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INFINITE DIMENSIONAL LANGEVIN EQUATION
AND FOKKER-PLANCK EQUATION

YOSHIO MIYAHARA

§0. Introduction

Stochastic processes on a Hilbert space have been discussed in con-
nection with quantum field theory, theory of partial differential equations
involving random terms, filtering theory in electrical engineering and so
forth, and the theory of those processes has greatly developed recently by
many authors (A. B. Balakrishnan [1, 2], Yu. L. Daletskii [7], D. A. Dawson
[8, 9], Z. Haba [12], R. Marcus [18], M. Yor [26]).

The most basic concept arising there is the so-called cylindrical
Brownian motion, abbr. c.B.m., (see Definition 1.2). It is thought of as a
natural generalization of a finite dimensional Brownian motion, and it can
be formed from multi-parameter white noise as is briefly illustrated in what
follows.

First we introduce a (Gaussian) white noise p indexed by a space-
time parameter running through D X T, where D is a domain of the d-
dimensional Euclidean space R? and T is R' on which the time ¢ runs.
Namely, ¢ is the standard Gaussian measure on &* determined by the
characteristic functional

) = exp{—LInlf, lalt = [ ibdx, nes,

where &* is the dual of & forming a Gelfand triple:
s*xCcH# =L(DxT)cCdsé*.

We are now given a generalized stochastic process in the sense that (y, ),
n€ &, we &*, is an ordinary random variable, where {, ) is the canonical
bilinear form connecting & and &* (.M. Gelfand and N. Ya. Vilenkin [11]).
The bilinear form (, ) lextends to the case where 7 is of the form &® y
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in such a way that (¢ ® x5, 0> is still a random variable on (&%, p).
With this remark in mind, set

Bz(&) = <5 ® XLoAe,0v¢ds a)>, teR.

Then it is a Brownian motion with parameter space R!' with variance
113y In view of this, B,(-) is called a cylindrical Brownian motion.
Stochastic integrals with respect to ¢.B.m. can be defined in a usual man-
ner. Details will be discussed in §1 to some extent. It is noted that
white noise is given as soon as we take the time-derivative (d/dt)B,(-) of
By(-), and it is indexed by &.

In §2 we shall summarize some known results, which have been ob-
tained by the author ([19] and [20]) about stochastic differential equations
on a Hilbert space. In §3 we shall focus our attention on the most basic
equation

(1) dX, = —6X,dt + dB,

on H = I ([0, z]), where B, is a ¢.B.m. on H and ¢ = v —4 (4 = d?*/dd¢*:
Laplacian on L? ([0, z]) with Neumann boundary condition). Unfortunately
the equation (1) has no solution in H, and so we are led to extend the
state space. Put H = {X" eH; (X, 1), = 0}. If & is restricted to H itis a
strictly positive operator such that &' is of Hilbert-Schmidt type. We are
therefore able to construct a Hilbert scale derived from & (for definition
see Yu. L. Daletskii [7]):

Hc..-.cHcH,cHcH,,cH,c..-cH._.,

and hence the equation (1) is viewed as an equation on H or on this
Hilbert scale instead of on the original H.

We are now ready to state our main results. The equation (1) has a
unique solution on fI_m, which comes from the discussion in §2. There
exists a unique invariant probability measure v of X, given by (1) on H_,,
and it is proved that the transition probability P, X, dY) of the Markov
process X, is always equivalent to »(dY). As for the Radon-Nikodym
derivative P(t, X, ¥) = dP(t, X, -)/du(-) we have a version, still denote by
the same symbol, satisfying enough analytic properties as is prescribed by
the following theorem.

THEOREM 3.4. The funciion P(t, X, Y) has the following properties:
(i) P@, X,Y) is a continuous function on (0, co) X H_ ., x H_,.
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(ii) P@, X, Y)= P@, Y, X), that is P(t, X, Y) is symmetric.

(i) For fixed t >0 and Xe ﬁ_m, P@, X, Y) is an L*(dv)-function of
Y for every p> 0. But P(t,X,Y) is not bounded.

