
G. W. Johnson and D. L. Skoug
Nagoya Math. J.
Vol. 60 (1976), 93-137

THE CAMERON-STORVICK FUNCTION SPACE INTEGRAL:

AN L{Lp,Lpf) THEORY

G. W. JOHNSON AND D. L. SKOUG

0. Introduction.

In [3] Cameron and Storvick introduced a very general operator-
valued function space "integral". In [3-5, 8, 9, 11, 13-20] the existence
of this integral as an operator from L2 to L2 was established for certain
functions. Recently the existence of the integral as an operator from
Lj to Loo has been studied [6, 7, 21]. In this paper we study the integral
as an operator from Lp to Lv, where 1 < p < 2. The resulting theorems
extend the theory substantially and indicate relationships between the
L2-L2 and L^L^ theories that were not apparent earlier. Even in the
most studied case, p = p' = 2, the results below strengthen the theory.

Before giving the basic definitions, we fix some notation. Rv will
denote ^-dimensional Euclidean space. C will denote the complex
numbers and C+ the complex numbers with positive real part. If Y
and Z are Banach spaces, L(Y,Z) will denote the space of continuous
linear operators from Y to Z. For v a positive integer, let Cv[α, 6]
denote the space of jRυ-valued continuous functions on [α, &]. Cv

0[a, b]
will denote those X in Cv[a, b] such that X(a) = 0. Cv

0[a, b] will be
referred to as "Wiener space" and integration over Cv

0[a, b] will always
be with respect to Wiener measure.

Let 1 < p < 2 be given. Let F be a function from Cv[a, b] to C.
Given λ > 0, ψ in LP(RV) and ξ in R% let

(0.1) (W)ψ)(?) = ί F(λ'1/2X + ξ)ψ(λ-v2X(b) + ξ)dm{X) .
JCv

oίa,bl

If Iλ(F)ψ is in LP,(RV) as a function of ξ and if the correspondence
ψ -»Ii(F)ψ gives an element of L Ξ L{LP(RV), Lp,(Rυ)), we say that the
operator-valued function space integral Iλ(F) exists.
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Next suppose that there exists λ0 (0 < λ0 < oo) such that Iλ(F) exists

for all λ in (0,λ0) and further suppose that there exists an L-valued

function which is analytic in C+ Ω {λ: \λ\ < λ0} = Cf0 and agrees with

Iλ(F) on (0, λQ); then this L-valued function is denoted iTiF) and is

called the operator-valued function space integral of F associated with

λ. We will most often be dealing with the case λ0 = oo.

Finally, let q be in R with \q\ < λQ. Suppose that there exists an

operator J™(F) in L such that for every ψ in LP(R") || e7*nCF)ψ - JΓCF)ΨIIP'

—> 0 as λ-+ —iq through Cλ

+

0 then J™(F) is called the operator-valued

function space integral of F associated with — iq.

The above definitions actually vary with p and v and so, for

example, the left side of (0.1) could be written as (IλiΊ>,v(F)ψ)(ξ) to reflect

this dependence. However, for a given F, it is natural to think of p

and v as fixed, and so, for this reason, and for notational convenience,

we will surpress reference to p and v.

The above definitions are very general but, from the point of view

of quantum mechanics, which provided the initial motivation for the

theory, it is J%F) and the following special type of function which are

of most interest:

(0.2) F(X) - exp Γfb θ(s,X(s))ds\

where θ is a C-valued function on [α, b] x Rv and X is in O[α, &]. As

we will see the existence theorems below deal with functions related to

but quite a bit more general than (0.2). Indeed the details of the theory

and examples in [14 and 17] make it seem unlikely that the theory goes

through for a large general class of functions F.

Next we describe briefly the results of this paper; in the process

we introduce some necessary notation. Given a number d such that

1 < d < oo, d and dr will always be related by 1/d + 1/cf = 1. If

1 < V < 2 is given let γ in [1, oo] be such that

1 - V' - V
(0.3) l _ J L _ " P / - 2 2 - p '

p pf

Note that γ = 1 when p = 1 and γ — oo when p = 2. In our theorems

v will be a positive integer restricted so that

(0.4) v < 2γ . (Note that 2γ > 2 for p > 1.)
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For 1 < p < 2 we will let r be a real number such that

(0.5) — ? ί — < r < oo .

2γ — v

When p = 2 the left member of (0.5) is 1 and we can allow

(0.6) 1 < r < oo (p = 2) .

The number v/2γ will occur often and so it is worthwhile introducing
a symbol for it:

(0.7) δ = — . (Note that 3 = 0 when p = 2.)
2 r

Let Lrr = Lrr([α, b] x Rv) be the space of all measurable C-valued
functions Θ on [α, &] x 2?y such that θ(s, •) is in Lr(i?

w) for almost all s
in [α, 6] and \\θ(s, )llr is in Ly([α, 6)].

The main existence theorem will appear in section 3 with applications
in sections 4 and 5. However much of the work comes in sections 1
and 2 in dealing with functions of the form

(0.8) = Π
/ = 1 Ja

where each θό is in Lrr([a, b] x Rv). For such functions we will see that
the operators IT(F) and J^(F) exist for all appropriate values of the
parameters λ and q and we will obtain explicit formulas for them.

Let A = A(p,v,r) be the class of functions of the form (0.8) as
well as the function identically 1. The main existence theorem for
I™(F) and J™(F) deals with functions of the form

(0.9) F(X) = Σ akFk(X)

where each Fk is in A and where certain restrictions to guarantee sum-
mability are placed on the αfc's.

In section 4 we show that the appropriate summability conditions
are satisfied for functions of the form

(0.10) F(X) = / [ £ Θ1(sf X(s))ds, ..., £ θk(s, X(s))ds]

where / is an entire function of k complex variables of order not
exceeding 1/δ. The results of section 4 hold in particular for functions
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of the form (0.2) since f(z) = exp (z) has order 1 which is always less
than 1/3.

In section 5 we apply our results to such functions and obtain a
solution to an integral equation which, in the case λ = — i> is formally
equivalent to Schroedinger's equation. We also obtain an approximation
formula in terms of sums of integrals over finite-dimensional spaces.

Section 6 contains some counterexamples related to the dimension
restriction (0.4).

We finish this introduction by indicating how our results relate to
previous theorems.

p = 2: The case p = 2 has been the most studied in this case the
most relevant earlier papers are [3, 4, 11, 15, 16]. A substantial part
of [11] is not readily comparable to the present paper; when we make
comparisons to [11] we have in mind section 7 and some of its prelim-
inaries. [15] refines some of the results of [3], and [11] extends to
higher dimensions the results of [3 and 4], and so we will make our
comparisons with [11 and 16]. When p = 2, the present paper combines
the advantages of [11 and 16] and goes somewhat further. As in [11]
we allow an arbitrary number of dimensions v rather than require
v = 1 also as in [11], θ is required to be measurable rather than con-
tinuous almost everywhere. We treat functions of the form (0.9) as in
[16] rather than strictly functions of the form (0.2). The present paper
requires, as in both [11 and 16], that for almost every s in [α, b],θ(s, •)
is in L^iR"). In [11 and 16] it is required that \\θ(s, )IL also be in
I/oo([α, &]); here we make the weaker requirement that ||0(s, )IL be in
Lλ{[a, &]). Perhaps the major advantage this paper has over both [11
and 16] is that our treatment of the integral equation (section 5 below)
is simpler both conceptually and in technical details. The treatment in
[11] follows the earlier clever but very involved treatment in [3 and 4].
In [16] we simplified a major part of [4], and here we carry this
simplification further while allowing more general 0's as discussed above.

1 < p < 2, p — 1: For 1 < p < 2 the results of the present paper
are new. They allow us to treat various unbounded 0's that could not
be treated before, and, in particular, to solve the integral equation
formally equivalent to Schroedinger's equation for such 0's.

In the p — 1 case the relevant earlier papers are [6, 7, and 21]. In
case p = 1 the definitions of Jjn(F) and JT(F) are actually somewhat
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different than in the present paper. Let ψ be in Lx. Rather than
taking the analyticity and limits connected with the definition of IT(F)ψ
and Jln(F)ψ respectively in L^-norm, one uses the weak* topology on
!/«, induced by its pre-dual Lv (Actually in [21], we have I™(F)Ψ and
Jln(F)ψ in the space CQ(R) of continuous functions that vanish at oo and
the analyticity and limits are with respect to the weak topology on C0(R)
induced by its dual, the space of regular Borel measure on R.) Because
of this difference of definition, and because the present techniques do
not yield any more in the p = 1 case than is already contained in [21],
and, finally, because the p = 1 case is done in detail in [21], we do not
formally include the p = 1 case in the present paper. We could alter-
nately have made the definitions of If"(F)ψ and J™(F)ψ in terms of the
weak* (=weak for 1 < p < 2) topology on Lp, induced by Lp and in-
cluded all the cases 1 < p < 2 in this paper.

The p = 1 and p = 2 cases, although formally related, have appeared
very different in many respects. In light of the present paper, one
recognizes these cases as the extremes in a continuum of possibilities
1 < P < 2 and sees that they are much more intimately related than
was previously apparent. For example, Haugsby [11] showed that for
p = 2 any dimension v could be handled. In contrast for p — 1 attempts
to extend the theory beyond v — 1 have failed. The restriction (0.4)
along with later details of proofs give more insight into the dimension
restrictions. When p = 1, (0.4) is a severe restriction; v must equal 1.
As p varies from 1 to 2, the restriction becomes less and less severe
and is no restriction at all when p = 2. An example given in section 6
shows that the severe dimension restriction found here and in earlier
papers when p — 1 is really needed.

/ \λ\ \v/2r

The norm estimate \\Cλ\\ < f —̂—ί— 1 given in Lemma 1.1 below for
\2τrs /

the operator C2 is the ultimate source for the difference in techniques

of proof as p varies from 1 to 2. Note that when p = 1, ||CJ involves

-J-L- to the v/2 power. For 1 < p < 2, any dimension is allowed which
2πs

keeps the power on -L-L less than 1. For p — 2, r = oo and so -ί-L
2πs 2πs

does not appear at all in the estimate for ||CJ| no matter what v may
be. The fact that formulas throughout the paper are much simpler
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when p = 2 traces back to the simple norm estimate on Cλ in this case.
The hypothesis put on θ(s, •) (for almost every s) is such that

θ(s, •)/(•) is in Lp if / is in Lp, (see Lemma 1.3). For p = 1, this
says θ(s, •) should be in Lλ whereas for p = 2, this puts θ(s, •) in L^\
this of course corresponds to the hypotheses of the previous papers.

