ON ASYMPTOTIC VALUES OF SLOWLY GROWING ALGEBROID FUNCTIONS

JUNJI SUZUKI

1. Let f(z) be a k-valued algebroid function in $|z| < \infty$ and

(1)
$$F(z, f) \equiv A_0(z)f^k + A_1(z)f^{k-1} + \cdots + A_k(z) = 0$$

be its defining equation such that the coefficients $A_i(z)$ $(i=0,1,\dots,k)$ are entire functions without any common zero and the left hand side is irreducible. We denote by \mathfrak{X} the k-sheeted covering surface over $|z| < \infty$ generated by f(z) and by $\mathfrak{X}(r)$ and $\Gamma(r)$ the part of \mathfrak{X} over $|z| \le r$ and the curves on \mathfrak{X} over |z| = r, respectively. We use the standard notations of the Nevanlinna-Selberg theory [4]:

$$\begin{split} & m(r,a) = \frac{1}{2k\pi} \int_{\varGamma(r)} \log^+ \left| \frac{1}{f(re^{i\theta}) - a} \right| d\theta, \ m(r,f) = \frac{1}{2k\pi} \int_{\varGamma(r)} \log^+ |f(re^{i\theta})| \, d\theta \\ & N(r,a) = \frac{1}{k} \int_0^r \frac{n(t,a) - n(0,a)}{t} + \frac{n(0,a)}{k} \log r, \ N(r,\infty) = N(r,f) \\ & T(r,f) = m(r,f) + N(r,f), \quad \delta(a,f) = 1 - \overline{\lim_{r \to \infty}} \frac{N(r,a)}{T(r,f)} \,, \end{split}$$

where n(r,a) is the number of zeros of f(z) - a on $\mathfrak{X}(r)$ and $n(r,\infty) = n(r,f)$. From now on, we consider the functions with the slow growth:

$$(2) T(r,f) = O[(\log r)^2].$$

For such functions both of the number of deficient values and that of asymptotic values are at most k (Valiron [7], [9] and Tumura [5]). Especially, when k=1 i.e. the function is single-valued and meromorphic, it can prossess no deficient value without that value being an asymptotic value (Valiron [9] and Anderson-Clunie [1]).

For an algebroid function f(z), a value α is an asymptotic value, if there exists a path $L_{\mathfrak{X}}$ on \mathfrak{X} stretching to the point at infinity such that f(z)

Received November 27, 1969.

136 Junji suzuki

tends to α along $L_{\mathfrak{X}}$, in other words, if there exists a path L on the z-plane stretching to the point at infinity such that at least one branch of f(z) can be continued analytically along L and the value taken by the branch tends to α along L.

Our main aim in this note is to give an extension of the above result of Anderson-Clunie to the case of an algebroid function:

THEOREM 1. Let f(z) be a k-valued algebroid function in $|z| < \infty$ satisfying (2). If f(z) has k deficient values α_i ($i=1,2,\cdots,k$), then each of α_i ($i=1,2,\cdots,k$) is an asymptotic value of f(z).

This theorem will be obtained as an immediate corollary of Theorem 2 stated in §5. In the last section, we shall give a condition for a deficient value to be an asymptotic value without the restriction that f(z) has k deficient values.

- 2. First we shall give some lemmas. To prove them, we use the following results.
 - I. (Valiron [6]) If f(z) is a k-valued algebroid function in $|z| < \infty$, then

(3)
$$|T(r,f) + \frac{1}{k} \log |C_{\lambda}| - \mu(r,A)| < \log 2,$$

where $\mu(r,A) = \frac{1}{2k\pi} \int_{-\infty}^{2\pi} \log A(re^{i\theta}) d\theta$ with $A(z) = \max_{0 \le i \le k} |A_i(z)|$ and $C_{\lambda}z^{\lambda}$ is the first non-zero term of the Taylor development of $A_0(z)$ at the origin.

II. (Valiron [9]) If f(z) is a k-valued algebroid function in $|z| < \infty$ satisfying (2), and if a_i ($i = 1, 2, \dots, k + 1$) are k + 1 distinct complex numbers (may be infinity), then we have

$$\lim_{r\to\infty}\frac{N(r,a_1,a_2,\cdot\cdot\cdot,a_{k+1})}{kT(r,f)}=1$$

where $N(r, a_1, a_2, \dots, a_{k+1}) = \max_{1 \le i \le k+1} N\left(r, \frac{1}{F(z, a_i)}\right)$ for each r > 0.

III. (Valiron [8]) If g(z) is an entire function of order zero with $g(0) = 1^{1}$, then

$$\log M(r,g) = N\left(r,\frac{1}{q}\right) + \Theta(r)W\left(r,\frac{1}{q}\right) \quad (0 < \Theta(r) < 1),$$

¹⁾ This condition is not essential to obtain (4).

where
$$M(r,g) = \max_{|z|=r} |g(z)|$$
 and $W\left(r,\frac{1}{g}\right) = r\int_0^\infty n\left(t,\frac{1}{g}\right) \frac{dt}{t^2}$.

