(1)}$ with $w^{(2)}$.

We set

$$
\begin{equation*}
\left[\left[w^{(1)}, w^{(2)}\right]\right]=\left\{\frac{\sum_{i>j}\left|w_{i}^{(1)} w_{j}^{(2)}-w_{j}^{(1)} w_{i}^{(2)}\right|^{2}}{\sum_{i=0}^{k}\left|w_{i}^{(1)}\right|^{2} \sum_{i=0}^{k}\left|w_{i}^{(2)}\right|^{2}}\right\}^{\frac{1}{2}} \tag{9}
\end{equation*}
$$

Then this satisfies three axioms for distances. According to Dufresnoy [2] we call $\left[\left[w^{(1)}, w^{(2)}\right]\right]$ the distance between two systems $w^{(1)}$ and $w^{(2)}$. We can easily see that an inequality

$$
\begin{equation*}
\left[\left[w^{(1)}, w^{(2)}\right]\right]^{2} \leq \frac{\sum_{i=0}^{k}\left|w_{i}^{(1)}-w_{i}^{(2)}\right|^{2}}{\left\{\sum_{i=0}^{k}\left|w_{i}^{(1)}\right|^{2} \sum_{i=0}^{k}\left|w_{i}^{(2)}\right|^{2}\right\}^{1 / 2}} \tag{10}
\end{equation*}
$$

holds. This shows how our distance relates to the distance in ordinary sense between $w^{(1)}$ and $w^{(2)}$.

Now we consider a non-degenerate, linear and homogeneous substitution of the elements of the system $w=\left(w_{0}, w_{1}, \cdots, w_{k}\right)$;

$$
\begin{equation*}
W_{i}=\sum_{j=0}^{k} a_{i j} w_{j} \quad(i=0,1, \cdots, k) \tag{11}
\end{equation*}
$$

Then we have a new system $W=\left(W_{0}, W_{1}, \cdots, W_{k}\right)$. Let

$$
W^{(1)}=\left(W_{0}^{(1)}, W_{1}^{(1)}, \cdots, W_{k}^{(1)}\right) \text { and } W^{(2)}=\left(W_{0}^{(2)}, W_{1}^{(2)}, \cdots, W_{k}^{(2)}\right)
$$

be the systems obtained by the substitution (11) of the elements of systems $w^{(1)}$ and $w^{(2)}$, respectively. Then, using the inequality (10) we have an important property about the distance (9) which is stated as follows;

Lemma 2. (Dufresnoy [2]) Under such a substitution, two systems being close to each other correspond to two systems also being close to each other i.e. there exists a constant $c, 0<c<1$, depending only on $a_{i j}(i, j=0,1, \cdots, k)$ such that

$$
c\left[\left[w^{(1)}, w^{(2)}\right]\right]<\left[\left[W^{(1)}, W^{(2)}\right]\right]<c^{-1}\left[\left[w^{(1)}, w^{(2)}\right]\right] .
$$

Let

$$
\begin{aligned}
& p(z)=a_{0} z^{k}+a_{1} z^{k+1}+\cdots+a_{k}=0 \\
& p^{*}(z)=a_{0}^{*} z^{k}+a_{1}^{*} z^{k-1}+\cdots+a_{k}^{*}=0
\end{aligned}
$$

be two algebraic equations whose coefficients make systems $a=\left(a_{0}, a_{1}, \cdots, a_{k}\right)$ and $a^{*}=\left(a_{0}^{*}, a_{1}^{*}, \cdots, a_{k}^{*}\right)$, respectively. By means of distance (9), the well
known theorem on continuity of roots of algebraic equations is described as follows;

Lemma 3. (Dufresnoy [2]) Let $z_{1}, z_{2}, \cdots, z_{k}$ and $z_{1}^{*}, z_{2}^{*}, \cdots, z_{k}^{*}$ be the roots of the equations $p(z)=0$ and $p^{*}(z)=0$, respectively. If $\left[\left[a, a^{*}\right]\right]$ is sufficiently small, then we can associate each $z_{i}(i=0,1, \cdots, k)$ with some $z_{j}^{*}(1 \leq j \leq k)$, say z_{i} with $z_{a_{i}}^{*}$, such that

$$
\left[z_{i}, z_{i}^{*}\right]<8 e\left[\left[a, a^{*}\right]\right]^{\frac{1}{k}} \quad(i=1,2, \cdots, k),
$$