As one proceeds through the paper one can see in more detail how
the techniques vary as p goes from 1 to 2 but the above should suffice
for now.

When p = 2 the class A of functions F which we are able to deal
with form a Banach algebra as was the case in [16]. Since the proof
of this fact follows quite closely the development in [16], we will simply
outline it here at the end of section 4. Also at the end of section 4
we outline some facts about the "sequential" operator valued function
space integral. The sequential integral has played a major role in some
earlier papers [3, 4, 5, 11, 15]. As in [16], the sequential integral exists
and equals the analytic operator valued function space integral for functions
in the Banach algebra A. In contrast, for p = 1, Cameron and Storvick [6]
have shown that the sequential integral may fail to exist in cases where the
analytic integral does exist. We will see that for all other p (1 < p < 2)
the situation is as in the p = 1 case. Further rather extreme pathologies
of the sequential integral have been exhibited in [9 and 20].

In sections 2-4 below the techniques of proof largely involve combin-
ing and extending ideas from [16 and 21] many of these ideas were in
turn based in part on earlier work of Cameron and Storvick. On the
other hand several of the techniques in sections 1, 5 and 6 are quite
different from techniques in earlier papers.

1. Some preliminary lemmas.

In this section we shall develop four preliminary lemmas that play
a critical role in this paper.

LEMMA 1.1. Let s be a positive number. Let 1 < p < 2, let γ be
given by (0.3) and let v satisfy (0.4). Given a nonzero complex number
λ with nonnegative real part, ψ in LP{RV) and ξ in R% let

(1.1) (C2ψ)(f) = (-/-Y/2 f HV) exp -λWV-^2 dV .
\ 2πs ) JRV 2s

Then Cλ is in L(LP(RV),LP,(RV)) and
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/ i i \»(l/2-l/p') / i i W2 r

(1.2) HCJ^ίiίL) =(#-)
V 2 I \ 2πs I

Remark, (i) When v is odd we always choose λι/2 with nonnegative
real part, (ii) When 1 < p < 2 and ReΛ = 0 the integral in (1.1)
should be interpreted in the mean just as in the theory of the Lp

Fourier transform [2; Definition 5.2.8, p. 211].

Proof. We first treat the extreme cases p = 1 and p = 2. The
intermediate cases (1 < p < 2) will be handled by interpolation via the
M. Riesz convexity theorem [26; Theorem 1.3, p. 179].

p — 1: Here the result is clear since for all ξ

p = 2, λ = —iq (q Φ 0): In this case we may write

(1.3) (C_
2s

Hence in this case, C_iq is the composition of 3 unitary operators on

L2(RV): multiplication by exp -^-ϋ—L followed by a scaled version of
L 2s J

the Fourier-Plancherel transform followed by multiplication by

exp I J^JίJLI In particular ||C_^|| < 1 as desired.
L LiS -I

p = 2, Re λ > 0: In this case Ĉ  is the operator of convolution by
the Lx function

(1.4)

and it is known [26; Theorem 3.18, p. 28] that ||C,|| = \\^{e^ where
SF denotes the Fourier transform. By a fairly routine calculation one

sees that ^(eλ)(V) = exp Γ ~ 2 7 r 2 g ||7|l2j and so ||C2|| - W(fid\\~ = 1.

1 < p < 2: Fix λ such that ReΛ > 0 (λ Φ 0). In the terminology
of the M. Riesz convexity theorem as given in [26; Theorem 1.3, p. 179]
we have shown above that Cλ is of type (1, oo) with (1, oo) norm
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dominated by (-^-) and of type (2,2) with (2,2) norm dominated by
\2πs /

1. Applying the convexity theorem we have that Cλ is in L(LpyLp,)

with

v (1/2 -1/3)')

This finishes the proof of Lemma 1.1.

Remark. In the case p = 2 (v > 1) Haugsby [11 pp. 8-16] gives a

longer but more elementary proof; in particular his proof does not

depend on a use of [26; Theorem 3.18, p. 28].

LEMMA 1.2. Let 1 < p < 2, let ψ be in LP(RV) where v satisfies (0.4),

and let q be a nonzero real number. Then

(1.5) \\Cλψ - C_iqψ\\p, -> 0 as λ -> - ί g through C+ .

Proof. Fix p such that 1 < p < 2. Since {||CJ} is uniformly bounded

for Λ in a neighborhood of — ίq9 it suffices to establish (1.5) for ψ in a

fundamental subset of Lp; i.e. a subset of Lp whose span is dense. It

will be convenient to take the i -dimensional Hermite functions as the

fundamental subset since Cλψ can be specifically calculated for such

functions. The nth (1-dimensional) Hermite polynomial is defined by

(1.6) hn{u) = ( - l ) ^
dun

Then nth (1-dimensional) Hermite function is defined by

(1.7) Hn{u) =

The fact that the Hermite functions are a fundamental subset of LP(R)

is given in [2; Corollary 3.1.9, p. 122]. The ^-dimensional Hermite

functions have the form

(1.8) Hnu...inv(u19 •. , uv) = Π Hni{ud
ί = l

where nl9 , nv are nonnegative integers. The fact that the ^-dimensional

Hermite functions are fundamental in LP(RV) follows from the 1-dimen-

sional case and the fact that the following collection of functions is

fundamental in Lp(Rυ);
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I fl ΦάUi): φi is in LP(R) for i = 1, -, n\ .

We first need to calculate CλHnu...nv. A calculation by Cameron

and Storvick [5 pp. 361-362] shows that for Re λ > 0,

{CλHn)(u) = (-±-Y f Hn(w) exp Γ -λ{u- wf "K
\ 2τrs / J Λ L 2s J
(
\ 2τrs /
/ \(n+i)/2

( )

r/ \i/2 i

* KτbH
Arguing by analytic continuation, we see that (1.9) is also true for

Re λ = 0 0 ΐ 0). Hence we have

(1.10)

- ( / T f H.,....JW)«Φ
\ 2πs / JRV

f Π [g,M)exJ RV i L

To show that \\CλHnu.,.^nv — C_iqHniί...nv\\p, ->0 as >ϊ -* — ig through C+ it

suffices to consider a sequence {λj} from C+ such that λό -> — ΐg and show that

\\CλjHnii...ynv — Cf_<efl»lf...,fJ|p/ —> 0 as / —> oo. But to show that a sequence

of functions in LP,(RV) converges in the p^norm to another function, it

suffices, by the Dominated Convergence Theorem, to show that pointwise

convergence holds and that there is a dominating LP,(RV) function for

the sequence. In our setting, the pointwise convergence is clear and

we need only find the dominating LP,(RV) function. Note that

Re (—"iq ) = — £ — = D>0. Now Re ( — h — ) - > β as i->oo
V ~iq + s / s2 + q2 \ λj + s J

and so, for sufficiently large j , Re ( 1—) > Next observe that
\ λj + s / 2

since hni is a polynomial there exists constants A< and Bt such that

\hni(Ui)\ < A{exp[Bi\Ui\] for all ut in C. Also there exists Eo such that
1/2

< Eo for all j . Thus+ S
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[
λ4 + s

1/2 "1

\ξi\\
1

exp

for sufficiently large j . Clearly there also exists a constant Et such that

< E€ for all / . We can now see that for sufficiently large
ij + s

j , \(CiHnit...t1J(ξ)\ is dominated by the LP,(RV) function

The proof of Lemma 1.2 is now complete.

The following lemma follows quite easily from Holder's inequality

and is well known [22; p. 129]. We state it formally for convenience.

LEMMA 1.3. Let 1 < p < 2, let γ be given by (0.3) and let v satisfy

(0.4). // / is in LP,(RV) and θ is in Lr(Rv), then fθ is in LP(RV) and

(1.11) \\M\P< ll/llp' \\θ\\r.

Hence the operator Mθ of multiplication by θ is in L(LP,,LP) and

\\Mβ\\£\\θ\\r.

LEMMA 1.4. Let 1 < p < 2, let γ be given by (0.3) and let v satisfy

(0.4). Suppose that β19 -9θm are functions in Lr(Rv). Let a = s0 < sλ

< •.. < sm < sm+1 = 6. Let λ be a nonzero complex number with Re λ

> 0. Given ψ in LP{RV) and ξ in R% let (Gλ(sλ9 -,sm)ψ)(ξ) be defined by

(Gλ(s19. .,sm)ψ)(ξ)
2 f exp

sx — a)

(1.12)

X

X

X

X

2[2ττ(s2 - Sl)]-V/2 f Θ2(V2) e x p
2(S 2 —

exp
r

iv 2(s m - «„_,)

l "2[2πφ - s m )]-" / 2 f ψ(Fm+1) exp ~λ\\J^~^W
JR' 2(0 — sm)

Then G/Si, , sm) is in L(LP(RV), LP.(R")) and
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[ m Ί Γm+1 / Ml \ v/2r~l

Π 11**11, Π ( O - Γ - ^ v) -

Further for 1 K p < 2, nonzero real q, and ψ in LP(RV) we have

(1.14) \\Gλ(sl9 - , O ψ - G_ίq(sί9 • , s jψ | | p , -» 0

as λ-^ —iq through C+.

Proof. The fact that Gλ(s19 , sTO) is in L(LP(RV), Lr(Rv)) and satisfies

(1.13) follows immediately from the fact that Gλ(su « ,sm) is the com-

position of convolution operators as dealt with in Lemma 1.1 and multi-

plication operators as dealt with in Lemma 1.3.