In particular, if $\log M(r, g) = O[(\log r)^2]$, then

$$\log M(r, g) < K(\log r)^2$$
 (K: constant)

$$\begin{split} & n\!\left(r,\frac{1}{g}\right)\log r = \int_{r}^{r^2} n\!\left(r,\frac{1}{g}\right) - \frac{dt}{t} \leq \int_{r}^{r^2} n\!\left(t,\frac{1}{g}\right) - \frac{dt}{t} < K(\log r^2)^2 \\ & = K'(\log r)^2 \end{split}$$

$$W\left(r, \frac{1}{q}\right) < K'r \int_0^\infty \frac{\log t}{t^2} dt = K'r \frac{\log r + 1}{r} = O(\log r),$$

so that we have

(4)
$$\log M(r,g) \sim N\left(r,\frac{1}{g}\right)$$
 $(r \to \infty).$

IV. (Hayman [3]) If an entire function g(z) satisfies

$$\log M(r, g) = O[(\log r)^2],$$

then

(5)
$$\log M(r,g) \sim \log |g(z)|,$$

uniformly in θ as $z = re^{i\theta} \to \infty$ outside an \mathscr{C} -set.

Here we call an \mathscr{C} -set any countable set of circles not containing the origin and subtending angles at the origin whose sum s is finite. We note the following two facts about \mathscr{C} -sets.

- a) The union of two &-sets in again an &-set.
- b) Given any $\mathscr E$ -set then for almost all fixed θ and any $r > r_0(\theta)$, where $r_0(\theta)$ depends only on θ , $z = re^{i\theta}$ lies outside the $\mathscr E$ -set.

We consider a system $\mathfrak{S}(z) = (S_0(z), S_1(z), \dots, S_k(z))$ of k+1 entire functions $S_i(z)$ $(i=0,1,\dots,k)$ having no common zero and satisfying

(6)
$$\log M(r, S_i) = O[(\log r)^2]$$
 $(i = 0, 1, \dots, k).$

We define $\mu(r,S)$ by

$$\mu(r,S) = \frac{1}{2k\pi} \int_0^{2\pi} \log S(re^{i\theta}) d\theta,$$

where $S(z) = \max_{0 \le i \le k} |S_i(z)|$ for each z and set

$$1 - \overline{\lim}_{r \to \infty} \frac{N\left(r, \frac{1}{S_i}\right)}{k\mu(r, S)} = \delta_i(\mathfrak{S}) \qquad (i = 0, 1, \dots, k).$$

Particularly, when $\lim_{r\to\infty} \frac{N(r,\frac{1}{S_i})}{k\mu(r,S)}$ exists, we set

$$1 - \lim_{r \to \infty} \frac{N(r, \frac{1}{S_i})}{k\mu(r, S_i)} = \bar{\delta}_f(\mathfrak{S}).$$

Then we have $0 \le \delta_i(\mathfrak{S}) \le 1$ $(i = 0, 1, \dots, k)$, since by Jensen's formula

$$\begin{split} N\Big(r,\frac{1}{|S_i|}\Big) &= \frac{1}{2\pi} \int_0^{2\pi} \log |S_i(re^{i\theta})| \, d\theta - \log |S_i(0)|^2) \\ &\leq \frac{k}{2k\pi} \int_0^{2\pi} \log S(re^{i\theta}) d\theta + O(1) = k\mu(r,S) + O(1). \end{split}$$

Lemma 1. For a system $\mathfrak{S}(z)=(S_0(z),S_1(z),\cdots,S_k(z)),$ if $\delta_j(\mathfrak{S})>0$ for some $j(0\leq j\leq k),$ then

$$\frac{-\log\frac{|S_i(z)|^2}{\sum\limits_0^{}|S_i(z)|^2}}{\sum\limits_{0}^{}|S_i(z)|^2} \geq \delta_j(\mathfrak{S}) > 0,$$

uniformly in θ as $z = re^{i\theta} \to \infty$ outside an \mathscr{E} -set.

Proof. From our hypothesis, we have

$$N\left(r,\frac{1}{S_{\epsilon}}\right) < (1-\delta_{j}(\mathfrak{S})+o(1))k\mu(r,S).$$

Since $\mathfrak{S}(z)$ satisfies (6), we can apply (4) and (5) to $S_i(z)$ and have

(7)
$$\log |S_i(z)| < (1 - \delta_i(\mathfrak{S}) + o(1))k\mu(r, S),$$

uniformly in θ as $z = re^{i\theta} \to \infty$ outside an \mathscr{C} -set.