(iv) P@, X,Y) is the fundamental solution of the following equation

Pt X, Y) _ 1 2 5y [* a5y PGX Y)
3.14 —2 2l = AP X, Y) — | aY(o)—12""do,
@19 5 PR D) = [[oT(0) h0 T ds

(3.15) P, X, V)—>6(Y) (}0),

where 4, denotes the Volterra Laplacian and 6PJ5Y(c) denotes the func-
tional derivative (see I. Kubo [16] §7 and Remark 3.1 given below), and
where the precise meaning of (3.15) is that

[ PGE DDA —1F)  astl0

for any continuous bounded function f(Y) of ﬁ_l,z.

Another main theorem is concerned with the generator L, associated
with X,, acting on the Hilbert space Lz(ﬁ_,,z, dv). Let @, be a Fourier-
Hermite polynomial (see §3). Having extended L to be a closed operator
on L*dy), we have

TueoREM 3.6. (i) The functions {0,,(Y)}, n,=0,1,---, X n, < co,
satisfy the following formula

(3.20) L, () = —(; jn,.)q)(,,,,(f/) .

The operator L, acting on L*dy), is non-positive definite and self-adjoint.
(ii) The function P(t, X, Y) satisfies the equation

(3.21) %(t, XV =LPGL, X V), t>0, for fixed X.

These results are interesting in connection with the theory of string
model as well (C. Rebbi [22], M. Kaku and K. Kikkawa [15], and Z. Haba
and J. Lukierski {13]). In fact, the equation (3.14) is similar to (3.4) of
[15] and the formula (3.13), which is given in § 3, is similar to (4.2) of [15]
in appearance. Actually, our approach was inspired by these works.

In the last part of § 3, we shall briefly discuss equations of the form
dX, = —&X,dt + BdB,, where B is a bounded linear operator on H.

As we have mentioned above, c.B.m. B,(-) is derived from a white
noise . We therefore expect some intimate connections between the space
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L¥&*—K) arising from white noise g, K being a Hilbert space, and sto-
chastic integrals with respect to B,(-). In fact, we shall be able to see
them in §4 in the Wiener’s direct sum decomposition of L&* — K) and
its representation formula by means of multiple Wiener integrals or of
iterated stochastic integrals w.r.t. c.B.m. In the case of K = R!, the above
results are known (see T. Hida [14]), however our generalization, where
K is infinite dimensional, requires to establish some basic techniques such
as iterated stochastic integrals, the correspondence between o, (LX((D X T)"),
K) (= a Hilbert space consisting of all Hilbert-Schmidt operators .from
LX(D x T)") to K) and L¥(D x T)"— K), and etc.

We then come to another important topic to discuss the equation of
the form

(2) dX, — —oXdt + X,-dB, ,

where X,- is a multiplicative operator defined by (X,- h)(c) = X,(0) X h(o).
Similar equations, but somewhat different equations of this type have been
investigated by many authors (D.A. Dawson [8, 9, 10], A.V. Balakrishnan
[2], A. Shimizu [23]), however we can show that (2) can be dealt with in
line with the analysis on L¥&* — K).

The equation (2), describing actual phenomenon, is itself interesting,
but unfortunately it has no solution on H, and even not on a Hilbert
scale. We shall therefore consider in §5 a modified equation of the form

(4) dX, = —6X,dt + (f " o, @)X ,(o")do’)- dB,
0

where I'(,) is an element of H X H,. This equation does have a unique
solution in H_, (Theorem 5.1). Our discussions in §5 are based on the
theory developed in § 4, and the main results are Theorem 5.2 and Theorem
5.,5. The former (Theorem 5.2) gives a system of equations in terms of
the kernels of the integral representation of X,, while the latter (Theorem
5.5) gives a system of ordinary differential equations on H_, which is proved
to be equivalent to (3).

The author wishes to thank Professor T. Hida for his valuable sug-
gestions and kind encouragement in preparing the manuscript.

§1. Multi-parameter white noise and cylindrical Brownian motion

Let D be a domain of the d-dimensional Euclidean space R?. Let H
be a real Hilbert space L*(D) and let # be a real Hilbert space LX(Dx T,
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where T'= R'. We start with a Gelfand triple
sCH# =I(DxT)C e,

where & is a nuclear space and &* is the dual space of &. Given a char-
acteristic function

1
G = exp {~ g}, gl =] 1gFax
D XT
we are given a probability space (6*, 4, p) such that

G = [ erodu(a)
g*
where {, ) is the canonical bilinear form connecting & and &*.