Now suppose 1 < p < 2. The individual convolution operators

involved in Gλ(sί9 ,sm) converge (by Lemma 1.2) in the strong operator

topology to the convolution operators involved in G_iq(sl9 , sm) as λ —•

—iq. The multiplication operators involved in Gλ(su , sm) are inde-

pendent of λ and so certainly converge in the strong operator topology

as λ —> — iq. Now in general the composition of operators which converge

in the strong operator topology does not necessarily converge in the

strong operator topology. However, continuity of operator composition

in the strong operator topology does hold if the operators lie in a norm

bounded set; that is the case in our situation because of inequalities

(1.2) and (1.11) and the fact that we only need consider Γs in a bounded

neighborhood of — iq.

2. The existence of J™(F) F e A.

In this section, for F in A we shall establish the existence of

Iln(F) and J™(F) for all λ in C+ and all real q Φθ respectively.

Now that we have Lemmas 1.1-1.4, the proof of the following

theorem depends on combining and modifying the techniques from [16;

Theorem 1.1, p. 133] and [21; Theorem 1.1].

THEOREM 2.1. Let 1 < p < 2, let γ be given by (0.3) and let v and

r satisfy (0.4) and (0.5) respectively. Let F be given by (0.8) with each

θj in Lγr. Then If"{F) and J*q

n(F) exist for all λ in C+ and all real qφO

respectively. Further for λ in C+,ψ in Lp(Rυ) and ξ in Rv

\ Δπ / r
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X

X

x

(B) f [(s r ( 1 ) - ά)(sτi2) - β r ( 1 ) ) . . .(6 - s r (m))]-»/2

JS(r)

f (m + 1) f Γfi ^ ( Λ ( β . ( Λ ,

exp Γ-A Σ1 i i^-^-Ί

= Σ (B) ί ^ 2 [2;r(s τ ( 1 ) - a)]-'2 f 0 r ( 1 )(s t ( 1 ), F x )

X exp
(2.1)

2(s,(2) - s,α))

X
τ m τ m J Rv T m T m ' m

r _ χ \ \ γ _ γ ip Ί
exp — y ϋ - 1 ^ m-1" Λμ/2[2ττ(5 - s r ( m ) )]" ι ' / 2

X Ψ(Vm + i) e x P
| Λ V _ L 2 ( δ - s r ( m ) )

where VQ = f, sr(0) = α, sτ(w+1) = 6, ίfee swm is taken over all m! permu-
tations τ of {1, ,m},

S(τ) = {(Sx, , sj e (α, &)m: α < sr(1) < . . . < s t (w) < 6}

and where (B) f(s19 , sm)dS refers to the Bochner integral [12,
J £(r)

pp. 78-89] with respect to Lebesgue measure on S(τ). (In Corollary 2.2
we will see that this integral can also be interpreted as an ordinary
Lebesgue integral of a scalar-valued function over S(τ).)

For real q Φ 0, J*n(F) is given by the third expression in (2.1) with
X = —iq and where the integrals with respect to Vιy , Vm+1 are inter-
preted in the mean.

Finally we have

( i i \(m+l)δ
— ) \\g\\?(nιiy/r'(b - a)ma-r'δ)/r'{Γ(l — r^)} ( m + 1 ) / r /

(2.2) HiΓUOII < — 1 -f ^

where Γ denotes the Gamma function and where g: [a, b] —> R is gί
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(2.3) g(s) = max {^(s, )llr, , ||0m(β, )||r} .

The bound (2.3) also holds for \\J™(F)\\ with \λ\ replaced by \q\.

Proof. Fix p such that 1 < p < 2. For real λ > 0 let (Kx(F)ψ)(ζ)

denote the third expression in (2.1). We begin by showing that Kλ{F)

is in L(LP,LP,) with ||JfiL2(F)|| bounded by the right side of (2.2). Because

there are ml terms in the sum (2.1) and because 1/r' = 1 — 1/r, it

suffices to examine one term, say (XifT(F)ψ)(£), in the sum and show

that KλiT(F)ψ is in Lv, with

( 2 ' 4 ) H-ψΊlpf
2τr

~ (6 - a)δ{Γ[(m

We will go through the estimates needed to establish (2.4) in detail.

Closely related arguments will be needed several times further on but

will not be carried out in detail.

Let GλiT: S(τ) -> Lp, be defined by

2(sr(1) - a)
f Γ

'r(i) — o)Yv/2 #r(i)(sτ(i), Fj) exp -
JR» L

/o g\ ŝ  >/2Γ2ττfs s Ή"1^2 I ^ (s V )

X e x p Γ " " ^ l l y m — ^m-il l μ>/2[2^(6 — sτ(m))]-v/2

X f Ψ(Vm+1) exp Γ " ^ m + 1 " " ^ m l Π r f F m + r "dV1.J«" L 2(6 - sr(m)) J

By Lemma 1.4 for almost all (s1? ,sm) in S(τ), G^T(su - ,sw)(?) is an

Lβ/ function of ξ with

(2.6)

χ[(s r ( 1 ) - α)(sτ(2) - sr(1)) .(6 - sτim))]-δ .

We will show further on that GλjT is strongly measurable [12 Definition
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3.5.4]. Once this is done the following argument will show that GλiT is
Bochner integrable over S(τ) and that (2.4) holds.

\\Kλ>τ(F)ψ\\p, < (B) f Gi9V(8l9 , sj( . )ds\\
J S(τ) \\p'

f dS

( 151 \ (m+l)δ

f ) •

f Γίϊ WΛ,MΛ», )II,1[(S,(,, - α) -(δ - s,{.,)]-<ίS
J 5(r) L 1 J

( i i \ (m+l)« f Γ m "1

f1) Π fl'(Si) K«,α, - α) (& - 8tlm)y\-dS

( i i \ (m+l)3fC / m \ ^ 1/r

IT) (f,,,, (ί1 ̂ W
U ί(c)

But

(2.8) if Γfl sf(^ψs)1/r = ί-V f [Πfl W
U s w L i J J ί m ! Jcα,δ]wLi

Next we note that the restrictions on v and r were chosen so that
r'δ < 1. Thus the quantity [(sr(1) — α) •(& — sτ(m))]~r'δ is integrable over

S(τ). We now proceed to compute [(sτ(1) — ά) •(& — sr(w))]~r'δc£S or,

equivalently,

(2.9) f Γ m ... Γ [(s, - ά)(s2 - 5 l ) •(& - a J V ' - ' d s r - d s m .
J a J a J a

Making the substitution x = g l ~" a , we see that
So — a

(2.10)

Γ«2

[(§! — α)(s 2 — S i ) ] - 7 " 3 ^

= (52 - αy-2r'δ Γ x^-^^-^l - ^ α - "*)-1,
Jo

dx

- r'δ, 1 - r'ί)
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where β denotes the Beta function. At the next stage we make the
Q _ _ ft

substitution x = — and obtain
s3 - a

(2.11) P (s2 - ay-2r'δ(s3 - s2)~r'δds2 = (s3 -
J a

- 2r'δ, 1 - r*δ

We continue in this fashion until at the rath and last stage we make

the substitution x = Sm ~ a and obtain
b — a

= (6 - α)w"(m+1)r'δ/3(ra - mr'δ, 1 - r'δ) .

Combining the result of these ra integrations we see that (2.9) equals

(2.12)

(6 - α ) m " ( m + 1 ) r / δ Π β(j - jYδ, 1 - r'δ)
1

_ (δ — ά)m-(m+1)r'δ[Γ(l - r'δ)]m+1

Γ[(ra + 1)(1 - r'δ)]

(2.13)

Combining this last computation with (2.7) and (2.8) we obtain (2.4) as

desired.

To finish the proof that KX(F) is in L(LP,LP,) with \\K,(F)\\ bounded

by the right side of (2.2) it remains only to show that Git£s19 , sm)( )

as given by (2.5) is a strongly measurable function of (s19 •• ,sm) To

show that Ghτ is strongly measurable, it suffices, since Lp, is separable,

to show that it is weakly measurable [12; Theorem 3.5.3]. So given φ

in Lp9 we must show that

(2.14) ί φ(ξ)Gi9As19 -"98m)ίξ)dξ
v Rv

is a measurable function of s19 ,sTO. However

φ(ξ)( — ) [(sT(i) — α) -(δ — sT{m))]~v/2ψ(Vm+1)

r™ "i r 2 m + 1 WVΛ V* i l l 2 '
X Π 0τU)(SτU), Vj) e x p I—— Σt 7—1 - ^

L i J L 2 i (sτU) - s r ( J _i)).

(2.15)

is a measurable function of ξ9s19 , sm9 V19 , Vm+1 which is also

integrable with respect to all these variables as can be seen via the

Fubini-Tonelli Theorem as follows: Integrate the absolute value of
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(2.15) with respect to F m + 1 , •• ,V1 and ξ. One obtains a function of

(β19 , sm) which by Lemma 1.4 is bounded by

[
m

Π HWw)!,(2.16) "•'"''"rxrLγx-w-w ""JVRej/ \ 2π )

X T f Q ^ ^ /y\ ,(~hi _ _ Q ^~l"~ι'/2?'

L\"r(l) ~~~ ) \{J ~~~" &τ(τγi)/l '

But the function in (2.16) is an integrable function of slf — ,s m as we

have already shown as part of the argument in (2.7)-(2.13). Thus, by

the Fubini Theorem, the function obtained after integrating (2.15) with

respect to Vm+19 , Vx and ξ, namely (2.14), is measurable in (slf ,sTO)

as desired.

So now we know that for λ in C+,Kλ(F) is in L(LP,LP,) and HϋΓ/ί1)!!

is bounded by the right side of (2.2). Furthermore, another application

of the Fubini Theorem shows that K2(F)ψ> is also given by the second

expression in (2.1).

