NOTE ON HYPOELLIPTICITY OF A FIRST ORDER LINEAR PARTIAL DIFFERENTIAL OPERATOR

YOSHIO KATO

§1. Introduction. Let Ω be a domain in the (n + 1)-dimensional euclidian space \mathbb{R}^{n+1} . A linear partial differential operator P with coefficients in $\mathbb{C}^{\infty}(\Omega)^{1}$ (resp. in $\mathbb{C}^{\omega}(\Omega)^{1}$) will be termed hypoelliptic (resp. analytic-hypoelliptic) in Ω if a distribution u on Ω (i.e. $u \in \mathcal{D}'(\Omega)$) is an infinitely differentiable function (resp. an analytic function) in every open set of Ω where Pu is an infinitely differentiable function.

In the present paper, we consider a linear partial differential operator

(1)
$$L = \sum_{j=1}^{n+1} a^j(y) \frac{\partial}{\partial y^j} + a(y),$$

where the coefficients are complex-valued infinitely differentiable functions (or complex-valued analytic functions) in a domain Ω of R^{n+1} .

Now the main result is :

THEOREM. Suppose that $n \ge 2$. A linear partial differential operator of the form (1) with coefficients in $C^{\infty}(\Omega)$ (resp. in $C^{\omega}(\Omega)$) is hypoelliptic (resp. analytic-hypoelliptic) in Ω if and only if all the functions $a^{j}(y)$ $(j = 1, \dots, n + 1)$ identically vanish in Ω and the function a(y) vanishes at no point of Ω .

For n = 1, the hypoellipticity and the analytic-hypoellipticity of the operator of the form (1) with coefficients in C^{ω} are characterized by H. Suzuki [4] under the condition $|a^{1}(y)| + |a^{2}(y)| \neq 0$ for every $y \in \Omega$ and a(y) = 0 in Ω .

In the next section, we shall first show that if $L(n \ge 1)$ has coefficients in $C^{\omega}(\Omega)$ and satisfies the condition (3) (see § 2), the hypoellipticity of L as well as the analytic-hypoellipticity of L has no respect to the factor a(y)and we shall study relations between the solvability² and the hypoellipticity of L. In the last section, we shall prove the theorem.

Received June 7, 1967.

¹⁾ We denote by $C^{\infty}(\Omega)$ the totality of complex-valued infinitely differentiable functions in Ω and by $C^{\omega}(\Omega)$ the totality of complex-valued analytic functions in Ω .

²⁾ A linear partial differential operator defined on Ω is called solvable in a subdomain Ω_0 of Ω if the equation Pu = f has a solution $u \in \mathcal{D}'(\Omega_0)$ for every $f \in C_0^{\infty}(\Omega_0)$.

The author extends his hearty thanks to Prof. T. Kuroda for his kind encouragement.

§ 2. Preliminaries. We denote by L_0 the principal part of L:

(2)
$$L_0 = \sum_{j=1}^{n+1} a^j(y) \frac{\partial}{\partial y^j}.$$

In this section, we always assume that

(3)
$$\sum_{j=1}^{n+1} |a^j(y)| \neq 0, \quad \text{for all } y \in \Omega.$$

We first state the following :

LEMMA 1. Suppose that $n \ge 1$. An operator L of the form (1) with coefficients in $C^{\omega}(\Omega)$ and satisfying the condition (3) is hypoelliptic (resp. analytic-hypoelliptic) in Ω , if and only if the operator L_0 is hypoelliptic (resp. analytic-hypoelliptic) in Ω .

Proof. Let y_0 be an arbitrary point of Ω . By the Cauchy-Kovalevsky theorem, we can find a solution h(y), analytic in some neighbourhood N of y_0 , of the equation

$$L_0h=a.$$

From this, we can deduce

(4)
$$\begin{cases} L_0(e^h u) = e^h L u, \\ L(e^{-h} u) = e^{-h} L_0 u \end{cases}$$

for all $u \in \mathscr{D}'(N)$. We can immediately conclude Lemma 1 from (4), since the notion of hypoellipticity as well as that of analytic-hypoellipticity has a local property.