where [,] denotes the chordal distance.
The next lemma is an immediate consequence of Lemma 3.
Lemma 4. (Dufresnoy [2]) If

$$
\frac{\sum_{i=0}^{p}\left|a_{i}\right|^{2}}{\sum_{j=0}^{k}\left|a_{j}\right|^{2}} \quad(0 \leq p \leq k-1)
$$

is sufficiently small, then an algebraic equation

$$
p(z)=a_{0} z^{k}+a_{1} z^{k-1}+\cdots+a_{k}=0
$$

has at least $p+1$ roots whose chordal distances from the point at infinity are less than

$$
8 e\left\{\frac{\sum_{i=0}^{p}\left|a_{i}\right|^{2}}{\sum_{j=0}^{k}\left|a_{j}\right|^{2}}\right\}^{\frac{1}{2 k}}
$$

For the sake of the later discussion, we shall give a proof following Dufresnoy [2].

Proof. We consider one more equation

$$
p^{*}(z)=a_{0}^{*} z^{k}+a_{1}^{*} z^{k}+\cdots+a_{k}^{*}=0
$$

with $a_{i}^{*}=0(i=0,1, \cdots, p)$ and $a_{j}^{*}=a_{j}(j=p+1, \cdots, k)$. Then we have

$$
\left[\left[a, a^{*}\right]\right]=\left\{\frac{\sum_{i=0}^{p}\left|a_{i}\right|^{2}}{\sum_{j=0}^{k}\left|a_{j}\right|^{2}}\right\}^{\frac{1}{2}}
$$

We may consider that the equation $p^{*}(z)=0$ has k roots, $p+1$ of them lying at the point at infinity. Thus our Lemma is obtained from Lemma 3. Here we note that each of the other $k-p-1$ roots $z_{i}(i=1,2, \cdots$, $k-p-1)$ of $p(z)=0$ is associated with one of the $k-p-1$ roots $z_{i}^{*}(i=1$, $2, \cdots, k-p-1)$ of $p^{*}(z)=0$, say z_{l} with $z_{\alpha_{l}}^{*}$, in such a way that

$$
\left[z_{l}, z_{\alpha_{l}}^{*}\right]<8 e\left\{\frac{\sum_{i=0}^{p}\left|a_{i}\right|^{2}}{\sum_{j=0}^{k}\left|a_{j}\right|^{2}}\right\}^{\frac{1}{2 k}} \quad(l=1,2, \cdots, k-p-1) .
$$

4. Lemma 5. Let $\subseteq(z)=\left(S_{0}(z), S_{1}(z), \cdots, S_{k}(z)\right)$ be a system such that $S_{i}(z)$ $(j=0,1, \cdots, k)$ have no common zero and satisfy (6). If $\boldsymbol{\delta}_{\boldsymbol{k}}(\mathbb{S})=0$ for only one $\lambda(0 \leq \lambda \leq k)$ and $\delta_{\nu}(ভ)>0$ for other all $\nu \neq \lambda(0 \leq \nu \leq k)$, then

$$
\left[\left[\Xi\left(z_{1}\right), \widetilde{S}\left(z_{2}\right)\right]\right] \rightarrow 0
$$

uniformly in θ_{m} as $z_{m}=r_{m} e^{i \theta_{m}} \longrightarrow \infty$ outside an \mathscr{E}-set ($m=1,2$).
Proof. For any pair $(i, j)(i \neq j ; i, j=0,1, \cdots, k)$,