Next we wish to show that Kλ(F) is an L(LP, Lp,)-valued analytic

function of i in C+, It suffices to fix ψ and φ in Lp and show that

(Kλ(F)ψ,φ) is a scalar-valued analytic function of λ in C+ . In fact, as

before, we may concentrate on one term K^τ(F)ψ from (2.1) and show

that

(2.17) h(X) = ί φ(ξ)\(B) ί Gλ9Asu ,8m)(g)ds]dξ
JΛ" L JS(τ) J

is analytic in C+. Now by [12; Theorem 3.7.12 and following remark,

pp. 83-84], we have

(2.18) h(X) = f f φ(S)GltAsl9 , 8j(ξ)dξdS
J Sir) J R»

where the integral over S(τ) may now be interpreted as an ordinary

Lebesgue integral. Since the function in (2.15) is integrable, as we

observed earlier, we can use the Fubini Theorem to write

Γ C C / 7 \(m+l)»/2

h(X) = (m + 2) (-A-) [(S r ( 1 ) _ α ) . . . (& _ 8 )]
J sω JR» JR» \2π /

(cy 1Q\ r m Ί Γ 1 m+1 II T/

(2.19) χ r π θ ( 8 F ) e x p Γ_A Σ J i v
L i J L 2 i ( β τ ( Λ

X dVm+1

We will use Morera's Theorem to show that h{λ) is analytic in C+.
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First an application of the Dominated Convergence Theorem shows that

k(λ) is continuous in C+ an appropriate dominating function is obtained

almost exactly as in the following argument and so the argument will

be omitted here. Now let Δ be a triangular path in C+. We need only

show that h(X)dλ = 0. But this will clearly follow from the Cauchy

Integral Theorem if we can justify moving the integral with respect to

λ inside all the other integrals. Let D = sup {|Λ|: λ e Δ) and E~

inf {Re λ: λ e Δ). Then

( Γ ) \ ( m + l ) v / 2 / Tfi \ ( m + l ) v / 2

IT) ( Ί Γ ) K».oι-«) <'>-« c«)]""Ί#(f)+(v .i)l

L l J L 2 i ( s Γ ( i ) - s Γ ϋ _ υ )JL l J L 2 i ( s Γ ( i ) - s Γ ϋ _ υ )

is a dominating function for the integral in (2.19) which is integrable

with respect to Vm+l9 >,Vuξ,S and λ; the integrability of the function

in (2.20) is established by minor modifications of the arguments in (2.7)

-(2.13).

Now let (K_ίq(F)ψ)(ξ) denote the third expression in (2.1) when λ =

—iq (q Φ 0). We will show that Kλ(F) -»K_ίq(F) in the strong operator

topology as λ —> — iq through C+. In the process we will also see that

K-iq(F) makes sense. Let ψ in Lp be fixed. By Lemma 1.4, for almost

every (sί9 , sTO)

(2.21) || G v(*i, , sm)( . ) - G_iq>τ(s19 , O ( ) lip- - 0 as λ-+-iq.

Also for 2 in a neighborhood of — iq, (2.6) yields

[ m

Π \ \ 0 * u t e u » β ) l l

X [(sτ(1) - α) (δ - sτ(m))]~δ .

But the right hand side of (2.22) is independent of λ and is an integr-

able function of slf « ,s m over S(τ) as is essentially argued in (2.7)-

(2.13). We may now apply the Dominated Convergence Theorem for

Bochner integrals [12; Theorem 3.7.9] and conclude that G_iq>τ(su -- ,sm)

is Bochner integrable so that K_iq(F)ψ makes sense and, furthermore,

(2.23) \\Kλ(F)ψ-K_ίq(F)ψ\\p,-*0 as λ-+-iq.
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We remark that the use of the Dominated Convergence Theorem for
Bochner integrals is a key step in the present paper as it was in [16;
p. 137 and p. 146]. The ordinary Dominated Convergence Theorem is
not applicable in establishing (2.23). In the case that λ = — iq, if one
puts absolute values inside all the integrals in the second or third ex-
pression in (2.1), one gets an integrand that is not in general integrable.
The Bochner version of the Dominated Convergence Theorem allows us
to go inside the integral with respect to S with absolute values without
going all the way inside; this allows one to take advantage of the ex-
ponential kernels through Lemmas 1.4 and 1.1 even when λ = —iq.

Now that we know that G^iQtXslf , sm) is Bochner integrable, the
argument used to establish (2.4), and hence to show that Hif/ί1)!! is
dominated by the right side of (2.2) for Re λ > 0, also works in the
case λ = —iq.

The proof will be finished if we can show that for λ > 0,

(2.24) ( = f F{λ~wχ + ξ)ψ(λ-y>X(b) + ξ)dm(X) .
Jcg[α,δ]

The measurability of the functions involved in the following arguments
is a consequence of Lemmas 4A, 5A and 5B of Haugsby's thesis [11].

We begin our proof of the equality in (2.24) by showing that the
right hand side of (2.24) is an Lr function of ξ. The third equality
below comes from a fundamental Wiener integration formula. (The
fact that we can use Bochner integrals below instead of ordinary
Lebesgue integrals can be justified as in Corollary 2.2 to follow.)

(2.25) I ί F(λ~1/2X + ξ)ψ(λ-1/2X(b) + ξ)dmX)
IJ<78[α,δ]

< f [ft Γ \0j(sfλ-^X(s) + ξ)\ds] \ψ(λ-1/2X(b) + ξ)\dm(X)

= Γ (m) Γ ί [Π Wfa, λ-^Xisj) + ξ)|] iψiλ^Xφ) + ξ)I
J a J aJ σg[α,δ] L 1 J

X dnh(X)dsr--dsm

X \ψ(λ-^X(b) + ξ\ dm(X)dS

= Σ (B) ί-^-) [(«,» - α)
J sir) \2π /
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X f (m + 1) f [ π \θtU)(srU)9 λ-1/2Uj + ξ)\]
JR» JΛV L I J

H +
V^r(2) ^ t (

(6 - sr(TO))

= Σ (B) J ^ w ( J _ y m + 1 > / 2 [ ( S τ ( 1 ) _ α).. . ( 6 _ S r ( w ) ) ] - ^

X j (m + 1

( +

2 I (s r ( 1 ) - a) ( s ϊ ( 2 ) - s τ ( 1 ))

(6 - sι(m)) JJ

(6 - sι(m))

Now the last expression above, except for absolute values on the 0's
and ψ, is the same as the second expression in (2.1). Since we showed
earlier that the second expression in (2.1) is an Lr function of ξ and
since that proof is unaffected by absolute values on the 0's and ψ, we
see that the right hand side of (2.24) is an Lp, function of ξ.

Since we now know that both sides of (2.24) are Lp, functions,
their equality will be established if we show that for any φ in Lp,

(2.26)
f φ(ζ) ί F(λ-v2X + ζ)ψ(λ-1/2X(b) + ξ)dm{X)dξ

= f φ(ζ)(KAF)ψ)(ξ)dξ .

The formal part of the argument needed to establish (2.26) proceeds
just as in (2.25) except for the absence of absolute values and the
presence of the extra integral with respect to ξ. The fact that the ap-
propriate integrals exist so that the Fubini Theorem and the fundamental
Wiener integration formula may be applied follows from the fact that
the last expression in (2.25) is an Lp, function of ξ so that the product
of it with \φ(ξ)\ is integrable.

This finally completes the proof.

Next we wish to establish a corresponding result for the case p = 2.
When v is equal to 2 we can handle the endpoint r = 1 and, since
Lr([a, &]) cz Lj([α, &]) for 1 < r < oo, we will always take r = 1. It then
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turns out to be appropriate to think of r'δ as equal to zero (3 = 0 when

γ = oo). In this case the bound in (2.2) simplifies to ||/Γ(^)II < \\g\\T;

however, as we will see, this bound can be improved.

COROLLARY 2.1. Let p = 2 and let v be an arbitrary positive integer.

Let F be given by (0.8) with each Θό in L^. Then I$n(F) and J™(F)

exist for all λ in C+ and all real q Φ 0 respectively. Once again, for

ψ in Lp and ξ in R% Ifι(F)ψ and <7*n(F)ψ are given by (2.1). In addition

Iln(F) and Jln(F) satisfy the bounds

(2.27) I|JΓGF)II < Π II^IU and \\Jln(F)\\ < Π U^IU ,
1 1

for all values of the parameters λ and q.

Proof. The proof given above for Theorem 2.1 also works when

p = 2 (In fact the proof can be simplified considerably.) and establishes

everything but the bounds (2.27). To establish (2.27) fix λ in C+ and

apply Lemma 1.4 to the second expression in (2.1) to obtain

Π
S(v) 1

Π I I
b mΛ6 Γb m

= \ (w) U
J a J a 1

in

= Π \\0j\li

COROLLARY 2.2. In (2.1), each integral over S(τ) may be interpreted

either as a Bochner integral or as a Lebesgue integral.

Proof. Let Re λ > 0, λ Φ 0. We consider a typical term (

of the sum (2.1). (One should keep in mind that when

(Kλ(F)ψ)(ξ) is given just by the third expression in (2.1).) Let φ be in

Lp. By (2.6) we can write

ί ί \φte)G2tt(8lf ..,8j{ξ)\dξdS

(2 28) < \\Φ\\PW\p(ψ-)(m+1)! f ffi ll^«)(e.«). )\l]
\ Δπ / J 8(τ) L 1 J

X [(β τ α ) -α) ..(6-βt(llι))]-'dSf.
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But this last integral is finite as the arguments in (2.7)-(2.13) show.
Hence we may apply Fubini's Theorem and [12; Theorem 3.7.12 and
following remark, pp. 83-84] and write

f φ(S)\ Gitr(8l9-..,
J Rv J5(t)

(2.29) = f f φ(ξ)GltXS

= f φ(ξ)(B) f Gt,X8lt ,sJ(ξ)dSdξ
J R» J S(τ)

where we note in particular that the inner integral in the first ex-
pression in (2.29) must exist for almost all ξ. Since φ in Lp was arbi-
trary the desired equality

ί Gv(*i> '"> *m)(Jl)dS = (B) f G,, τ ( S l , , sm)(ξ)dS
J S(τ) J flf(r)

follows for almost all ξ.

Remark. The finiteness of the left hand side of (2.28) was used to
justify a use of the Fubini Theorem. When λ = —iq, it is again im-
portant to note that we can make the argument without taking absolute
values all the way inside the integrals which define GiiT(s19 ,sm)(£).

We finish this section by dealing with the function F = 1. The
necessary arguments here are easy because we already have Lemmas 1.1
and 1.2; hence we will merely state the proposition and indicate formally
where the formula comes from. We do not need any dimension restric-
tion here even when 1 < p < 2.