Q.E.D.

We set

$$\bar{L}_0 = \sum_{j=1}^{n+1} \overline{a^j(y)} \frac{\partial}{\partial y^j}$$

and denote by C the commutator

$$C = [L_0, \bar{L}_0] = L_0 \bar{L}_0 - \bar{L}_0 L_0$$
.

We say L satisfy the condition H at a point y_0 of Ω , if C may be

represented as a linear combination of L_0 and \bar{L}_0 at $y = y_0$. The Hörmander's necessary condition for L to be solvable in a subdomain Ω_0 of Ω is that L satisfies the condition H at every point of Ω_0 (see Chap. VI of Hörmander [1]).

LEMMA 2. Suppose that $n \ge 2$. If L with coefficients in $C^{\infty}(\Omega)$ (resp. in $C^{\omega}(\Omega)$) and satisfying the condition (3) fulfils the condition H at every point of Ω , it then follows that L_0 is not hypoelliptic (resp. not analytic-hypoelliptic) in Ω and there exists a subdomain of Ω where L is solvable.

Proof. The proof was suggested by Nirenberg-Trèves [3]. Let y_0 be a point fixed arbitrarily in Ω . By a suitable coordinate transformation in some neighbourhood of the point y_0 , L_0 may be expressed in the form

$$L_0 = g(x,t) \Big(\frac{\partial}{\partial t} + i \sum_{j=1}^n b^j(x,t) \frac{\partial}{\partial x^j} \Big), \quad g(x,t) \neq 0,$$

 $(i = \sqrt{-1}, x = (x^1, \dots, x^n))$ in a neighbourhood N of the origin: x = 0, t = 0, so that L is written by the new coordinate as follows:

(5)
$$L = g(x,t) \left(\frac{\partial}{\partial t} + i \sum_{j=1}^{n} b^{j}(x,t) \frac{\partial}{\partial x^{j}} \right) + c(x,t),$$

where $b^{j}(x,t)$ $(j = 1, \dots, n)$ are real-valued, and the transformation of coordinates and the coefficients of L of the form (5) are both infinitely differentiable (resp. analytic) in N, if the coefficients of L of the form (1) is infinitely differentiable (resp. analytic) in Ω (see [3]).

If L satisfies the condition H in N, it follows that

(6)
$$\sum b_i^j(x,t)\xi_j = 0$$
 if $\sum b^j(x,t)\xi_j = 0$, $(x,t) \in N$, $\xi \in \mathbb{R}^n$,

where $b_t^j(x,t) = \frac{\partial b^j}{\partial t}(x,t)$.

Let b(x,t) be the real vector $(b^1(x,t), \cdots, b^n(x,t))$ and |b(x,t)| be the length of the vector b:

$$|b(x, t)| = (b^{1}(x, t)^{2} + \cdots + b^{n}(x, t)^{2})^{\frac{1}{2}}.$$

.

If |b(x,t)| identically vanishes in N, any function depending only on the variables x is always a solution of the equation $L_0 u = 0$. Otherwise, we can find a subdomain N_1 of N in which b(x,t) never vanishes. Thus it follows from (6) that there exists a real-valued function $\beta(x,t)$ in $C^{\infty}(N_1)$ such that

YOSHIO KATO

(7)
$$\boldsymbol{b}_t(\boldsymbol{x},t) = \beta(\boldsymbol{x},t)\boldsymbol{b}(\boldsymbol{x},t),$$

where we have put $\boldsymbol{b}_t = (b_t^1, \cdots, b_t^n)$, and from (7) we obtain

$$\frac{d}{dt}(\boldsymbol{b}(\boldsymbol{x},t)/|\boldsymbol{b}(\boldsymbol{x},t)|) = 0, \text{ in } N_1.$$