DerFiniTION 1.1. The probability space (6*, 4, ) is called a (Gaussian)
white noise on H or a (Gaussian) white noise with parameter space D x T.

In this paper we adopt the white noise space (6*, %, p) as the basic
probability space, and we denote by #, the o-field generated by {(y, w);
n€&, we X, supp {y} € D X (—o0, t]}.

We next will give a definition of a cylindrical Brownian motion. As-
sume that a probability space (2, F, P) and an increasing family of ¢-field
F,, t>=0, F,C F, are given.

DEeriNtTION 1.2 (M. Yor [26]). A mapping B,(h, w): [0, co) X H X 2 — R!
is called a cylindrical Brownian motion (abbr. ¢.B.m.) on H if it satisfies
the following conditions:

(i) Byh, -) =0 and B,(h, -) is F,-adapted.

(ii1) For any he H, h+ 0, (1/|h|)B(h, -) is a one-dimensional Brownian
motion.

(1i)) For any £€[0, o) and @, f€ R' and A, ke H, the following for-
mula holds

Bi(ah + pE) = aB(h) + pBJ(k),  (P-as.).

Remark 1.1. If necessary, we can take a continuous version of B,(h).
The process B, can not be regarded as a process on H.

We will now form a ¢.B.m. on H = L*D) from a white noise. Put
B,(&) = <€ ® xp0,9» ®), where &€ H and yp,,; is the defining function of the
interval [0,#] and o e &*. The function (& ® yp.., ®) is not well-defined
on &*, because & ® X, , may not belong to . But, we know that if »;, —
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p in L(DXT), then (3, w) — {y, w) in L*(&*, x). By using this fact, we
are able to define a random variable (& & yp,3, ®)> as the mean square limit
of a sequence (y,,w), j=1,2,---, where »;€¢ and 7, >&® x5 It is
easy to see that the mapping B,(§) = (& ® X, ) satisfies the conditions
(1)—(ii) in Definition 1.2.

We will define stochastic integrals with respect to the c¢.B.m. B, con-
structed above. Let ¢(f, o) be a %,-adapted measurable function on [0, co)
X &* into H such that

E[[ 196 rds| <o for any >0,

where E[ ] means the expectation with respect to g. Then a real valued
oo 13

martingale > | (4(s), e,)dB,(e,) is well-defined in the ordinary sence, where
n=1J0

{e.}, n=1,2, -+, is an orthonormal base in H.

DerFINITION 1.3. The stochastic integral r {#(s), @B,y of ¢ is the mar-
0
tingale given by

[ oo, aBy = 3 [ 666), e)dB.(e.

=1J0

'Remark 1.2. We can easily prove that the definition of stochastic
integrals does not depend on the choice of a base {e,}, and that the fol-

1= &[], 1s6syi7as] -

Given two Hilbert spaces H and K, we denote by o,(H, K) the Hilbert
space consisting of all Hilbert-Schmidt operators from H into K. Let
&(t, w) be a g,(H, K)-valued %,-adapted function defined on [0, o) X £* into
a,(H, K) such that

lowing equation holds:

B[ |[[ <o(e. 1B

E[[ 106 Euinods] < oo
Then the integral
It (D*(s)y, dB,y,  ©*(s) the dual operator of &(s),
0

is well-defined for every y € K, and it is linear in y.
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DeriniTION 1.4. The stochastic integral of @ is the K-valued mar-
tingale M, which is uniquely determined by

(3 M)x = | <O*w.dB),  yeK,
and it is denoted by r @(s)dB,.
0
Remark 1.3. It is easy to verify

E||[ 0@dB,[| = E[[ 106)1.00d5] -

§2. Stochastic differential equations on a Hilbert space

Given two real separable Hilbert spaces H and K, we consider a
stochastic integral equation on K

@.1) X, =X, + j ‘u(X)ds + j G(X)dB, ,

where a and G are mappings such that a¢: K — K, G: K — o,(H, K), and
B, is a ¢.B.m. on H. For simplicity, we write the equation (2.1) in the
form of stochastic differential equation

2.2) dX, = a(X))dt + G(X,)dB, .

In the case where K = H and where ¢ and G have suitable properties,
the equations of this type have been well investigated (e.g., M. Yor [26]).
This paper deals with such equations without much restriction on G but
with a specific drift term. Namely, we consider the equation of the form

(2.3) dX, = —AX,dt + G(X)dB,

where A is an unbounded linear operator with the domain D(A) of dense
in K. We will summarize the results obtained by the author in [19] and
[20] for the equation (2.3).

