M. Herrmann and S. Ikeda Nagoya Math. J. Vol. 92 (1983), 121-132

REMARKS ON LIFTING OF COHEN-MACAULAY PROPERTY

MANFRED HERRMANN* AND SHIN IKEDA

Let (R, m) be a local noetherian ring and I a proper ideal in R. Let $\mathscr{R}(I)$ be the Rees-ring $\bigoplus_{n\geq 0} I^n$ with respect to I. In this note we describe conditions for I and R in order that the Cohen-Macaulay property (C-M for short) of R/I can be lifted to R and $\mathscr{R}(I)$, see Propositions 1.2, 1.3 and 1.4.

§1. Preliminaries, examples and results

The statements in the following proposition are well known. We give here a short proof.

PROPOSITION 1.1. For a prime ideal $p \subset R$ let R_p be regular and p/p^2 flat over R/p. If R/p is C-M then R is a C-M domain and $\mathscr{R}(p^{\tau})$ is C-M for all $\tau \geq 1$.

Proof. By assumption p is generated by a regular sequence (see [HSV], Lemma 3.17, p. 75), in particular we have dim $R = \dim R/p +$ ht (p). Therefore by [D] and [HSV], p. 72 R is a domain. Then the C-M property of R/p can be used to get a regular sequence with dim R elements in R, so R is C-M. Hence by [V] we know that $\mathscr{R}(p^r)$ is C-M for all $\tau \geq 1$.

The statement of Proposition 1.1 is false if the regularity of R_p is replaced by the C-M property. Here is an example of Hesselink (see [HSV], p. 76): Let S be a discrete valuation ring and t a generator of its maximal ideal. Take the ideal

$$J = (X^2, XY - tZ^2, XZ^2, Z^4)$$

in the polynomial ring H = S[X, Y, Z]. Then we consider the local ring

Received August 21, 1982.

Revised November 12, 1982.

^{*} This author would like to thank the Math. Dept. of Nagoya University and in particular Prof. H. Matsumura for their kind hospitality during the preparation of this work.

 $R = H_M/JH_M$ where M = tH + (X, Y, Z)H,

and the prime ideal p = (X, Y, Z)R. Then [HSV] Lemma 1.53, p. 34 yields that R is normally flat along p (i.e. p^n/p^{n+1} is flat over R/p for all $n \ge 0$). Furthermore we get:

- (i) R_p is C-M-ring with dim $R_p = 1$,
- (ii) dim R = 2,

(iii) depth R = 1, since t is R-regular and the ideal (J, t) has M as an embedded component.

So R is not C-M.

One reason for missing the C-M property of R in this example can be seen in the fact that pR_p has proper reductions. From this point of view we need the regularity of R_p in the sketched proof. On the other hand flatness of p/p^2 over R/p is a rather strong condition. (Note that in the case of Proposition 1.1 we have even normal flatness of R along p.) Therefore we have asked if normal pseudo-flatness of R along I is the "correct" condition to be put on I in this context. This last condition means ht $(I) = \ell(I)$, where ht (I) is height and $\ell(I)$ the analytic spread of the ideal I. The nicest result one could perhaps expect is that for a Buchsbaum ring R and a prime ideal p such that

- (i) R_p is regular,
- (ii) $ht(p) = \ell(p),$
- (iii) R/p is C-M,

we get the C-M property of R.

Unfortunately this is not true. We are indebted to S. Goto for the following *example*:

 $R = k[[s^2, s^3, st, t]]$ is a Buchsbaum ring with multiplicity e(R) = 2. Let p = (t, st). Note that R_p is regular. Furthermore we have $p^2 = tp$, i.e. $\ell(p) = 1$. Hence we know that $ht(I) = \ell(I) = 1$. Finally $R/p \simeq k[[s^2, s^3]]$ is C-M. But depth R = 1 (t is a regular element), so R is not C-M. (Note that p is not generated by a regular sequence.)

What we can really prove is stated in the following Propositions 1.2, 1.3 and 1.4.

PROPOSITION 1.2. Let (R, m) be a local ring¹ such that R_p is C-M for all $p \neq m$. Let I be an ideal in R with the following properties:

¹⁾ To avoid technical complications we always assume $|R/m| = \infty$.

- (i) I is locally a complete intersection²⁾,
- (ii) $0 < \operatorname{ht}(I) \leq \operatorname{depth} R 1$,
- (iii) $\operatorname{ht}(I) = \ell(I).$

Then I can be generated by a regular sequence.

The following examples (see also [H-O-2]) show that Proposition 1.2 is false for a prime ideal I = p which satisfies the conditions (ii) and (iii) but not (i).