Hence the real vector b(x, t)/|b(x, t)| is independent of the variable t. If we put v(x) = b(x, t)/|b(x, t)|, L_0 is rewritten in the form

$$L_0 = g(x, t) \left(\frac{\partial}{\partial t} + |b(x, t)| \sum_{j=1}^n v^j(x) \frac{\partial}{\partial x^j} \right),$$

where $v(x) = (v^1(x), \cdots, v^n(x))$. Any solution of the equation

$$\sum_{j=1}^{n} v^{j}(x) \frac{\partial u}{\partial x^{j}} = 0$$

depending only on the variables x is a solution of the equation $L_0 u = 0$. From these fact, we can assert the first half of the lemma and at the same time we can easily see that L has the property (P) (introduced in [3]) in some subdomain N' of N, that is, there is a unit vector v = v(x) depending on the x-variable only such that **b** is given by b(x,t) = |b(x,t)|v(x) in N'. Thus using Theorem 2.1 of [3], we obtain the later half of the lemma. Q.E.D.

Suppose that $n \ge 1$. If an operator L of the form (1) with LEMMA 3. coefficients in $C^{\omega}(\Omega)$ and satisfying the condition (3) does not fulfil the condition H at some point in Ω , it then follows that L_0 is not analytic-hypoelliptic in Ω .

Proof. This lemma is easily deduced from Theorem 4.1 of Mizohata But in our case the proof is simpler. We shall give an outline of the [2]. proof.

Suppose that L does not fulfil the condition H at a point $y_0 \in \Omega$. Then we can construct a solution w of the equation $L_0 u = 0$ in a neighbourhood N of y_0 such that $w(y_0) = 0$ and the imaginary part of w is positive in N, the point y_0 excepted (see Chap. VI of [1]). If we take a suitable branch, $\sqrt{w(y)}^{3}$ is continuously differentiable in N and satisfies the equation $L_0 u = 0$. But it is not twice-continuously differentiable at y_0 . This gives the proof.

326

Q.E.D.

Finally, we state the lemma given by Mr. A. Yoshikawa (see [5]).

LEMMA 4. Let Ω be a domain of \mathbb{R}^{n+1} $(n \ge 0)$ and P be a general linear partial differential operator with coefficients in $\mathbb{C}^{\infty}(\Omega)$. If P is hypoelliptic in Ω , then the formal adjoint ${}^{t}P$ of P is solvable in a neighbourhood of each point of Ω . Here the differential operator ${}^{t}P$ is defined by the identity

$$\int Pu \cdot v dy = \int u \cdot v Pv dy, \quad u, v \in C_0^{\infty}(\Omega).$$

Proof. Suppose that P is hypoelliptic in Ω . Let S be the totality of locally square-integrable functions u in Ω such that Pu is in $C^{\infty}(\Omega)$. We note $S = C^{\infty}(\Omega)$ and denote by G_P the graph of P on S into $C^{\infty}(\Omega)$ in the product space $L^2_{loc}(\Omega) \times C^{\infty}(\Omega)$, that is, $G_P = \{[u, Pu] ; u \in S\}$. Then, by the open mapping theorem of Banach, the projection on G_P onto $C^{\infty}(\Omega)([u, Pu] \rightarrow u)$ is continuous³⁾. Thus let y_0 be an arbitrary point of Ω , N_0 be a neighbourhood of y_0 whose closure N_0 is contained in Ω , and k be an arbitrary integer ≥ 0 . There then exists a constant C_0 , an integer $s_0 \geq 0$ and compact sets K_1 , K_2 of Ω depending on k and N_0 such that

(8)
$$|u|_{k,\overline{N}_{0}} \leq C_{0} \Big\{ \Big(\int_{K_{1}} |u|^{2} dy \Big)^{\frac{1}{2}} + |Pu|_{s_{0},K_{2}} \Big\}, \quad u \in C^{\infty}(\Omega).$$

If we choose a neighbourhood N of y_0 such that $N \subset N_0$ and

$$C_0 / \text{Volume of } N \leq \frac{1}{2}$$
,

we obtain from (8) that

$$\|\varphi\|_{k} \leq |P\varphi|_{s_{0}}, \qquad \varphi \in C_{0}^{\infty}(N),$$

where we have put

$$\parallel \varphi \parallel_{k} = \Big(\sum_{\mid a \mid \leq k} \int \mid D^{a} \varphi \mid^{2} dy \Big)^{\frac{1}{2}}$$