$$
\begin{aligned}
& \frac{\left|S_{i}\left(z_{1}\right) S_{j}\left(z_{2}\right)-S_{j}\left(z_{1}\right) S_{i}\left(z_{2}\right)\right|}{\left\{\sum_{h=0}^{k}\left|S_{h}\left(z_{1}\right)\right|^{2} \sum_{h=0}^{k}\left|S_{h}\left(z_{2}\right)\right|^{2}\right\}^{\frac{1}{2}}} \leq \frac{\left|S_{i}\left(z_{1}\right) S_{j}\left(z_{2}\right)\right|}{\left\{\left.\sum_{h=0}^{k}\left|S_{h}\left(z_{1}\right)\right|^{2} \sum_{h=0}^{k} S_{h}\left(z_{2}\right)\right|^{2}\right\}^{\frac{1}{2}}} \\
+\frac{\left|S_{j}\left(z_{1}\right) S_{i}\left(z_{2}\right)\right|}{\left\{\sum_{h=0}^{k}\left|S_{h}\left(z_{1}\right)\right|^{2} \sum_{h=0}^{k}\left|S_{h}\left(z_{2}\right)\right|^{2}\right\}^{\frac{1}{2}}} & \leq \min _{l=i, j}\left\{\frac{\left|S_{l}\left(z_{1}\right)\right|}{\left(\sum_{h=0}^{k}\left|S_{h}\left(z_{1}\right)\right|^{2}\right)^{\frac{1}{2}}}+\frac{\left|S_{l}\left(z_{2}\right)\right|}{\left(\sum_{h=0}^{k} \left\lvert\, S_{n}\left(\left.z_{2}\right|^{2}\right)^{\frac{1}{2}}\right.\right.}\right\} .
\end{aligned}
$$

By Lemma 1 and our hypotheses, we have for all $\nu(\neq \lambda)$

$$
\frac{\left|S_{v}(z)\right|}{\left(\sum_{h=0}^{k}\left|S_{h}(z)\right|^{2}\right)^{\frac{1}{2}}} \rightarrow 0
$$

uniformly in θ as $z=r e^{i \theta} \rightarrow \infty$ outside an \mathscr{E}-set, and hence

$$
\frac{\left|S_{i}\left(z_{1}\right) S_{j}\left(z_{2}\right)-S_{j}\left(z_{1}\right) S_{i}\left(z_{2}\right)\right|}{\left(\sum_{h=0}^{k}\left|S_{h}\left(z_{1}\right)\right|^{2} \sum_{h=0}^{k}\left|S_{h}\left(z_{2}\right)\right|^{2}\right)^{\frac{1}{2}}} \rightarrow 0 .
$$

uniformly in θ_{m} as $z_{m}=r_{m} e^{i \theta_{m}} \rightarrow \infty$ outside an \mathscr{E}-set ($m=1,2$). Thus our lemma is obtained.

Corollary. Let $f(z)$ be a k-valued algebroid function in $|z|<\infty$ satisfying (2). Suppose that $f(z)$ has k deficient values $\alpha_{i}(i=1,2, \cdots, k)$. Then for the system $\mathfrak{A}(z)=\left(A_{0}(z), A_{1}(z), \cdots, A_{k}(z)\right)$, we have the same assertion as that in the above lemma.

Proof. We take a value α_{0} which is different from $\alpha_{i}(i=1,2, \cdots, k)$ and set

$$
\begin{align*}
F\left(z, \alpha_{i}\right)=A_{0}(z) \alpha_{i}^{k}+A_{1}(z) \alpha_{i}^{k-1}+\cdots+ & A_{k}(z)=B_{i}(z) \tag{12}\\
& (i=0,1,2, \cdots, k) .
\end{align*}
$$

Now we shall prove that for the system $\mathfrak{B}(z)=\left(B_{0}(z), B_{1}(z), \cdots, B_{k}(z)\right)$, all the conditions of Lemma 5 are satisfied. At first, entire functions $B_{i}(z)$ $(i=0,1, \cdots, k)$ have no common zero. In fact, suppose that $B_{i}(z)(i=0,1$, \cdots, k) have a common zero a. We solve the equation (12) with respect to $A_{i}(z)(i=0,1, \cdots, k)$ and have

$$
\begin{align*}
A_{i}(z)=\beta_{i 0} B_{0}(z)+ & \beta_{i 1} B_{1}(z)+\cdots+\beta_{i k} B_{k}(z) \tag{13}\\
& \left(i=0,1, \cdots, k \beta_{i j} ; \text { constants }\right)
\end{align*}
$$

so that a is also a common zero of $A_{i}(z)(i=0,1, \cdots, k)$, which is absurd. Further, we have from (12) and (13),

$$
\begin{equation*}
\mu(r, A)=\mu(r, B)+O(1) \tag{14}
\end{equation*}
$$

so that $B_{i}(z)(i=0,1, \cdots, k)$ satisfy (6) by (2) and (3).
Next, since $N\left(r, \frac{1}{f-\alpha_{i}}\right)=\frac{1}{k} N\left(r, \frac{1}{B_{i}}\right)(i=0,1, \cdots, k)$ and $\alpha_{i}(i=1$, $2, \cdots, k)$ are deficient values of $f(z)$, we have by (3)

$$
\begin{array}{r}
\delta_{j}(\mathfrak{B})=1-\varlimsup_{r \rightarrow \infty} \frac{N\left(r, \frac{1}{B_{j}}\right)}{k T(r, f)}=\delta\left(\alpha_{j}, f\right)>0 \tag{15}\\
(j=1,2, \cdots, k) .
\end{array}
$$