EXAMPLE 1. Let $R = k[[X, Y, Z, W]]/(Z^2 - W^5, Y^2 - XZ)$ = k[[x, y, z, w]]

and p = (y, z, w).

We have $wp^3 = p^4$, hence $\ell(p) = ht(p) = 1$. Furthermore $R/p \simeq k[[x]]$ is regular. Therefore by [H-O-1] we get equimultiplicity: $e(R) = e(R_p)$. Surely e(R) > 1, hence $e(R_p) \ge 2$, i.e. R_p is not regular. But R is C-M, hence depth $R = 2 \ge ht(p) + 1$. Now in this case p is not generated by a regular sequence. Furthermore $\mathscr{R}(p)$ is not C-M (otherwise p could be generated by one element; see Proposition 1.5).

EXAMPLE 2. Let

$$egin{aligned} R &= k[[X_1, X_2, X_3, Y_1, Y_2, Y_3]]/(X_1Y_1 + X_2Y_2 + X_3Y_3, \ (Y_1, Y_2, Y_3)^2) \ &= k[[x_1, x_2, x_3, y_1, y_2, y_3]] \end{aligned}$$

and $p = (x_3, y_1, y_2, y_3)$.

Then R/p is regular, ht $(p) = \ell(p) = 1$ since $p^2 = x_3p$ and depth $(R) = 2 \ge \operatorname{ht}(p) + 1$ $(x_1, x_2$ is a regular sequence in R). Note that R_p is not regular and indeed R and $\mathscr{R}(p)$ are not C-M.

As a corollary of Proposition 1.2 we have

PROPOSITION 1.3. Under the same assumptions as in Proposition 1.2 we get the implication: If R/I is C-M then R and $\mathcal{R}(I^{\tau})$ are C-M for $\tau \geq 1$.

The next proposition gives a characterization of the C-M property of $\mathcal{R}(I)$ if R is normally flat along I and R/I is C-M (but generally not regular). It is based on a result of S. Ikeda (see Proposition 2.1).

PROPOSITION 1.4. Let (R, m) be a Buchsbaum ring and I an ideal in 2) IR_p is a complete intersection (i.e. $ht(IR_p) = minimal$ number of generators of IR_p) for all $p \in Ass(R/I)$.

R with ht(I) > 0 such that R/I is C-M and R is normally flat along I. Then $\mathcal{R}(I)$ is C-M if and only if

(i)
$$H_{\mathbb{M}}^{i}(G)_{n} = \begin{cases} H_{\mathbb{M}}^{i}(R) & \text{for } n = -1 \\ 0 & \text{for } n \neq -1 \end{cases}$$
 and $i < d = \dim R$,

(ii) $H^d_{\scriptscriptstyle M}(G)_n=0 ext{ for } n\geq 0,$

where $G = \operatorname{gr}_{I}(R)$ and $M = m \oplus \sum_{n>0} I^{n}$.

The next result describes necessary conditions for $\mathcal{R}(I)$ to be C-M.

PROPOSITION 1.5. Let (R, m) be a local ring and I an ideal in R with $ht(I) = \ell(I) = : t > 0$. If $\mathcal{R}(I)$ is C-M then the following conditions are fulfilled:

- $(i) \quad H^i_{\scriptscriptstyle M}(G)_{\scriptscriptstyle n} = egin{cases} H^i_{\scriptscriptstyle m}(R) & \textit{for } n = -1 \ 0 & \textit{for } n \neq -1 \end{cases} \quad and \quad i < d = \dim R,$
- (ii) There exist elements $z_1, \dots, z_t \in I$ such that $I^t = (z_1, \dots, z_t)I^{t-1}$,
- (iii) depth $R \ge \dim R/I + 1$,
- (iv) R is normally Cohen-Macaulay along I^{1} .

The following example shows that without any restriction on I Proposition 1.5 is false:

Let R = k[[X]], where $X = (X_{ij})$ is the $n \times (n + 1)$ matrix of indeterminates X_{ij} over a field k. Let $I = I_n(X)$ be the ideal generated by the *n*-minors. Then $\mathscr{R}(I)$ is C-M by C. Huneke [Hu], but I/I^2 is not C-M for $n \ge 2$ by J. Herzog [H].