We assume that —A is the infinitesimal generator of a semi-group

{T}, t =0, of class C, and that G satisfies the following condition
G oy < €1+ €| Xk »

where ¢, and ¢, are constants. The equation (2.3) is expressed in the form

2.4) X, =X + I: —AXds + f 0 G(X))dB, .
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Since A is unbounded, the condition X, € D(A) is not always satisfied.
While, by the assumptions on —A, the conjugate operator —A* of —A
is the infinitesimal generator of the conjugate semi-group {T,*}, which is
of class C,, and the domain D(A*) of A* is dense in K. Taking these facts
into consideration, two different kinds of solutions can be defined.

DeriniTION 2.1 (w-solution). A weak solution of (2.4) is a #,-adapted
process X, on K which satisfies the following conditions:

(i) EUL ||Xt|]2ds] < oo for any t = 0.
0
(i1) For any Ye D(A*), the equality

@5 (LX) =X+ [ (A, X)ds + [ (G(X)Y.dBy,  ae.

holds for any ¢t = 0.

DEFINITION 2.2 (e-solution). An evolutional solution of (2.4) is a %,-
adapted process on K which satisfies the condition (i) in Definition 2.1
and satisfies the following equation

(2.6) X, = TX + I T, .G(X,)dB, .
0
The equivalence of the above two definitions of solutions is not valid

in general, but the following theorems can be proved.

TrEOREM 2.1 (Y. Miyahara [20]). An e-solution of (2.4) is a w-solution
of (2.4).

THEOREM 2.2 (Y. Miyahara [19]). Suppose that A has point spectrums
and that AX is expanded in such a form as

2.7 AX = 32X, e.)e, ,

where {e,}, n =1, 2, ---, is an orthonormal base of K consisting of eigen-
vectors of A. Then a w-solution of (2.4) is an e-solution of (2.4).

The existence and the uniqueness of the solution of (2.4) is given in
the form of the following theorem.

TreorREM 2.3 (Y. Miyahara [20]). If G: K — g,(H, K) satisfies the
Lipschitz condition, then the equation (2.4) has a unique e-solution.

Remark 2.1. These theorems are proved in the case of K = H in [19]
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and [20]. The methods used there can be applied in the case of X + H
without any difficulties.

The equation (2.3) is considered as an equation obtained from a dif-
ferential equation dX(f)/dt = — AX(t) by random perturbation. From this
point of view, we can treat the stability problem of the equation (2.3), and
indeed they are treated in [20] (the main result is Theorem 4.2 of [20]).

§3. Infinite dimensional Ornstein-Uhlenbeck process and Fokker-
Planck equation

We are interested in an equation formally described as

X9 _ _4X(t,0) + t,0), £=0, ocl0,1],

() Py

where & = v —4 = v —(d?/d¢?) and (¢, o) is a 2-paramater white noise. The
precise definition of which will be given later.

In order to give a realization of this formal equation (x) as a stochastic
differential equation on a Hilbert space, we will proceed in the following
manner.

Put H = L¥[0, z]). The Laplacian 4 = d*/d¢* on H with the Neumann
boundary condition is well defined; indeed 4 is a non-positive self-adjoint
operator for which {—j%;j=0,1,2, ---}and {§, = 1/v/ x, & = v/2]z cos jo; j=
1,2, - - -} form the eigensystem. We then define an operator & by & = +/ —4.
It is a non-negative self-adjoint operator on H, and {j} and {¢;}, j =0, 1,
2, - -+, form the eigensystem of @.

Now we can regard the stochastic differential equation

3.1 dX, = —aX,dt + dB,

as a realization of the formal equation (x), where B, is the c¢.B.m. on H
given by B(&) = (5 ® 1.0 0} (see §1).

It is easy to see that any solution to the equation (3.1) is not found
in H (see, e.g., Y. Miyahara [19]), so we must extend the Hilbert space H
to a larger Hilbert space K in which the solution lives.

