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ON A PROBLEM OF BONAR CONCERNING FATOU POINTS

FOR ANNULAR FUNCTIONS

AKIO OSADA

The purpose of this paper is to study the distribution of Fatou
points of annular functions introduced by Bagemihl and Erdδs [1]. Recall
that a function f(z), regular in the open unit disk D:\z\<l, is referred
to as an annular function if there exists a sequence {/„} of closed Jordan
curves, converging out to the unit circle C: \z\ = 1, such that the mini-
mum modulus of f(z) on Jn increases to infinity. If the Jn can be taken
as circles concentric with C, f(z) will be called strongly annular.

As a direct consequence of the definition, an annular function f(z)
can have at most one Fatou point, i.e., a point on C at which f(z) has
an angular limit, on any subarc of C which has no limit points of zeros
of f(z) and the Fatou value of f(z), i.e., the angular limit, must be the
point at infinity oo. A natural question arises concerning to this ob-
servation : Does there really exist a Fatou point for every annular func-
tion? Bagemihl and Erdδs [1] constructed an example of a strongly
annular function which has no Fatou points. Many examples of annular
functions are considered in Bonar [3], but it is not clear whether they
have Fatou points or not. For these reasons Bonar [3] asks whether
the value oo is a Fatou value for some annular function. The aim of
this paper is to give an affirmative answer to this question of Bonar.

We shall recall first some elementary properties of annular functions.
Every annular function f(z) has infinitely many zeros and consequently
their limit points form a non-empty closed subset, say Z'(f), of C. We
know that the set Z\f) coincides with the full circle C for almost every
f{z) of well known examples of annular functions. But as is shown in
[2] and [5] there really exists an annular function f(z) such that Zf(J)
does not coincide with C For such f(z), the complement of Z'(f) on
C consists of at most a countable number of disjoint open arcs. How-
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ever, the annularity of f(z) forbids any of them to contain more than
one Fatou point of f(z). Observation of this simple fact suggests us
that a modification of the technique used in our former paper [5] yields
the following result:

THEOREM. For an arbitrary pair of two distinct points & and ζ2

on C, there exists a strongly annular function f(z) with d as the only
limit point of its zeros and with ζ2 as its only Fatou point.

Proof. The idea of our proof is originally due to Barth and Schneider
[2]. Additionally, making an essential use of the reflection principle for
harmonic functions, we shall obtain the required function f(z) by im-
posing some additional conditions on the example of the strongly annular
function constructed in [5].

For simplicity we shall consider the case where d = — 1 and ζ2 = 1.
First choose a sequence {an} of real numbers with the following two
properties:

(1)

(2) Σ (cos"1 an)
2 = + oo , Σ (cos"1 α j 3 < + oo , 0 < cos"1 an < — .

4

For example, {(n + 2)/(n + 3)} is such one. Next we shall make some
technical definitions. Given 0 < α < 6 < +oo and 0 < t < π, denote by
D(a, b t) the annular sector

{z a < \z\ < b and — t < arg z < t},

Moreover, for 0 < a < +oo and — π < tx < t2 < π9 we consider circular
arcs

σia tιt t2) = {z \z\ = a and tx < arg z < t2}

and

σo(a t1912) = {z \z\ = a and tλ < a rg z < t2} .

If we set cos~1an = t7l9 then since α n t l , π/4>ί T O |0 . Relative to this
sequence {tn}9 we take three more sequences {εn}, {Q and {t") of real
numbers such that

(3) 0 < e n < t £ , Σ*n< +oo ;
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( 4) tn < t'n < % < min (πtn, tn_λ)9 ί0 = 4 •
4

As the first step of our argument, we consider a real-valued function

Pi(t) on the closed interval [—π, π] such that

( 5 ) pi(t) = 2ίχ2 (t e [-«,«]) , P l ( ί ) = εx (t e l-π, - «'] U [«', TΓ])

( 6 ) ^ G C ^ - ^ T Γ ) , ε1<p1(O<2ί1

2 (te[-tί',-tί]Ό [ti,t[']) .