By Cauchy's inequality, we have for all ν ($\nu = 0, 1, \dots, k$)

$$\begin{split} \log \, (\sum_{i=0}^k |S_i(z)|^2) & \ge \log \left\{ \frac{1}{k+1} \, (\sum_{i=0}^k |S_i(z)|)^2 \right\} = 2 \log \, (\sum_{i=0}^k |S_i(z)|) + \log \frac{1}{k+1} \\ & \ge 2 \log |S_\nu(z)| + \log \frac{1}{k+1} \, . \end{split}$$

²⁾ We assume that $S_i(0) \neq 0, \infty$.

Applying (5) to $S_{\nu}(z)$, we have for all $\nu(\nu = 0, 1, \dots, k)$

$$\log \left(\sum_{i=0}^{k} |S_i(z)|^2\right) \ge 2(1+o(1))\log M(r,S_{\nu}) + \log \frac{1}{k+1}$$
 ,

and hence

$$\log (\sum_{i=0}^k |S_i(z)|^2) \ge 2(1+o(1)) \max_{0 \le \nu \le k} \log M(r, S_{\nu}) + \log \frac{1}{k+1}$$
 ,

uniformly in θ as $z = re^{i\theta} \to \infty$ outside an \mathscr{C} -set.

On the other hand, by definition of S(z),

$$S(z) \leq \max_{0 < \nu < k} M(r, S_{\nu}) \qquad (|z| = r)$$

so that $\mu(r,S) = \frac{1}{-2k\pi} \int_0^{2\pi} \log S(re^{i\theta}) \ d\theta \leq \frac{1}{k} \max_{0 \leq \nu \leq k} \log M(r,S_{\nu})$. Thus we have

(8)
$$\log \left(\sum_{i=0}^{k} |S_i(z)|^2 \right) \ge 2k(1 + o(1))\mu(r, S),$$

uniformly in θ as $z = re^{i\theta} \to \infty$ outside the \mathscr{C} -set.

We combine (7) and (8) and have from the property a) of &-sets,

$$\log \frac{|S_j(z)|^2}{\sum\limits_{i=0}^{k} |S_i(z)|^2} = 2\log |S_i(z)| - \log (\sum\limits_{i=0}^{k} |S_i(z)|^2)$$

$$\leq 2k(-\delta_i(\mathfrak{S}) + o(1))\mu(r,S)$$

uniformly in θ as $z = re^{i\theta} \to \infty$ outside an \mathscr{C} -set. Thus we obtain the desired result.

By using the property b) of \mathscr{E} -sets and the fact that the function $\mu(r,S)$ of r is unbounded, we have that

$$\frac{|S_j(z)|^2}{\sum\limits_{i=0}^k |S_i(z)|^2} \to 0$$

as $z = re^{i\theta} \to \infty$ for almost all fixed θ ($0 \le \theta < 2\pi$).

3. Before giving the next lemma, we shall state some about the distance between two systems, which was introduced by Dufresnoy [2].

We consider only the systems consisting of k+1 complex numbers, all of which are not zero simultaneously. Here if two systems

$$w^{(1)} = (w_0^{(1)}, w_1^{(1)}, \cdots, w_k^{(1)})$$
 and $w^{(2)} = (w_0^{(2)}, w_1^{(2)}, \cdots, w_k^{(2)})$

140 junji suzuki

are proportional i.e. $w_i^{(1)} = cw_i^{(2)}$ $(i = 0, 1, \dots, k)$ for some constant $c(c \neq 0)$, we identify $w^{(1)}$ with $w^{(2)}$.

We set

(9)
$$[[w^{(1)}, w^{(2)}]] = \left\{ \begin{array}{c} \sum\limits_{i>j} |w_i^{(1)} w_j^{(2)} - w_j^{(1)} w_i^{(2)}|^2 \\ \sum\limits_{i=0}^k |w_i^{(1)}|^2 \sum\limits_{i=0}^k |w_i^{(2)}|^2 \end{array} \right\}^{\frac{1}{2}}$$

Then this satisfies three axioms for distances. According to Dufresnoy [2] we call $[[w^{(1)}, w^{(2)}]]$ the distance between two systems $w^{(1)}$ and $w^{(2)}$. We can easily see that an inequality

(10)
$$[[w^{(1)}, w^{(2)}]]^2 \le \frac{\sum_{i=0}^k |w_i^{(1)} - w_i^{(2)}|^2}{\{\sum_{i=0}^k |w_i^{(1)}|^2 \sum_{i=0}^k |w_i^{(2)}|^2\}^{1/2}}$$

holds. This shows how our distance relates to the distance in ordinary sense between $w^{(1)}$ and $w^{(2)}$.