Since the constant part of X, (i.e., (X, &)&,) and the remaining part
are treated separately, we focus our attention on a subspace H= {}2 e H;
X, &) = 0} of H. The operator @ is strictly positive on H and o' is of
Hilbert-Schmidt type, so we obtain a Hilbert scale derived from &

Hc..cHc..cHcHcH,c...cH, ,c---CcH_.
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where H, (0 < a < o) is a Hilbert space with the inner product (&, &), =
(6°€, ¢z, and H_, is the dual space of H, (see Yu. L. Daletskii [7] for
details).

We are now ready to rephrase (38.1) so as to be an equation on the
extended space H_,,

(3.1) dX, = —eX,dt + I,_.dB,,

where I, _, is the injection of H into H_,. If a>1/2, then I, _.c ofH,H_)
and we can apply the results in §2 to (3.1) to see that (3.1') has a unique
solution. To fix the idea, we take « to be 1 and we have

(8.2 dX, = —aX,dt + I, _,dB, .

As was seen in § 2, the unique solution of (3.2) is given by
~ ~ 12
3.3 X =TX+| 748,
0

which is called an infinite dimensional Ornstein-Uhlenbeck process.

We use the notation (&, X’} to denote the dual bilinear form on H, X
H_, ie (& X)) = (@€, o °X)s for £e H, and Xe H_,.

Recall that a solution to a stochastic differential equation is often
made to be stationary with a suitable choice of initial probability distri-
bution at ¢ = 0. This distribution is called the invariant measure.

TuEOREM 3.1. The process X, has o unique invariant probability meas-
ure v, supported by H 12> WIth the characteristic functional

G @ = ePau®)

H—yj2

= exp {‘“i‘”f”z-l/z} = exp {——1—![@_1/25 ||2}, fe I:Im .

Proof. By definition, the solution X, satisfies the following equation:

(3-5) d<$j’ Xz> = _<d)$j, Xt>dt + de(fj)
= "'"j<$j’ Xt>dt + dBt(‘ft)’ ] = 17 2; tt .
Since {B(§)}, j=1,2,---, are mutually independent 1-dimensional

Brownian motions, {{&,, XD, j=1,2 ---, are mutually independent 1-
dimensional Ornstein-Uhlenbeck processes. Therefore each (&, X, has
the invariant Gaussian measure v, with mean 0 and variance 1/2j.

Let v be the measure on H_, with characteristic functional (3.4), then
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the distribution of the random variable (£, X} is equal to v,, which proves
that v is an invariant measure of X, The uniqueness of the invariant
probability measure follows from that of v,.

Finally we must prove that the measure v is supported by H_,,. Con-
sider a functional C(3) on I;T_l,2 given by

C() = exp {—}néﬂvnzm}, pef .

Since @ ! is a Hilbert-Schmidt operator, there exists a Gaussian measure
5 on H 12 Such that

J‘- ei(q,i’)_uzdg()?) = C(77) .
H1j2

Put 5 = d¢ for ¢ ¢ FII,Z, then (y, X’)_m = (o', 6‘1/2}2) ={§ X)>. We there-
fore have

J~ e Dd(X) = J el -mndy(X)
H_12 H_y2
— exp {— 67 la) = exp{ =L 141k

This implies that v = . (Q.E.D.)

CororrLARY 3.1. (i) The invariant measure v is an ﬁl,z—standard
Gaussian measure supported by I;[_m.

(ii) The space fIl,Z is equal to the set of all Eeﬁ_m such that v is
quasi-invariant under the translation by &.

Proof. Consider a Gelfand triple
H.cH,cH.,,

where the space I:Ij"l,?, (the dual space of H -12) 18 identified with ﬁm under
the isomorphism ﬁ;‘,} =~ H, - The canonical bilinear form (g, X ) is expres-
sible as

(& Xy = (@&, oK)y, = (@7, 6X) = {at, X) .
Thus i1t holds that

f et By (R = j oD (K
H-12

Ho12

— oxp {2102 = exp { = 1 1€]a) .
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The last formula proves the assertion (i). The assertion (ii) follows from
(i) by using Corollary 5.3.2 of H. Xia [25]. (Q.E.D.)

Theorem 3.1 assures that the equation (3.2) determines a stationary

process on H _1- In fact, a process Y, given by Y, = J T, dB, is a reali-
zation of such a process. -

We now turn to the investigation of the continuity of X,. The key
theorem of our approach is the following (see P. Billingsley [3] or K.R.

Parthasarathy [21]).