On the other hand, the value α_{0} is normal by II in $\S 2$, i.e.

$$
\begin{equation*}
\bar{\delta}_{0}(\mathfrak{B})=1-\lim _{r \rightarrow \infty} \frac{N\left(r, \frac{1}{B_{0}}\right)}{k T(r, f)}=\delta\left(\alpha_{0}, f\right)=0 . \tag{16}
\end{equation*}
$$

Now Lemma 5 applied to the system $\mathfrak{B}(z)=\left(B_{0}(z), B_{1}(z), \cdots, B_{k}(z)\right)$ shows that

$$
\left[\left[\mathfrak{B}\left(z_{1}\right), \mathfrak{B}\left(z_{2}\right)\right]\right] \rightarrow 0
$$

uniformly in θ_{m} as $z_{m}=r_{m} e^{i \theta_{m}} \longrightarrow \infty$ outside an \mathscr{E}-set $(m=1,2)$.
Since we can take (12) as a non-degenerate, linear and homogeneous substitution of the elements $A_{i}(z)$ of the system $\mathfrak{Q}(z)=\left(A_{0}(z), A_{1}(z), \cdots, A_{k}(z)\right)$, we obtain the desired result by Lemma 2.
5. Theorem 2. Let $f(z)$ be a k-valued algebroed function $|z|<\infty$ of arbitrary order. Suppose that there exists a path L on the plane stretching to the point at infinity such that

$$
\begin{align*}
& \frac{\left|A_{0}(z)\right|}{\left(\sum_{i=0}^{k}\left|A_{i}(z)\right|\right)^{\frac{1}{2}}} \rightarrow 0 \tag{17}\\
& {\left[\left[\mathfrak{Q}\left(z_{1}\right), \mathfrak{X}\left(z_{2}\right)\right]\right] \rightarrow 0} \tag{18}
\end{align*}
$$

as z, z_{1} and z_{2} tend to infinity along L. Then the infinity is an asymptotic value of $f(z)$.

Proof. We denote by $K(\boldsymbol{\delta})$ the spherical disk with center at the point at infinity and with chordal radius $\delta>0$, and denote by $f_{i}(z)(i=1,2, \cdots, k)$ k roots of $F(z, f)=0$ for any z counting with their proper multiplicities. We express the curve L by

$$
L: z=z(t)(0<t<\infty) ; z(t) \rightarrow \infty \text { as } t \rightarrow \infty .
$$

Given a sufficiently small $\varepsilon>0$, we can find from (17) and (18) $t_{0}^{(n)}$ ($n=1,2, \cdots$) depending on ε such that for any $t \geq t_{0}^{(n)}$,

$$
\begin{equation*}
8 e\left\{\frac{\left|A_{0}(z)\right|^{2}}{\sum_{i=0}^{k}\left|A_{i}(z)\right|^{2}}\right\}^{\frac{1}{2 k}}<\frac{\varepsilon}{2(k+1)^{n}}(z=z(t)) \tag{19}
\end{equation*}
$$

and for any pair t_{1} and $t_{2} ; t_{1}, t_{2} \geq t_{0}^{(n)}$,

$$
\begin{equation*}
8 e\left[\left[\mathfrak{A}\left(z_{1}\right), \mathfrak{U}\left(z_{2}\right)\right]\right]^{\frac{1}{k}}<\frac{\varepsilon}{2(k+1)^{n}} \quad\left(z_{i}=z\left(t_{i}\right) ; i=1,2\right) . \tag{20}
\end{equation*}
$$

