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ON THE FUNDAMENTAL UNITS AND THE CLASS NUMBERS

OF REAL QUADRATIC FIELDS

TAKASHI AZUHATA

§ 0. Introduction

Let Q be the rational number field and h(m) be the class number of
the real quadratic field Q(^/m) with a positive square-free integer m. It
is known that if h(m) = 1 holds, then m is one of the following four
types with prime numbers p = 1, pt = 3 (mod 4) (1 < i < 4): i) m = p, ii)
m — pu iii) m — 2 or m = 2p2, iv) m = pzpA (see Behrbohm and Redei [1]).
The sufficient conditions for h(m) > 1 with these m were given by several
authors: in all cases by Hasse [2], in case i) by Ankeny, Chowla and Hasse
[3] and by Lang [4], in case ii) by Takeuchi [5] and by Yokoi [6].

The principal aim of this paper is to extend the results of [3], [4],
[5], [6] and a part of [2]. In Section 2, we show that the continued frac-
tional expansion of a reduced quadratic irrational is given by the recur-
rence formula with rational integers. Further we shall give some types
of reduced quadratic irrationals whose periods of the continued fractional
expansions are small. In Section 3, using the results of Section 2, we
shall give explicitly the fundamental units of Q{*Jm) for several types of
m. Finally in Section 4, the sufficient conditions for h(m) > 1 will be
given for several types of m, using the results of Section 2.

§1. Reduced quadratic irrational

First we review the fundamental properties of quadratic irrationals
(see Dirichlet [7] or Takagi [8]). Denote by Z the ring of rational inte-
gers and by [a] the greatest rational integer not exceeding a where a is
a real number. Let m be a positive square-free integer and put

(m, if m ΞΞ 1 (mod 4),
d(m) = {

{4m , if m =̂ 1 (mod 4).
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Let or be a quadratic irrational with discriminant d(m), that is, a is a

root of quadratic equation aX2 + bX + c = 0 with α, b, c e Z, a > 0, (a, 6, c)

= 1 and b2 — Aac = c?(m). Let /( n) be the set of all quadratic irrationals

with discriminant d(m). An element a of I(m) is called reduced if a > 1,

0 > α' > — 1 where a! is the conjugate of a with respect to Q. Let R(m)

be the set of all reduced quadratic irrationals with discriminant d(m).

Then R(m) is a finite set and an element a of I(w) is in R(m) if and only

if the continued fractional expansion of a is purely periodic. For a e

R(m), let

be the continued fractional expansion of a0 = a. We say that the period

of a is n iΐ an = a, at Φ a (1 < i < n — 1, n > 2).

LEMMA 1. Let n be the period of ae R(m) and

a k + ^ L 1 ™ + s

 9 kur,s,t9ueZ, ^ > 1 .K + + kn + a ta + u

Then ta + u is the fundamental unit of Q{*Jm) with norm (—ί)n.

For two elements a, β e R(m)} we say that a and β are equivalent if

one of the following mutually equivalent conditions is satisfied:

i) β = m + 8 with r, s,t,ueZ,ru-st=± 1,
ta + u

π) a = jfej + — — — with ^i e Z, kt > 1,
2̂ + + ^̂  + j8

iii) /5 = A + — — — with £t e Z, A > 1.
^2 + + lμ + oc

LEMMA 2. The number of the equivalent classes of R(m) is equal to

h(m).

For the proofs of Lemma 1 and 2, see [7] or [8].

§2. Continued fractional expansion

For a positive square-free integer m, we put m = a2 + b with a, b e Z,

0 < b < 2a. We shall consider the properties of R(m) according to the

following cases:

I, m Ξ£ 1 (mod 4),
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II, a ΞΞ 1 (mod 2), b = 4d with d e Z, d > 1,

III, a ΞΞ 0 (mod 2), b = 4d + 1 with d e Z , d > 0.