Now we consider a non-degenerate, linear and homogeneous substitution of the elements of the system $w = (w_0, w_1, \dots, w_k)$;

(11)
$$W_i = \sum_{j=0}^k a_{ij} w_j \qquad (i = 0, 1, \dots, k).$$

Then we have a new system $W = (W_0, W_1, \dots, W_k)$. Let

$$W^{(1)} = (W_0^{(1)}, W_1^{(1)}, \cdots, W_k^{(1)})$$
 and $W^{(2)} = (W_0^{(2)}, W_1^{(2)}, \cdots, W_k^{(2)})$

be the systems obtained by the substitution (11) of the elements of systems $w^{(1)}$ and $w^{(2)}$, respectively. Then, using the inequality (10) we have an important property about the distance (9) which is stated as follows;

Lemma 2. (Dufresnoy [2]) Under such a substitution, two systems being close to each other correspond to two systems also being close to each other i.e. there exists a constant c, 0 < c < 1, depending only on a_{ij} $(i, j = 0, 1, \dots, k)$ such that

$$c[[w^{(1)},w^{(2)}]] < [[W^{(1)},W^{(2)}]] < c^{-1}[[w^{(1)},w^{(2)}]].$$
 Let
$$p(z) = a_0 z^k + a_1 z^{k+1} + \cdots + a_k = 0$$

$$p^*(z) = a_0^* z^k + a_1^* z^{k-1} + \cdots + a_k^* = 0$$

be two algebraic equations whose coefficients make systems $a = (a_0, a_1, \dots, a_k)$ and $a^* = (a_0^*, a_1^*, \dots, a_k^*)$, respectively. By means of distance (9), the well

known theorem on continuity of roots of algebraic equations is described as follows;

LEMMA 3. (Dufresnoy [2]) Let z_1, z_2, \dots, z_k and $z_1^*, z_2^*, \dots, z_k^*$ be the roots of the equations p(z) = 0 and $p^*(z) = 0$, respectively. If $[[a, a^*]]$ is sufficiently small, then we can associate each $z_i (i = 0, 1, \dots, k)$ with some z_j^* $(1 \le j \le k)$, say z_i with z_a^* , such that

$$[z_i, z_{a_i}^*] < 8e[[a, a^*]]^{\frac{1}{k}}$$
 $(i = 1, 2, \dots, k),$

where [,] denotes the chordal distance.

The next lemma is an immediate consequence of Lemma 3.

LEMMA 4. (Dufresnoy [2]) If

$$\frac{\sum\limits_{i=0}^{p}|a_{i}|^{2}}{\sum\limits_{j=0}^{k}|a_{j}|^{2}} \qquad (0 \leq p \leq k-1)$$

is sufficiently small, then an algebraic equation

$$p(z) = a_0 z^k + a_1 z^{k-1} + \cdots + a_k = 0$$

has at least p+1 roots whose chordal distances from the point at infinity are less than

$$8e \left\{ \frac{\sum_{i=0}^{p} |a_i|^2}{\sum_{j=0}^{k} |a_j|^2} \right\}^{\frac{1}{2k}}$$

For the sake of the later discussion, we shall give a proof following Dufresnoy [2].

Proof. We consider one more equation

$$p^*(z) = a_0^* z^k + a_1^* z^k + \cdots + a_k^* = 0$$

with $a_i^* = 0$ $(i = 0, 1, \dots, p)$ and $a_j^* = a_j (j = p + 1, \dots, k)$. Then we have

$$[[a,a^*]] = \left\{ egin{array}{c} \sum_{i=0}^p |a_i|^2 \ \sum_{i=0}^k |a_j|^2 \end{array}
ight\}^{rac{1}{2}}$$

142 Junji suzuki

We may consider that the equation $p^*(z) = 0$ has k roots, p+1 of them lying at the point at infinity. Thus our Lemma is obtained from Lemma 3. Here we note that each of the other k-p-1 roots $z_i(i=1,2,\cdots,k-p-1)$ of p(z)=0 is associated with one of the k-p-1 roots $z_i^*(i=1,2,\cdots,k-p-1)$ of $p^*(z)=0$, say z_i with $z_{a_i}^*$, in such a way that

$$[z_{l}, z_{a_{l}}^{*}] < 8e \left\{ \begin{array}{c} \sum\limits_{i=0}^{p} |a_{i}|^{2} \\ \sum\limits_{i=0}^{k} |a_{j}|^{2} \end{array} \right\}^{\frac{1}{2k}} \qquad (l = 1, 2, \cdots, k-p-1).$$

4. Lemma 5. Let $\mathfrak{S}(z) = (S_0(z), S_1(z), \dots, S_k(z))$ be a system such that $S_i(z)$ $(j = 0, 1, \dots, k)$ have no common zero and satisfy (6). If $\delta_i(\mathfrak{S}) = 0$ for only one $\lambda(0 \le \lambda \le k)$ and $\delta_{\nu}(\mathfrak{S}) > 0$ for other all $\nu \ne \lambda$ $(0 \le \nu \le k)$, then

$$[[\mathfrak{S}(z_1), \mathfrak{S}(z_2)]] \to 0$$

uniformly in θ_m as $z_m = r_m e^{i\theta_m} \longrightarrow \infty$ outside an \mathscr{C} -set (m = 1, 2).

