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§ 1. Introduction. Let Ω be a domain in the (n +1)-dimensional

euclidian space Rn+1. A linear partial differential operator P with coefficients

in C00^)1) (resp. in Cω{Ω)V) will be termed hypoelliptic (resp. analytic-

hypoelliptic) in Ω if a distribution u on Ω (i.e. u e &ί\Ω)) is an infinitely

differentiable function (resp. an analytic function) in every open set of Ω

where Pu is an infinitely differentiable function (resp. an analytic function).

In the present paper, we consider a linear partial differential operator

(1)

where the coefficients are complex-valued infinitely differentiable functions

(or complex-valued analytic functions) in a domain Ω of Rn+1.

Now the main result is :

THEOREM. Suppose that n > 2. A linear partial differential operator of the

form (1) with coefficients in C°°(Ω) {resp. in Cω(Ω)) is hypoelliptic (resp. analytic-

hypoelliptic) in Ω if and only if all the functions aJ{y) (j = 1, , n + 1)

identically vanish in Ω and the function a(y) vanishes at no point of Ω.

For n = 1, the hypoellipticity and the analytic-hypoellipticity of the

operator of the form (1) with coefficients in Cω are characterized by

H. Suzuki [4] under the condition \aί{y)\ + \a2{y)\i= 0 for every y e Ω and

a{y) = 0 in Ω.

In the next section, we shall first show that if L(n > 1) has coefficients

in Cω(Ω) and satisfies the condition (3) (see § 2), the hypoellipticity of L as

well as the analytic-hypoellipticity of L has no respect to the factor a(y)

and we shall study relations between the solvability2) and the hypoellipticity

of L. In the last section, we shall prove the theorem.

Received June 7, 1967.
*) We denote by C°°(ί2) the totality of complex-valued infinitely differentiable functions

in Ω and by Cω(Ω) the totality of complex-valued analytic functions in Ω.
2) A linear partial differential operator defined on Ω is called solvable in a subdomain

Ωo of Ω if the equation Pu = / has a solution u eϋ^'ί^o) for every / e CQ(ΩQ).
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§ 2. Preliminaries. We denote by Lo the principal part of L :

(2) ^ = !/(2/)^Γ.

In this section, we always assume that

(3) W | J \aj{y)\ψ0, for all y e Ω.

We first state the following :

LEMMA 1. Suppose that n > 1. An operator L of the form (1) with

coefficients in Cω(Ω) and satisfying the condition (3) is hypoelliptic (resp. analytic-

hypoelliptic) in Ω, if and only if the operator Lo is hypoelliptic {resp. analytic-

hypoelliptic) in Ω.

Proof Let y 0 be an arbitrary point of Ω. By the Cauchy-Kovalevsky

theorem, we can find a solution h{y), analytic in some neighbourhood N

of yQ, of the equation

LQh = a.

From this, we can deduce

(L0(ehu) = ehLu,
(4)

[L{e~hu) =

for all u e &'(N). We can immediately conclude Lemma 1 from (4), since

the notion of hypoellipticity as well as that of analytic-hypoellipticity has a

local property.

Q.E.D.

We set

n + l •

and denote by C the commutator

We say L satisfy the condition H at a point y0 of Ω, if C may be
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represented as a linear combination of Lo and Lo at y = yQ. The Horman-

der's necessary condition for L to be solvable in a subdomain ΩQ of Ω is

that L* satisfies the condition H at every point of ΩQ (see Chap. VI of

Hormander [1]).

LEMMA 2. Suppose that n > 2. If L with coefficients in C°°(Ω) {resp. in

Cω(Ω)) and satisfying the condition (3) fulfils the condition H at every point of 42,

it then follows that LQ is not hypoelliptic {resp. not analytic-hypoelliptic) in Ω and

there exists a subdomain of Ω where L is solvable.

Proof. The proof was suggested by Nirenberg-Treves [3]. Let y0 be

a point fixed arbitrarily in Ω. By a suitable coordinate transformation in

some neighbourhood of the point y0, Lo may be expressed in the form

U = 9(*> t)(~jτ + i g **(x, t) -g|r), g(x, t) ψ 0,

(/ = T/ZIΪ, x = (a1, ,xn)) in a neighbourhood N of the origin : x = 0,

t = 0, so that L is written by the new coordinate as follows :

(5) L = g(x, f )(-^- + i g bj(x, t) -^r) + c(x, t),

where b\x91) (j = 1, , w) are real-valued, and the transformation of

coordinates and the coefficients of L of the form (5) are both infinitely

differentiable (resp. analytic) in N, if the coefficients of L of the form (1)

is infinitely differentiable (resp. analytic) in Ω (see [3]).

