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ON A NECESSARY CONDITION FOR THE SAMPLE

PATH CONTINUITY OF WEAKLY

STATIONARY PROCESSES

IZUMI KUBO

To Professor Katuzi Ono on the occasion of his 60th birthday

1. Introduction
We shall discuss the sample path continuity of a stationary process

assuming that the spectral distribution function F(λ) is given. Many kinds

of sufficient conditions have been given in terms of the covariance function

or the asymptotic behavior of the spectral distribution function. We also

shall give a sufficient condition (Theorem l) expressed in the form

+ 1) - F(n) < oo .

Such a formula has also inspired our investigation for necessary condi-

tions observing the case where dF(λ) is discrete.

We are mainly interested in necessary conditions for the sample path

continuity. For any distribution function F(λ), there always exists a sta-

tionary process with the spectral distribution function F(λ) which has con-

tinuous sample paths; there might, however, exist a stationary process, with

the same F(λ) such that any version of the process has no continuous

sample paths (c.f. Theorem 2). In view of this, we shall be concerned

>vith the problem to determine the class of distribution functions F(λ) satis-

fying the following condition:

CONDITION (C) Any weakly stationary process with the spectral distribution

function F{λ) has a version, sample paths of which are continuous.

The last section will be devoted to clarify relation between the sufficient

condition and the necessary condition which are stated in Theorem 1 and
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Theorem 2. In fact, the one is close enough to the other. Propositions

and examples will serve in illustrating this situation.

The author wishes to express his hearty thanks to Professor T. Kawata

who sent the preprint [2] and letters which gave private communications

encouraging the author in the course of this note.

2. Sufficient condition
In this section we shall state a sufficient condition for sample path con-

tinuity of a weakly stationary process. The result is a slight generalization

of the results given by T. Kawata [2].

Let {X(t)} be a weakly stationary process with mean zero and spectral

distribution function F{X). Suppose that {X{t)} has the spectral representa-

tion

(2. 1) X{t) = eiλtdZ{λ)
j

where the {Z(λ)} process has orthogonal increments, and

(2.2) E\Z(λ)\* = F(λ).

We now define approximate weakly stationary processes {Xτ{t)}9 0 < T < o o ,

in the following way according to the idea of T. Kawata. Set

(2 3) X (t) - T c2πint/τ\z ( 2 π ( n + 1 ) N i - Z ( 2πn )}
n—~ oo I \ 1 / \ i /J

This Fourier series converges in ZΛsense for each t. In order to discuss

the absolute convergence of the Fourier series (2. 3), we prepare the follow-

ing simple lemma.

LEMMA 1. Let F{λ) be a distribution function {not necessary F{oo) = l ) .

Then for a>,l, the following inequalities hold:

* )
Λ F(n)^ Σ VF(<*(n+l))-F(an) ̂ 2 Σ τ/F(n+l)-F(n)

-.T J- n=—oo n=—oo n=—co

LEMMA 2. Let F{λ) be the spectral distribution function of a weakly stationary

process [X{t)} with mean zero. If it holds that

(2.4)

* ) [. ] denotes the Gauss symbol.
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then the Fourier series (2. 3) converges absolutely with probability 1. Moreover, the

sample paths of the weakly stationary process {Xτ{t)} defined by (2. 3) are continuous

with probability 1.

Proof. Since inequalities

(2.5) E\ Σ

< OO

hold by (2.4) and Lemma 1, the series J]\Z{2π{n + 1)/Γ) — Z{2πnlT)\ con-

verges with probability 1. Hence we have proved that the series (2. 3)

converges absolutely with probability 1.

THEOREM 1. Let F{λ) be a spectral distribution function. If (2. 4) holds,

F(λ) satisfies Condition (C).

Proof. Let {X{t)} be a weakly stationary process with the spectral

distribution function F{λ) and have the spectral representation (2. 1) with

{Z(λ))9 and let {Xτ{t)} be the process defined by (2. 3). Then we have

πA_E

2%

by (2. 5). Hence if we put ε* = 2~^4, the series

converges. Using Borel-Cantelli lemma, by the same method in Theorem

9 in [2], we can prove that X2k{t) converges uniformly in [—A, A] as &-*oo

with probability 1. Hence the asserion is proved by Lemma 2.

COROLLARY 1. (T. Kawata) If there exists a function g(u) > 0 which

satisfies the following conditions:

(a) g(u)^g(υ) and g{—u)^g(—v) hold for 0<u<v;

(b) it holds that

(2. 6) ( —ί-r- du<™
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and

(2.7) \g(λ)dF(λ)<™,

then F{λ) satisfies (2. 4) and hence Condition (C).