PROPOSITION 2.1. Let p in (1,2] and a positive integer v be given.
Let F = 1. Then If"{F) and J™(F) exist for all λ in C+ and all real
q Φ 0 respectively. Further for λ in C+,ψ in Lp and ξ in R%

(2.30) (/
2π(b — a) / JR» L 2(6 — a)

J^n(F) is also given by the right hand side of (2.30) with λ = —iq. In
addition we have

( \y/2r / \n\ \v/2r

—Λ - ) and \\Jf{F)\\ < ( ' g ' ) .
2π(b — a) J \ 2π(b — a) /
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Remark. Formula (2.30) comes from a fundamental Wiener inte-

gration formula as follows:

f F(λ~ι/2X + ξ)ψ(λ-1/2X(b) + ξ)dm(X)

= ί ψ(λ~ι/2Xφ) + ξ)dm(X)

b-ά) ) J.Γ T ί Γ r ) ί *(λU + & e χ P I Ό Γ J

2π(b — a) / JR> I 2(δ — a)

ff
2πφ-d)J )R»Ψ L 2(6 - α)

3. The main existence theorem.

In this section we shall establish the existence of If"(F) and Jln(F) for

series of the form (0.9) where each Fk is in A = A(p,v,r). For each

k,Fk is either the function identically one or is given by

(3.1) Fk{X) = Π θkJ(s,X(s))ds
1 Jo

where each θkJ is in L r r. Given Fk as in (3.1), we let &*(|>l|) be the

right side of (2.2) with m and g replaced by mk and gk respectively,

where

(3.2) gk(s) = maxfll^ίβ, 0llr, ,||^.m.(β, )llr} .

THEOREM 3.1. Let 1 < p < 2, let γ be given by (0.3) and let v and

r satisfy (0.4) and (0.5) respectively. Let F be given by (0.9) with the

Fjc's as above. Suppose that {ak} is a sequence of complex numbers such

that for every λ in Cf0

(3.3) Σ\ak\bk(\λ\)<oo .
fc = 0

Then for every λ in (0, λQ)9 the series 2o° akFk(λ~ι/2X + f) converges ab-

solutely for almost all (X, ξ) in Cv

0[a, b] X R\ Also If(F) and J™(F)

exist respectively for all λ in C^ and all real q Φ 0 such that \q\ < λQ.

Furthermore

(3.4) I?(F) = Σ akI?(Fk)
0

and
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(3.5) J?(F) = Σ, akJ?(Fk)

with lT(Fk) ^nd J™(Fk) given by (2.1) with appropriate replacements to
account for the fact that Fk is given by (3.1) rather than by (0.8).
Also the series in (3.4) and (3.5) converge in operator norm.

Proof. Let p be fixed in (1,2). First using (2.2) and (3.3), we see
that for each λ in Cλ

+

Q

Hence the right hand side of (3.4) defines an element of L(LP,LP,) for
all λ in Cλ

+

0. Similarly the right hand side of (3.5) defines an element
of L(LP,LP,) for all q in (-Λ,0) U (0,Λ0). In fact since bk(\λ\) is an
increasing function of \λ\, the series in (3.4) and (3.5) actually converge
uniformly on C? and (—Λ,0) U (0,Λ) respectively for each fixed λ in
((Uo).

Let λ be in (0,Λ0). Next we give an argument which will be used
in showing

(i) ΣakFktt~1/2X + ξ) converges absolutely for almost every
0

(X, ξ) in Cv

0[a, b] X Rυ , and

(ii) (Iλ(F)ψ)(ξ) = ί [ Σ akFk(λ-wχ + ξ)]ψ(λ-v*X(b) + ξ)dm{X)

in an Lp, function of ξ and equals the Lp, function

Σ a*tfiOW)(£) •
0

Let ψ and φ be in LP(RV). Then we can write

(3.6) f f |~Σ \akFk(λ-^X + ξ)\]\φ(S)\ \ψ(λ~v2X(b) + ξ)\ dm(X)dξ

= f
J

= ΣKlf
0 J

f \Fk(λ
JCg[α,6]

^X + ξ)\ + ξ)\ dm{X)dξ
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Now the last expression in (3.6) is finite by (3.3). Hence the inte-

grand in the first expression in (3.6) must be an integrable function of

X and ξ; in particular it must be finite for almost every (X,f). By

considering φ and ψ which never vanish one sees that claim (i) is justified.

Also since (3.6) is finite for every Lp function φ and since

|(/a(F)Ψ)(f)| < f [ Σ \akFk(λ-wχ + ξ)\] [ψiλ-wXφ) + f ) | dm(X) f
JCv

oίa,b2 L 0 J

it follows that (Ix(F)ψ)(ζ) is an Lp, function of ξ. To show that the

equality claimed in (ii) holds, it suffices to show that for any Lp function φ

(3.7) f φ(ξ)(h(F)Ψ)(ξ)dξ = f φ(S) Σ ak(Iλ(Fk)ψ)(ξ)dξ .
J Rv J Rv 0

But (3.7) follows from the equalities

f φ(ξ)(Iχ(F)ψ)(ξ)dξ
J R»

= f Φ® f f έ akFk(λ-^X + ξ)]ψ{λ-^X(Jb) + ξ)dm{X)dξ
J R» Jσg[α,6] L 0 J

(3.8) f . .
= Φ(ζ) Σ α* FkQ'1/2X + ξ)ψ(λ-^Xφ) + ξ)dm(X)dξ

J R» 0 J Cv

ola,b-}

= f Φ(ζ) Σ ak(.Ix(Fk)ψ)(ξ)dξ
J R» 0

where the interchange of integral and sum in (3.8) follows from (3.6)

and the Fubini-Tonelli Theorem.

Now by Theorem 2.1, for each k,Iλ(Fk) is an L(LP, Lp,)-valued an-

alytic function of λ in C+. Hence by the uniform convergence of the

sum in (3.4) the right hand side of (3.4) is an LCL^LpO-valued analytic

function of λ in C£. By the equality in (ii) and the fact that Ix(Fk) =

I?(Fk) for 0 < λ < λ0 and k = 0,1,2, . . . we see that IT(F) exists and

the equality in (3.4) holds.

Next fix q in (~Λ,0) U (0, λQ). By Theorem 2.1, for each k,

lim lT(Fk) — Jln(Fk), the limit being taken in the strong operator sense.

Also the right hand side of (3.4) converges uniformly for λ in C("ϊ0+g)/a.

Thus for each ψ in Lp,
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lim I?(F)φ = lim j ] aJr(Fk)ψ
λ-*-iq λ-^-iq 0

= lim lim Σ akIΓ(Fk)ψ
λ^-iq N-*oo 0

= lim lim Σ aJT(Fk)ψ
^_oo λ-*-ίq 0

= lim Σ α»W*)ψ
iV-oo 0

= f; akJ?(Fk)ψ
0

with all the limits in L^-norm. The fact that J^(F) exists and is given

by the right hand side of (3.5) follows and the proof is complete.

Next we wish to establish a corresponding result for the case p = 2.

Recall that the bounds in (2.27) are independent of λ and q hence IT(F)

and Jln(F) will exist for all λ in C+ and all real q Φ 0 respectively.

Thus we obtain the following theorem whose proof parallels that of

Theorem 3.1 above. Note that in this case, the function F = 1 is in

A — A(2, v, 1) since θ(s, U) = (b — α)"1 is in LTOl.

THEOREM 3.2. Let p = 2 and ίeί i> δe an arbitrary positive integer.

Let F(X) = 2]o° akFk{X) where each Fk is given by (3.1) ̂ i t t each θkJ

in L^. Assume that the sequence of complex numbers {ak} is such that

0 0 Γmjc Ί

(3.9) Σl^l ΣII^IU
A=O Li=i J

< CO .

Then for every λ > 0, the series 2]o° akFk(λ~1/2X + ξ) converges absolutely

for almost all (X, ξ) in Cv

0[a, b] x R\ Also I\niF) and J^n(F) exist for all

λ in C+ and all real q Φ 0 respectively. Furthermore I*n(F) = Σo° ^JT(Fk)

and JfiF) = J^ akJ
Ά

q

n(Fk) with I?(Fk) and J\n(Fk) given by (2.1) with

appropriate replacements to account for the fact that Fk is given by

(3.1) rather than by (0.8).

4. Analytic functions of k single integrals.

First of all in this section we shall consider functional F(X) of the

form

(4.1) F(X) = / I T ^(s, X(s))dsf ., Γ θk(s, X(s))ds\

where
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(4.2) /(«»••-, 2*)= Σ <!>*.....*&-•*?
Wi, ,w&=0

is an entire function of k complex variables of growth (p, σ). (An entire
function is said to be of growth (p, σ) if and only if it is of order not
exceeding p, and, if its order is p, its type does not exceed σ.) For the
convenience of the reader we will include a brief discussion of "order"
and "type" of an entire function of k complex variables. For a com-
plete discussion see [10; pp. 338-356]. (For the case k = l see [1;
PP. 8-12].)

Let / be given by (4.2). Let the domain D be the polycylinder
D = D(R19 . . ,#*) = {(zl9 - , zk): \zj\ < Rά < oo, j = 1, .. >,k}. Let DR

= DB(R19 . ..,Rk) = [fe, . . . ,«*): ( - | h .,-g-) e D J . Let

M/Λ) = sup|

The order /? and the type σ oί f are defined by the equations

(4.3) ^

(4.4) σ Ξ σ

A theorem of Goldberg [10 p. 339] allows us to express p and σ in terms
of the coefficients αniϊ...tnfc;

(4.5) p = l i m s u p f f o + • • • + « » ) I n ( w . + ••• + w.) 1
„!+...+»»-» I — m | α B l ( . . . i Λ i k | J

(4.6) (e/w)v = lim sup {(«, + +

THEOREM 4.1. Let 1 < p < 2, let γ be given by (0.3) and let v and
r satisfy (0.4) and (0.5) respectively. Let F(X) be of the form (4.1)

with f given by (4.2) an entire function of growth ί —L, (jj where σ =

(70 <oo αtid eαc/t ^ is m L r r.