First we take whole branches $f_{i}(i=1,2, \cdots, k)$ as our candidates and let z go to infinity along L. Then we drop from the list of candidates branches f_{i}, if any, with $f_{i}\left(z\left(t_{0}^{(1)}\right)\right) \notin K(\varepsilon)$. The disk $K\left(\frac{\varepsilon}{2(k+1)}\right)$ contains
at lesat one root of the equation $F\left(z\left(t_{0}^{(1)}\right), f\right)=0$ because of Lemma 4 and (19) and so there remains at least one f_{j} in our list. Next we drop f_{i}, if any, with $f_{i}\left(z\left(t_{0}^{(2)}\right)\right) \notin K\left(\frac{\varepsilon}{k+1}\right)$ from our 2 nd list and still have a list containing at least one f_{j} by the same reason as above. Then we see that, for any f_{j} in the list, the curve $f_{j}(z(t)), t_{0}^{(1)} \leq t \leq t_{0}^{(2)}$, is contained in $K(\varepsilon)$. In fact, if not, the curve $f_{j}(z(t)), t_{0}^{(1)} \leq t \leq t_{0}^{(2)}$, can not be covered by any k disks with radii $\frac{\varepsilon}{2(k+1)}$ and so there exists at least one point $z^{*}=z\left(t^{*}\right)$, $t_{0}^{(1)}<t^{*}<t_{0}^{(2)}$, such that

$$
\left[f_{j}\left(z^{*}\right), f_{i}\left(z\left(t_{0}^{(1)}\right)\right)\right]>\frac{\varepsilon}{2(k+1)} \quad(i=1,2, \cdots, k),
$$

which coutradicts Lemma 3 and (20). We repeat the above procedures and, at the n-th step, we drop f_{i}, if any, with $f_{i}\left(z\left(t_{0}^{(n)}\right)\right) \notin K\left[\frac{\varepsilon}{(k+1)^{n-1}}\right]$ from our n-th list, and have the $(n+1)$-th list containing at least one f_{j}. For any f_{j} in this list, the curve $f_{j}(z(t)), t_{0}^{(n-1)} \leq t \leq t_{0}^{(n)}$, is contained in $K\left[\frac{\varepsilon}{(k+1)^{n-2}}\right]$. Since we have only a finite number of branches f_{i}, there is at least one f_{j}, say f_{1}, which belongs to the n-th list for $n=1,2, \cdots$. Thus f_{1} satisfies

$$
f_{1}(z(t)) \in K\left[\frac{\varepsilon}{(k+1)^{n-2}}\right], \quad t \geq t_{0}^{(n-1)},
$$

so that $f_{1}(z)$ tends to infinity as z goes to infinity along L. The proof is now complete.

Proof of Theorem 1. When $\alpha_{i} \neq \infty$, we consider $\frac{1}{f-\alpha_{i}}$ instead of f. Then $\frac{1}{f-\alpha_{i}}$ is an algebroid function satisfying (2) and has k deficient values, one of which is the infinity, so that we may assume that $\alpha_{i}=\infty$. From Lemma 1 and Corollary of Lemma 5, the coefficients $A_{0}(z), A_{1}(z)$, $\cdots, A_{k}(z)$ of the defining equation of $f(z)$ satisfying the conditions (17) and (18) outside an \mathscr{E}-set, consequently on any half-line $L=r e^{i \theta}(r>0)$ for almost every θ. Applying Theorem 2, we conclude that α_{i} is an asymptotic value of f along L.

Remark. As we saw in the above proof, we can take any half-line L for almost every θ as an asymptotic path of α_{i} and hence an L commonly to all $\alpha_{i} ; i=1,2, \cdots, k$.
6. Lemma 6. (Dufresnoy [2]) Let $p(z)=a_{0} z^{\nu}+a_{1} z^{\nu-1}+\cdots+a_{\nu}=0$ be an algebraic equation with

$$
\frac{\left|a_{0}\right|^{2}}{\sum_{i=0}^{\nu}\left|a_{i}\right|^{2}}=\frac{\nu}{1+M^{2}} \quad(M>0) .
$$

Then $p(z)=0$ has no root of modulus larger than M.
From this, we can see that if

$$
\frac{\left|a_{0}\right|^{2}}{\sum_{i=0}^{\nu}\left|a_{i}\right|^{2}}=\nu d^{2} \quad(d>0),
$$

every root of $p(z)=0$ lies outside a spherical disk $K(d)$ with center at the point at infinity and with chordal radius d. Using this lemma, we can prove

