REMARKS ON LIFTING OF COHEN-MACAULAY PROPERTY

MANFRED HERRMANN* and SHIN IKEDA

Let (R, m) be a local noetherian ring and I a proper ideal in R. Let $\mathscr{R}(I)$ be the Rees-ring $\oplus_{n \geq 0} I^{n}$ with respect to I. In this note we describe conditions for I and R in order that the Cohen-Macaulay property (C-M for short) of R / I can be lifted to R and $\mathscr{R}(I)$, see Propositions 1.2, 1.3 and 1.4.

§ 1. Preliminaries, examples and results

The statements in the following proposition are well known. We give here a short proof.

Proposition 1.1. For a prime ideal $p \subset R$ let R_{p} be regular and p / p^{2} flat over R / p. If R / p is $\mathrm{C}-\mathrm{M}$ then R is a $\mathrm{C}-\mathrm{M}$ domain and $\mathscr{R}\left(p^{r}\right)$ is $\mathrm{C}-\mathrm{M}$ for all $\tau \geqq 1$.

Proof. By assumption p is generated by a regular sequence (see [HSV], Lemma 3.17, p. 75), in particular we have $\operatorname{dim} R=\operatorname{dim} R / p+$ ht (p). Therefore by [D] and [HSV], p. $72 R$ is a domain. Then the C-M property of R / p can be used to get a regular sequence with $\operatorname{dim} R$ elements in R, so R is C-M. Hence by [V] we know that $\mathscr{R}\left(p^{r}\right)$ is C-M for all $\tau \geqq 1$.

The statement of Proposition 1.1 is false if the regularity of R_{p} is replaced by the C-M property. Here is an example of Hesselink (see [HSV], p. 76): Let S be a discrete valuation ring and t a generator of its maximal ideal. Take the ideal

$$
J=\left(X^{2}, X Y-t Z^{2}, X Z^{2}, Z^{4}\right)
$$

in the polynomial ring $H=S[X, Y, Z]$. Then we consider the local ring
Received August 21, 1982.
Revised November 12, 1982.

* This author would like to thank the Math. Dept. of Nagoya University and in particular Prof. H. Matsumura for their kind hospitality during the preparation of this work.

$$
R=H_{u l} / J H_{M} \quad \text { where } M=t H+(X, Y, Z) H
$$

and the prime ideal $p=(X, Y, Z) R$. Then [HSV] Lemma 1.53, p. 34 yields that R is normally flat along p (i.e. p^{n} / p^{n+1} is flat over R / p for all $n \geq 0$). Furthermore we get:
(i) R_{p} is C-M-ring with $\operatorname{dim} R_{p}=1$,
(ii) $\operatorname{dim} R=2$,
(iii) depth $R=1$, since t is R-regular and the ideal ($J, t)$ has M as an embedded component.

So R is not C-M.
One reason for missing the C-M property of R in this example can be seen in the fact that $p R_{p}$ has proper reductions. From this point of view we need the regularity of R_{p} in the sketched proof. On the other hand flatness of p / p^{2} over R / p is a rather strong condition. (Note that in the case of Proposition 1.1 we have even normal flatness of R along p.) Therefore we have asked if normal pseudo-flatness of R along I is the "correct" condition to be put on I in this context. This last condition means ht $(I)=\ell(I)$, where $\mathrm{ht}(I)$ is height and $\ell(I)$ the analytic spread of the ideal I. The nicest result one could perhaps expect is that for a Buchsbaum ring R and a prime ideal p such that
(i) R_{p} is regular,
(ii) $\operatorname{ht}(p)=\ell(p)$,
(iii) R / p is C-M,
we get the C-M property of R.
Unfortunately this is not true. We are indebted to S . Goto for the following example:
$R=k\left[\left[s^{2}, s^{3}, s t, t\right]\right]$ is a Buchsbaum ring with multiplicity $e(R)=2$. Let $p=(t, s t)$. Note that R_{p} is regular. Furthermore we have $p^{2}=t p$, i.e. $\ell(p)=1$. Hence we know that ht $(I)=\ell(I)=1$. Finally $R / p \simeq$ $k\left[\left[s^{2}, s^{3}\right]\right]$ is C-M. But depth $R=1$ (t is a regular element), so R is not C-M. (Note that p is not generated by a regular sequence.)

What we can really prove is stated in the following Propositions 1.2, 1.3 and 1.4.

Proposition 1.2. Let (R, m) be a local ring ${ }^{1)}$ such that R_{p} is C-M for all $p \neq m$. Let I be an ideal in R with the following properties:

[^0](i) I is locally a complete intersection ${ }^{2}$,
(ii) $0<\operatorname{ht}(I) \leqq \operatorname{depth} R-1$,
(iii) $\mathrm{ht}(I)=\ell(I)$.

Then I can be generated by a regular sequence.
The following examples (see also [H-O-2]) show that Proposition 1.2 is false for a prime ideal $I=p$ which satisfies the conditions (ii) and (iii) but not (i).