³⁾ By α we denote multi-indices $\alpha = (\alpha_1, \dots, \alpha_{n+1})$ of non-negative integers. Their sum is denoted by $|\alpha|$. With $D_j = -i\partial/\partial y^j$, we set

$$D^{\alpha} = D_1^{\alpha_1} \cdots D_{n+1}^{\alpha_{n+1}}$$

The topology of $C^{\infty}(\Omega)$ is then defined by the semi-norms $|\cdot|_{m,K}$: $|f|_{m,K} = \sum_{|\alpha| \leq m} \sup_{y \in K} |D^{\alpha}f(y)|,$

where m is any non-negative integer and K is any compact set of Ω . Hence $C^{\infty}(\Omega)$ is a Fréchet space by this topology.

From this we may deduce the inequality

(9)
$$\|\varphi\|_{k} \leq C \|P\varphi\|_{s}, \quad \varphi \in C_{0}^{\infty}(N),$$

since we have

$$\|\varphi\|_{s_0} \leq C \, \|\varphi\|_{s_0}, \quad \varphi \in C_0^{\infty}(N)$$

with some integer s > 0 and a constant C > 0.

From (9) we can immediately see that ${}^{t}P$ is solvable in a neighbourhood of each point of Ω .

Q.E.D.

§ 3. **Proof of Theorem.** Finally we prove the theorem stated in the introduction. We have only to prove the following :

PROPOSITION. If $n \ge 2$, no operator of the form (1) with coefficients in $C^{\infty}(\Omega)$ (resp. in $C^{\omega}(\Omega)$) and satisfying the condition (3) is hypoelliptic (resp. analytic-hypoelliptic) in Ω .

Before proving the proposition, we must state a lemma which is needed in proving the proposition above.

LEMMA 5. Let M be a linear mapping on $C^{\infty}(\Omega)$ onto itself which satisfies the following conditions:

- (i) The mapping M is bijective and bicontinuous $^{4)}$.
- (ii) A function u belonging to $C^{\infty}(\Omega)$ identically vanishes in a subdomain of Ω if and only if Mu identically vanishes there.

Then M is an operator of multiplication by a non-vanishing function in $C^{\infty}(\Omega)$.

Proof of Lemma 5. It is clear that M and its inverse mapping M^{-1} are both linear partial differential operators with coefficients in $C^{\infty}(\Omega)$:

$$\begin{split} M &= P(y,D) = \sum_{\substack{|\alpha| \leqslant m_y}} a_{\alpha}(y) D^{\alpha}, \\ M^{-1} &= Q(y,D) = \sum_{\substack{|\alpha| \leqslant n_y}} b_{\alpha}(y) D^{\alpha}, \end{split}$$

where m_y and n_y are exact orders of P(y,D) and Q(y,D) at a point y respectively, and they are bounded when y goes over a compact set of Ω .

First of all, we shall show that m_y and n_y both identically vanish in

328

⁴⁾ The topology of $C^{\infty}(\Omega)$ is the same one as the topology stated in footnote ³⁾.

 Ω . Assume that $n_y \neq 0$ in Ω . There then exists a subdomain Ω_0 of Ω , $\overline{\Omega}_0 \subset \Omega$, where n_y is a positive constant, say n. Put $m = \max_{y \in \overline{\Omega}_0} m_y$. By $P_m(y,\xi)$ and $Q_n(y,\xi)$, we denote the principal parts of the characteristic polynomials $P(y,\xi)$ and $Q(y,\xi)$ $(y \in \Omega_0, \xi \in \mathbb{R}^{n+1})$ respectively. Clearly we have

(10)
$$P_m(y,\xi)Q_n(y,\xi) = 0$$

for all $y \in \Omega_0$ and all $\xi \in \mathbb{R}^{n+1}$. It follows from (10) that $P_m(y,\xi) = 0$ for all $y \in \Omega_0$ and all $\xi \in \mathbb{R}^{n+1}$. Hence we have m = 0. This is a contradiction, since $P_0(y,\xi) = (M(1))(y)$ in Ω_0 . Therefore n_y as well as m_y identically vanishes in Ω . Thus we can assert that M is equal to an operator of multiplication by a nonvanishing factor. This completes the proof of Lemma 5.