Proof. For any pair (i, j) $(i \neq j; i, j = 0, 1, \dots, k)$,

$$\begin{split} &\frac{|S_{i}(z_{1})S_{j}(z_{2})-S_{j}(z_{1})S_{i}(z_{2})|}{\left\{\sum\limits_{h=0}^{k}|S_{h}(z_{1})|^{2}\sum\limits_{h=0}^{k}|S_{h}(z_{2})|^{2}\right\}^{\frac{1}{2}}} \leq \frac{|S_{i}(z_{1})S_{j}(z_{2})|}{\left\{\sum\limits_{h=0}^{k}|S_{h}(z_{1})|^{2}\sum\limits_{h=0}^{k}S_{h}(z_{2})|^{2}\right\}^{\frac{1}{2}}} \\ &+ \frac{|S_{j}(z_{1})S_{i}(z_{2})|}{\left\{\sum\limits_{h=0}^{k}|S_{h}(z_{2})|^{2}\right\}^{\frac{1}{2}}} \leq \min_{l=i,j} \frac{|S_{l}(z_{1})|}{\left(\sum\limits_{h=0}^{k}|S_{h}(z_{1})|^{2}\right)^{\frac{1}{2}}} + \frac{|S_{l}(z_{2})|}{\left(\sum\limits_{h=0}^{k}|S_{h}(z_{2})|^{2}\right)^{\frac{1}{2}}} \right\}. \end{split}$$

By Lemma 1 and our hypotheses, we have for all $\nu(\neq \lambda)$

$$\frac{\left|S_{\nu}(z)\right|}{\left(\sum_{h=0}^{k}\left|S_{h}(z)\right|^{2}\right)^{\frac{1}{2}}} \to 0$$

uniformly in θ as $z = re^{i\theta} \to \infty$ outside an \mathscr{C} -set, and hence

$$\frac{|S_{i}(z_{1})S_{j}(z_{2}) - S_{j}(z_{1})S_{i}(z_{2})|}{\left(\sum_{h=0}^{k}|S_{h}(z_{1})|^{2}\sum_{h=0}^{k}|S_{h}(z_{2})|^{2}\right)^{\frac{1}{2}}} \to 0.$$

uniformly in θ_m as $z_m = r_m e^{i\theta_m} \to \infty$ outside an \mathscr{E} -set (m = 1, 2). Thus our lemma is obtained.

COROLLARY. Let f(z) be a k-valued algebroid function in $|z| < \infty$ satisfying (2). Suppose that f(z) has k deficient values α_i $(i = 1, 2, \dots, k)$. Then for the system $\mathfrak{A}(z) = (A_0(z), A_1(z), \dots, A_k(z))$, we have the same assertion as that in the above lemma.

Proof. We take a value α_0 which is different from α_i $(i = 1, 2, \dots, k)$ and set

(12)
$$F(z, \alpha_i) = A_0(z)\alpha_i^k + A_1(z)\alpha_i^{k-1} + \cdots + A_k(z) = B_i(z)$$
$$(i = 0, 1, 2, \cdots, k).$$

Now we shall prove that for the system $\mathfrak{B}(z) = (B_0(z), B_1(z), \dots, B_k(z))$, all the conditions of Lemma 5 are satisfied. At first, entire functions $B_i(z)$ $(i=0,1,\dots,k)$ have no common zero. In fact, suppose that $B_i(z)$ $(i=0,1,\dots,k)$ have a common zero a. We solve the equation (12) with respect to $A_i(z)$ $(i=0,1,\dots,k)$ and have

(13)
$$A_{i}(z) = \beta_{i0}B_{0}(z) + \beta_{i1}B_{1}(z) + \cdots + \beta_{ik}B_{k}(z)$$
$$(i = 0, 1, \cdots, k \beta_{ij}; \text{ constants})$$

so that a is also a common zero of $A_i(z)$ ($i = 0, 1, \dots, k$), which is absurd. Further, we have from (12) and (13),

(14)
$$\mu(r, A) = \mu(r, B) + O(1)$$

so that $B_i(z)$ $(i = 0, 1, \dots, k)$ satisfy (6) by (2) and (3).

Next, since $N\left(r, \frac{1}{f - \alpha_i}\right) = \frac{1}{k} N\left(r, \frac{1}{B_i}\right)$ $(i = 0, 1, \dots, k)$ and $\alpha_i (i = 1, 2, \dots, k)$ are deficient values of f(z), we have by (3)

(15)
$$\delta_{j}(\mathfrak{B}) = 1 - \overline{\lim}_{r \to \infty} \frac{N\left(r, \frac{1}{B_{j}}\right)}{kT(r, f)} = \delta(\alpha_{j}, f) > 0$$

$$(j = 1, 2, \cdots, k).$$

On the other hand, the value α_0 is normal by II in §2, i.e.