Example 1. Let

$$
\begin{aligned}
R & =k[[X, Y, Z, W]] /\left(Z^{2}-W^{5}, Y^{2}-X Z\right) \\
& =k[[x, y, z, w]]
\end{aligned}
$$

and $p=(y, z, w)$.
We have $w p^{3}=p^{4}$, hence $\ell(p)=\operatorname{ht}(p)=1$. Furthermore $R / p \simeq k[[x]]$ is regular. Therefore by [H-O-1] we get equimultiplicity: $e(R)=e\left(R_{p}\right)$. Surely $e(R)>1$, hence $e\left(R_{p}\right) \geq 2$, i.e. R_{p} is not regular. But R is C-M, hence depth $R=2 \geq \mathrm{ht}(p)+1$. Now in this case p is not generated by a regular sequence. Furthermore $\mathscr{R}(p)$ is not $\mathrm{C}-\mathrm{M}$ (otherwise p could be generated by one element; see Proposition 1.5).

Example 2. Let

$$
\begin{aligned}
R & =k\left[\left[X_{1}, X_{2}, X_{3}, Y_{1}, Y_{2}, Y_{3}\right]\right] /\left(X_{1} Y_{1}+X_{2} Y_{2}+X_{3} Y_{3},\left(Y_{1}, Y_{2}, Y_{3}\right)^{2}\right) \\
& =k\left[\left[x_{1}, x_{2}, x_{3}, y_{1}, y_{2}, y_{3}\right]\right]
\end{aligned}
$$

and $p=\left(x_{3}, y_{1}, y_{2}, y_{3}\right)$.
Then R / p is regular, $\operatorname{ht}(p)=\ell(p)=1$ since $p^{2}=x_{3} p$ and $\operatorname{depth}(R)$ $=2 \geq \mathrm{ht}(p)+1\left(x_{1}, x_{2}\right.$ is a regular sequence in $\left.R\right)$. Note that R_{p} is not regular and indeed R and $\mathscr{R}(p)$ are not C-M.

As a corollary of Proposition 1.2 we have
Proposition 1.3. Under the same assumptions as in Proposition 1.2 we get the implication: If R / I is $\mathrm{C}-\mathrm{M}$ then R and $\mathscr{R}\left(I^{\tau}\right)$ are $\mathrm{C}-\mathrm{M}$ for $\tau \geq 1$.

The next proposition gives a characterization of the C-M property of $\mathscr{R}(I)$ if R is normally flat along I and R / I is C-M (but generally not regular). It is based on a result of S. Ikeda (see Proposition 2.1).

Proposition 1.4. Let (R, m) be a Buchsbaum ring and I an ideal in

[^1]R with $\mathrm{ht}(I)>0$ such that R / I is $\mathrm{C}-\mathrm{M}$ and R is normally flat along I. Then $\mathscr{R}(I)$ is C-M if and only if

(i) $H_{M}^{i}(G)_{n}=\left\{\begin{array}{ll}H_{m}^{i}(R) & \text { for } n=-1 \\ 0 & \text { for } n \neq-1\end{array}\right.$ and $i<d=\operatorname{dim} R$,
(ii) $H_{M}^{d}(G)_{n}=0$ for $n \geq 0$,
where $G=\operatorname{gr}_{I}(R)$ and $M=m \oplus \sum_{n>0} I^{n}$.
The next result describes necessary conditions for $\mathscr{R}(I)$ to be C-M.
Proposition 1.5. Let (R, m) be a local ring and I an ideal in R with $\mathrm{ht}(I)=\ell(I)=: t>0$. If $\mathscr{R}(I)$ is $\mathrm{C}-\mathrm{M}$ then the following conditions are fulfilled:
(i) $H_{M}^{i}(G)_{n}=\left\{\begin{array}{ll}H_{m}^{i}(R) & \text { for } n=-1 \\ 0 & \text { for } n \neq-1\end{array}\right.$ and $i<d=\operatorname{dim} R$,
(ii) There exist elements $z_{1}, \cdots, z_{t} \in I$ such that $I^{t}=\left(z_{1}, \cdots, z_{t}\right) I^{t-1}$,
(iii) $\operatorname{depth} R \geq \operatorname{dim} R / I+1$,
(iv) R is normally Cohen-Macaulay along I^{1}.

The following example shows that without any restriction on I Proposition 1.5 is false:

Let $R=k[[X]]$, where $X=\left(X_{i j}\right)$ is the $n \times(n+1)$ matrix of indeterminates $X_{i j}$ over a field k. Let $I=I_{n}(X)$ be the ideal generated by the n-minors. Then $\mathscr{R}(I)$ is C-M by C. Huneke [Hu], but I / I^{2} is not C-M for $n \geq 2$ by J. Herzog [H].