§2. Proofs of Propositions 1.2-1.5

Proof of 1.2. Condition (iii) implies [H-O-2]

(1)
$$\operatorname{ht}(I) + \dim(R/I) = \dim R$$

and the existence of a minimal reduction z_1, \dots, z_t (\underline{z} for short) of I, where $t = \operatorname{ht}(I)$. Condition (i) tells us ([N-R], § 4, Theorem 2) that IR_p has no proper reduction for all $p \in \operatorname{Ass}(R/I)$. Hence we get

(2)
$$(\underline{z})R_p = IR_p \quad \text{for } p \in \operatorname{Ass}(R/I).$$

Now, by the assumption (that all R_p are C-M for $p \neq m$), for each system of parameters $z_1, \dots, z_t, z_{t+1}, \dots, z_d$ of R ($d = \dim(R)$) there exists an N > 0 (which depends on the system of parameters) such that

³⁾ i.e. $I^{n/I^{n+1}}$ is an R/I-module of depth equal to dim R/I for $n \ge 0$.

 (z_1, \cdots, z_i) : $z_{i+1} \subseteq (z_1, \cdots, z_i)$: m^N for $0 \leq i < d$,

where $z_0 = 0$ by convention. This means $0: z_1 \subset 0: m^N$ for i = 0. Hence we get $0: z_1 = 0$, since depth R is at least ht (I) + 1. So z_1 is a regular element. Now, considering the ring R/z_1R and using the same argument as before we see that z_1, z_2 constitute a regular sequence, and so on. Finally we have that

 z_1, \dots, z_t is a regular sequence in R.

Case 1. If $m \in Ass(R/I)$, we have $I = (\underline{z})R$ by (2) and the proposition is proved in this case.

Case 2. If $m \in Ass(R/I)$ then $(\underline{z})R_p$ is unmixed for all $p \in Ass(R/I)$ since $(\underline{z})R_p$ is an ideal of the principal class in the C-M ring R_p . From this and (2) we obtain that I is unmixed (see also [H-O-1], proof of Satz 1). Since $\underline{z}R$ is a minimal reduction of I we know that I and $\underline{z}R$ have the same minimal primes. If $p \in Ass R/\underline{z}R$ then $p \neq m$ by assumption (ii). Hence R_p is C-M and $\underline{z}R_p$ is unmixed of height t. Since $pR_p \in Ass_{R_p}(R_p/\underline{z}R_p)$ we have ht p = t. Therefore p is a minimal prime of $\underline{z}R$ and hence of I. Hence

Ass
$$(R/\underline{z}R) = Ass(R/I)$$
.

By (2) we have $I = \underline{z}R$.

Proof of Proposition 1.3. Since R/I is C-M and I is generated by a regular sequence z_1, \dots, z_t (by Proposition 1.2) we get a regular sequence $z_1, \dots, z_t, x_1, \dots, x_r$, where $r = \dim R/I$. Hence depth $R = \dim R$ by formula (1).

Remark. Note that condition (i) of Proposition 1.2 means for a prime ideal I = p that R_p is regular. The purely technical conditions " R_p is C-M for all $p \neq m$ " and "depth $R \geq ht(I) + 1$ " imply that z_1, \dots, z_t is a regular sequence in R, generating the ideal I. Hence in the case of a regular ring R_p we have the implication: if

(i) $ht(p) = \ell(p)$ and

(ii) R_q is C-M for $q \neq m$ and depth $R \geq \operatorname{ht}(p) + 1$,

then R is normally flat along p.

QUESTION 1. How far is normal flatness of R along p from these two conditions (i), (ii) in the general case?

QUESTION 2. Is there an example such that R is not C-M, ht $(p) = \ell(p) = 2$ and $\Re(p)$ is C-M?

In [I] an example is given with $ht(p) = \ell(p) = 3$ instead of $ht(p) = \ell(p) = 2$.

For the proof of Proposition 1.4 it is enough to show by [HSV], Lemma 3.15, p. 66 and Lemma 3.8, p. 117 the following statement.

PROPOSITION 2.1 (S. Ikeda). Let (R, m) be a local ring with $\ell(H_m^i(R)) < \infty$ for $i < d = \dim R$ and let I be an ideal such that $t = \operatorname{ht}(I) > 0$ and I^n/I^{n+1} is C-M of depth equal to $\dim R/I$ for all $n \ge 0$. Then the following conditions are equivalent:

(i) $\Re(I)$ is C-M,

(ii) a)
$$H^{i}_{\mathtt{M}}(G)_{\mathtt{n}} = \begin{cases} H^{i}_{\mathtt{m}}(R) & \text{for } \mathtt{n} = -1 \\ 0 & \text{for } \mathtt{n} \neq -1 \end{cases}$$
 and $i < d$,
b) $H^{d}_{\mathtt{M}}(G)_{\mathtt{n}} = 0$ for $\mathtt{n} \ge 0$,

where $G = \operatorname{gr}_{I}(R)$ and $M = m \oplus \sum_{n>0} I^{n}$.