Case 1: growth (-?£-, Oj. /^ ίMs case I?(F) and J?(F) exist for

all λ in C+ and all real q Φ 0 respectively.
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Case 2: order f = —Ϊ-, type f = σ = σDiBlt...tBk) e (0, oo), JB^ . . , J2fc

fe positive numbers. In this case I*n(F) and J**(F) exist for all λ

in Cλ

+

0 and all real q Φ 0 ŝ cfc ίfeαί |g| < λ0 where (recall δ = — )
\ 2^/

(4.7) 4 ' °~ Λ a ™ ί - Γ I ?^ (
σδ\\g\\r[ra-r'δψr' \ b-a

and where g(s) = m a x { | | ^ ( s , .)ll r, , l i ^ ( s , OIL}.

Proof. Let

We note t h a t Fntt...tnjt is in A for all choices of n19 •••,%*. By Theorem

3.1 we see t h a t it will suffice to establish the convergence of the series

X

for the appropriate λ, where for notational purposes we let N = nγ +

Now Γ(«) = zz-1/2e-zV2π(l + 0(1)) and hence for positive z sufficiently

large

(4.9)

Also by Stirling's formula

(4.10) N! < (JLJ&cN)™ exp

Next we claim that for sufficiently large N

7)JN/r'\Jl/2r'(X[ \ Λ\iβr'

(A in ^ + ^ < N(N+l)δ

^ l λ ) (N + l)^+D(l-r'5)/r' S i V

or, equivalently,

ΛT(22V + l-2r/δiV-2r/δ)/2r/

(4.12) - < 1 .
v y ^jY | •^\(2iV+l-2r/δiV-2r/δ)/2r' —
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But (4.12) follows since rfδ < 1 implies that 2N + 1 - 2r'δN - 2τ'δ > o.
2r'

Now combining (4.9), (4.10) and (4.11) we see that for sufficiently large N

2 - ' exp \ 1 2 N +

(4.i3) { N' V - . L u w f
Γ[(N + 1)(1 - r'δ)] J ~

(i) We first consider the case where 0 < order / < _ ϋ . Using
v

(4.5) we see that there exists an a in ί 0, —£-j such that for N sufficiently

large |αn i ϊ...,nJ < N~N/a. Using this fact and (4.13) we see that for N

sufficiently large the series (4.8) is dominated by the series

12N
exp .

^ L IZNr*
(2πeYN+1)δ(b - a)δNa/a'δ)(l — τ'δ)mN+l)a-r'δ)-ι)/2r'

Since — — δ = — ^- > 0, the convergence of (4.8) throughout Re λ
a a 2γ

> 0, uniformly on compact subsets, follows by the root test.

(ii) Next we consider the case where / has order —ΐ~ and type
v

a = σD(Bli...iRk) 6 [0, oo),Ru ,#fc any & fixed positive numbers. Using

(4.6) and the fact that order / = —ί- = — we have
v δ

(4.14) lim sup {NNδ |αn i f... f 1 w | #? ι -Rn

k*}1/N = ί^-

In this case the series (4.8) is dominated by the series

(b - α)tf«-r'»/r'2vr' exp

Σ , Rk}]N

v

 x > u vx — # UJA \fNNδ \a I Rni-.. Rn*\
(1 — /,5)(2(Λr+i)(i-r'i)-i)/2r' | ^ V l^i.-.n*! Λ i Λfc I

Using the root test, the above series will converge for all Re λ > 0 such

that

πe)3min{R19 - •,Rk) \l — rfδ)
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If a = 0 we obtain the convergence of (4.8) throughout Reλ > 0, uni-

formly on compact subsets, while if σ > 0 we obtain (4.7). This com-

pletes the proof of Theorem 4.1.

In the case p = 2 we are able to allow much more general analytic

functions / as the following theorem shows, / need not be entire much

less of finite growth.

THEOREM 4.2. Let p = 2 and let v be an arbitrary positive integer.

Let F(X) be of the form (4.1) with f given by (4.2) a function of k

complex variables which is analytic in a region containing {(z19 , zk):

\Zj\ < \\Oj\Li for j = 1, ,fe} and each θj is in L^. Then Jjn(F) and

J^n(F) exist for all λ in C+ and all real q Φ 0 respectively.

Proof. First note that for each j in {1, , k}9

Γ θj(s, λ~1/2X(s) + ξ)ds < Γ |0/s,r1 / 2X(s) + f)| ds
J a J a

< f | | ^ ( β , . ) L d s = ll<?Lι.
J a

Hence F(λ~1/2X + ξ) is defined for any {X, ξ) for which each of

P θj(s, λ~1/2X(s) + ξ)ds are defined in particular, F(λ~1/2X + ξ) is defined
J a

for almost every (X9 ξ) in Cv

0[a9 b] x Rv. Now let

[£θk(s,

By Corollary 2.1 we have that Fnu...tnk is in A = A(2,v,l) for all choices

of nu -,nk and that for each ψ in L2(RV),

< \anit...,

and

By Theorem 3.2 the present theorem will be proved if we establish the

convergence of the series

Σ \π I 11/9 \\ni 11/9 I I W 2 . . . 1 1 / 9 \\nk

Wl, ,TCft = 0

but this follows from our assumption that / is given by (4.2) and is
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analytic in a region containing

Much as in [16] the class of functions described in Theorem 3.2 form

a Banach algebra. Since the development proceeds much as in [16] we

simply outline the facts.

We introduce a "norm germ" NQ on A = A(2, v91) by letting

(4.15) N0(F) =
1

TO rb

where f in A is of the form F(X) = Π #/s> X(s))ds with each 0̂  in
1 J α

Loo!. (Note that A is not a linear space.)

DEFINITION 4.1. S c C f c δ ] will be said to satisfy condition (P) if

and only if for every λ > 0, r 1 / 2 Z + f is in S for almost all (X, ξ) in

Goto, &] X Rv. We will consider functions F defined on at least a subset

S of Cv[α, b] satisfying (P) and which are such that for every λ > 0,

F(λ~lβX + ξ) is a measurable function of (X,f). If f\ and F2 are two

such functions, we will say that F1^F2 if and only if there exists a set

S satisfying (P) such that Fx and F2 are defined and agree on S. It is

easy to see that — is an equivalence relation. We will identify equiv-

alent functions and will adopt the usual convention of using F to refer

both to a function and to an equivalence class of functions.

Remark. The domain of any F in A is large enough to satisfy (P).

DEFINITION 4.2. Let {Fό} be a sequence from A such that

(4.16) Σ XO(FJ) < °°
1

Let

(4.17) F(λ~1/2X + ξ) = Σ Fj(λ-1/2X + f) .

We define A to be the collection of equivalence classes of functions each

of which contains a function F which arises as above from a sequence

{Fj} in A satisfying (4.16). For F in A, we define N%F) as the infimum

of the left side of (4.16) for all choices of sequences {Fj} from A satis-

fying (4.17).
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Remark. Using Theorem 3.2 we see that if {Fj} is a sequence from

A satisfying (4.16), then, for every λ>0 the series 2 Γ Fj(λ~1/2X + ξ)

converges absolutely for almost all (X,ξ) and so (4.17) makes sense.

Our next theorem is a generalization of Theorem 2.1 of [16, p. 141].

THEOREM 4.3. (A,N*) is a commutative Banach algebra with iden-

tity.

The next theorem follows easily from Definition 4.2, Theorem 3.2,

and the bounds (2.27).

THEOREM 4.4. Let F be in A. Then IT(F) and J f (F) exist for

all λ in C+ and all real q Φ 0 and satisfy the bounds

(4.18) \\I?(F)\\ < N\F) and \\J™(F)\\ < N\F) .

THEOREM 4.5. Let F be in A and let f be a complex-valued function

of a complex variable which is analytic in a circle about the origin with

radius greater than N*(F). Then the function G defined by G(X) = f(F(X))

is in A and so /Jn(G) and J^iG) exist for all λ in C+ and all real q Φ 0

respectively.

Proof. This follows using some standard facts about Banach alge-

bras [23, pp. 202-205].

In previous work [3, 4, 5, 11, 15] strong use was made of a sequential

definition of the operator valued function space integrals in order to

obtain the analytic continuation. (That is to say, IfKF) and Js

g

eq(F) were

used to obtain iTiF) and J™(F).) A counter-example given by Cameron

and Storvick [6 pp. 358-60] for p = 1 can be generalized to show that

for 1 < p < 2, Ifq(F) need not exist under our present hypotheses. We

will briefly outline the example.

Let 1 < p < 2, let γ be given by (0.3) and let v satisfy (0.4). Let

θ:[a,b] x Rv-+C be defined by

v \n, | - 2 / 3 r

θ(s, U) = Θ(U) = θ{{uu " -,u,))= Π ' Λ

" ' V 1 + \u,\

Clearly θ is in Lγoo c Lγr for 1 < r < oo. Let

F(Z) = exp Γfδ θ(s,
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We claim that Ifq(F) and Jf*(F) fail to exist for all values of the para-

meters λ and q. For let σ be the partition a = t0 < tx < < tn = b

where n > 1. Now by [11 p. 50] whenever it exists

(4.19) (I^F)ψ)(ξ) = λ^2[(2π)n(tι-a)^^b--tn_1)]-^[ (n) ί ψ(Vn)
J Rv J Rv

X e x p [it, - a)θ(ζ) + (t2 - tdθ(Vd + • • • + ( & - ί n - i W - i ) ]

xexpr-^i i y i-gi i 2 _ ^11^2-^iir _ _ ^ i i ^ - ^ - i i n
PL 2 ^ - α ) 2 ^ - ^ ) 2(6-*„_,) J

X d 7 r . . dVn .

But for all values of V2 and f, the inner integral in (4.19) has absolute

value oo. Hence if ψ is non-trivial, (/Γ(F)ψ)(f) does not exist and so

ITq(F)Ψ> which by definition is the weak limit of /j(F)ψ as norm a —> 0,

does not exist.

However in the case p = 2 the following theorem can be obtained

by generalizing the results of section 4 of [16; pp. 146-151],

THEOREM 4.6. Let F be in A. Then for all λ in C+ and all real

qφO, JΓ(F) and Jfq(F) exist and equal I^iF) and J™(F) respectively.

5. Application to the solution of an integral equation formally equivalent

to Schroedinger's equation*

In this section we use our earlier results to give a solution to an

integral equation which, in the case where λ = —i, is formally equiv-

alent to Schroedinger's equation. The analysis also yields an approxi-

mation to the solution of the integral equation in terms of the sum of

integrals over finite dimensional spaces.