§ 2. Proofs of Propositions 1.2-1.5

Proof of 1.2. Condition (iii) implies [H-O-2]

$$
\begin{equation*}
\operatorname{ht}(I)+\operatorname{dim}(R / I)=\operatorname{dim} R \tag{1}
\end{equation*}
$$

and the existence of a minimal reduction $z_{1}, \cdots, z_{t}(\underline{z}$ for short) of I, where $t=\mathrm{ht}(I)$. Condition (i) tells us ([N-R], §4, Theorem 2) that $I R_{p}$ has no proper reduction for all $p \in$ Ass (R / I). Hence we get
$(\underline{z}) R_{p}=I R_{p} \quad$ for $p \in \operatorname{Ass}(R / I)$.
Now, by the assumption (that all R_{p} are C-M for $p \neq m$), for each system of parameters $z_{1}, \cdots, z_{t}, z_{t+1}, \cdots, z_{d}$ of $R(d=\operatorname{dim}(R))$ there exists an $N>0$ (which depends on the system of parameters) such that

[^2]$$
\left(z_{1}, \cdots, z_{i}\right): z_{i+1} \subseteq\left(z_{1}, \cdots, z_{i}\right): m^{N} \quad \text { for } 0 \leq i<d
$$
where $z_{0}=0$ by convention. This means $0: z_{1} \subset 0: m^{N}$ for $i=0$. Hence we get $0: z_{1}=0$, since depth R is at least ht $(I)+1$. So z_{1} is a regular element. Now, considering the ring $R / z_{1} R$ and using the same argument as before we see that z_{1}, z_{2} constitute a regular sequence, and so on. Finally we have that
$$
z_{1}, \cdots, z_{t} \quad \text { is a regular sequence in } R .
$$

Case 1. If $m \in \operatorname{Ass}(R / I)$, we have $I=(\underline{z}) R$ by (2) and the proposition is proved in this case.

Case 2. If $m \notin \operatorname{Ass}(R / I)$ then $(\underline{z}) R_{p}$ is unmixed for all $p \in \operatorname{Ass}(R / I)$ since $(\underline{z}) R_{p}$ is an ideal of the principal class in the C-M ring R_{p}. From this and (2) we obtain that I is unmixed (see also [H-O-1], proof of Satz 1). Since $\underline{z} R$ is a minimal reduction of I we know that I and $\underline{z} R$ have the same minimal primes. If $p \in \operatorname{Ass} R / \underline{z} R$ then $p \neq m$ by assumption (ii): Hence R_{p} is C-M and $\underline{z} R_{p}$ is unmixed of height t. Since $p R_{p} \in$ $\operatorname{Ass}_{R_{p}}\left(R_{p} / \underline{z} R_{p}\right)$ we have ht $p=t$. Therefore p is a minimal prime of $\underline{z} R$ and hence of I. Hence

$$
\operatorname{Ass}(R / \underline{z} R)=\operatorname{Ass}(R / I)
$$

By (2) we have $I=\underline{z} R$.
Proof of Proposition 1.3. Since R / I is C-M and I is generated by a regular sequence z_{1}, \cdots, z_{t} (by Proposition 1.2) we get a regular sequence $z_{1}, \cdots, z_{t}, x_{1}, \cdots, x_{r}$, where $r=\operatorname{dim} R / I$. Hence $\operatorname{depth} R=\operatorname{dim} R$ by formula (1).

Remark. Note that condition (i) of Proposition 1.2 means for a prime ideal $I=p$ that R_{p} is regular. The purely technical conditions " R_{p} is C-M for all $p \neq m$ " and "depth $R \geq \mathrm{ht}(I)+1$ " imply that z_{1}, \cdots, z_{t} is a regular sequence in R, generating the ideal I. Hence in the case of a regular ring R_{p} we have the implication: if
(i) $\operatorname{ht}(p)=\ell(p)$ and
(ii) R_{q} is C-M for $q \neq m$ and depth $R \geq \mathrm{ht}(p)+1$, then R is normally flat along p.

Question 1. How far is normal flatness of R along p from these two conditions (i), (ii) in the general case?

Question 2. Is there an example such that R is not $\mathrm{C}-\mathrm{M}, \operatorname{ht}(p)=$ $\ell(p)=2$ and $\mathscr{R}(p)$ is $\mathrm{C}-\mathrm{M}$?

In [I] an example is given with $\operatorname{ht}(p)=\ell(p)=3$ instead of $\operatorname{ht}(p)=$ $\ell(p)=2$.

For the proof of Proposition 1.4 it is enough to show by [HSV], Lemma 3.15, p. 66 and Lemma 3.8, p. 117 the following statement.

Proposition 2.1 (S. Ikeda). Let (R, m) be a local ring with $\ell\left(H_{m}^{i}(R)\right)$ $<\infty$ for $i<d=\operatorname{dim} R$ and let I be an ideal such that $t=\operatorname{ht}(I)>0$ and I^{n} / I^{n+1} is $\mathrm{C}-\mathrm{M}$ of depth equal to $\operatorname{dim} R / I$ for all $n \geq 0$. Then the following conditions are equivalent:
(i) $\mathscr{R}(I)$ is $\mathrm{C}-\mathrm{M}$,
(ii) a) $H_{M}^{i}(G)_{n}=\left\{\begin{array}{ll}H_{m}^{i}(R) & \text { for } n=-1 \\ 0 & \text { for } n \neq-1\end{array}\right.$ and $i<d$,
b) $H_{M}^{d}(G)_{n}=0$ for $n \geq 0$,
where $G=\operatorname{gr}_{I}(R)$ and $M=m \oplus \sum_{n>0} I^{n}$.
For the proof of this proposition we need the following two lemmas. The following result was first obtained in [V].