For the proof of this proposition we need the following two lemmas. The following result was first obtained in [V].

LEMMA 2.2. Let (a_1, \dots, a_t) be a minimal reduction of an ideal I with ht $(I) = \ell(I) = t > 0$ and let b_1, \dots, b_s be a system of parameters with respect to I^{4} . Then the sequence

$$\{a_1, a_2 - a_1X, \cdots, a_t - a_{t-1}X, a_tX, b_1, \cdots, b_s\}$$

in the Rees-algebra $R[IX] \simeq \mathcal{R}(I), X$ an indeterminate, forms a system of parameters of $\mathcal{R}(I)_{M}$.

Proof. Let $P = \sqrt{(a_1, a_2 - a_1X, \dots, b_s)}$. Since $a_1 \in P$ we can prove that all $a_i \in P$ by induction on i: If $i \geq 2$ we have a_i $(a_i - a_{i-1}X) =$ $a_i^2 - a_{i-1}(a_iX) \in P$. Since $a_iX \in \mathscr{R}(I)$ and since $a_{i-1} \in P$ by induction hypothesis, we get $a_i \in P$. Hence $(a_1, \dots, a_i, b_1, \dots, b_s)\mathscr{R}(I) \subset P$. Note furthermore that the ideal $(a_1, \dots, a_i, b_1, \dots, b_s)$ is *m*-primary. We have I^n $= (a_1, \dots, a_i)I^{n-1}$ for some n > 0. Take any $a \in I$. Then we have $a^n =$ $\sum_{i=1}^{t} a_ix_i$ for some $x_i \in I^{n-1}$. Now $(aX)^n = \sum_{i=1}^{t} a_iXx_iX^{n-1} \in P$ because $a_iX \in P$ and $x_iX^{n-1} \in \mathscr{R}(I)$, i.e. $M \supseteq P \supseteq m\mathscr{R}(I) + IX\mathscr{R}(I) = M$. Therefore $a_1, a_2 - a_1X, \dots, b_s$ form a system of parameters of $\mathscr{R}(I)_M$.

⁴⁾ i.e. the images of b_1, \dots, b_s in R/I form a system of parameters of R/I.

LEMMA 2.3. Let I be an m-primary ideal and let (a_1, \dots, a_d) be a minimal reduction of I, where $d = \dim R$. If $I^d = (a_1, \dots, a_d)I^{d-1}$ then we have

$$H^d_{\scriptscriptstyle M}(G)_n=0 \qquad for \ n\geq 0$$

Proof. Let $a_i^* = \text{In}_I(a_i) \in I/I^2$ the initial form of a_i with respect to *I*. Since the ideal (a_1^*, \dots, a_d^*) in *G* is primary⁵⁾ to the maximal homogeneous ideal of *G* there exists an exact sequence (see [R], p. 78, Proposition 2.3)

$$\bigoplus_{i=1}^{d} G_{a_{1}^{*}\cdots \check{a}_{i}^{*}\cdots a_{d}^{*}} \xrightarrow{\varphi} G_{a_{1}^{*}\cdots a_{d}^{*}} \longrightarrow H^{d}_{\mathcal{M}}(G) \longrightarrow 0$$

where φ is given by

$$\varphi((f_1, \dots, f_d)) = \sum_{i=1}^d (-1)^i \frac{f_i}{1} \quad \text{for } f_i \in G_{a_1^* \dots a_i^* \dots a_d^*}.$$

Pick $x \in H^d_{\mathcal{M}}(G)_n$, $n \ge 0$, and assume that x is represented by

$$rac{f}{(a_1^*a_2^*\cdots a_d^*)^k}\in (G_{a_1^*\cdots a_d^*})_n\;,$$

where $f \in G$ is homogeneous of degree kd + n. If k = 0, then f is of course in the image of φ . If $k \ge 1$, then by applying the assumption we get

$$egin{aligned} I^{kd+n} &= (\underline{a})^{(k-1)d+1+n} \, I^{d-1} \ &= (a_1^k, \, \cdots, \, a_d^k) (a_1, \, \cdots, \, a_d)^{(k-1)(d-1)+n} \, I^{d-1} \ &= (a_1^k, \, \cdots, \, a_d^k) I^{k(d-1)+n} \; . \end{aligned}$$

Hence f can be written in the form

$$f = \sum_{i=1}^d a_i^{*k} g_i$$
 where $g_i \in G_{k(d-1)+n}$.

Therefore $f/(a_1^* \cdots a_d^*)^k$ is in the image of φ .

