NOTE ON SCHIFFER'S VARIATION IN THE CLASS OF UNIVALENT FUNCTIONS IN THE UNIT DISC

KIKUJI MATSUMOTO

1. Let S denote the class of univalent functions $f(z)$ in the unit disc $D:|z|<1$ with the following expansion:

$$
\begin{equation*}
f(z)=z+a_{2} z^{2}+a_{3} z^{3}+\cdots+a_{n} z^{n}+\cdots \tag{1}
\end{equation*}
$$

We denote by $f_{n}(z)$ the extremal function in S which gives the maximum value of the real part of a_{n} and by D_{n} the image of D under $w=f_{n}(z)$. Schiffer proved in his papers [1] and [2] by using his variational method that the boundary of D_{n} consists of analytic slits $w=w(t), t$ being a real parameter, satisfying

$$
\begin{equation*}
\left(\frac{d w}{d t}\right)^{2} \frac{1}{w} \sum_{k=2}^{n} \frac{a_{n}^{(k)}}{w^{k}}<0 \tag{2}
\end{equation*}
$$

where $a_{n}^{(k)}$ is the nth coefficient of $f_{n}(z)^{k}=\sum_{\nu=k}^{\infty} a_{\nu}^{(k)} z^{\nu}$, so that follows from the Schwarz reflection principle

$$
\begin{equation*}
\frac{z^{2} f_{n}^{\prime}(z)^{2}}{f_{n}(z)} \sum_{k=2}^{n} \frac{a_{n}^{(k)}}{f_{n}(z)^{k}}=(n-1) a_{n}+\sum_{k=1}^{n-1} k\left(\frac{a_{k}}{z^{n-k}}+\bar{a}_{k} z^{n-k}\right) \tag{3}
\end{equation*}
$$

in the z-plane. Thus the left-hand side of (3) is due to a variation of the range D_{n}. In this note, we shall show that the right-hand side of (3) is due to a variation of the domain D.
2. For a complex number r, a real number τ and a sufficiently small $r>0$, we consider the finite w-plane slit along the segment $S(r ; r, \tau)$ with end points $\gamma-r e^{i \tau}$ and $\gamma+r e^{i \tau}$ and denote it by $\Omega(r ; r, \tau)$. For ω, $-1<\omega<1$, let $\Lambda^{+}(\gamma ; r, \tau, \omega)$ and $\Lambda^{-}(\gamma ; r, \tau, \omega)$ be the circular arcs with end points $r-r e^{i \tau}$ and $r+r e^{i \tau}$ where they make with $S(r ; r, \tau)$ inner angles being equal to $\pi \omega$. We denote by $\Delta(\gamma ; r, \tau, \omega)$ the domain which is

[^0]obtained from the finite w-plane when we delete the closure of the domain bounded by $\Lambda^{+}(\gamma ; r, \tau, \omega) \cup \Lambda^{-}(r ; r, \tau, \omega)$. Then the mapping function which maps $\Omega(r ; r, \tau)$ conformally onto $\Delta(\gamma ; r, \tau, \omega)$ is obtained by
\[

$$
\begin{equation*}
\eta=r e^{i \tau} \frac{\left(w-\gamma+r e^{i \tau}\right)^{1-\omega}+\left(w-\gamma-r e^{i \tau}\right)^{1-\omega}}{\left(w-\gamma+r e^{i \tau}\right)^{1-\omega}-\left(w-\gamma-r e^{i \tau}\right)^{1-\omega}}+\gamma, \tag{4}
\end{equation*}
$$

\]

and hence it has the following expansion with respect to r :

$$
\begin{equation*}
\eta=\frac{w-\gamma}{1-\omega}\left(1-\frac{\omega(2-\omega) e^{2 i \tau}}{3(w-\gamma)^{2}} r^{2}+o\left(r^{2}\right)\right)+\gamma . \tag{5}
\end{equation*}
$$