Using this function as boundary values, we consider the function

1(z) = i Γ Pl(t)§-illdί (ζ =
2τr C

which is obviously regular in \z\ < aγ and must be continuous on the closed

disk \z\<ax because of condition (5) and the continuous differentiability

of pλ(t) (see [4], p. 78-79). Moreover, since px{t) — 2t\ for every t on

[—ίί, ίί], Fλ(z) may be continued analytically into the annular sector

D(aί9 oo; tί) across the open arc (Toί^; —tΊ>tΊ) by virtue of the reflection

principle. We use the same notation Fλ(z) to denote this extended func-

tion. Consequently it is regular in the region

R, = {\z\ < a,} U σQ(ax -t'lf t[) U D(al9 oo t[)

and hence particularly is also regular in the region

A = {\z\ < αj U σo(θ! - ί i , O U ZX^, 1 ίx)

and is continuous on D19 the closure of A in the 2-plane. In order to

apply the Mergelyan approximation theorem, we need one more sequence

{θn} of real numbers such that

(7) £.<θnϊπ, t a n ^ ^ L < α ^ 2 ~ α ^ 1 , Σ. + sin"1 ~J— < θn2 2 an+2 + an+ι 6 2αre+2

where π/2 < sin"1 α < π for 0 < a < 1. The last inequality of (7) guar-

antees that the annular sector

{ ^ e ΰ ; an_λ < \z\ < α n + 1, θn_λ < a r g ^ < π or -π < a r g z < -θn_x}

is contained in the interior T of the triangle whose vertices are

~-ί/\Γ3 and — 1. Here we take two closed arcs σ(a2;tl9θ2) and

σ(a2; —θ29—tύ (σ29σ'2 in notation), and join them with A to obtain a

compact set Kγ = A U σ2 U σa, on which we shall define a continuous
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function Gx{z) in such a way that

( 8 ) Gι(z) = F1(z) ( ^ A ) ;

( 9) G1(z) = F^e^) (2 e σ2) , G^z) - F1(a2e-it') (z e CJ0 .

Evidently we can apply the Mergelyan theorem to this pair of Kλ and

GiO) and consequently can find a polynomial gx(z) such that

\G,(z) - gx(z)\ < ε, fe

Therefore, together with (4), (5) and (6), this inequality implies that

(10) Re gx(z) > 0 (\z\ < a,) , Re ^(0) < 2(t? + e i) .

Moreover, since εx < t\ by (3) and Reί\(2) > 2t\ for z 6 D(au oo ίj) by the

definition of p^t), it is easy to see that

(11) Re gx(z) > t\ (ze D(au 1 Q U σ2 U σθ .

Now we shall construct polynomials {gn(z)} inductively as follows:

(12) Re gn(z) > 0 (\z\ < an) , Re gn(0) < 2(ft + en)

(13) Re gn(z) >fn(ze D(an, 1 tn))

(14) Σ Re flr/β) > Σ t) (z e σn+ι U <+ 1) ,

where σn+1 == σ(αn+1 t n, 0n+1) and < + 1 = σ(αTO+1 -θn+1, -tn). As in the first

step, we again consider a real-valued function pn(t) on the closed inter-

val [—7r, π] such that

(50 Vnit) = 2ft (t € [-ft, ft]) , pn(t) = εn (te [-7Γ, -ftf] U [ftf, TΓ])

(60 pw e CK-TΓ, 2τ) , εn< Vnit) < 2ft (t e [ - C -ft] U [ft, ft']) .

Using pw(£) as boundary values, we also define the function Fn(z) by the

relation

= 1 Γ pn(t)^±-?dί (ζ = αne",
ζ —

For almost the same reasons as before, Fn(z) is obviously regular in the

disk \z\ < an and must be continuous on the closed disk \z\ < an; and

furthermore can be continued analytically into D(an, oo ft) across

σQ(an; —ft, ft). This time, too, we shall use the same notation Fn(z) for
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this extended function which is, by virtue of the reflection principle,

regular in the region

Rn = {\z\ < an} U σo(an -tfn, t'n) U D(βn, oo Q .

In particular, Fn(z) is also regular in the region

Dn = {|21 < an} U σo(αn; - t n , ί n ) U D(βn9l; ί»)

and must be continuous on its closure Dn. In order to make a crucial

use of Mergelyan's theorem again, we shall prepare a compact set Kn

whose complement is connected and a function Gn{z) which is continuous

on Kn and is regular in its interior. As Kn, we use the compact set

Dn U σn+ι U t/n+1. Next, keeping in mind that

&n+ι = 0(θ"n+ι > tn9 tn_^ U σ(an+ι) tn_19 θn+ι)

and

v'n+l — σiβn + il —θn + i, — ίra-i) U <τ(αTO + 1 J — tn_l9 —tn) ,

we shall define Gn(z) as follows:

(80 Gn(z) = Fn(z) (zeDn);

Gn(z) = wn+
 l ~ t n (2«n - w») , ^ n = F w ( α n + 1 β " » )

(« = α n + 1 β " (tn<t< tn.d) ,

e σ(αTO+1 ίn-1, ̂ n+1))

(« = α * + i e " ( - ί « . 1 ^ ί ^ - in) ) ,

Gn(«) = 2αn (« e σ(an+1 —βn + 1, — ί«.i)) ,

where

n n~l
an = Σ % + Σ m&x{|Re gj(z)\; z e σ(an+1 tn_lf θn+1)

(15) j=i y-i

U <τ(αΛ + i ; —θn + i> — ί n - i ) }

The role of #„ is to make Re Gn(s) fairly large on σn+1 U t/n+1. Applying

the Mergelyan theorem to the pair of Kn and Gn(s), we can find a

polynomial ^n(^) such that
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(16) \Gn(z) - gn(z)\ < εn (zeKn) .

Since Gn(z) = Fn{z) (z e Dn) by (80 and εn < t\ by (3), using (16) and

recalling the definition of pn(t) stated in (50 and (60, we can easily show

that gn(z) has property (12). Furthermore, it follows from the reflec-

tion principle for harmonic functions that

Re Fn(z) > 2tl for every z e D(an9 oo t'n) .

Therefore, using (3), (80 and (16), we can conclude that (13) is valid. As

for property (14), first note that the arc σn+1 is divided into two closed

arcs σ(an+1; tn9tn_d and σ(an+1; tn_19θn+1)9 and that the former is included

in D(cij, 1 tj) for each j (1 < j < n — 1). For such j9 it follows from (13)

that

Re gό(z) > t)

for zeD(aj9l;tj) and particularly for zeσ(an+1; tn9tn__d- On the other

hand, by virtue of (90 and (15), we have that

Re gn(z) > t% for z e σ(an+1 tn9 tn^) .

Moreover, since Gn(z) — 2an for every zeσ(an+1; tn_l9θn_d, making use

of (15) and (16), we can conclude that (14) surely holds for every z e σn+1.

Similarly it is shown that the same also holds for each ze</n+1. We

finally remark that, since Re g3iz) > t) in D(aj91 tό) for 1 < j <n9 (14)

also holds for zeD(an9l; tn).

Once the polynomials {gn(z)} have been constructed as above, the re-

mainder of the proof is fairly easy. To begin with, consider the series

P(z) = 2] Re#TO(z). Then, by virtue of the Harnack principle, it follows

from (2), (3) and (12) that P(z) uniformly converges on any compact sub-

set of D and hence defines a harmonic function there. As usual, we

consider a harmonic function Q(z) conjugate to P(z) in the open unit

disk D and set

exp {P(z) + iQ(z)} = g{z) .

Needless to say, g(z) is regular and non-zero in Zλ If we denote by An

the closed arc σ(an; —θn9θn) for each n, by virtue of the fact that

An+1 C D(an9l; tn) U σn+1 U <fn+1

and
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D(an, an+1 tn) c D(an, 1 tn) ,

using (12), (13) and (14), we can show that

(17) \g(z)\ > exp Σ «ϊ (« € An+1 U D(anf an+ι tn)) .

On the other hand, taking (7) into account and using the procedure

employed in [5], we can construct a function h(z), regular in D, such

that

(18) \h(z)\ > i (zeD Π {Rez > 0})

(19) {zeD;h(z) = 0} c Γ;

(20) |flr(«)fc(«)| > -ί exp J ίj (\z\ = αn+1) .

Consider the function

f(z) = g(z)h(z) .

Then, it follows from (17), (18) and (20) that, for each n,

(21) l / f e ) l i

for every s of {a; e D |z| = αn+1} U D(αn, αn+1 tn) .

Therefore, in view of the fact that

{ 1 1 Ί oo

zeD; z — — < — and Re 2 > αx > c \J D(an9 an+1 ίn)
2 2 J w=i

and Σy-i*}-* +°°> (1 9) a n d (2 1) imply that the function f(z) has the

properties stated in Theorem in the case where ζ1 = — 1 and ζ2 = 1.

As can be seen by examing the above proof, we can conclude that our

theorem also holds for any pair of distinct ζx and ζ2 on C
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