Proof of Proposition 2.1. Since $\ell(H^i_m(R)) < \infty$ for $i < d = \dim R$ we have

$$\dim R/p + \operatorname{ht}(p) = \dim R$$
 for all $p \in \operatorname{Spec}(R)$,

hence in particular dim R/I + ht (I) = dim R (see [S-T-C]).

⁵⁾ The elements of a minimal reduction induce a system of parameters $\tilde{a}_d^*, \dots, \tilde{a}_d^*$, in the ring $\operatorname{gr}_I R \bigotimes_R R/m$, hence a_1^*, \dots, a_d^* form a system of parameters in $\operatorname{gr}_I R$.

Furthermore the C-M property of I^n/I^{n+1} implies that $ht(I) = \ell(I)$ =: t by [H-O-2].

First we prove (i) \Rightarrow (ii). Consider the exact sequences

(1)
$$\begin{array}{c} 0 \longrightarrow \mathscr{R}(I)_{+} \longrightarrow \mathscr{R}(I) \longrightarrow R \longrightarrow 0 \\ 0 \longrightarrow \mathscr{R}(I)_{+}(1) \longrightarrow \mathscr{R}(I) \longrightarrow G \longrightarrow 0^{(6)} \end{array} .$$

We get the following exact sequences.

(1')
$$\begin{array}{l} \rightarrow H^i_{\mathfrak{M}}(\mathscr{R}(I)) \rightarrow H^i_{\mathfrak{m}}(R) \rightarrow H^{i+1}_{\mathfrak{M}}(\mathscr{R}(I)_+) \rightarrow H^{i+1}_{\mathfrak{M}}(\mathscr{R}(I)) \rightarrow \cdots \quad \text{and} \\ \rightarrow H^i_{\mathfrak{M}}(\mathscr{R}(I)) \rightarrow H^i_{\mathfrak{M}}(G) \rightarrow H^{i+1}_{\mathfrak{M}}(\mathscr{R}(I)_+)(1) \rightarrow H^{i+1}_{\mathfrak{M}}(\mathscr{R}(I)) \rightarrow \cdots . \end{array}$$

Since $\mathscr{R}(I)$ is C-M by assumption (i) of Proposition 2.1 we obtain for i < d

$$H^i_m(R) \simeq H^{i+1}_M(\mathscr{R}(I)_+)$$
 and $H^i_M(G) \simeq H^{i+1}_M(\mathscr{R}(I)_+)(1)$.

Hence we get (ii), a) in Proposition 2.1.

By what we have mentioned at the beginning of the proof, there exists $a_1, \dots, a_t \in I$ such that $I^n = (a_1, \dots, a_t)I^{n-1}$ for some n > 0. By assumption $\mathscr{R}(I)$ is C-M. Therefore, by Lemma 2.2, $a_1, a_2 - a_1X, \dots, a_t - a_{t-1}X$, a_tX is an $\mathscr{R}(I)_M$ -sequence⁷. Then we can use the same argument as in [I], p. 8 to show that

$$(2) I^t = (a_1, \cdots, a_t) I^{t-1}$$

(The idea is to consider for any $a \in I^t$ the following congruence $mod (a_2 - a_1X, \dots, a_tX)$:

$$a_{\scriptscriptstyle 1}aX^{\scriptscriptstyle t}\equiv a_{\scriptscriptstyle 2}aX^{\scriptscriptstyle t-1}\equiv\cdots\equiv a_{\scriptscriptstyle t}aX\equiv 0$$
 ,

hence $aX^t \in (a_2 - a_1X, \dots, a_tX) \mathscr{R}(I)_M$ since $a_1, a_2 - a_1X, \dots, a_tX$ is a regular sequence in $\mathscr{R}(I)_M$. Therefore we find an equation in $\mathscr{R}(I)$ of the form

$$raX^{\iota} = (a_2 - a_1X)f_1 + \cdots + a_tXf_t$$
, $r \in M$.

Comparing the coefficients of X^t in this equation we obtain (2).)

Since I^n/I^{n+1} is C-M for $n \ge 0$ we find elements $b_1, \dots, b_s \in m$ ($s = \dim R/I$) forming a regular sequence on I^n/I^{n+1} for all $n \ge 0$.

[Any system b_1, \dots, b_s of parameters with respect to I is a system of parameters for each I^n/I^{n+1} since dim $I^n/I^{n+1} = \dim R/I$, hence b_1, \dots, b_s is a regular sequence.]

⁶⁾ $\mathscr{R}(I)_{+} = \bigoplus_{n>0} I^{n}$ and $\mathscr{R}(I)_{+}(1)$ is the module with the degree shifted by 1.

⁷⁾ $\Re(I)$ is identified with R[IX].