Proof. By (2. 6) and (2. 7), we have inequalities

Σ
n = l

+ Σ 9(n) (F(n + 1) - F(n)) Σ ^ r
n=-2 n=-2 flW

< j g(λ)dF(λ) j - ^ - J^ < oo.

Hence the assertion follows from Theorem 1.

3. Necessary condition

We now discuss a necessary condition for any weakly stationary process

with a given spectral distribution function F(λ) to have a version with

continuous sample paths. For this purpose, we shall constract a strictly

stationary process with the given spectral distribution function F(X).

Corresponding to the given F[λ)9 there exist finite measures σ(l,λ) and

σ(-~l9X) on Γ0, -^r-) and a non-negative function p(X) on (—00,00) such that

(3. 1) dF (λ + ̂ ψ) = p(λ+ *ψ) dσ(θ(n), λ) λ e [o, -ψ) ,

where θ(n) = 1 if n ^ 0 and = — 1 if n < 0. Such measures σ(l, )̂ and

σ(r~ Ijλ) and such a function p(Λ) are not unique. They can be given, for

example, in the following forms:

dσ(l,λ)= Σ d
w=0

(3.2)

dσ(-ί, X) = Σ " dF(λ

Now we define a probability space (β,P). Set

< l , O^tf <2>r,

Define a probability measure P (μ, v, x, y, λ) on Ω by
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(3. 3) dP {μ, v9 x9 y, 2) = -^r dx dy dσ{v9 X)

with T = σ{lf[0,2πlT)) + σ{-l,[0,2πlT)). We define a flow [St] on Ω by

S i ft y) ' V 1/ jli ~~~ \ tl M Ύ 1 — /y I I /iy 1 "} / ___ OΛ7 ** * I 5 ]

t\ιf "*9 *^'9 & 9 **/ "~~ V Γ^> *^ί I ATΛ w { >TπΓ" ) U 1^ <l« ώ>t _ I y Λ /

It is obvious that the system {St} of point transformations of Ω forms a

group and each St is measure preserving. Define a random variable X{ω),

ω = (i«,v,aj,2/,^), by

, X9 y, λ) = Jrnoiv VΣ
n=—oo

(the convergence of this series is ZΛsence). With this X(ω), a. strictly

stationary process {X(t)} is given by

(3.4)

Then it holds that

a.e

LEMMA 3. The process [X(t)} defined by (3. 4) is a weakly stationary process

with mean zero and with the spectral distribution function F(X).

Proof It is easily seen that the mean of X(t) is zero. We have

2π

(3. 5) X(t9ω) = jΓμei(y+λV Σ X + fM P1/2 (λ
»=—CO O \

E\x[t)X®}- C

Aπϊ
dy dσ{v,λ)

[T Hλ+2*nTχt
> J θ

Hence {X(/)} is a weakly stationary process with the given spectral distri-

bution function F{λ).
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LEMMA 4. The stationary process {X{t)} defined by (3. 4) has a version whose

sample paths are continuous with probability 1, if and only if

fj pin (χ + Jψ^ < oo a .e. {dσ(l, λ))9

(3.6) w=° ^ T J

Σ /oi/^/ϊ--^-j<oo a.e. {dσ(-l
n= —1

hold.

Proof. Suppose that (3. 6) holds. Then the series (3. 4) converges ab-

solutely for almost every (v,X) (dσ{v,λ)). Hence, for almost every ω (dP),

X{t,ω) is continuous in t. Conversely, if X(t,ω) has a version with con-

tinuous paths, then two processes (see (3. 5))

Σ
n=0

Pm(λ + ~^r) e2wί<*+o/r a n d j j P1/2(

have versions with continuous sample paths. Hence these Fourier series are

regarded as those of some continuous functions of t for almost every (x, £)

(dx dσ{l,λ)) or (dx dσ{—l,λ)), respectively. Therefore the Fourier series

(3. 7) Σ P1/2(λ + -^Ψ-) e2πint/τ ί r e s P Σ P1/2 (λ +
n = 0 \ i / \ n=—l \

is a Fourier series of a continuous function for almost every λ (dσ(l,λ))

(resp. {dσ{—l,λ))). By Fejer's theorem, the series (3.7) is summable (C.I)

at any point t. Since the Fourier coefficients are non-negative, the sum-

mability (C. 1) at t = 0 implies the convergence of the series (3. 6).

By these lemmas, we can state the following theorem.

THEOREM 2. If a distribution function F(λ) satisfies Condition (C), then

(3. 6) holds for any σ(l9λ), σ(—l,λ) and ρ(λ) which satisfy (3. 1).

The following proposition is obvious but helpful in applications of our

theorem.

PROPOSITION 1. The convergence or the divergence of the series (3. 6) is in-

dependent of the choice of measures σ(l,λ), σ{—l,λ) and a function ρ(λ) which satisfy

(3. 1).