(16)
$$\bar{\delta}_0(\mathfrak{B}) = 1 - \lim_{r \to \infty} \frac{N(r, \frac{1}{B_0})}{kT(r, f)} = \delta(\alpha_0, f) = 0.$$

Now Lemma 5 applied to the system $\mathfrak{B}(z) = (B_0(z), B_1(z), \cdots, B_k(z))$ shows that

[[
$$\mathfrak{B}(z_1), \ \mathfrak{B}(z_2)$$
]] $\to 0$

uniformly in θ_m as $z_m = r_m e^{i\theta_m} \longrightarrow \infty$ outside an \mathscr{C} -set (m = 1, 2).

Since we can take (12) as a non-degenerate, linear and homogeneous substitution of the elements $A_i(z)$ of the system $\mathfrak{A}(z) = (A_0(z), A_1(z), \cdots, A_k(z))$, we obtain the desired result by Lemma 2.

5. Theorem 2. Let f(z) be a k-valued algebroid function $|z| < \infty$ of arbitrary order. Suppose that there exists a path L on the plane stretching to the point at infinity such that

(17)
$$\frac{|A_0(z)|}{\left(\sum_{i=1}^{k}|A_i(z)|\right)^{\frac{1}{2}}} \to 0$$

(18)
$$[[\mathfrak{A}(z_1), \mathfrak{A}(z_2)]] \to 0$$

as z, z_1 and z_2 tend to infinity along L. Then the infinity is an asymptotic value of f(z).

Proof. We denote by $K(\delta)$ the spherical disk with center at the point at infinity and with chordal radius $\delta > 0$, and denote by $f_i(z)$ $(i=1,2,\cdots,k)$ k roots of F(z,f) = 0 for any z counting with their proper multiplicities. We express the curve L by

$$L: z = z(t) \ (0 < t < \infty); \ z(t) \to \infty \text{ as } t \to \infty.$$

Given a sufficiently small $\varepsilon > 0$, we can find from (17) and (18) $t_0^{(n)}$ $(n = 1, 2, \cdots)$ depending on ε such that for any $t \ge t_0^{(n)}$,

(19)
$$8e \left\{ \frac{|A_0(z)|^2}{\sum\limits_{i=0}^k |A_i(z)|^2} \right\}^{\frac{1}{2k}} < \frac{\varepsilon}{2(k+1)^n} \quad (z=z(t))$$

and for any pair t_1 and t_2 ; t_1 , $t_2 \ge t_0^{(n)}$,

(20)
$$8e[[\mathfrak{A}(z_1), \mathfrak{A}(z_2)]]^{\frac{1}{k}} < \frac{\varepsilon}{2(k+1)^n} \quad (z_i = z(t_i); i = 1, 2).$$

First we take whole branches f_i $(i = 1, 2, \dots, k)$ as our candidates and let z go to infinity along L. Then we drop from the list of candidates branches f_i , if any, with f_i $(z(t_0^{(1)})) \notin K(\varepsilon)$. The disk $K(\frac{\varepsilon}{2(k+1)})$ contains

at lesst one root of the equation $F(z(t_0^{(1)}),f)=0$ because of Lemma 4 and (19) and so there remains at least one f_j in our list. Next we drop f_i , if any, with $f_i(z(t_0^{(2)})) \in K\left(\frac{\varepsilon}{k+1}\right)$ from our 2nd list and still have a list containing at least one f_j by the same reason as above. Then we see that, for any f_j in the list, the curve $f_j(z(t))$, $t_0^{(1)} \leq t \leq t_0^{(2)}$, is contained in $K(\varepsilon)$. In fact, if not, the curve $f_j(z(t))$, $t_0^{(1)} \leq t \leq t_0^{(2)}$, can not be covered by any k disks with radii $\frac{\varepsilon}{2(k+1)}$ and so there exists at least one point $z^*=z(t^*)$, $t_0^{(1)} < t^* < t_0^{(2)}$, such that

$$[f_j(z^*), f_i(z(t_0^{(1)}))] > \frac{\varepsilon}{2(k+1)}$$
 $(i = 1, 2, \dots, k),$

which coutradicts Lemma 3 and (20). We repeat the above procedures and, at the *n*-th step, we drop f_i , if any, with $f_i(z(t_0^{(n)})) \notin K\left[\frac{\varepsilon}{(k+1)^{n-1}}\right]$ from our *n*-th list, and have the (n+1)-th list containing at least one f_j . For any f_j in this list, the curve $f_j(z(t))$, $t_0^{(n-1)} \leq t \leq t_0^{(n)}$, is contained in $K\left[\frac{\varepsilon}{(k+1)^{n-2}}\right]$. Since we have only a finite number of branches f_i , there is at least one f_j , say f_i , which belongs to the *n*-th list for $n=1,2,\cdots$. Thus f_i satisfies

$$f_{\mathbf{1}}(\mathbf{z}(t)){\in}K{\left[\frac{\varepsilon}{(k+1)^{n-2}}\right]},\quad t\geq t_{\mathbf{0}}^{(n-1)},$$

so that $f_1(z)$ tends to infinity as z goes to infinity along L. The proof is now complete.