Proof of Proposition. Let L be an operator of the form (1) with coefficients in $C^{\omega}(\Omega)$. Assume that the condition (3) is fulfiled. The lemmas 1,2 and 3 show us that L is not analytic-hypoelliptic in Ω . In the same way, we can deduce from the lemmas 2 and 4 that the principal part L_0 of an operator L of the form (1) with coefficients in $C^{\infty}(\Omega)$ is not hypoelliptic in any subdomain Ω' of Ω under the condition (3), since if L_0 is hypoelliptic in Ω' , ${}^{t}L_0$ is solvable in a neighbourhood of each point of Ω' and L_0 satisfies the condition H at every point of Ω' .

Next, we are going to show that L with coefficients in $C^{\infty}(\Omega)$ is not hypoelliptic in Ω under the condition (3). Assume that L is hypoelliptic in Ω and the condition (3) holds. If there exists a solution v of the equation Lv = 0 in a subdomain Ω_1 of Ω such that v does not vanish in Ω_1 , we can construct a function $h \in C^{\infty}(\Omega_1)$ satisfying

$$L_0h=a$$
.

In fact we have only to take $h = -\log v$. (Here note that v is in $C^{\infty}(\Omega_1)$ by the assumption on L and that we may, without loss of generality, assume that the range of v is in the upper half-complex plane). By the same method as in the proof of Lemma 1, it follows that L_0 is hypoelliptic in Ω_1 . This is a contradiction. Therefore v vanishes in every open set where Lv vanishes. On the other hand, by Lemma 4 and the assumption on L, L satisfies the condition H at each point of Ω . From this and Lemma

329

2, we can conclude that L is solvable in some subdomain Ω_0 of Ω . Hence the equation

$$Lu = f$$

has a solution $u \in C^{\infty}(\Omega_0)$ for every $f \in C_0^{\infty}(\Omega_0)$. Thus we can more generally assert that the equation (11) has a unique solution $u \in C^{\infty}(\Omega_0)$ for every $f \in C^{\infty}(\Omega_0)$. Hence *L* is bijective and continuous mapping on $C^{\infty}(\Omega_0)$ onto itself. By the open mapping theorem of Banach, the inverse mapping of *L* is also continuous. Therefore we can apply Lemma 5 to M = L. That is, *L* is equal, in Ω_0 , to an operator of multiplication by a function in $C^{\infty}(\Omega_0)$. Since this contradicts the condition (3), the proof is complete.

Remark. The author was informed that Mr. A. Yoshikawa had proved the following as an application of Lemma 4: If L_0 of the form (2) with coefficients in $C^{\omega}(\Omega)$ satisfying the condition (3) is hypoelliptic in Ω , then $n \leq 1$ (see [5]).

References

- [1] L. Hörmander: Linear partial differential operators, Springer-Ver., Berlin (1963).
- [2] S. Mizohata: Solutions nulles et solutions non analytiques, J. Math. Kyoto Univ., 1 (1962), 271-302.
- [3] L. Nirenberg and F. Trèves: Solvability of a first order linear partial differential equation, Comm. Pure Appl. Math., 16 (1963), 331-351.
- [4] H. Suzuki: Analytic-hypoelliptic differential operators of first order in two independent variables, J. Math. Soc. Japan, 16 (1964), 367-374.
- [5] A. Yoshikawa: On the hypoellipticity of differential operators, J. Fac. Sci. Univ. Tokyo, 14 (1967), 81–88.

Department of Mathematics Aichi University of Education Okazaki-shi, Aichi-ken (Japan)