Lemma 2.2. Let $\left(a_{1}, \cdots, a_{t}\right)$ be a minimal reduction of an ideal I with $\mathrm{ht}(I)=\ell(I)=t>0$ and let b_{1}, \cdots, b_{s} be a system of parameters with respect to I^{4}. Then the sequence

$$
\left\{a_{1}, a_{2}-a_{1} X, \cdots, a_{t}-a_{t-1} X, a_{t} X, b_{1}, \cdots, b_{s}\right\}
$$

in the Rees-algebra $R[I X] \simeq \mathscr{R}(I), X$ an indeterminate, forms a system of parameters of $\mathscr{R}(I)_{M}$.

Proof. Let $P=\sqrt{\left(a_{1}, a_{2}-a_{1} X, \cdots, b_{s}\right)}$. Since $a_{1} \in P$ we can prove that all $a_{i} \in P$ by induction on i : If $i \geq 2$ we have $a_{i}\left(a_{i}-a_{i-1} X\right)=$ $a_{i}^{2}-a_{i-1}\left(a_{i} X\right) \in P$. Since $a_{i} X \in \mathscr{R}(I)$ and since $a_{i-1} \in P$ by induction hypothesis, we get $a_{i} \in P$. Hence $\left(a_{1}, \cdots, a_{t}, b_{1}, \cdots, b_{s}\right) \mathscr{R}(I) \subset P$. Note furthermore that the ideal $\left(a_{1}, \cdots, a_{t}, b_{1}, \cdots, b_{s}\right)$ is m-primary. We have I^{n} $=\left(a_{1}, \cdots, a_{t}\right) I^{n-1}$ for some $n>0$. Take any $a \in I$. Then we have $a^{n}=$ $\sum_{i=1}^{t} a_{i} x_{i}$ for some $x_{i} \in I^{n-1}$. Now $(a X)^{n}=\sum_{i=1}^{t} a_{i} X x_{i} X^{n-1} \in P$ because $a_{i} X \in P$ and $x_{i} X^{n-1} \in \mathscr{R}(I)$, i.e. $M \supseteq P \supseteq m \mathscr{R}(I)+I X \mathscr{R}(I)=M$. Therefore $a_{1}, a_{2}-a_{1} X, \cdots, b_{s}$ form a system of parameters of $\mathscr{R}(I)_{M}$.

[^3]Lemma 2.3. Let I be an m-primary ideal and let $\left(a_{1}, \cdots, a_{a}\right)$ be a minimal reduction of I, where $d=\operatorname{dim} R$. If $I^{d}=\left(a_{1}, \cdots, a_{d}\right) I^{d-1}$ then we have

$$
H_{M}^{d}(G)_{n}=0 \quad \text { for } n \geq 0
$$

Proof. Let $a_{i}^{*}=\operatorname{In}_{I}\left(a_{i}\right) \in I / I^{2}$ the initial form of a_{\imath} with respect to I. Since the ideal ($a_{1}^{*}, \cdots, a_{d}^{*}$) in G is primary ${ }^{5}$) to the maximal homogeneous ideal of G there exists an exact sequence (see $[R]$, p. 78, Proposition 2.3)

$$
{\underset{i=1}{d}}_{\oplus}^{a_{a_{1}^{*} \cdots \check{a}_{\cdots}^{*} \cdots a_{d}^{*}} \xrightarrow{\varphi} G_{a_{1}^{*} \cdots a_{d}^{*}} \longrightarrow H_{M}^{d}(G) \longrightarrow 0, ~}
$$

where φ is given by

$$
\varphi\left(\left(f_{1}, \cdots, f_{d}\right)\right)=\sum_{i=1}^{d}(-1)^{i} \frac{f_{i}}{1} \quad \text { for } f_{i} \in G_{a_{1}^{*} \cdots \tilde{a}_{i}^{*} \cdots a_{d}^{*}}
$$

Pick $x \in H_{M}^{d}(G)_{n}, n \geq 0$, and assume that x is represented by

$$
\frac{f}{\left(a_{1}^{*} a_{2}^{*} \cdots a_{d}^{*}\right)^{k}} \in\left(G_{a_{1}^{*} \cdots a_{d}^{*}}\right)_{n},
$$

where $f \in G$ is homogeneous of degree $k d+n$. If $k=0$, then f is of course in the image of φ. If $k \geq 1$, then by applying the assumption we get

$$
\begin{aligned}
I^{k d+n} & =(\underline{a})^{(k-1) d+1+n} I^{d-1} \\
& =\left(a_{1}^{k}, \cdots, a_{d}^{k}\right)\left(a_{1}, \cdots, a_{d}\right)^{(k-1)(d-1)+n} I^{d-1} \\
& =\left(a_{1}^{k}, \cdots, a_{d}^{k}\right) I^{k(d-1)+n} .
\end{aligned}
$$