Proof of Theorem 1. When $\alpha_i \neq \infty$, we consider $\frac{1}{f-\alpha_i}$ instead of f. Then $\frac{1}{f-\alpha_i}$ is an algebroid function satisfying (2) and has k deficient values, one of which is the infinity, so that we may assume that $\alpha_i = \infty$. From Lemma 1 and Corollary of Lemma 5, the coefficients $A_0(z)$, $A_1(z)$, \cdots , $A_k(z)$ of the defining equation of f(z) satisfying the conditions (17) and (18) outside an \mathscr{C} -set, consequently on any half-line $L = re^{i\theta}(r > 0)$ for almost every θ . Applying Theorem 2, we conclude that α_i is an asymptotic value of f along L.

Remark. As we saw in the above proof, we can take any half-line L for almost every θ as an asymptotic path of α_i and hence an L commonly to all α_i ; $i = 1, 2, \dots, k$.

6. Lemma 6. (Dufresnoy [2]) Let $p(z) = a_0 z^{\nu} + a_1 z^{\nu-1} + \cdots + a_{\nu} = 0$ be an algebraic equation with

$$\frac{|a_0|^2}{\sum_{i=0}^{\nu} |a_i|^2} = \frac{\nu}{1 + M^2} \quad (M > 0).$$

Then p(z) = 0 has no root of modulus larger than M.

From this, we can see that if

$$\frac{|a_0|^2}{\sum_{i=1}^{\nu} |a_i|^2} = \nu d^2 \qquad (d > 0),$$

every root of p(z) = 0 lies outside a spherical disk K(d) with center at the point at infinity and with chordal radius d. Using this lemma, we can prove

THEOREM 33). Let f(z) be a k-valued algebroid function in $|z| < \infty$ which is defined by (1) and satisfies (2). Suppose that, for some $n(0 < n \le k)$, the system $\mathfrak{A}(z) = (A_0(z), A_1(z), \cdots, A_k(z))$ satisfies

$$\delta_i(\mathfrak{A}) > 0 \ (i = 0, 1, \cdots, n-1), \quad \bar{\delta}_n(\mathfrak{A}) = 0.$$

Then the infinity is an asymptotic value of f(z).

Prooof. From our hypothesis $\bar{\delta}_n(\mathfrak{A}) = 0$ and (3), we have $\lim_{r \to \infty} \frac{N(r, \frac{1}{A_n})}{kT(r, f)} = 1$. Hence we have by (4) and (5)

$$\log |A_n(z)|^2 = (1 + o(1))2kT(r, f),$$

uniformly in θ as $z = re^{i\theta} \to \infty$ outside an \mathscr{C} -set. Further, we have

$$\begin{split} &\log (\sum_{i=n}^{k} |A_{i}(z)|^{2}) \leq \log (\sum_{i=0}^{k} |A_{i}(z)|^{2}) \leq 2\log A(z) + \log (k+1) \\ &\leq 2 \max_{0 \leq \nu \leq k} \log M(r, A_{\nu}) + \log (k+1) = 2(1+o(1)) \max_{0 \leq \nu \leq k} N\left(r, \frac{1}{A_{\nu}}\right) \\ &\leq (1+o(1))2kT(r, f). \end{split}$$

Thus

³⁾ As for notations used in this theorem, see § 2.

$$\log \frac{|A_n(z)|^2}{\sum_{i=n}^k |A_i(z)|^2} = o[T(r, f)]$$

and hence for any small $\varepsilon > 0$,

$$e^{-\varepsilon T(r,f)} < \left(\frac{1}{k-n} \frac{|A_n(z)|^2}{\sum\limits_{i=n}^k |A_i(z)|^2}\right)^{\frac{1}{2}} < e^{\varepsilon T(r,f)}$$

uniformly in θ as $z = re^{i\theta} \to \infty$ outside the \mathscr{C} -set. Since $\delta_j(\mathfrak{A}) > 0$ $(j = 0, 1, \dots, n-1)$, we see from Lemma 1,

$$\log \ \frac{ \ |A_j(z)|^2}{\sum\limits_{i=0}^k |A_i(z)|^2} < (-\ \delta_j(\mathfrak{A}) + o(1)) 2kT(r,f) \quad (j=0,1,\cdot\cdot\cdot,n-1)$$

and hence

(22)
$$8e^{\left\{\begin{array}{c} \sum\limits_{j=0}^{n-1}|A_{j}(z)|^{2} \\ \sum\limits_{i=0}^{k}|A_{i}(z)|^{2} \end{array}\right\}^{\frac{1}{2k}}} < e^{(-\delta+\varepsilon)T(r,f)}$$

uniformly in θ as $z = re^{i\theta} \to \infty$ outside an \mathscr{C} -set, where $\delta = \min_{0 \le j \le n-1} \delta_j(\mathfrak{A}) > 0$.