Therefore b_1, \dots, b_t (b for short) is a G-sequence. Set

$$\overline{G} = \operatorname{gr}_{I+bR/bR}(R/\underline{b}R) \simeq G/\underline{b}G$$
.

By Lemma 2.3 we see that

(3)
$$H^t_{\mathfrak{M}}(\overline{G})_n = 0 \quad \text{for } n \ge 0.$$

Let $G_0 = G$ and $G_i = G/(b_1, \dots, b_i)G$ for $i = 1, \dots, s$. For $0 \le i \le s$ we have the exact sequence

$$0 \longrightarrow G_i \xrightarrow{b_{i+1}} G_i \longrightarrow G_{i+1} \longrightarrow 0 \ .$$

From this exact sequence we get an exact sequence

$$(4) \longrightarrow H^{j-1}_{\mathcal{M}}(G_i) \longrightarrow H^{j-1}_{\mathcal{M}}(G_{i+1}) \longrightarrow H^{j}_{\mathcal{M}}(G_i) \xrightarrow{b_{i+1}} H^{j}_{\mathcal{M}}(G_i) \longrightarrow$$
for $0 \le i \le s$.

By ii), a) we have $H^{i}_{\mathbb{M}}(G_{i})_{n} = 0$ for $n \neq -1$, j < d-1 and $0 \leq i \leq s$. Assume that $H^{d-i-1}_{\mathbb{M}}(G_{i+1})_{n} = 0$ for $n \geq 0$. Then the exact sequence (4) shows that b_{i+1} is a non-zero-divisor on $H^{d-i}_{\mathbb{M}}(G_{i})_{n}$ for $n \geq 0$. Let $n \geq 0$ and $x \in H^{d-i}_{\mathbb{M}}(G_{i})_{n}$. Since $b_{i+1} \in M$ we have $b^{k}_{i+1}x = 0$ for sufficiently large k > 0. Therefore x = 0 and we have $H^{d-i}_{\mathbb{M}}(G_{i})_{n} = 0$ for $n \geq 0$. Since $\overline{G} = G_{s}$ we see that $H^{d-i}_{\mathbb{M}}(G_{i})_{n} = 0$ for $n \geq 0$ and $0 \leq i \leq s$ by induction on s and (3).

(ii) \Rightarrow (i). Since b_1, \dots, b_s is a *G*-sequence (by the general assumption of Proposition 2.1) we have [V-V].

$$(b_1,\cdots,b_s)\cap I^n=(b_1,\cdots,b_s)I^n \quad ext{ for } n\geq 0 \ .$$

Hence

$$\mathscr{R}(I+\underline{b}R/\underline{b}R)\simeq \displaystyle \bigoplus_{n\geq 0} I^n/\underline{b}R\,\cap\, I^n=\displaystyle \bigoplus_{n\geq 0} I^n/\underline{b}I^n=\mathscr{R}(I)/\underline{b}\mathscr{R}(I)\;.$$

Since b_1 is regular on G we have

$$b_1R \cap I^n = b_1I^n$$

Hence we have

$$\operatorname{gr}_{I+b_1R/b_1R}(R/b_1R) \simeq G/b_1G$$

and

$$\mathscr{R}(I + b_1 R/b_1 R) \simeq \mathscr{R}(I)/b_1 \mathscr{R}(I)$$
.

Since b_1 is not a zero-divisor on $\mathscr{R}(I)$ we can conclude that \underline{b} is an $\mathscr{R}(I)$ sequence by induction on s. Therefore it is sufficient to prove that $\overline{\mathscr{R}} := \mathscr{R}(I + \underline{b}R/\underline{b}R)$ is C-M.

From the exact sequence (4) and ii), a) we have for i < t.

by induction on s.

But (5) implies by [G, (3.1)]

$$\ell(H^i_{\scriptscriptstyle M}({\mathbin{\,\,\overline{\!\!\mathcal R}\,}}))<\infty\qquad {
m for}\ i\le t$$
 .