Let ω be an element of R(m) and sX2 + tX + u be the minimal poly-

nomial of ω with s, ί, w e Z, s > 0, (s, t, u) = 1. In case I, ω = (f + </m)ls

with £ = 2tf from £2 — 4sw = 4m. In case II or III, ω = (t + *JJYi)l2s

from f — 4sw = m. We notice that f + */m > s > V ^ — ^ > 0 in case

I and t + y'Tft > 2s > y ^ — ί > 0 in case II or III. So if we put ω =

{ΛJΊU + α — ro)/co with c0, r0 e Z, we see that c0 is even in case II or III,

r0 is even in case II and is odd in case III, and that co\b + 2ar0 — r2

Q =

m — (a — r0)
2. Let

be the continued fractional expansion of ω0 — ω and put ωt — (*Jm +

α — r^/Ci with c ί? r̂  e Z.

PROPOSITION 1. T%e integers kif ct and rt (ί > 1) are given by the

following recurrence formula:

2.1) 2a — rί_1 = c ^ ^ + ri9 ct = ct_2 + (r< — r ^ ^ (i > 1), M ΛβΓβ

0 < rt < ct.l9 c_! = —(6 + 2αr0 - r0

2).
Co

Proof. In the case i = 1, we see easily that

([Vm] + α - ro)l = fl(2α - ro)l .

So if we put 2a — r0 = c ^ + TΊ and c2 = c_! + (rx — r^)kx with fej, rλ e Z,

OJ<JΓJ < c0, it follows from

-.1- =ωo-k1 = i ( V m - α + r2) that ωt = A ^ _ t ^ Γ i ) . .
ωj c 0 6 + 2αΓi — r2

Since rt = 2a — co ĵ — r0, we see that

b + 2arλ - r\ = b + (cfa + ro)(2a - cjzx - r0)

= b + 2ar0 — r\ + φx{2a - cQk, - 2r0)

= C^C0 + Cofcifa — Γo) = CQC, .

Hence we have ωt = ( V ^ + « — TΊ)/CI. Exchanging suffixes 0, 1 for i — 1,

i respectively, we get the assertion by the induction.
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From now on, we denote by ω an element of R(m), which is also an

integer in QWnϊ), i.e. ω = <sjm + a in case I, ω — j(</m + a) in case II,

and ω = \(^/m + a — 1) in case III. By simple calculation, we have

2.2) r0 = η = 0, c0 = 1, d = 6, ^ = 2a in case I,

2.3) r0 = Γi = 0, c0 = 2, q = 2d, kx = a in case II,

2.4) r0 = Γj = 1, c0 = 2, cx = α + 2d, kx — a — 1 in case III.

PROPOSITION 2. Lei τι 6e ίΛβ period of ω. If n > 2, we have the fol-

lowing relations:

2.5) kt - Λn + 2 . f (2 < i < Λ), r, = rTC+1_, (1 < i < n\

Ci = cn_ t (0 < i < n).

Proof. It follows from ω^i = kt + \\ωt (1 < / < ή) that

We notice that ω̂  and — 1/ω are elements of i?(m) and are larger than

one. We also notice that

ωn = ω , —
w 6 + 2ar0 — rl cx

So we see that kt = £w+2-t and ωt = — l/ω^+1_έ (2 < ί < ri) by the uni-

queness of the continued fractional expansion. Hence we have rt = rw+1_i?

Ci = c^.i from

From 2.1)-2.5), we can determine the form of m when the period of

ω is small as follows.