Theorem 3^{33}. Let $f(z)$ be a k-valued algebroid function in $|z|<\infty$ which is defined by (1) and satisfies (2). Suppose that, for some $n(0<n \leq k)$, the system $\mathfrak{A}(z)=\left(A_{0}(z), A_{1}(z), \cdots, A_{k}(z)\right)$ satisfies

$$
\delta_{j}(\mathfrak{A})>0(j=0,1, \cdots, n-1), \quad \bar{\delta}_{n}(\mathfrak{A})=0 .
$$

Then the infinity is an asymptotic value of $f(z)$.
Prooof. From our hypothesis $\bar{\delta}_{n}(\mathfrak{X})=0$ and (3), we have $\lim _{r \rightarrow \infty} \frac{N\left(r, \frac{1}{A_{n}}\right)}{k T(r, f)}=1$. Hencd we have by (4) and (5)

$$
\log \left|A_{n}(z)\right|^{2}=(1+o(1)) 2 k T(r, f),
$$

uniformly in θ as $z=r e^{i \theta} \rightarrow \infty$ outside an \mathscr{E}-set. Further, we have

$$
\begin{aligned}
& \log \left(\sum_{i=n}^{k}\left|A_{i}(z)\right|^{2}\right) \leq \log \left(\sum_{i=0}^{k}\left|A_{i}(z)\right|^{2}\right) \leq 2 \log A(z)+\log (k+1) \\
& \leq 2 \max _{0 \leq \nu \leq k} \log M\left(r, A_{\nu}\right)+\log (k+1)=2(1+o(1)) \max _{0 \leq \nu \leq k} N\left(r, \frac{1}{A_{\nu}}\right) \\
& \leq(1+o(1)) 2 k T(r, f) .
\end{aligned}
$$

Thus

[^2]$$
\log \frac{\left|A_{n}(z)\right|^{2}}{\sum_{i=n}^{k}\left|A_{i}(z)\right|^{2}}=o[T(r, f)]
$$
and hence for any small $\varepsilon>0$,
$$
e^{-\varepsilon T(r, f)}<\left(\frac{1}{k-n} \frac{\left|A_{n}(z)\right|^{2}}{\sum_{i=n}^{k}\left|A_{i}(z)\right|^{2}}\right)^{\frac{1}{2}}<e^{\varepsilon T(r, f)}
$$
uniformly in θ as $z=r e^{i \theta} \rightarrow \infty$ outside the \mathscr{E}-set. Since $\delta_{j}(\mathfrak{A})>0(j=0,1$, $\cdots, n-1$), we see from Lemma 1 ,
$$
\log \frac{\left|A_{j}(z)\right|^{2}}{\sum_{i=0}^{k}\left|A_{i}(z)\right|^{2}}<\left(-\delta_{j}(\mathfrak{U})+o(1)\right) 2 k T(r, f) \quad(j=0,1, \cdots, n-1)
$$
and hence
\[

$$
\begin{equation*}
8 e\left\{\frac{\sum_{j=0}^{n-1}\left|A_{j}(z)\right|^{2}}{\sum_{i=0}^{k}\left|A_{i}(z)\right|^{2}}\right\}^{\frac{1}{2 k}}<e^{(-\dot{\delta}+\varepsilon) T(r, f)} \tag{22}
\end{equation*}
$$

\]

uniformly in θ as $z=r e^{i \theta} \rightarrow \infty$ outside an \mathscr{E}-set, where $\delta=\min _{0 \leq j \leq n-1} \delta_{j}(\mathfrak{H})>0$.
We take $\varepsilon<\delta / 3$ and a path $L: z=z(r)=r e^{i \theta}\left(r_{0}<r<\infty\right)$ such that (21) and (22) hold on L^{4}, and set

$$
\begin{aligned}
& d_{1}(r)=e^{(-\hat{\delta}+\varepsilon) T(r, f)} \\
& d_{2}(r)=e^{-\varepsilon T(r, f)}
\end{aligned}
$$

We onsider on L the following equation

$$
A_{n}(z) f^{* k-n}+A_{n+1}(z) f^{* k-n-1}+\cdots+A_{k}(z)=0
$$

Recall (21). Then we see from Lemma 6 that the roots $f_{i}^{*}(z)(i=1,2, \cdots$, $k-n$) lie outside $K\left(d_{2}(r)\right)$. The equation $F(z, f)=0$ has $k-n$ roots, say $f_{i}(z)(i=1,2, \cdots, k-n)$, such that

$$
\left[f_{i}^{*}(z), f_{i}(z)\right]<d_{1}(r),
$$

because of the comment given just after Lemma 4 and (22). Thus the values $f_{i}(z)(i=1,2, \cdots, k-n)$ lie outside $K\left(d_{2}(r)-d_{1}(r)\right)$. On the other