Similarly for i = t we have (see Lemma 2.3)

(6)
$$H^t_{\mathfrak{M}}(\overline{G})_n = 0 \quad \text{for } n \ge 0.$$

From the analogous exact sequence (1') corresponding to $\overline{\mathcal{R}}$, we have for i < t isomorphisms

$$egin{aligned} H^i_{\scriptscriptstyle M}(\overline{\mathscr{R}}_{\,\scriptscriptstyle +})_{\scriptscriptstyle
u} & \cong H^i_{\scriptscriptstyle M}(\overline{\mathscr{R}})_{\scriptscriptstyle
u} \ , \qquad
u
eq 0 \ H^i_{\scriptscriptstyle M}(\overline{\mathscr{R}}_{\,\scriptscriptstyle +})_{\scriptscriptstyle
u+1} & \cong H^i_{\scriptscriptstyle M}(\overline{\mathscr{R}})_{\scriptscriptstyle
u} \ , \qquad
u
eq -1 \ . \end{aligned}$$

Since $\ell(H_M^i(\overline{\mathscr{R}})) < \infty$, we know already that $H_M^i(\overline{\mathscr{R}})_{\nu} = 0$ for $\nu \gg 0$ or $\nu \ll 0$ (and $i \leq t$). Therefore we have

$$H^i_{\scriptscriptstyle M}(\bar{\mathscr{R}}) = 0 \qquad ext{for } i < t \ .$$

Now it remains to prove that $H^t_{\mathcal{M}}(\overline{\mathcal{R}}) = 0$:

By (5) and (6) we have isomorphisms

$$egin{aligned} &H^t_{ extsf{M}}(\overline{\mathscr{R}}_+)_{
u} \cong H^t_{ extsf{M}}(\overline{\mathscr{R}})_{
u} &
u
eq 0 \;, \ &H^t_{ extsf{M}}(\overline{\mathscr{R}}_+)_{
u+1} \cong H^t_{ extsf{M}}(\overline{\mathscr{R}})_{
u} &
u \geq 0 \end{aligned}$$

and injective homomorphisms

$$H^t_{\scriptscriptstyle M}(\bar{\mathscr{R}}_{\,\scriptscriptstyle +})_{\scriptscriptstyle
u+1} \, \longrightarrow \, H^t_{\scriptscriptstyle M}(\bar{\mathscr{R}})_{\scriptscriptstyle
u} \qquad
u \leq -2 \; .$$

Since $H_{\mathfrak{M}}^{t}(\overline{\mathfrak{R}})_{n} = 0$ for $n \gg 0$ or $n \ll 0$ one can conclude that $H_{\mathfrak{M}}^{t}(\overline{\mathfrak{R}}) = 0$. Hence $\overline{\mathfrak{R}}$ is C-M as required.

Proof of Proposition 1.5. We have already shown (i) and (ii) in the course of the proof of Proposition 2.1.

Let (z_1, \dots, z_t) be a minimal reduction of I and b_1, \dots, b_s a system of parameters with respect to I.

By Lemma 2.2 $\{z_1, z_2 - z_1X, \dots, z_t - z_{t-1}X, z_tX, b_1, \dots, b_s\}$ is an $\mathscr{R}(I)_M$

130

sequence since $\mathscr{R}(I)$ is C-M by assumption. Now consider the exact sequence

$$0 \longrightarrow \frac{(z_1, z_1 X) \mathscr{R}(I)}{z_1 \mathscr{R}(I)} \longrightarrow \frac{\mathscr{R}(I)}{z_1 \mathscr{R}(I)} \longrightarrow \frac{\mathscr{R}(I)}{(z_1, z_1 X) \mathscr{R}(I)} \longrightarrow 0.$$

We have

$$\frac{(z_{\scriptscriptstyle 1}, z_{\scriptscriptstyle 1}X)\mathscr{R}(I)}{z_{\scriptscriptstyle 1}\mathscr{R}(I)} \simeq \frac{\mathscr{R}(I)}{(z_{\scriptscriptstyle 1}\mathscr{R}(I) \colon z_{\scriptscriptstyle 1}X)}(-1) \ .$$

Since z_1 is also not a zero-divisor on R we have

$$(\boldsymbol{z}_{\scriptscriptstyle 1} \mathscr{R}(I) : \boldsymbol{z}_{\scriptscriptstyle 1} X) = I \mathscr{R}(I) \; .$$

Hence we have the exact sequence

$$(1) \quad 0 \longrightarrow \operatorname{gr}_{I}(R)(-1) \longrightarrow \mathscr{R}(I)/z_{1}\mathscr{R}(I) \longrightarrow \mathscr{R}(I)/(z_{1}, z_{1}X)\mathscr{R}(I) \longrightarrow 0 .$$