4. Discussions
In this section we shall show that the conditions (2. 4), (3. 6) and (C)

are equivalent to each other under suitable assumptions.
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PROPOSITION 2. For some period T and for some σ{l,λ), σ(—l,λ) and p(λ)

which satisfy (3. 1), set

an = ess sup ρ(λ + -^ψ-) {dσ{θ{n), λ))

and

bn = ess inf p(λ + - ^ L ) (rf^(n),^)).
0<>λ<2π/T

if

(4. 1) Σ {aψ - bψ) < oo
M = —oo

holds, the following three conditions are equivalent:

(i) F(λ) satisfies Condition (C);

(ii) (2. 4) holds;

(iii) (3. 6) holds.

Proof By Theorem 1 and Theorem 2, we can see that (ii) —> (i)

= > (iii). Since

ψ ) (ψ) f ( ψ) da{θ{n),X)

holds, we have

ano{θ{n), [0,2π)) ̂  F ( 2 π ( y 1 } ) - F ( ^ - ) ^ ft.α(»(n), [0,2π)).

Hence we have

Σ J F ( 2 ^ ! L + 1 ) W ( ^ - W Σ «3/2= Σ («y2-δy2)+Σ^2+Σ
T \ 1 / \ i / n n

3/ y y ^ Σ 6V
n=—oo n=—oo n = 0 n = — 1

Since

and

Σ bψ ^ Σ pi/« 6 + - ^ L ) < oo a.e.

Σ ^ / 2 ^ Σ ί>1/2 (^ + - ^ - ) < oo a.e.
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hold under the condition (3. 6), (2. 4) follows imediately.

PROPOSITION 3. Let σ{l,λ)9 σ{—l,λ) and p(λ) satisfy (3. 1) for some period

T. If there exists a non-negative function h(λ) such that

(4.2) c^lim -gW-^ϊϊS -j$r<c2, 0<d<c 2 ,

where h{λ) is monotone non—increasing in [0, oo) and non-decreasing in (—00,0]. Then

the following conditions are equivalent:

(i) F(λ) satisfies Condition (C);

(ii) (2. 4) holds;

(iii) (3. 6) holds;

(iv)

(v) σ(y,[0, π)) \ pU2(vλ) dλ < oo, v = ± l, /or sufficiently large A;

(vi) there exists a function g(u) which satisfies the conditions (a) and (b) in

Corollary 1.

Proof From (4. 2), it follows that

(4. 3) cMD < pO) < c2h{λ), \λ\ ̂ —^~ for sufficiently large number

n>N \ T
N. Set/ 1W= Σ h^(^-) and I2(v) = Σ ^ 1 / 2 ( - ^ - ) ' »=±1 T h e n

it follows, from (3. 1) and (4. 3), that

+ ^ψ^) ^ C2/2(V), y = ± 1 ,

Γ h^(vλ) dλ ^ Γ P^(vλ) dλ <
JΛΓ J N

v = ±

and that

< c2 J^A"1"1 (vi) rf/?(vi) <<r («, [o, -^-))c2/2(v), v = ± 1
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Hence the equivalence of (in), (iv) and (v) is obvious. Moreover, this fact

implies that the function g(u) defined by

*-1/2(κ) for vu>0 if σ(y,

9(u)=l
for vu>0 if ( j(v,[θ,^-)) =0,

v = ± 1 , satisfies the conditions (a) and (b) in Corollary 1, if (v) holds.

Since the proof of (vi) :—> (ii) —> (i) —> (iii) follows from Corollary 1 and

Theorem 2. Thus our assertion has been proved.

Now let us give some examples.

EXAMPLE 1. Let F{λ) be a spectral distribution function of some

weakly stationary process with a period T (i.e. the measure dF{λ) is sup-

ported by the discrete set \2πn\T\ n = 0, ± 1, ± 2, •••}). Then F(λ) satisfies

Condition (C) if and only if (2. 4) holds. (For the proof we refer Proposi-

tion 2.)

EXAMPLE 2. Suppose that F(X) has the density f(X) with respect to the

Lebesgue measure. Then we may set dσ{l9λ) = dσ{—l9χ) = dλ and p(λ)=f(λ).

If, in particular, p(χ) = f(X) satisfies (3. 7) with some h(λ)9 then F(λ)

satisfies Condition (C) if and only if

EXAMPLE 3. Let F(λ) satisfy (4. 2) with some σ{l,λ), σ(—l,λ), p(λ) and

h{λ). Suppose that h(λ) is a function of the form

for large \λ\, where log(n+1)λ = log(log(Λ)λ) and log(1μ = logΛ Then F(λ)

satisfies Condition (C) if ε > 0 and dose not if ε ^ O
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