We take $\varepsilon < \delta/3$ and a path L: $z = z(r) = re^{i\theta}$ $(r_0 < r < \infty)$ such that (21) and (22) hold on L^4 , and set

$$d_1(r) = e^{(-\delta + \varepsilon)T(r,f)}$$
$$d_2(r) = e^{-\varepsilon T(r,f)}.$$

We onsider on L the following equation

$$A_n(z)f^{*k-n} + A_{n+1}(z)f^{*k-n-1} + \cdots + A_k(z) = 0.$$

Recall (21). Then we see from Lemma 6 that the roots $f_i^*(z)$ $(i=1,2,\cdots,k-n)$ lie outside $K(d_2(r))$. The equation F(z,f)=0 has k-n roots, say $f_i(z)$ $(i=1,2,\cdots,k-n)$, such that

$$[f_i^*(z), f_i(z)] < d_1(r),$$

because of the comment given just after Lemma 4 and (22). Thus the values $f_i(z)$ $(i = 1, 2, \dots, k - n)$ lie outside $K(d_2(r) - d_1(r))$. On the other

⁴⁾ We can find such a path L because (21) and (22) hold as $z\to\infty$ outside an \mathscr{E} -set.

148 JUNJI SUZUKI

hand, we see from Lemma 4 that the remainder $f_j(z)$ $(j = k - n + 1, \dots, k)$ satisfies

$$[f_j(z), \infty] < d_1(r).$$

Since $d_1(r)/d_2(r) = e^{(-\delta+2\varepsilon)T(r,f)} \to 0$ as $r \to \infty$, we see that $K(d_1(r))$ is disjoint with the complement of $K(d_2(r)-d_1(r))$ for every sufficiently large $r \ge r_1$, whence we can conclude that the brancehs $f_i(z)$ $(j = k - n + 1, \dots, k)$ with $f_j(z(r_1)) \in K(d_1(r_1))$ draw a curve $f_j(z(t))$, $t \ge r \ge r_1$, in $K(d_1(r))$. In fact, if the curve $f_i(z(t))$, $t \ge r \ge r_1$, invades the zone; $\{w; d_2(r) - d_1(r) < [w, \infty] < d_1(r)\}$, we have at least one point $z^* = z(t^*)$, $t^* > r$, on the curve such that

$$f_j(z^*) \in K(d_1(t^*)),$$

 $f_j(z^*) \in \text{complement of } K(d_2(t^*) - d_1(t^*)),$

which contradicts the fact that any root of the equation $F(z^*, f) = 0$ must be contained in $K(d_1(t^*))$ or the complement of $K(d_2(t^*) - d_1(t^*))$. Since $d_1(r) \to 0 \ (r \to \infty)$, we see that the branches $f_j(z)$ tend to infinity as $z \to \infty$ along L. Thus our theorem has been established.

References

- [1] J.M. Anderson-J. Clunie: Slowly growing meromorphic functions. Comment. Math. Helv., 40, pp. 267–280 (1966).
- [2] J. Dufresnoy: Théorie nouvelle des familles complexes normales. Ann. Éc. Norm. sup., pp. 1-44 (1944).
- [3] W.K. Hayman: Slowly growing integral and subharmonic functions. Comment. Math. Helv., 34, pp. 75-84 (1960).
- [4] H.L. Selberg: Algebroide Funktionen und Umkeherfunktionen der Abelscher Integrale. Avh. Norske Vid. Akad., Oslo, 8, pp. 1-74 (1934).
- [5] Y. Tumura: Sur les théorème de M. Valiron et les singularités transcendantes indirectement critiques. Proc. Imp. Acad. Japan, 17, pp. 65–69 (1941).
- [6] G. Valiron: Sur la dérivée des fonctions algébroïdes. Bull. Soc. Math. France, 59, pp. 17-39 (1931).
- [7] ----: Sur le nombre des singularités transcendantes des fonctions inverses d'une classe d'algébroïdes. C.R. Acad. Sci. Paris, 200, pp. 713-715 (1935).
- [8] ———: Lectures on the general theory of integral functions. Chelsa, (1949).
 [9] ———: Sur les valeurs déficientes des fonctions algébroïdes méromorphes d'ordre nul. J.d'analyse Math. 1, pp. 28-42 (1951).

Mathematical Institute Nagoya University