COROLLARY 1. Let n be the period of ω. Then we have

in case I, 2.6) if n = 1, then 6 = 1, i.e. m = α2 + 1 iw£& odd α,

2.7) if n = 2, then b\2a, 6 > 1 wiίΛ α2 + 6 =£ 1 (mod 4),

2.8) if n = 3, then a = Ak2r + k + r, b = 4kr + I with k,

r > 0, A Ξ£ Γ (mod 2),

2.9) if n = 4, then a = \{kr + l)(e& - r) + r, b = (ek- r)r + e,

c2 = £r + 1 w ^/i e, k, r, ek — r > 0, α2 + 6 ^ 1 (mod 4),

in case II, 2.10) if n = 1, then d = 1, i.e. m = α2 + 4 it iίΛ- odd α > 3,

2.11) if n = 2, then d\a with odd α, 1 < d < Jα.
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2.12) if n = 3, then a = k2r + k + r, d = kr + 1 with k > 1,

r > 0, α ΞΞ 1 (mod 2),

2.13) if n — 4, Z/ierc α = dk + r, d = (e£ — r)r + e,

c2 = 2(£r + 1) with k>l,e,r, ek - r > 0, α ΞΞ 1 (mod 2),

in case III, 2.14) if n = 1, then a = 2, d = 0, i.e. m = 5,

2.15) if n = 2, then a = 2(d + 1), i.e. m = (2d + 3)2 - 4

w iίΛ- d > 0,

2.16) if n = 3, ίΛerc d = 0, i.e. m = a2 + 1 zwϊΛ. even a > 4,

2.17) if n = 4, then a = ek + 2e — 1, d = \{ek - 1), c2 = 2β

with e > 1, Jfe > 0, e = k =1 (mod 2),

2.18) if n = 5, then a = 2(d + e(& + 1) - 1), d = p ( β ^ - 1),

c2 = c3 = 2{ek + e — 1) with e, A > 0, A ΞΞ 0 or e = k = 1

(mod 2), e(k + 1) > 3.

Proof. We notice that the period of ω is n if and only if (cn, rn) —

(cOJ r0) and (c4, rτ) Φ (c0, r0) (1 < i < TZ — 1, n > 2). If n = 1, we have 2.6),

2.10) and 2.14) from c, = c0.

In case I, if n = 2, 2.7) follows from 2α = bk2, cγψl. Ί£ n = 3, we

see that a — j(k\r2 + k2 + r2), 6 = 1 + &2r2, A2, r2 > 0 from 2a = hk2 + r2, c2 =

1 + ^2r2 = d, (c2, r2) φ (1, 0). Putting fe2 = 2&, r2 = 2r, we have 2.8) from

m φ. 1 (mod 4). If n = 4, it follows from 2α = 6^2 + r2, c2 = 1 + &2r2,

2a-r2 = bk2 - (1 + ^ 2r 2)^ 3 + r2, (c2, r2) ^ (1, 0) that b - k3r2 + (k3 + r2)/k2,

a = \{k2r2 + 1)̂ 3 + r2, r2 > 0. So we have 2.9) with k3 + r2 = β^2, £2 = ^,

r2 = r.

In case II, if n = 2, 2.11) follows from 2a = 2dk2, cx Φ 2. If τι = 3,

we have 2.12) from 2a = 2d£2 + r2, c2 = 2 + ^2r2 = c1? (c2, r2) =7̂  (2, 0), 2d < α?

by putting r2 = 2r, k2 = k. Ί£ n = 4, 2.13) follows from 2α = 2d&2 + r2,

c2 = 2 + /22r2, 2α - r2 = 2d^2 = (2 + £2r2)£3 + r2, (c2, r2) ̂  (2, 0), 2d < a with

r2 = 2r, k2 = ^, ^3 + r = e/2.

In case III, we notice that &2 = 1 and a = 2d + r2 + 1 if n > 2 since

2α — 1 = (α + 2d)£2 + r2. 2.15) follows immediately from this. If n = 3,

2.16) follows from α = 2d + r2 + 1, c2 = 1 + r2, 2α - r2 = r2 + 1 + 1, (c2, r2)