If L satisfies the condition H in Nf it follows that

(6) Htt(x9t)ζj = 0 i{ΣbJ\x,t)ξj = O, (x,t)<=N, ? e i ? w ,

where H(x9t) = ^{xtt).

Let b{x,t) be the real vector (b^x^t), ,bn(x,t)) and \b{x,t)\ be the

length of the vector b :

If \b(x, t)\ identically vanishes in N, any function depending only on the

variables x is always a solution of the equation LQu = 0. Otherwise, we

can find a subdomain Nt of N in which b(x9t) never vanishes. Thus it

follows from (6) that there exists a real-valued function β(x91) in C"(JVi) such

that
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(7) bt{x,t)=β{x,t)b{x,t),

where we have put bt = (b\, ,δ"), and from (7) we obtain

-jΓ(b(x,t)l\b(x,t)\)=O, in Nx.

Hence the real vector b{x,t)/\b(x,t)\ is independent of the variable t. If

we put v(x) = b(x,t)l\b(x,t)\, Lo is rewritten in the form

f +1 b{χ, t) I g «'(*) ~

where p(#) = (v1^), •,#*(#)). Any solution of the equation

depending only on the variables x is a solution of the equation LQu = 0.

From these fact, we can assert the first half of the lemma and at the same

time we can easily see that L has the property (P) (introduced in [3]) in

some subdomain N' of N9 that is, there is a unit vector v — v(x) depending

on the α -variable only such that b is given by b{x, t) =\b(x, t)\v(x) in N'.

Thus using Theorem 2. 1 of [3], we obtain the later half of the lemma.

Q.E.D.

LEMMA 3. Suppose that n > 1. If an operator L of the form (1) with

coefficients in Cω(Ω) and satisfying the condition (3) does not fulfil the condition H

at some point in Ω, it then follows that Lo is not analytic-hypoelliptic in Ω.

Proof This lemma is easily deduced from Theorem 4. 1 of Mizohata

[2]. But in our case the proof is simpler. We shall give an outline of the

proof.

Suppose that L does not fulfil the condition H at a point y0^ Ω.

Then we can construct a solution w of the equation Lou = 0 in a neigh-

bourhood N of 2/0 such that w{yQ) — 0 and the imaginary part of w is

positive in N, the point y0 excepted (see Chap. VI of [1]). If we take a

suitable branch, i/w{y) 3 is continuously differentiate in N and satisfies the

equation LQu = 0. But it is not twice-continuously differentiable at yQ.

This gives the proof.

Q.E.D.
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Finally, we state the lemma given by Mr. A. Yoshikawa (see [5]).

LEMMA 4. Let Ω be a domain of Rn+1(n > 0) and P be a general linear

partial differential operator with coefficients in C°°(Ω). If P is hypoelliptic in Ω,

then the formal adjoint ϋP of P is solvable in a neighbourhood of each point of Ω.

Here the differential operator ιP is defined by the identity

%-vdy =[u Ψvdy, u,v e Cζ(Ω).

Proof Suppose that P is hypoelliptic in Ω. Let S be the totality of

locally square-integrable functions u in Ω such that Pu is in C*{Ω). We

note S = C°°(Ω) and denote by GP the graph of P on S into C°°{Ω) in the

product space Lϊoc{Ω) x C°°(Ω), that is, GP = {[u,Pu] u e S}. Then, by the

open mapping theorem of Banach, the projection on GP onto C°°(Ω)([u,Pu]

-> u) is continuous 3\ Thus let y0 be an arbitrary point of Ω, No be a

neighbourhood of y0 whose closure iV0 is contained in Ω, and k be an

arbitrary integer > 0. There then exists a constant Co, an integer 50 > 0

and compact sets Ku K2 of Ω depending on k and iV0 such that

(8) \U\KΊ7Q ^C0{Qju\*dy) +\Pu\.0tK2\, u e C(Ω).

If we choose a neighbourhood N of y 0 such that N c JV0 and

we obtain from (8) that

\\φ\\k^\Pφ\So,

where we have put

\\D*φ\*dy)

3) By a we denote multi-indices a = (α^, « , α n + 1 ) of non-negative integers. Their sum
is denoted by | α | . With Dj = — id/dy*, we set

n * — r > α i . . . n α « + i
JL̂  — i>Ί L>n+i -

The topology of C°°(Ω) is then defined by the semi-norms | \m,κ :

l/ l« .r= Σ sup|Z> /(y)l,
| α | < m y<=K

where m is any non-negative integer and K is any compact set of Ω. Hence C°°(Ω) is a
Frέchet space by this topology.
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From this we may deduce the inequality

(9) ll9>ll*^C||/VII. , <P

since we have

\ψ\S0^C\\φ\\s , φ<=C~0(N)

with some integer 5 > 0 and a constant C > 0.