The theorem below allows a wider variety of functions θ than were

treated in the earlier papers [3, 4, 6, 11, 16, 21] in addition the proof is

more straightforward and somewhat shorter. Before stating the theo-

rem it will be convenient to introduce some concepts and prove a lemma.

Let 1 < p < 2 be fixed, let γ be given by (0.3) and let v9r and δ

satisfy (0.4), (0.5) and (0.7) respectively. Given a measurable function

/ on [0,t], let

(5.1) Nt(f) = \\s'f(s)\\~.

Let Dt denote the space of measurable functions / such that Nt(f) < oo.

It is not difficult to see that (Dt,Nt) is a Banach space; in fact, in the
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terminology of [27, Chapter 15], it is a Banach function space with the

Fatou property. Note that when p — 2, d = 0 and (Dt, Nt) is the ordinary

LTO-space (L.tfO, t]), || | | J .

Next given a measurable function G(s, £7) on [0, t] x JR% let

(5.2) ||G|| t = tft(||G(β,.)llp<).

Let Qj denote the space of measurable functions such that \\G\\t < oo.

|| ||t is an example of a product function norm as studied by Petersen

[24] (Indeed, the spaces Lγr encountered earlier are also examples.).

Since both || \\v, and Nt are function norms with the Fatou property,

it follows from results of Petersen that || ||t is a function norm with

the Fatou property and so (Qt,\\ ||ί) is a Banach function space; in

particular, it is a Banach space with the property that \\G\\t = 0 if and

only if G — 0 almost everywhere. The following lemma will be useful.

LEMMA 5.1. Let Ίleλ > 0, λ Φ 0 and let θ be in Lγr. Given G in

QtQy let

Λί ( / 3 \ w/2

(5.3) ( ^ j { ( ^ )

X f θ(s, U)G(s, ϋ) exp 2f f
2(ί — s)

/or each t in (0, ίo],Γ; is in L{Qt,Lv,{R")) and

(5.4) | |ΓJ < (KJt«-™<r' \\θ\\rr{β(l - r% 1 - r'δψ''

where again β denotes the Beta function. In addition, Tx is in L(Qh, Qto)

and

(5.5) ||Tλ\\ < (J^L)V-r'')/r' ll^lU^d - r'δ, 1 -

Proof. First fix t in (0, ί0]. By Minkowski's inequality for inte-

grals [25; p. 271], ||(Γ,G)(ί, )ll,' < Γll^ίβ, )||,'dβ where
JO

(5.6) YΊ θ(s,YΊ θ(s,U)G(s,U)exv\J!
2π(t — s) / iw L 2{t — s)

But by Lemmas 1.1 and 1.3
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(5.7)

Hence

, Ollr (s(t - s))-!ds

Now using (2.10) we see that this last expression equals

( - ^ y IIGilt IMU ία-2r'ί)/r'{i3(l - r'δ, 1 -

which establishes (5.4). To establish (5.5) note that

I I 2 Ά = NH(\\Tfi{t, OIW = lit1 II (Γ,G)(ί, o IIP.

We are now ready for the main theorem.

T H E O R E M 5.1. Let θ(t, ϋ) be in Lrr([0, ta] x R>). For t in (0, ί0] let

Ft(X) = exp Γf θ(t — s, X(s))ds\. Let ψ be in LP(R ) . Then for all λφO

such that Re λ > 0, the function G(t, ξ, X) defined by

(5.8) \
\Jln(Ft)ψ)(ξ), λ — —ίq,q real and nonzero

exists, is in QtQ and satisfies the integral equation

(5.9)

+ Jo\

2t

λ

2π(t- s)

X f θ(s, U)G(s, U, X) exp [ - ^ l l f - U\\*]dUds
JR» L 2(ί — s) J

for each t in (0, ί0]. In addition for each suck t,

(5.10)
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also

(5.11) \\G( , ,λ)\\tQ<H\\pBQ)

where

|;|<m + l)ί ||/Q||ro +m(l-r / ί )/r / rrγi ^ΛsΛl (m + l)/r'

^o {2πYm+l)\mψr'{Γ[{m + 1)(1 - r'δ)ψr'

The solution G{t,ξ,λ) can be expressed by the series

G(t,ξ,λ) = Σ Γ Γ ΓV[2*(t - 8n)]
n=0 JO J 0 JO

x f ^..yjβr

(5.13) ^2[2τr(sπ - 8n_d]-«* f ffίs^,, 7 .^) exp Γ

exp- S l)]"υ / 2 f «(βi, 7J exp [ }^
J Λ» L 2(S2 — Si)

xY^ ί ^ ( 7 0 ) exp Γ
JR» L

Finally, if GN(t,ξ,X) denotes the Nth partial sum of the above series,

we get the error bounds

(5.14) \\G(t, ,λ) - GN(t, .,λ)\\p, <

and

(5.15) | | G ( , ,λ) - GN( , ,X)\\to

where BN(X) denotes the tail of the series from (5.12) beginning with

the term m = N + 1.

Remark. In case p = 2 and r = 1 (5.10), (5.11), (5.14) and (5.15)

all become considerably simpler:

(5.10)' \\G(t, ., J)| | 2 J1*U|
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(5.14)' | |G(t, ,λ)-GN(t, ,»ll2<
m !

(5.15/ | |G(-, , J ) - < ? * ( • , - , J ) | | ί o : £ l h H | 2 Σ
+i m!

Proof. Let /(#) = exp (2), a n ent i re function of g rowth (1,1). Let

θt(s, U) = θ(t — s, ϋ) a n d let Ft(X) = / Γ Γ ^ t (s, X(s))dsl . By Theorems 3.1
LJo J

and 4.1 we know t h a t G(t,ξ,λ) exists as a n LP,(RV) function of ξ and

satisfies (5.10). Clearly t h e series (5.12) converges for all λ. The in equal-

ity (5.11) is a n immediate consequence of (5.10).

Now using (3.4), (3.5), (2.1) and lett ing τn be a permuta t ion of t h e

integers {1, , n} we see that

, £,λ) = Σ A " Σ f λ^[2πsτn{1)]-^ f 0t(βΓiι(1),

X exp
2β,,α,

f ^(sΓ n ( 2 ) ) TF2) exp Γ - Λ H ^ - t F i l ! 2 1
J B V L 2(srii(2) - «„(„) J

2^(srn(n) - srB(M_υ)]-"/2 f ^(s r n ( n ), Wn)exp \~^Wn~Wn-ι

2π(ί - sΓB(n))]-»/2 ί ψ(Wn+ι) exp Γ - ^ J ^ - ^
J w L 2(ί - s r n ( n ))

exp ^ J
L 2(ί - srn

dTF»+1 dW.dS

where the n = 0 term is given by

JR
exp

2ί

Now since the θ/s, are the same, the integrals over S(τn) are equal (for
fixed n) and so

Git, ζ,X) = Σ A Γ Γ Γ ^"Ί^βJ-"* ί tf(t - βlf Wx)
w = 0 ^ I. JO JO Jo J Rv

X Θ X P • 2 *
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- S l )]-* / 2 f θit - 82f W2) exp \
2(s 2 — Sj)

sn - sn_^-v/2 ί θ(t - sn, Wn) exp Γ ~ λ ^ n ~ ^

^2[2τr(ί - β n ) ] - ^ f ψ ( Ψ n + 1 ) exp

dWn+

Finally making the change of variables rλ = t — sn9 r2 = t — sn_19 , r n

= ί — Su and then appropriately changing the symbols for the variables

of integration, we obtain (5.13).

The bound in (5.10) was obtained from the expansions (3.4) and (3.5)

and the bound (2.2). The bound in (5.14) is obtained in the same way

except that we just consider the terms JV + l , N + 2, . The inequality

(5.15) follows immediately from (5.14).

It remains only to show that G(t,ξ,λ) satisfies (5.9). Let Φ(t,ξ,X)

denote the second term on the right hand side of (5.9); that is to say let

(5.16) W, ί. 0 = I {( — ^ Γ I, * . ϋ)β(s, ϋ, a

X exp
2(t — s)

Substituting (5.13) for G, replacing s by sm+1, and using (5.15) and

Lemma 5.1 to justify taking the sum outside the integral signs we

obtain

Φ(t,ς,x> = ± Γ Γ + 1 Γ Jy/a[2*(t - s - + i )]" υ / 2

w=θjθjθ JO

X f θ(8m+u Vm+1) exp Γ - Λ l l f - 7 JIM
JR» L 2(t-sm+1) J

λv/2l2π(sm+1 - sm)Y^ f θ(sm9 Vm) exp ί " " i j 7 m " 7 " +

JR» L 2 ( s m + 1 — sm)

exp- S l ) ] - ^ 2 f θ(s19 Vλ) exp [ ί
JR» L 2(s2 — sj

J - ^ f ψ(7o) exp

dV0 - dVmdVm+1ds1 dsm+1 .
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Now letting m = n — 1 we obtain

w = l j θ j θ JO

JR» L 2(t — sn) J

λ»'2[2π(sn - sn_dY»/2 ί θ(sn_u Vn_J exp Γ ~λJV* ~ y - *

λ*2[2π(s2 - 8J]-"* ί θ(819 Vλ)
J Λ"

exp
2(s 2 — Sj)

^ E T Γ S J - ^ 2 ί ψ ( 7 0 ) e x p Γ - ^ l l ^ i - ^o l l 2 1
JR» L 2Sj J

dF 0 dVndsι dsn

= G(f, e, D - U _ r f Xϋ) exp [ - ; | | ^ - g | H d ϋ
\ 2πt / JR* L 2t J

which establishes (5.9) and completes the proof.

Next we give a uniqueness theorem. To understand the second as-

sertion of the theorem, it will be useful to keep in mind that the

function given by (5.8) satisfies both (5.9) and (5.10) for every t in

(0, ίol Throughout the theorem we consider a nonzero λ such that

Re λ > 0 as given and fixed.

THEOREM 5.2. (i) The function G(t,ξ,λ) given by (5.8) is the

unique solution to (5.9) which is in Qίo. (ii) Any function H(t,ξ) on

[0, t0] x Rv which satisfies both (5.9) and (5.10) for every t in (0, tQ] must

have the property that for every t, H(t, ξ) = G(t9 ξ, X) for almost every ξ.