Hence f can be written in the form

$$
f=\sum_{i=1}^{d} a_{i}^{* k} g_{i} \quad \text { where } g_{i} \in G_{k(d-1)+n} .
$$

Therefore $f /\left(a_{1}^{*} \cdots a_{d}^{*}\right)^{k}$ is in the image of φ.
Proof of Proposition 2.1. Since $\ell\left(H_{m}^{i}(R)\right)<\infty$ for $i<d=\operatorname{dim} R$ we have

$$
\operatorname{dim} R / p+\operatorname{ht}(p)=\operatorname{dim} R \quad \text { for all } p \in \operatorname{Spec}(R)
$$

hence in particular $\operatorname{dim} R / I+\operatorname{ht}(I)=\operatorname{dim} R$ (see [S-T-C]).
5) The elements of a minimal reduction induce a system of parameters $\tilde{a}_{d}^{*}, \cdots, \tilde{a}_{d}^{*}$, in the ring $\operatorname{gr}_{I} R \otimes_{R} R / m$, hence $a_{1}^{*}, \cdots, a_{d}^{*}$ form a system of parameters in $\operatorname{gr}_{I} R$.

Furthermore the C-M property of I^{n} / I^{n+1} implies that $\mathrm{ht}(I)=\ell(I)$ $=: t$ by [H-O-2].

First we prove (i) \Rightarrow (ii). Consider the exact sequences

$$
\begin{align*}
& 0 \longrightarrow \mathscr{R}(I)_{+} \longrightarrow \mathscr{R}(I) \longrightarrow R \longrightarrow 0 \longrightarrow \text { and } \tag{1}\\
& 0 \longrightarrow \mathscr{R}(I)_{+}(1) \longrightarrow \mathscr{R}(I) \longrightarrow G \longrightarrow 0^{6)} .
\end{align*}
$$

We get the following exact sequences.

$$
\begin{align*}
& \rightarrow H_{M}^{i}(\mathscr{R}(I)) \rightarrow H_{m}^{i}(R) \rightarrow H_{M}^{i+1}\left(\mathscr{R}(I)_{+}\right) \rightarrow H_{M}^{i+1}(\mathscr{R}(I)) \rightarrow \cdots \quad \text { and } \\
& \rightarrow H_{M}^{i}(\mathscr{R}(I)) \rightarrow H_{M}^{i}(G) \rightarrow H_{M}^{i+1}\left(\mathscr{R}(I)_{+}\right)(1) \rightarrow H_{M}^{i+1}(\mathscr{R}(I)) \rightarrow \cdots .
\end{align*}
$$

Since $\mathscr{R}(I)$ is C-M by assumption (i) of Proposition 2.1 we obtain for $i<d$

$$
H_{m}^{i}(R) \simeq H_{M}^{i+1}\left(\mathscr{R}(I)_{+}\right) \quad \text { and } \quad H_{M}^{i}(G) \simeq H_{M}^{i+1}\left(\mathscr{R}(I)_{+}\right)(1) .
$$

Hence we get (ii), a) in Proposition 2.1.
By what we have mentioned at the beginning of the proof, there exists $a_{1}, \cdots, a_{t} \in I$ such that $I^{n}=\left(a_{1}, \cdots, a_{t}\right) I^{n-1}$ for some $n>0$. By assumption $\mathscr{R}(I)$ is C-M. Therefore, by Lemma 2.2, $a_{1}, a_{2}-a_{1} X, \cdots, a_{t}-$ $a_{t-1} X, a_{t} X$ is an $\mathscr{R}(I)_{M}$-sequence ${ }^{7}$. Then we can use the same argument as in [I], p. 8 to show that

$$
\begin{equation*}
I^{t}=\left(a_{1}, \cdots, a_{t}\right) I^{t-1} \tag{2}
\end{equation*}
$$

(The idea is to consider for any $a \in I^{t}$ the following congruence $\bmod \left(a_{2}-a_{1} X, \cdots, a_{t} X\right)$:

$$
a_{1} a X^{t} \equiv a_{2} a X^{t-1} \equiv \cdots \equiv a_{t} a X \equiv 0
$$

hence $a X^{t} \in\left(a_{2}-a_{1} X, \cdots, a_{t} X\right) \mathscr{R}(I)_{M}$ since $a_{1}, a_{2}-a_{1} X, \cdots, a_{t} X$ is a regular sequence in $\mathscr{R}(I)_{M}$. Therefore we find an equation in $\mathscr{R}(I)$ of the form

$$
r a X^{t}=\left(a_{2}-a_{1} X\right) f_{1}+\cdots+a_{t} X f_{t}, \quad r \oplus M .
$$

Comparing the coefficients of X^{t} in this equation we obtain (2).)
Since I^{n} / I^{n+1} is C-M for $n \geq 0$ we find elements $b_{1}, \cdots, b_{s} \in m$ ($s=\operatorname{dim} R / I$) forming a regular sequence on I^{n} / I^{n+1} for all $n \geq 0$.
[Any system b_{1}, \cdots, b_{s} of parameters with respect to I is a system of parameters for each I^{n} / I^{n+1} since $\operatorname{dim} I^{n} / I^{n+1}=\operatorname{dim} R / I$, hence b_{1}, \cdots, b_{s} is a regular sequence.]