3. For a real $\delta>0$, we consider the mapping function which maps $\Delta(r ; r, \tau, 1 / 2)$ conformally onto $\Omega(r ; r, \tau+\delta)$. This is obtained by

$$
\begin{equation*}
\xi=\frac{\eta+\gamma}{2}+\frac{e^{2 i(\tau+\delta)}}{2(\eta-\gamma)}-r^{2} \tag{6}
\end{equation*}
$$

Now we set $\omega=1 / 2$ in (5) and substitute the resulting right-hand side of (5) for η of (6). Then we have

$$
\begin{equation*}
\xi=w-\frac{\left(1-e^{2 i \delta}\right) e^{2 i \tau}}{4(w-r)} r^{2}+o\left(r^{2}\right), \tag{7}
\end{equation*}
$$

which maps $\Omega(r ; r, \tau)$ conformally onto $\Omega(r ; r, \tau+\delta)$.
4. We note that the extremal function $f_{n}(z)$ can be continued analytically in some neighborhood of each $\varepsilon=e^{i \theta}$ on $C:|z|=1$, except for finitely many points, because of the analyticity of the boundary curve of D_{n}. Let $\varepsilon=e^{i \theta}$. be such a point on C. Now we set $\gamma=f_{n}(\varepsilon)$ and $e^{i \tau} r=i \varepsilon f_{n}^{\prime}(\varepsilon) \rho+o(\rho), \rho=\theta-\theta_{0}$, in (7) and then substitute $f_{n}(z)$ for w there. We have

$$
\begin{equation*}
\xi=g(z)=f_{n}(z)+\frac{\left(1-e^{2 i} \delta\right) \varepsilon^{2} f_{n}^{\prime}(\varepsilon)^{2}}{4\left(f_{n}(z)-f_{n}(\varepsilon)\right)} \rho^{2}+o\left(\rho^{2}\right) . \tag{8}
\end{equation*}
$$

Normalizing $g(z)$ so that the resulting function vanishes and its derivative is 1 at the origin, we see that there is a function $f^{*}(z)$ in S with the following form:

$$
\begin{equation*}
f^{*}(z)=f_{n}(z)+\frac{\left(1-e^{2 i \delta}\right) \varepsilon^{2} f_{n}^{\prime}(\varepsilon)^{2} f_{n}(z)^{2}}{4 f_{n}(\varepsilon)^{2}\left(f_{n}(z)-f_{n}(\varepsilon)\right)} \rho^{2}+o\left(\rho^{2}\right), \tag{9}
\end{equation*}
$$

and hence

$$
\begin{equation*}
f^{*}(z)=z+\sum_{\nu=2}^{\infty}\left\{a_{\nu}-\frac{\left(1-e^{2 i \delta}\right) \varepsilon^{2} f_{n}^{\prime}(\varepsilon)^{2}}{4 f_{n}(\varepsilon)}\left(\sum_{k=2}^{\nu} \frac{a_{k}^{(k)}}{f_{n}(\varepsilon)^{k}}\right) \rho^{2}+o\left(\rho^{2}\right)\right\} z^{\nu} . \tag{10}
\end{equation*}
$$

Since $f_{n}(z)$ is the extremal function, we have

$$
\begin{equation*}
\mathscr{R}\left\{\frac{\left(1-e^{2 i \delta}\right) \varepsilon^{2} f_{n}^{\prime}(\varepsilon)^{2}}{4 f_{n}(\varepsilon)} \sum_{k=2}^{n} \frac{a_{n}^{(k)}}{f_{n}(\varepsilon)^{k}}\right\} \geqq 0 \tag{11}
\end{equation*}
$$

where δ is an arbitrary real number. Hence we have a result of Schiffer [1] :

$$
\begin{equation*}
\frac{\varepsilon^{2} f_{n}^{\prime}(\xi)^{2}}{f_{n}(\varepsilon)} \sum_{k=2}^{n} \frac{a_{n}^{(k)}}{f_{n}(\varepsilon)^{k}} \geqq 0 \tag{12}
\end{equation*}
$$