Proof. We will explicitly prove (i). Once this is done, it is easy

to see that the same proof, except for some minor rewording, establishes

(ii). Suppose that E^t.ξ) and E2(t,ξ) are in Qto and are solutions to

(5.9). Let E(t,ξ) = E1(t,ξ)~ E2(t,ξ). We will show that | | # | | i o = 0 so

that E{t, ξ) = 0 almost everywhere as desired.

First we consider the case 1 < p < 2. In this case we will show

that for almost every t in (0, tQ]

(BID \\E(t Oil < t~°(5.17) \\E(t, )\\p,<t
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for n = 1,2, . But (5.17) will imply

Γ5 18Ϊ 11*711 < \Anδ\\θ\\nΛΓ(X - r'δ)Yn+1)/r%nil-r'δ)/r'
K J " IUl " (2π)nS{Γ[(n + 1)(1 r'δ)ψτ'

L + \\E2\\t0]

for every tx in (0, ί0]. But the right hand side of (5.18) goes to zero as

n—>oo and so we will be able to conclude in particular that | |£Ί| ί o = 0

as desired.

We will establish (5.17) by induction on n. Note that | | # | | ί o < ||JS7χIUβ

+ || #2 llίo a n ( * that, since Ex and E2 both satisfy (5.9) for almost every t

in (0, to],E satisfies

X f θ(s, U)E(s, U) exp Γ - ^ l l f - ϋ\Πdϋ)d8
JR» L 2(ί — s) J J2(ί — s)

for almost every t in (0, ί0]. We apply Lemma 5.1 to (5.19) and obtain

the n = 1 case of (5.17) as follows:

\7.\ 11/911 ί / ^ C l /v»f^\\Vτfj {l-r'δ)/r'

= * (2^τ)δ{Γ[2(l - r'£)]}1/r' l l l ί o + 2" ί o ] '

Now assume (5.17) holds for n. Applying Minkowski's inequality for

integrals [25; p. 271] and then Lemmas 1.1 and 1.3 to (5.19) we can

write

\\E(fi, )l|p- < Γ (o J 1

 Λ ) V ( s , )\\r\\E(8, Oiμ ds
J o \ 2π(t — s) J

- (2πYn+1)δ{Γ[(n Ί

X Γ (t - s)" δ | |β(s, )l| r s-V ( 1" r / δ ) / r /

Jo r

+ II^UI|g||?r

lk. +

X ΓP(ί - s)-' ' ί s l ί - ί κ + 1 ) ' 'i!(

Now applying (2.12) to the last integral and simplifying we obtain (5.17)
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with n replaced by n + 1 as desired.
It remains to consider the case p — 2. As usual we take r = 1.

We will show by induction that for almost every t in (0, t0]

(5.20) \\E(t, on, < H^lL + H^ik ΓΓ l l ^ )H~ d s ΐ
n\ L J o J

for n = 1,2, . But (5.20) will imply that

(5.21) \\E\\tl < W^\k + m\t0 ^ ms> . ) L dsJ

for every tx in (0, ί0]. But the right hand side of (5.21) goes to zero
as n~>oo and so we will be able to conclude in particular that ||2£||ίo
= 0 as desired.

Now E satisfies (5.19) for almost every t in (0, t0]. Using this and
Lemma 5.1 we get the n = 1 case of (5.20). Next suppose that (5.20)
holds for n. Then we can use (5.19), MinkowskFs inequality for inte-
grals, Lemma 1.1 and the induction hypothesis and write

\\E(t, Oil. < (Ί|0(*n+i, )E(8n+1, )\\2dsn+1

Jo

< Γl|tf(βn+1, )h\\E(8n+1, )\\2dsn+1

Jo

rsn + l fsn ΓS2 n

Jo Jo Jo l

+ II#2U I \ . Γ "π \\θ(8j9 Olloo dsi ώsTO+1

6 A counterexample.

First we shall give a counterexample which shows that for p = 1
the dimension restriction (0.4) is really needed. When p = 1, f = 1 and
so in this case the dimension restriction (0.4), namely v < 2γ, implies
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v = 1. Our examples will show that the theory doesn't hold for v > 1.
We shall write out in detail the case v = 3 and then briefly discuss other
values of v. For notational simplicity we take a = 0 and b = 1.

Let

(6.1) θ(s, U) = 0(E7) = 0((^, •,<» = Π
ί = l

(6.2) ψ(io = ψ((«,, , ίθ) = π ι^r

and

(6.3)

Clearly ^ is in Lloo([0,1] X i?υ) and ψ is in L^^) for all values of p.
Next we fix v = 3 and proceed to show that for 0 < A < oo, the

function Iλ(F)ψ is not in 1/^(0,1)3). This will imply that Iλ(F)ψ is not
in La(Rz) for any a such that 1 < a < oo, and so, in particular, Iλ(F) is
not in LiL^L^) as required by the theory. We shall write out the de-
tails for λ = 1 by a change of scale clearly the same results hold for
0 < λ <oo.

First note that (WWψXξ) > 0 for all ξ. We need only show

(Iι(F)ψ)(ξ)dξ = oo. Using the Fubini Theorem and a fundamental
(0,1)3

Wiener integration formula we obtain

ί (I1(F)ψ)(ξ)dξ = f Γ [(2πYsa - s)]-w f f θiXJ
J (0,1)3 J (0,1)3 Jo J/23ji23

x 2s 2(1 — s)

f1 [2*(1 - s)]-3/2 f ψ(f/2) f ΘWJ exp [ 1 ^ ^
J 0 J (0,l/2)S J (0,l)» L 2 ( 1 — S)

X Π {(2πs)-1/2 Γexp Γ ~ f e

But for all (s, Z7X) = (s, (un, uu, un)) in (0,1) X (0,l)3

(2πs)-1/2 Γexp Γ ~fo ~ u^2 ]dξ{ = (2π)
Jo L 2s J

> (2π)~1/2 f e~wi/2dw = K1>0
J

)~1/2
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since for all (s, uH) e (0,1) X (0,1), (-^βί-9

 1 " " _ ι ί ) is an interval of
\V s v s /

length at least 1 which contains the origin. Thus

f (I^ψXmξ > K\ Γ [2̂ (1 - s)]-w [
J (0,1)3 J 0 J (0,1/2

x f θ{Ud exp [ ~ 1 ^ 2 ~ Ό^ ]dU4U2ds
J (o,D» L 2(1 — s) J

= K\ f (2πs)-3'* f ψ(C72) ί θ(Ud exp Γ -
JO J (0,1/2)3 J (0,1)3 L 2S

n c rα-Mai)/^Γ rα-w22)/^Γ ra-u2S)/Vs

= Kl(2π)-v>\ ψ(U2)\ \ \
JO J (0,1/2)3 J -M21/Ά J -W22/Λ J -UZZ/^S

χ e x p

X (?((V s w , + tt21, V swz + un> V sw3 + ίi23))dwιdw2dw3dUzds

> K\{2π)-*» ί1 ί ψ(U2)
J 0 J (0,1/2)3

3 (Λl/2 / ^ 2 \ 1

X J] |J exp ί ——^J I v s Wt + ̂ 2iΓ3/4χ(o,i)(v s ̂  + u2ί)dwΛ dU2ds

since 0 < ̂ 2 ί < 1/2 implies that (0,1/2) c / - ^ i ?

 1 "L^Λ for all s in
\ V s y s /

(0,1) and i = 1,2,3.
But for 0 < ̂ 2ί < 1/2, 0 < s < 1 and i = 1,2,3,

exp

l/2

^ S

Hence

f (ΛdOψXβdf > 64£?(2^)-3/2e-3/8 f s-3'2 [1/2 f1/2 Γ/

J (0,1)3 Jθ Jo Jo Jo

3 Γ/ Λ/~^~ \l/4 "I

X Π | ( — — + ^2i) "" ̂ 2i4

ul\'n
1
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'4

duΛds

Γ s~z/2sί/2ds
Jo

= oo .

Thus we have that Iλ(F)ψ is not in /^((O, I)3).

Proceeding as above one can show that if θ, ψ and ί1 are given by

(6.1)-(6.3) then Iλ(F)ψ is not in L^O, l)v) for v = 4, 5, . Furthermore

for v = 3,4, it then is clear that the function Iλ(G) is not in Lx((0,1)0

where

(6.4) G(X) = exp Γf' θ(s, X(s))ds\

and ^ and ψ are given by (6.1) and (6.2).

Now we want to discuss the case v = 2. Here one can show that

for any r e (2, oo) there exists θ in L lr([0,1] X R2) and ψ in Lj(i?2) such

that Iλ(F)ψ will not be in Lx((0,1)2) where F is given by (6.3). To obtain

this counterexample simply fix r e (2, oo) and choose r0 e (r, oo). Then let

(6.5) θ(8, U) =

and

(6.6) ψ(E7) 9

i = l

Proceeding as in the example above one obtains

f (/i(F)ψ)(f)df > iί Γ s-^-wiVTy ds =
J (0,1)2 Jo

oo .

Next we want to note that the techniques of the above example can
Q

be generalized to apply to 1 < p < —. More specifically for fixed p in

(l, ~\ there exists v > 1, θ e Lroo([0,1] X Rv) and ψ in Lp(i?v) such that

Iλ(F)ψ is not in ^((0,1)0 for 0 < λ < oo where ί1 is given by (6.3). In
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particular this implies that IX(F) is not in L(LP(RV),LP,(RV)) for 0 < λ < oo.

We will outline the example.

Fix p in (1, — ) . Now fix p0 so that p < p0 < —. Then γ = — ^ ~
\ 2 / 2 2 — V

and we let γ0 = — — — . Let y be a positive integer such that v >
2 -— Po

Let

θ(s, U) = (K.U) = θ((uu ,uv))= ΠJ

and

Let ί1 be given by (6.3). Note that θ is in Lγoo and ψ is in LV{RV).

Then proceeding as in the above examples one can show that

f
J(0,

= + oo
(0,l)»

since Oi/° ~ u v < — - 1.
2p0 J ~ 2
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