[^4]Therefore b_{1}, \cdots, b_{t} (\underline{b} for short) is a G-sequence. Set

$$
\bar{G}=\operatorname{gr}_{I+\underline{b} R / \underline{b} R}(R / \underline{b} R) \simeq G / \underline{b} G .
$$

By Lemma 2.3 we see that

$$
\begin{equation*}
H_{M}^{t}(\bar{G})_{n}=0 \quad \text { for } n \geq 0 \tag{3}
\end{equation*}
$$

Let $G_{0}=G$ and $G_{i}=G /\left(b_{1}, \cdots, b_{i}\right) G$ for $i=1, \cdots, s$. For $0 \leq i \leq s$ we have the exact sequence

$$
0 \longrightarrow G_{i} \xrightarrow{b_{i+1}} G_{i} \longrightarrow G_{i+1} \longrightarrow 0
$$

From this exact sequence we get an exact sequence

$$
\begin{align*}
& \longrightarrow H_{M}^{j-1}\left(G_{i}\right) \longrightarrow H_{M}^{j-1}\left(G_{i+1}\right) \longrightarrow H_{M M}^{j}\left(G_{i}\right) \xrightarrow{b_{i+1}} H_{M}^{j}\left(G_{i}\right) \longrightarrow \tag{4}\\
& \text { for } 0 \leq i \leq s .
\end{align*}
$$

By ii), a) we have $H_{M}^{j}\left(G_{i}\right)_{n}=0$ for $n \neq-1, j<d-1$ and $0 \leq i \leq s$. Assume that $H_{M}^{d-i-1}\left(G_{i+1}\right)_{n}=0$ for $n \geq 0$. Then the exact sequence (4) shows that b_{i+1} is a non-zero-divisor on $H_{M}^{d-i}\left(G_{i}\right)_{n}$ for $n \geq 0$. Let $n \geq 0$ and $x \in H_{M}^{d-i}\left(G_{i}\right)_{n}$. Since $b_{i+1} \in M$ we have $b_{i+1}^{k} x=0$ for sufficiently large $k>0$. Therefore $x=0$ and we have $H_{m}^{d-i}\left(G_{i}\right)_{n}=0$ for $n \geq 0$. Since $\bar{G}=G_{s}$ we see that $H_{M}^{d-i}\left(G_{i}\right)_{n}=0$ for $n \geq 0$ and $0 \leq i \leq s$ by induction on s and (3).
(ii) \Rightarrow (i). Since b_{1}, \cdots, b_{s} is a G-sequence (by the general assumption of Proposition 2.1) we have [V-V].

$$
\left(b_{1}, \cdots, b_{s}\right) \cap I^{n}=\left(b_{1}, \cdots, b_{s}\right) I^{n} \quad \text { for } n \geq 0
$$

Hence

$$
\mathscr{R}(I+\underline{b} R / \underline{b} R) \simeq \oplus_{n \geq 0} I^{n} / \underline{b} R \cap I^{n}=\oplus_{n \geq 0} I^{n} / \underline{b} I^{n}=\mathscr{R}(I) / \underline{b} \mathscr{R}(I) .
$$

Since b_{1} is regular on G we have

$$
b_{1} R \cap I^{n}=b_{1} I^{n}
$$

Hence we have

$$
\operatorname{gr}_{I+b_{1} R / b_{1} R}\left(R / b_{1} R\right) \simeq G / b_{1} G
$$

and

$$
\mathscr{R}\left(I+b_{1} R / b_{1} R\right) \simeq \mathscr{R}(I) / b_{1} \mathscr{R}(I)
$$

Since b_{1} is not a zero-divisor on $\mathscr{R}(I)$ we can conclude that \underline{b} is an $\mathscr{R}(I)$ sequence by induction on s. Therefore it is sufficient to prove that $\overline{\mathscr{R}}: \stackrel{\text { def }}{=} \mathscr{R}(I+\underline{b} R / \underline{b} R)$ is C-M.

From the exact sequence (4) and ii), a) we have for $i<t$.

$$
\begin{equation*}
H_{M}^{i}(\bar{G})_{n}=0(n \neq-1) \quad \text { and } \quad \ell\left(H_{M}^{i}(\bar{G})\right)<\infty \tag{5}
\end{equation*}
$$

by induction on s.
But (5) implies by [G, (3.1)]

$$
\ell\left(H_{M}^{i}(\overline{\mathscr{R}})\right)<\infty \quad \text { for } i \leq t .
$$

Similarly for $i=t$ we have (see Lemma 2.3)

$$
\begin{equation*}
H_{M}^{t}(\bar{G})_{n}=0 \quad \text { for } n \geq 0 \tag{6}
\end{equation*}
$$