5. For $\theta_{0}\left(0 \leqq \theta_{0}<2 \pi\right), \varphi(-1 / 2<\varphi<1)$ and a small $\rho>0, C\left(\theta_{0} ; \rho\right)$ denotes the complement of the subarc $r=1, \theta_{0}-\rho<\theta<\theta_{0}+\rho\left(z=r e^{i \theta}\right)$ of C and $\Gamma\left(\theta_{0} ; \rho, \varphi\right)$ the circular arc with end points $e^{i\left(\theta_{0}-\rho\right)}$ and $e^{i\left(\theta_{0}+\rho\right)}$ where it makes with $C\left(\theta_{0} ; \rho\right)$ inner angles being equal to $(1+\varphi) \pi$. We denote by $D\left(\theta_{0} ; \rho, \varphi\right)$ the domain bounded by $C\left(\theta_{0} ; \rho\right) \cup \Gamma\left(\theta_{0} ; \rho, \varphi\right)$. Then the mapping function $\zeta=\zeta(z)$ with $\zeta(0)=0$ and $\zeta^{\prime}(0)>0$ which maps conformally $D\left(\theta_{0} ; \rho, \varphi\right)$ onto the unit disc $|\zeta|<1$, is obtained by

$$
\text { 3) } \begin{align*}
\zeta=\varepsilon e^{-i \rho /(1+\varphi)} \times \tag{13}\\
\times \frac{\left\{\left(i-\frac{\bar{\varepsilon} z-\cos \rho /(1+\sin \rho)}{1-\bar{\varepsilon} z \cos \rho /(1+\sin \rho)}\right) /\left(1-i \frac{\bar{\varepsilon} z-\cos \rho /(1+\sin \rho)}{1-\bar{\varepsilon} z \cos \rho /(1+\sin \rho)}\right)\right\}^{1 /(1+\varphi)}-e^{i \rho /(1+\varphi)}}{\left\{\left(i-\frac{\bar{\varepsilon} z-\cos \rho /(1+\sin \rho)}{1-\bar{\varepsilon} z \cos \rho /(1+\sin \rho)}\right) /\left(1-i \frac{\bar{\varepsilon} z-\cos \rho /(1+\sin \rho)}{1-\bar{\varepsilon} z \cos \rho /(1+\sin \rho)}\right)\right\}^{1 /(1+\varphi)}-e^{-i \rho /(1+\varphi)}},
\end{align*}
$$

where $\varepsilon=e^{i \theta_{0}}$. Hence the inverse function is obtained by

$$
\begin{equation*}
z=\varepsilon \frac{\left(i+e^{i \rho}\right)\left(1-\bar{\varepsilon} e^{i \rho}(1+\varphi) \zeta\right)^{1+\varphi}-\left(1+i e^{-i \rho}\right)\left(e^{i \rho /(1+\varphi)}-\bar{\varepsilon} \zeta\right)^{1+\varphi}}{\left(1+i e^{-i \rho}\right)\left(1-\bar{\varepsilon} e^{i \rho(1+\varphi)} \zeta\right)^{1+\varphi}-\left(i+e^{i \rho}\right)\left(e^{i \rho /(1+\varphi)}-\bar{\varepsilon} \zeta\right)^{1+\varphi}}, \tag{14}
\end{equation*}
$$

so that we have the following expansion with respect to ρ :

$$
\begin{equation*}
z=\zeta\left(1+\frac{\varphi(2+\varphi)(1+\bar{\varepsilon} \zeta)}{6(1+\varphi)^{2}(1-\bar{\varepsilon} \zeta)} \rho^{2}+o\left(\rho^{2}\right)\right) \tag{15}
\end{equation*}
$$