To prove (iii) and (iv) we use induction on $s = \dim R/I$. If s = 0 then (iv) is clear and depth $R \ge 1$ (z_1 is a non-zero-divisor in R). If s > 0then z_1, b_1 is an $\mathscr{R}(I)_M$ -sequence. By the exact sequence (1) b_1 is a nonzero-divisor on $\operatorname{gr}_I(R)$. Therefore $b_1R \cap I^n = b_1I^n$ for $n \ge 0$. Hence

$$\mathscr{R}(I + b_1 R/b_1 R) \simeq \mathscr{R}(I)/b_1 \mathscr{R}(I)$$

is C-M since
$$b_1$$
 is a non-zero-divisior on $\mathscr{R}(I)$.
Let $\overline{R} = R/b_1R$ and $\overline{I} = I\overline{R}$. Since $\operatorname{gr}_I(\overline{R}) = \operatorname{gr}_I(R)/b_1 \operatorname{gr}_I(R)$ we have
 $\ell(\overline{I}) = \dim \operatorname{gr}_I(\overline{R})/m \operatorname{gr}_I(\overline{R})$
 $= \dim \operatorname{gr}_I(R)/m \operatorname{gr}_I(R)$
 $= \ell(I)$.

Let $p \in \text{Spec}(R)$ be a minimal prime of (I, b_i) such that $\operatorname{ht}(p/b_iR) = \operatorname{ht}(\overline{I})$. Since b_i is a non-zero-divisor on R/I we have $\operatorname{ht}(I) + 1 \leq \operatorname{ht}(p)$. Since b_i is also a non-zero-divisor on R we see that

$$\operatorname{ht}(I) + 1 \leq \operatorname{ht}(p) = \operatorname{ht}(p/b_{1}R) + 1 = \operatorname{ht}(\overline{I}) + 1.$$

Now we have

$$\operatorname{ht}(I) \leq \operatorname{ht}(\overline{I}) \leq \ell(\overline{I}) = \ell(I) = \operatorname{ht}(I)$$
.

By induction hypothesis we have

$$\operatorname{depth} R/b_{1}R \geq \dim R/(I, b_{1}) + 1 = \dim R/I$$

and hence we have

depth
$$R \geq \dim R/I + 1$$
.

Since

$$I^{n} + b_{1}R/I^{n+1} + b_{1}R \simeq I^{n}/I^{n+1} + b_{2}I^{n} \simeq (I^{n}/I^{n+1})/b_{2}(I^{n}/I^{n+1})$$

and since b_1 is a non-zero-divisor on I^n/I^{n+1} we have

$$\operatorname{depth} I^n / I^{n+1} = \operatorname{depth} (I^n + b_1 R / I^{n+1} + b_1 R) + 1 = \operatorname{dim} R / (I, b_1) + 1$$

by induction hypothesis. Hence

$$\operatorname{depth} I^n/I^{n+1} = \operatorname{dim} R/I \quad \text{for } n \ge 0$$

as required.

References

- [D] E. D. Davis, Ideals of the principal class, R-sequences and a certain monoidal transformation, Pacific J. Math., 20 (1967), 197-205.
- [G] S. Goto, The associated graded rings of Buchsbaum rings, preprint.
- [H] J. Herzog, Ein Cohen-Macaulay-Kriterium mit Anmendungen auf den Konormalenmodul und den Differentialmodul, Math. Z., 163 (1978), 149-162.
- [Hu] C. Huneke, Linkage and the Koszul homology of ideals, preprint.
- [HSV] M. Herrmann, R. Schmidt and W. Vogel, Theorie der normalen Flachheit, Teubner, Leipzig, 1977.
- [H-O-1] M. Herrmann and U. Orbanz, Faserdimension von Aufblasungen lokaler Rings und Äquimultiplizität, J. Math. Kyoto Univ., 20 (1980), 651-659.
- [H-O-2] —, On equimultiplicity, Math. Proc. Cambridge Philos. Soc., 91 (1982), 207– 213.
- S. Ikeda, Cohen-Macaulayness of Rees algebras of local rings, Nagoya Math. J., 89 (1983), 47-63.
- [N-R] D. G. Northcott and D. Rees, Reduction of ideals in local rings, Proc. Cambridge Philos. Soc., 50 (1954), 145–158.
- [R] P. Roberts, Homological Invariants of Modules over Commutative Rings, Sémnaire de Mathématiques Supérieures, Universite de Montreal (1979).
- [S-T-C] F. Schenzel, N. V. Trung and N. T. Cuong, Verallgemeinerte Cohen-Macaulay Moduln, Math. Nachr., 85 (1978), 57-73.
- [V] G. Valla, Certain graded algebras are always Cohen-Macaulay, J. Algebra, 42 (1976), 537-548.
- [V-V] P. Valabrega and G. Valla, Form rings and regular sequences, Nagoya Math. J., 72 (1978), 93-101.

M. Herrmann: Department of Mathematics Köln University D-5000 Köln 41 West-Germany

S. Ikeda: Department of Mathematics Nagoya University Chikusa-ku, Nagoya 464 Japan

132