From the analogous exact sequence (1^{\prime}) corresponding to $\overline{\mathscr{R}}$, we have for $i<t$ isomorphisms

$$
\begin{array}{ll}
H_{M}^{i}\left(\overline{\mathscr{R}}_{+}\right)_{\nu} \leftrightharpoons H_{M M}^{i}(\overline{\mathscr{R}})_{\nu}, & \nu \neq 0 \\
H_{M}^{i}\left(\overline{\mathscr{R}}_{+}\right)_{\nu+1} \leftrightharpoons H_{M M}^{i}(\overline{\mathscr{R}})_{\nu}, & \nu \neq-1 .
\end{array}
$$

Since $\ell\left(H_{M}^{i}(\overline{\mathscr{R}})\right)<\infty$, we know already that $H_{M}^{i}(\overline{\mathscr{R}})_{\nu}=0$ for $\nu \gg 0$ or $\nu \ll 0$ (and $i \leq t$). Therefore we have

$$
H_{M}^{i}(\overline{\mathscr{R}})=0 \quad \text { for } i<t .
$$

Now it remains to prove that $H_{m M}^{t}(\overline{\mathscr{R}})=0$:
By (5) and (6) we have isomorphisms

$$
\begin{array}{ll}
H_{M M}^{t}\left(\widetilde{\mathscr{R}}_{+}\right)_{\nu} \Im H_{M M}^{t}(\overline{\mathscr{R}})_{\nu} & \nu \neq 0, \\
H_{M M}^{t}\left(\overline{\mathscr{R}}_{+}\right)_{\nu+1} \cong H_{M}^{t}(\overline{\mathscr{R}})_{\nu} & \nu \geq 0
\end{array}
$$

and injective homomorphisms

$$
H_{M H}^{t}\left(\overline{\mathscr{R}}_{+}\right)_{\nu+1} \hookrightarrow H_{M H}^{t}(\overline{\mathscr{R}})_{\nu} \quad \nu \leq-2 .
$$

Since $H_{M H}^{t}(\overline{\mathscr{R}})_{n}=0$ for $n \gg 0$ or $n \ll 0$ one can conclude that $H_{M H}^{t}(\overline{\mathscr{R}})=0$.
Hence \bar{R} is C-M as required.
Proof of Proposition 1.5. We have already shown (i) and (ii) in the course of the proof of Proposition 2.1.

Let $\left(z_{1}, \cdots, z_{t}\right)$ be a minimal reduction of I and b_{1}, \cdots, b_{s} a system of parameters with respect to I.

By Lemma $2.2\left\{z_{1}, z_{2}-z_{1} X, \cdots, z_{t}-z_{t-1} X, z_{t} X, b_{1}, \cdots, b_{s}\right\}$ is an $\mathscr{R}(I)_{M^{-}}$
sequence since $\mathscr{R}(I)$ is C-M by assumption. Now consider the exact sequence

$$
0 \longrightarrow \frac{\left(z_{1}, z_{1} X\right) \mathscr{R}(I)}{z_{1} \mathscr{R}(I)} \longrightarrow \frac{\mathscr{R}(I)}{z_{1} \mathscr{R}(I)} \longrightarrow \frac{\mathscr{R}(I)}{\left(z_{1}, z_{1} X\right) \mathscr{R}(I)} \longrightarrow 0 .
$$

We have

$$
\frac{\left(z_{1}, z_{1} X\right) \mathscr{R}(I)}{z_{1} \mathscr{R}(I)} \simeq \frac{\mathscr{R}(I)}{\left(z_{1} \mathscr{R}(I): z_{1} X\right)}(-1) .
$$

Since z_{1} is also not a zero-divisor on R we have

$$
\left(z_{1} \mathscr{R}(I): z_{1} X\right)=I \mathscr{R}(I) .
$$

Hence we have the exact sequence
(1) $\quad 0 \longrightarrow \operatorname{gr}_{I}(R)(-1) \longrightarrow \mathscr{R}(I) / z_{1} \mathscr{R}(I) \longrightarrow \mathscr{R}(I) /\left(z_{1}, z_{1} X\right) \mathscr{R}(I) \longrightarrow 0$.

To prove (iii) and (iv) we use induction on $s=\operatorname{dim} R / I$. If $s=0$ then (iv) is clear and depth $R \geq 1$ (z_{1} is a non-zero-divisor in R). If $s>0$ then z_{1}, b_{1} is an $\mathscr{R}(I)_{M}$-sequence. By the exact sequence (1) b_{1} is a non-zero-divisor on $\operatorname{gr}_{I}(R)$. Therefore $b_{1} R \cap I^{n}=b_{1} I^{n}$ for $n \geq 0$. Hence

$$
\mathscr{R}\left(I+b_{1} R / b_{1} R\right) \simeq \mathscr{R}(I) / b_{1} \mathscr{R}(I)
$$

is C-M since b_{1} is a non-zero-divisior on $\mathscr{R}(I)$.
Let $\bar{R}=R / b_{1} R$ and $\bar{I}=I \bar{R}$. Since $\operatorname{gr}_{I}(\bar{R})=\operatorname{gr}_{I}(R) / b_{1} \operatorname{gr}_{I}(R)$ we have

$$
\begin{aligned}
\ell(\bar{I}) & =\operatorname{dim} \operatorname{gr}_{\bar{I}}(\bar{R}) / m \operatorname{gr}_{I}(\bar{R}) \\
& =\operatorname{dim} \operatorname{gr}_{I}(R) / m \operatorname{gr}_{I}(R) \\
& =\ell(I) .
\end{aligned}
$$