TueoREM (Kolmogorov-Prokhorov). If there are two constants « > 0
and B> 1 such that

EX, - X |1<clt—sP, for0<s<t<T,

then X, is continuous on [0, T with probability 1.
Our result is

THEOREM 3.2. The solution of (8.2) is continuous with respect to ﬁ,m
norm with probability 1.
~ ~ L
Proof. First we assume X, = 0, that is X, ::I T, ,dB,, and for no-
0

tational convenience we put Y= X, — X,, 0 < s <t In order to apply
the Kolmogorov-Prokhorov theorem to X, with « = 4, we will calculate
El YLl

Put 9, =+vj&,j=1,2---. Then{y,,j=1,2 ---}is an orthonormal
base in I:I_I,Z. Hence

(I Y1 = B[ (3 (%onra) |
= Z[; E[(Y; 77n)4—1/2] + ;mE{(Y, 77n)2—1/2]E[(Ya 77m)z:-1/z]

where it is noted that (Y, ,)_,,, and (Y, 5,)_,, are mutually independent
if n = m. The random variable (Y, 3,)_;», is a Gaussian random variable
with mean 0. Its variance is calculated as follows

EY, 701 = E|(([ %90 dB.) — ([ T2, aB.)) |
:% n—z{2(1 _ e—n(t—s}) _ e—Zns(l - e—n(t—s))z}
g n—2(1 — eﬂn(t—s)) .

By using
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E[(Y, 7.t = BE(Y, 9,)%1, < 30741 — e "),
we have
2
E[IY[) £33 0 — e ) + {Tni — e
We will prove that there exists a constant § > 1 such that
(3.6.1) >l — e ") < const. [t — s|°,

(3.6.2) > (1l — e ") < const. [t — 52

The inequality (3.6.1) follows from (8.6.2). Therefore we have only to prove
(3.6.2).

Put y=¢t—s(>0) and f(2) =2%(1 —e "), 2> 0. Then f(z) >0, f'(2)
< 0, and so f(2) is a decreasing function. Therefore we get

37 S <)+ [ fadz = A —en + [ f@)dz

It is easy to see that

[z = a—en+qf < av,

and to see that

(3.98) if > 1, j “f(2)dz < const. 7
1

3.9 if 0 <y <1, f fRdz< (1 —e)+ 7}1 %idv + const. 7

< o)y, for arbitrary e, 0 <e <1.
From (3.7), (3.8) and (3.9) it follows that
(3.10) ; nHl — e ") = ;f(n) < c|t — s, 0<s<t<T(<o).

If we fix an ¢, 1/2 <e <1, and put 6 = 2, then the inequality (3.10) turns
into (3.6.2). Thus we have proved the theorem under the assumption X’o
=0.
In the general case where X, + 0, the continuity of X=T7.X, + r T,_.dB,
0

follows from that of 7.X,, because the second term has just been proved
to be continuous. (Q.E.D.)
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Since the equation (3.2) has a unique solution for any initial data X,
eﬁ_m, it determines a Markov process on ﬁ_m. Let P, X, dY) be the
transition probability measure of this process. Then we obtain the fol-
lowing theorem.

TrHEOREM 3.3. The transition probability measure P(t, }?, df) is equiva-
lent to w(dY) if t> 0 and Xe H_,,.
Proof. Since the solution X, of (3.2) with initial value X is given by
X =TX+ Jl T,_.dB,, the transition probability measure P(Z, X, dY) is a
0

Gaussian measure with mean 7.X and supported by I~I_,,2. The variance
of (y,, }Z't)_,,2 is equal to

E((7; Xt)z-m] = %jz(l — e7Hh)
Therefore the covariance operator V(i X) of P(z, X, d?) is given by

(3.11) Vi, %) = %(@—2 — T :%@—1(1~ Ts" .

While, as was seen from the proof of Theorem 3.1, the covariance operator
V, of the measure v is of the form

(3.12) V, = _;_@—2 .