^ (2,1), r2 = 1 (mod 2). If Λ = 4, from a = 2d + r2 + 1, c2 = 1 + r2, 2α —r2

= (r2 + 1)AS + r2, (c2, r2) ^ (2,1), we see that a = J(r2 + l)fe3 + r2, d =

i ( σ - r 2 - 1) = i((r2 + l)ft8 - 2), r2 > 3, r2 = 1 (mod 2). Putting r2 + 1 = 2β,

fe3 = £, we have 2.17). If n = 5, it follows from a = 2d + r2 + 1, c2 =

2, 2α - r2 = α + 2d + 1 = (1 + r2)^3 + r3, c3 = α + 2d + (r3 - r2)^3 = c2,
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(c2, r2) Φ (2, 1), r2 = r3 = 1 (mod 2) that α + 2d = (1 + r2)ft3 + r3 - 1 = 1 +

r2 + (r2 — rΆ)kΆ. So we see that (1 + r8)(l + k3) = r2 + 3, 4d = (r2 — r3)ft3

= (Jfe8(l + r3) - 2)ft3. Hence we have 2.18) with 1 + r3 = 2e, ft3 = ft.

§3. Application to fundamental units

The following lemma is a well-known result about the fundamental

units of real quadratic fields (see Degert [9]).

LEMMA 3. Let Q(V d) be a real quadratic field with square-free integer

d. Denote by εd the fundamental unit of Q(Vd) and put d = n2 + r with

7i, r e Z, — n < r < n. If An = 0 (mod r) holds, then εd is of the following

form:

ed = n + Vd with Nεd = — sgn r for \r\ = 1 (except for d = 5),

εd = J( Λ + V d) TOίΛ iVed = — sgn r /or |r | = 4,

ed = ^ [ ( 2 ^ 2 + r) + 2nV~d] with Nεd = 1 for \r\ Φ 1, 4.
\r\

Using Lemma 1 in Section 1 and Corollary 1 in Section 2, we may

give explicitly the fundamental units of Q(^ni) with several types of m.

But we see that if the period of ω is small, then such units are also

given by Lemma 3 above. So we show the cases which are not con-

tained in the above.

THEOREM 1. Let m = a2 + b be a square-free integer with a, beZ,

0 < b < 2a. Denote by εm the fundamental unit of the real quadratic field

Q(<s/m). Then εm is given by the following form:

3.1) if a = 4k2r + k + r, b = 4kr + 1 with k, r > 0, k =£ r (mod 2),

then
sm = (4ft2 + l)ω + 2ft α iίA ω = *Jm + α, iVεm = — 1,

3.2) £/ α = J(*r + l)(eft - Γ ) + r, b = (ek - r)r + β wiί/i e, fe, r,

eft - r > 0, α2 + 6 =έ 1 (mod 4), then

em = (ft2(βft — r) + 2ft)ω + ft(eft — r) + 1 w iίA ω = ^m + a,

Nε = 1

3.3) if a = k2r + k + r, b = 4(ftr + 1) ^iίΛ ft > 1, r > 0 , α = 1

(mod 2), ί/iβλi

εm = (^2 + l)ω + k with ω = \(*Jm + α), iVew = - 1,

3.4) if a = dk + r, 6 = 4d zwϊ/i d = (ek — r)r + e, ft > 1, e, r,
eft — r > 0, a = 1 (mod 2),
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£m = (k\ek — r) + 2k)ω + k(ek — r) + 1 with ω = \(*Jm + a),

Nεm = 1,

3.5) if a = ek + 2e - 1, b = 2ek - 1 with e > 1, & > 0, e = k ΞΞI

(mod 2), £/ιeτι

εm = (k + 2)ω + fe + 1 with ω = \(^m + a - 1), iVεm = 1,

3.6) i/ a = k(ek - 1) + 2β(^ + 1) - 2, b = 2^(e^ - 1) + 1 M ftA e,

J > O ^ Ξ θ o r e Ξ ί ! Ξ l (mod 2), e(& + 1) > 3, ίΛen

εm == (k2 + 2k + 2)ω + k2 + k + 1 with ω = J(Vm + α - 1),

iVεm = - 1.