Let $p \in \operatorname{Spec}(R)$ be a minimal prime of $\left(I, b_{1}\right)$ such that $\mathrm{ht}\left(p / b_{1} R\right)=\mathrm{ht}(\bar{I})$. Since b_{1} is a non-zero-divisor on R / I we have $\mathrm{ht}(I)+1 \leq \mathrm{ht}(p)$. Since b_{1} is also a non-zero-divisor on R we see that

$$
\operatorname{ht}(I)+1 \leq \operatorname{ht}(p)=\operatorname{ht}\left(p / b_{1} R\right)+1=\operatorname{ht}(\bar{I})+1
$$

Now we have

$$
\operatorname{ht}(I) \leq \operatorname{ht}(\bar{I}) \leq \ell(\bar{I})=\ell(I)=\operatorname{ht}(I)
$$

By induction hypothesis we have

$$
\operatorname{depth} R / b_{1} R \geq \operatorname{dim} R /\left(I, b_{1}\right)+1=\operatorname{dim} R / I
$$

and hence we have

$$
\operatorname{depth} R \geq \operatorname{dim} R / I+1
$$

Since

$$
I^{n}+b_{1} R / I^{n+1}+b_{1} R \simeq I^{n} / I^{n+1}+b_{1} I^{n} \simeq\left(I^{n} / I^{n+1}\right) / b_{1}\left(I^{n} / I^{n+1}\right)
$$

and since b_{1} is a non-zero-divisor on I^{n} / I^{n+1} we have

$$
\operatorname{depth} I^{n} / I^{n+1}=\operatorname{depth}\left(I^{n}+b_{1} R / I^{n+1}+b_{1} R\right)+1=\operatorname{dim} R /\left(I, b_{1}\right)+1
$$

by induction hypothesis. Hence

$$
\operatorname{depth} I^{n} / I^{n+1}=\operatorname{dim} R / I \quad \text { for } n \geq 0
$$

as required.

References

[D] E. D. Davis, Ideals of the principal class, R-sequences and a certain monoidal transformation, Pacific J. Math., 20 (1967), 197-205.
[G] S. Goto, The associated graded rings of Buchsbaum rings, preprint.
[H] J. Herzog, Ein Cohen-Macaulay-Kriterium mit Anmendungen auf den Konormalenmodul und den Differentialmodul, Math. Z., 163 (1978), 149-162.
[Hu] C. Huneke, Linkage and the Koszul homology of ideals, preprint.
[HSV] M. Herrmann, R. Schmidt and W. Vogel, Theorie der normalen Flachheit, Teubner, Leipzig, 1977.
[H-O-1] M. Herrmann and U. Orbanz, Faserdimension von Aufblasungen lokaler Rings und Äquimultiplizität, J. Math. Kyoto Univ., 20 (1980), 651-659.
[H-O-2] —, On equimultiplicity, Math. Proc. Cambridge Philos. Soc., 91 (1982), 207213.
[I] S. Ikeda, Cohen-Macaulayness of Rees algebras of local rings, Nagoya Math. J., 89 (1983), 47-63.
[N-R] D. G. Northcott and D. Rees, Reduction of ideals in local rings, Proc. Cambridge Philos. Soc., 50 (1954), 145-158.
[R] P. Roberts, Homological Invariants of Modules over Commutative Rings, Sémnaire de Mathématiques Supérieures, Universite de Montreal (1979).
[S-T-C] F. Schenzel, N. V. Trung and N. T. Cuong, Verallgemeinerte Cohen-Macaulay Moduln, Math. Nachr., 85 (1978), 57-73.
[V] G. Valla, Certain graded algebras are always Cohen-Macaulay, J. Algebra, 42 (1976), 537-548.
[V-V] P. Valabrega and G. Valla, Form rings and regular sequences, Nagoya Math. J., 72 (1978), 93-101.

M. Herrmann:

Department of Mathematics
Köln University
D-5000 Köln 41
West-Germany
S. Ikeda:

Department of Mathematics
Nagoya University
Chikusa-ku, Nagoya 464
Japan

[^0]: 1) To avoid technical complications we always assume $|R / m|=\infty$.
[^1]: 2) $I R_{p}$ is a complete intersection (i.e. $\mathrm{ht}\left(I R_{p}\right)=$ minimal number of generators of $I R_{p}$) for all $p \in \operatorname{Ass}(R / I)$.
[^2]: 3) i.e. I^{n} / I^{n+1} is an R / I-module of depth equal to $\operatorname{dim} R / I$ for $n \geq 0$.
[^3]: 4) i.e. the images of b_{1}, \cdots, b_{s} in R / I form a system of parameters of R / I.
[^4]: 6) $\mathscr{R}(I)_{+}=\oplus_{n>0} I^{n}$ and $\mathscr{R}(I)_{+}(1)$ is the module with the degree shifted by 1.
 7) $\mathscr{R}(I)$ is identified with $R[I X]$.