[^3]hand, we see from Lemma 4 that the remainder $f_{j}(z)(j=k-n+1, \cdots, k)$ satisfies
$$
\left[f_{j}(z), \infty\right]<d_{1}(r)
$$

Since $d_{1}(r) / d_{2}(r)=e^{(-\dot{\sigma}+2 \epsilon) T(r, f)} \rightarrow 0$ as $r \rightarrow \infty$, we see that $K\left(d_{1}(r)\right)$ is disjoint with the complement of $K\left(d_{2}(r)-d_{1}(r)\right)$ for every sufficiently large $r \geq r_{1}$, whence we can conclude that the brancehs $f_{j}(z)(j=k-n+1, \cdots, k)$ with $f_{j}\left(z\left(r_{1}\right)\right) \in K\left(d_{1}\left(r_{1}\right)\right)$ draw a curve $f_{j}(z(t)), t \geq r \geq r_{1}$, in $K\left(d_{1}(r)\right)$. In fact, if the curve $f_{j}(z(t)), t \geq r\left(\geq r_{1}\right)$, invades the zone; $\left\{w ; d_{2}(r)-d_{1}(r)<[w, \infty]<d_{1}(r)\right\}$, we have at least one point $z^{*}=z\left(t^{*}\right), t^{*}>r$, on the curve such that

$$
\begin{aligned}
& f_{j}\left(z^{*}\right) \notin K\left(d_{1}\left(t^{*}\right)\right), \\
& f_{j}\left(z^{*}\right) \notin \text { complement of } K\left(d_{2}\left(t^{*}\right)-d_{1}\left(t^{*}\right)\right),
\end{aligned}
$$

which contradicts the fact that any root of the equation $F\left(z^{*}, f\right)=0$ must be contained in $K\left(d_{1}\left(t^{*}\right)\right)$ or the complement of $K\left(d_{2}\left(t^{*}\right)-d_{1}\left(t^{*}\right)\right)$. Since $d_{1}(r) \rightarrow 0(r \rightarrow \infty)$, we see that the branches $f_{j}(z)$ tend to infinity as $z \rightarrow \infty$ along L. Thus our theorem has been established.

References

[1] J.M. Anderson-J. Clunie: Slowly growing meromorphic functions. Comment. Math. Helv., 40, pp. 267-280 (1966).
[2] J. Dufresnoy: Théorie nouvelle des familles complexes normales. Ann. Éc. Norm. sup., pp. 1-44 (1944).
[3] W.K. Hayman: Slowly growing integral and subharmonic functions. Comment. Math. Helv., 34, pp. 75-84 (1960).
[4] H.L. Selberg: Algebroide Funktionen und Umkeherfunktionen der Abelscher Integrale. Avh. Norske Vid. Akad., Oslo, 8, pp. 1-74 (1934).
[5] Y. Tumura: Sur les théorème de M. Valiron et les singularités transcendantes indirectement critiques. Proc. Imp. Acad. Japan, 17, pp. 65-69 (1941).
[6] G. Valiron: Sur la dérivée des fonctions algébroìdes. Bull. Soc. Math. France, 59, pp. 17-39 (1931).
[7] : Sur le nombre des singularités transcendantes des fonctions inverses d'une classe d'algébroïdes. C.R. Acad. Sci. Paris, 200, pp. 713-715 (1935).
[8] -: Lectures on the general theory of integral functions. Chelsa, (1949).
[9] - : Sur les valeurs déficientes des fonctions algébroìdes méromorphes d'ordre nul. J.d'analyse Math. 1, pp. 28-42 (1951).

Mathematical Institute
Nagoya University

[^0]: 1) This condition is not essential to obtain (4).
[^1]: 2) We assume that $S_{i}(0) \neq 0, \infty$.
[^2]: 3) As for notations used in this theorem, see $\S 2$.
[^3]: 4) We can find such a path L because (21) and (22) hold as $z \rightarrow \infty$ outside an \mathscr{E}-set.