These two operators are linked by V(¢, X) = v V(I — T)VV,. Since T.X
€H,.=NwoH, for t>0 and V(H._,,) = 6-*H_,,) = H,,, it holds that
TXe V(H _1)- Hence, we can apply the well-known theorem on Gaussian
measures to »(dY) and P(t, X, dY) (see H. Kuo [17] or A.V. Skorohod [24])
to obtain that P(t, X, dY) is equivalent to w(dY). (Q.E.D))

COROLLARY 3.2. Let P@t, X,Y) be the Radon-Nikodym derivativ: of
P(t, X, dY) with respect to wW(dY). Then P(t, X, ¥) is expressed in the form
(813 Pt X,Y)

(L= €)™ exp {— (i} + e — iy, )(L — &)

1
where X = 37 x,€, and ¥ = 3,8,

Proof. In case X = 0, the formula (3.13) is immediately obtained by
the use of Theorem 3.3 of H. Kuo [17] p. 123 or Theorem 4 of A.V. Skorohod

—s

<.,
]
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[24] p. 95 (note that +/V,= (1/v/ 2)é ' is a Hilbert-Schmidt operator). In
the general case, applying Theorem 2 of A.V. Skorohod [17] p. 83 to
P(, X, dY) and P(t,0,dY), we get

dP(t’ X’ )

— 1y W T _ 1 . = ~ ~
o = e {(V & OTX ¥).n— S (V0 DX, T,X)q,z}

= U exp {(2je~"x,y, — je Ha)(1 — e}
The formula (3.13) follows from this by the use of the formula

= 5 dPW X, ) dP4X,-) _ dP(0, )
PO.XY) = =3 = apto) X aly

(Q.E.D.)

With the explicit expression of P(t, X, Y) we are able to speak of its
further properties.

TuEoREM 3.4. The function P(t, X,Y) has the following properties:

(i) P@t X,Y) is a continuous function on (0, c0) X H_,,, X H_; .

(il) P X,Y)= P Y,X), that is P(t, X, Y) is symmetric.

(ii) For fixed t > 0 and Xe H_,,, PG, X, Y) is an L? (dv)-function of
Y for every p> 0. But P(t, X, Y) is not bounded.

(iv) P(t, X,Y) is the fundamental solution of the following equation

@ PEED) _14pe % 9) - ot PEED) 4
ot 2 0 8(Ys)

(3.15) Pt,X V) —>(Y) (t)0),

where A4, denotes the Volierra Laplacian and 3P|5Y(s) denotes the functional
derivative (see I. Kubo [16] § 7 and Remark 3.1 given below), and where the
precise meaning of (3.15) is that

PR X V)f(X)dnY) —> X))  ast0

H_1/2
for any continuous bounded function f(Y) of H._,,.

Before we come to the proof we need some interpretation of the

Volterra Laplacian and a lemma.

Remark 3.1. The function P(t, X, Y) can naturally be extended to be
a continuous function on (0, o)X H_ < H_,, and then P(t, X, Y) can be
expanded in the same form as (3.13) on the extended domain (0, o) X H.,
% H_,. Putting E = H, and E* = H_, in 1. Kubo’s notations, we know
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that 4, is well-defined in the sense of §7 of I. Kubo [16]. The functional
derivative 5P/617(o) can be understood to be an element of H*, in the same

way. Since ¢Ye H_,, the dual _productj ®Y(0)(P[5Y(0))de is well-defined.

In our cases, the Volterra Laplacian 4,P can be expressed in the form
4,P X, ¥) = f “pot, X, V; 0, 0)do
0

where P(¢, X, Y; o0, ¢’) is the second functional derivative of P(t, X, Y).

LemmA 3.1. Let{X,},n=1,2,---, be a sequence of random variables
such that X, — X a.e. and sup, E[|X,|?] < . Then X,— X in L* for all
p,0<p <p.

We are now ready to give a proof of the Theorem 3.4.
Proof of Theorem 3.4. Put
9, %, ) = (1 — e " exp {j(x* + y)e ™" — 2Zjxye”")/(1 — ™)}

and
P, X V)= ot 2,5), X=3x¢ and ¥=3yg,.
j=1

Then P, X, Y)— P@t, X, Y) (as n— o) uniformly on T X A X B < (0, o)
x H s X ﬁ_l/g, where T is a compact subset of (0, co) and where A and
B are respectively bounded subsets of H _y»- This proves (i). The asser-
tion (i1) 1s obvious from (3.13).