Proof In general, for a real number or, if we put

— = Pn0Cn +Pn-'or -
2 + + kn + ocn qnan + qn_ί '

it is known that q0 = 0, qx = 1, gt = g^-î i + g<_2 (i > 2). Using the result

of Corollary 1, the continued fractional expansion of ω in each case is

given as follows:

1 1 1
3.10 ω = 2a +

2k + 2k + ω '

3.2') ω = 2a + i —L_ -1 1- ,
k + ek — r + k + ω

3 o / \ ^, i -*- -̂  1

k + k + ω
-t -t -t -4

3.40 ω = α

3 r/\ _,

.5 ) co = α

k + ek — r + k + ω '

1 + — — — —
1 + A + 1 + ft) '

3.60 ω = α - 1 + — — — — — .
1 + ^ + ^ + 1 + f t )

From Lemma 1, we get εm by simple calculation.

§4. Application to class numbers

Now we show the various sufficient conditions for him) > 1 when

m is one of the four types in Section 0, and when the period of ω is

small, where ω is an element of R(m) and is also an integer of Q(i/m).

THEOREM 2. If one of the integers in the following condition i) is not

prime, or there exists an odd prime q satisfying one of the following con-

ditions ii), iii), iv) in each case of 4.1)-4.8), then h(m) > 1 holds:
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4.1) if m=p = 9g2 + 2 with odd g 4.2) if m = 2p = 2(18g2 + 1)

and prime P Ξ 3 (mod 4), odd g and prime p = 3 (mod 4),

i) &g + l, 6g - 1, i) 12g + 1

1, ii) q<6g
.g/ \ g

= ± 1 (mod 8), iii) g|ft g = ± 1 (mod 8),

iv) g 13g ± 1, g = ± 1 (mod 12), iv) g 16g ± 1, g = ± 1 (mod 12),

4.3) if m =p = g2 - 2 with odd g 4.4) if m = 2p = 2(8g2 - 1) with

> 3 and prime p = 3 (mod 4),

i ) 2g -3,6g- 1 1 ,

ϋ) g < g, (2) = 1,

prime p = 3 (mod 4),

i) 8£ - 3, 24^ - 11,

ii) g < 4?

iϋ) g|g, g ΞΞ 1 or 3 (mod 8),

iv) q\g ± 1, g = 1 (mod 4),

= 1,

iii) g|g, g = 1 or 3 (mod 8),

iv) q\4g ±1, g ΞΞ 1 (mod 4),

4.5) i/ m = p = ^ 2 + 4 with odd g 4.6) if m = ptp2 =

α/id prime p = 1 (mod 4),

i) ft 2# - 3,

odd ^ α^d primes pλ =

(mod 4),

+ 4) with

Ξ 3

(f
iii) ^ 1 ^ + 1 , ^ ^ + 1 (mod 5),

4.7) if m = ptp2 = g2 — 4 ^iίΛ odd ,

' α^dprimes p1=p2 = 3 (mod 4),

i) 2^ - 5,

ϋ) |-(ί ~ 1),

iϋ) q\g, Q = l (mod 4),

where (mjq) is Kronecker's symbol.

ii) g < | - (A£ + 1),

4.8) if m = p = 4g2 + 1

p = 1 (mod 4),

i) ft 3^ - 2,

iii)

prime

g
± 1, g = ± 1 (mod 5),

To prove this Theorem, we show the general conditions for h(m) > 1

according to the three cases in Section 2.

THEOREM 3. Let n be the period of ω and R^m) = {ω0, ωu -,ωn.^ be

the equivalent class in R(m) containing ω0 = ω, and put ωt = (*/m + a —

r^ICi (0 < i < n — 1). Then h(m) > 1 holds if and only if R(m) ψ Rx(m),

i.e. there exist integers A and t satisfying the following condition 4.9):

4.9) in case I, A \ t2 - 2at - b (0 < t < a), t < A < 2a - t,

(A, t) Φ (c, rt) (0 < i < n - 1),
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in case II, A112 - at - d (o < t < — \ t < A <a - t,

(2A, 2t) Φ (cu rt) (0<ί<n~ 1),

in case III, A | f - (α - ΐ)t - ί— + d) (θ < t < — V t < A < a - t,

(2A, 2t+l)Φ (ct, r<) (0 < i < n - 1).