From (9) we can immediately see that *P is solvable in a neighbour-

hood of each point of Ω.

Q.E.D.

§ 3. Proof of Theorem. Finally we prove the theorem stated in

the introduction. We have only to prove the following :

PROPOSITION. If n^29 no operator of the form (1) with coefficients in

C°°{Ω) {resp. in Cω{Ω)) and satisfying the condition (3) is hypoelliptic {resp. analytic-

hypoelliptic) in Ω.

Before proving the proposition, we must state a lemma which is needed

in proving the proposition above.

LEMMA 5. Let M be a linear mapping on C°°(42) onto itself which satisfies

the following conditions :

( i ) The mapping M is bijectiυe and bicontinuous 4 \

(ii) A function u belonging to C°°(Ω) identically vanishes in a subdomain of

Ω if and only if Mu identically vanishes there.

Then M is an operator of multiplication by a non-vanishing function in C*(Ω).

Proof of Lemma 5. It is clear that M and its inverse mapping M"1

are both linear partial differential operators with coefficients in

M = P(y,D) =

where my and ny are exact orders of P{y,D) and Q{y,D) at a point y

respectively, and they are bounded when y goes over a compact set* of Ω.

First of all, we shall show that my and ny both identically vanish in

4) The topology of C°°(Ω) is the same one as the topology stated in footnote 3).
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Ω. Assume that nv & 0 in Ω. There then exists a subdomain ΩQ of

Ω, ΩQCIΩ, where ny is a positive constant, say n. Put m = maxm1/. By
yeΩ0

Pm(y>ζ) 'and Qn{y,ξ), we denote the principal parts of the characteristic

polynomials P(y,ξ) and Q{y,ζ) (y e ΩQ, f e F + 1 ) respectively. Clearly we

have

do) Pm(y,ζ)Qn(y>ξ) = o

for all 2/ G β0 and all f E Rn+1. It follows from (10) that Pm{y,ξ) = 0 for

all y e β0 and all f e 7?n+1. Hence we have m = 0. This is a contradic-

tion, since PQ(y,ξ) = (M(ί))(y) in £?0 Therefore n y as well as my identically

vanishes in Ω. Thus we can assert that M is equal to an operator of

multiplication by a nonvanishing factor. This completes the proof of

Lemma 5.

Proof of Proposition. Let L be an operator of the form (1) with coeffi-

cients in Cω{Ω). Assume that the condition (3) is fulfiled. The lemmas

1,2 and 3 show us that L is not analytic-hypoelliptic in Ω. In the same

way, we can deduce from the lemmas 2 and 4 that the principal part LQ

of an operator L of the form (1) with coefficients in C°°(Ω) is not hypoelliptic

in any subdomain Ωr of Ω under the condition (3), since if LQ is hypoelliptic

in Ωr, *LQ is solvable in a neighbourhood of each point of Ωr and Z,o

satisfies the condition H at every point of Ω\

Next, we are going to show that L with coefficients in C°°{Ω) is not

hypoelliptic in Ω under the condition (3). Assume that L is hypoelliptic

in Ω and the condition (3) holds. If there exists a solution υ of the equa-

tion Lυ = 0 in a subdomain Ωx of Ω such that υ does not vanish in Ωί9 we

can construct a function h e C*{Ωά satisfying

LQh = a.

In fact we have only to take h = — logv. (Here note that υ is in C " ^ )

by the assumption on L and that we may, without loss of generality, assume

that the range of v is in the upper half-complex plane). By the same

method as in the proof of Lemma 1, it follows that Lo is hypoelliptic in

Ωx. This is a contradiction. Therefore v vanishes in every open set where

Lv vanishes. On the other hand, by Lemma 4 and the assumption on

L, L satisfies the condition H at each point of Ω. From this and Lemma
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2, we can conclude that L is solvable in some subdomain ΩQ of Ω. Hence

the equation

(11) Lu= f

has a solution u e C°°{ΩQ) for every / e C%{ΩQ). Thus we can more generally

assert that the equation (11) has a unique solution u e C~(β0) for every

/ G C°°(J20). Hence L is bijective and continuous mapping on C°°(ΩQ)

onto itself. By the open mapping theorem of Banach, the inverse mapping

of L is also continuous. Therefore we can apply Lemma 5 to M = L.

That is, L is equal, in ΩQ, to an operator of multiplication by a function

in C°°(ΩQ). Since this contradicts the condition (3), the proof is complete.

Remark. The author was informed that Mr. A. Yoshikawa had proved

the following as an application of Lemma 4 : If Lo of the form (2) with

coefficients in Cω{Ω) satisfying the condition (3) is hypoelliptic in Ω, then

n ^ l (see [5]).
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