6. Substitute $2 \omega /(1-\omega)$ for φ in (15) and the resulting right-hand side of (15) for z of $w=f_{n}(z)$. Now compose this with (5), where $\gamma=f_{n}(\varepsilon)$ and $e^{i \tau} r=i \varepsilon f_{n}^{\prime}(\varepsilon) \rho+o(\rho)$, and normalize the composite function so that the resulting one vanishes and its derivative is 1 at the origin $\zeta=0$. Then we see that there exists a function $f^{*}(\zeta)$ in S with the following form :

$$
\begin{align*}
f^{*}(\zeta)=f_{n}(\zeta)+\left\{\frac { 2 \omega } { 3 (1 + \omega) ^ { 2 } } \left(f_{n}^{\prime}(\zeta) \zeta\right.\right. & \left.\frac{1+\bar{\varepsilon} \zeta}{1-\bar{\varepsilon} \zeta}-f_{n}(\zeta)\right)+ \tag{16}\\
& \left.+\frac{\omega(2-\omega) \varepsilon^{2} f_{n}^{\prime}(\varepsilon)^{2} f_{n}(\zeta)^{2}}{3 f_{n}(\varepsilon)^{2}\left(f_{n}(\zeta)-f_{n}(\varepsilon)\right)}\right\} \rho^{2}+o\left(\rho^{2}\right)
\end{align*}
$$

Since $f_{n}(\zeta)$ is the extremal function, we have for each ω with sufficiently small $|\omega|$,

$$
\begin{equation*}
\frac{\omega(2-\omega) \varepsilon^{2} f_{n}^{\prime}(\varepsilon)^{2}}{3 f_{n}(\varepsilon)} \sum_{k=2}^{n} \frac{a_{n}^{(k)}}{f_{n}(\varepsilon)^{k}}-\frac{2 \omega}{3(1+\omega)^{2}}\left\{(n-1) a_{n}+2 \mathscr{R} \sum_{k=1}^{n-1} k \bar{\varepsilon}^{n-k} a_{k}\right\} \geqq 0 . \tag{17}
\end{equation*}
$$

Thus we see that for the extremal function $f_{n}(z)$ in S which gives the maximum value of the real part of a_{n},

$$
\begin{equation*}
(n-1) a_{n}+2 \mathscr{R} \sum_{k=1}^{n-1} k \bar{\varepsilon}^{n-k} a_{k}=\frac{\varepsilon^{2} f_{n}^{\prime}(\varepsilon)^{2}}{f_{n}(\varepsilon)} \sum_{k=2}^{n} \frac{a_{n}^{(k)}}{f_{n}(\varepsilon)^{k}} \tag{18}
\end{equation*}
$$

on C.
By (12) the function $q(z)=\left(z^{2} f_{n}^{\prime}(z)^{2} / f_{n}(z)\right) \sum_{k=2}^{n}\left(a_{n}^{(k)} / f_{n}(z)^{k}\right)$ is real on C, and hence we see by the Schwarz reflection principle that $q(z)$ is a rational function. By (18) the value of $q(z)$ is equal to that of the rational function $(n-1) a_{n}+\sum_{k=1}^{n-1} k\left(a_{k} / z^{n-k}+\overline{a_{k}} z^{n-k}\right)$ on C, so that we have the following result of Schiffer [1]: For the extremal function $f_{n}(z)$,

$$
\begin{equation*}
\frac{z^{2} f_{n}^{\prime}(z)^{2}}{f_{n}(z)} \sum_{k=2}^{n} \frac{a_{n}^{(k)}}{f_{n}(z)^{k}}=(n-1) a_{n}+\sum_{k=1}^{n-1} k\left(\frac{a_{k}}{z^{n-k}}+\bar{a}_{k} z^{n-k}\right) . \tag{19}
\end{equation*}
$$

References

[1] Schiffer, M.: A method of variation within the family of simple functions, Proc. London Math. Soc., 44 (1938), 432-449.
[2] Schiffer, M.: On the coefficients of simple functions, ibid., 450-452.

Mathematical Institute

Nagoya University

[^0]: Received June 19, 1967.