Proof. From the equations:

m — {a — if — (f — 2at — b) in case I,

m = (α — 2/)2 — 4(ί2 — at — d) in case II,

ro = (α - 2t - I)2 - 4(ί2 - (α - l)ί - (Jα + d)) in case III,

each element a of i?(m) may be written as follows:

a = —(Vm + α - t) with A | ί2 - 2at - δ (0 < t <a) ,
A

t < A < 2α — t in case I,

—ί-(Vm + α - 2ί) with AI f - at - d (0 < t < — V
2A V "" 2 /

ί < A < α — ί in case II,

~— Um + a - 2t - 1) with A U2 - (α - ΐ)t - f— + d)
2A \2 /

/θ < * < — V ί < A < α - t in case III.

So the existence of the integers A and t satisfying 4.9) means that R(m)
Φ i?i(m), which is the same thing as h(m) > 1 from Lemma 2. The con-
verse is easy to verify.

COROLLARY 2. Under the same notations as in Theorem 3, if there
exists an odd prime q satisfying the following condition 4.10), then h(m)
> 1 holds:

4.10) in case I, q < a + 1, q Φ ct (0 < ί < n — 1), (-771-) = 1,
V q I

in case II, q < — {a + 1), 2q Φ ct (0 < i < n - 1), (-^) = 1,
2 V α /

a =

a =

in case III, g < —, 2q Φ c, (0 < i < n - 1), ( —
2 \ q

We use the following simple lemma without proof.

) = 1.
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LEMMA 4. Let q be an odd prime and f(X) = X2 + uX + v with u,

υ e Z. Then the polynomial f(X) is reducible modulo q if ((u2 — 4ϋ)lq) = 1

holds.

Proof of Corollary 2. Assume that there exists an odd prime q satis-

fying 4.10). In case I, from Lemma 4, we see that t2 — 2at — b = (t — u)

X (t — v) (mod q) with u, υ e Z, 0 < u, v < q, since ((4a2 + 4b)jq) = (Am/q)

= 1. We may assume t h a t 0 <u < v < q, u<q — 2<a — 1 since u=v

means that m = 0 (mod q). So we see t h a t

q I u2 — 2au — b , 0 < w < α — 1, u < q < 2a — u, qΦ ct .

Hence we have /ι(m) > 1 by Theorem 3. In case II and III, we have h(m)

> 1 in the same way.

Proof of Theorem 2. Using Theorem 3 and Corollary 2, our assertion

follows from Corollary 1 in Section 2: 4.1) (resp. 4.2)) from 2.7) with a = 3g

(resp. a = 6g), 6 = 2, c0 = 1, cx = 2; 4.3) (resp. 4.4)) from 2.9) with k = r

= 1, α = e = g - 1, 6 = 2# - 3 (resp. α = e = Ag - 1, b = 8^ - 3), c0 = 1,

C l = c3 = 2g - 3 (resp. cί = c, = 8g- 3), c2 = 2; 4.5) from 2.10) with c0 = 2;

4.6) from 2.11) with α =Pig, d = pu c0 = 2, c, = 2ft 4.7) from 2.15) with

d = K ί - 3), c0 - 2, d - 2g - 4; 4.8) from 2.17) with α = 2ft c0 = 2, ^ =

c2 - 2ft

If one of the integers in i) is not prime, from 4.9) with t = 0, 1 or 2,

we have R(m) Φ Rx(m). The condition ii) in each case is the same thing

as 4.10), and iii), iv) are the special cases of ii). This completes the proof.
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