We then come to the proof of (iii). First, observe the moment

[ 1P, & Dypaud),
[1P.t. & Dypau@) = [1 [ 1646 w0 9 d(9)
— ijl [(1 _ e»gjz)-(pq)/z(l 4 (p _ 1)6-21':)—1/2
X exp ([~ Jp(l = p + (p — De e 2] [(L — e (1 + (p — Ve

It is easy to see that this product converges (as n— o) if > x%[j* < o0
for some « > 0, and in fact this condition is always satisfied for XeH., P

Therefore { J |P,|F dv(f’), n=12 -- ~,} is bounded. Applying Lemma 3.1 to

(P}, n=1,2,---, and P, we prove that P(, X, -)e L”.
Let X be an element of H_,, such that jx% = co. The maximum
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of P(t, X, V) is [[7., (1 — e"¥)-" exp {ix?} which is attained by y, = e’‘x,,
j=1,--,n. Pt Y, = >, el'x,6,. Then the sequence

P, X V)=T](1—e")Zexp{jx) [ 1 —e™), n=12--,
j=1 j=n+1

diverges as n— co. Thus we have proved the unboundedness of P(¢, X, ¥).
Finally we will prove the assertion (iv). It is easy to see that the
function > 7., 2,(0¢,(¢, x,, ¥,)/0y,) of Z and Y (where ¢ > 0 and Xe H_,,, are
fixed) converges uniformly on every bounded set B x B C H _ip X H 1/
From this it follows that P(z, X, Y) is Fréchet-differentiable as a function
of ¥. Similarly, it is easily verified that P(t, X, Y) is k-times Fréchet-
differentiable, where 2 may be taken arbitrarily large.
Using the equation
ag; 1 0¢; . 0
T e T

we get

P (t,2,9) = 4t 5,9) X Vlt, %)
where
v, x,y) = 2% (ye 1t — x)(1 — e — je~¥t(1 — e~)
+ 2j% i (yte 7t — xY))(1 — e %) .

Therefore we obtain

WP X Y) _ [ 0g,t %, 5) F
A5 D) 5 [ EY) 11 40,20, 3]

:{é ¥, (t, x5, y,)}Pn(t, XY).

It is clear that the sequences {3 _,,} and {P,} converge uniformly on
any t-interval (a, b), 0 < a < b < 0. We therefore prove that there exists
the derivative dP/d¢ and it satisfies

0P _ ;. 9P,

3.16 —_
( ) ot - Of

- ( ;]«[f,)P(t, % 7).

The functional derivatives of P is calculated as follows

P, X, Y;8) = 2i(xe’ — ye 1 — e} Pt X, ¥),
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PO, X, Y56, 8) = {[2j(xe7" — y,e )1 — f'i”)]z
— 2je-)(1 — e P(t, X, ¥) .
Thus we have
14,Pt, X, Y)
=[S e, — ye it — ety — eyt — e P X, T

On the other hand, it holds that
Pt X Y;e)=P@ZX,Y;6,)
=28@PX Y ¢)
= [Z e — yemia - e e @] Pe X, 7).
From the formula ¢Y(s) = 37, Jv,£.a), it follows that
j “o¥ 0P, X, ¥; 0)do
— {; 25ty (x,e% — y,e) /(1 — e‘”‘)}P(t, X 7).

Finally we obtain

1 o o\ OP
(3.17) S4PLERY) - J wY(o>5%)do

_ [; it X, Y)]P(t, % 7.

From (3.16) and (3.17) it follows that P(¢, X, ¥) satisfies the equation (3.14).
From the definition of P(t, X, Y), it follows that

f P, X, V)f(Y)du(Y) = f fFNPE X, dY) = E[f(X)], X =X.

Since X, is continuous on H_,, and since f(Y) is a bounded continuous
function on H_,,, we have

lim E[f(X)] = E[fX)] = f(X) .
Thus the condition (3.15) is satisfied, which proves the theorem. (Q.E.D.)

Remark 3.2. Theorem 3.4 holds true even if the function P(t, X", Y)
is considered as a function on (0, c0) X H_, X H._, for any «, 1/2 < a < .
Let {U}, t = 0, be the semi-group on L~(H -1 V) determined by the
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transition probability measure P(t, X, dY), that is

WHE = [, PeLRIDAD = [, Pe.X Df@)aD)

= ElfX)), feL"(H.pv),

and let L be the infinitesimal generator of the semi-group {U,}. We denote
by C3(R*) the class of twice continuously differentiable functions with
compact support in R*. Then we obtain the following theorem.

THEOREM 3.5. A function F(Y), given by
F(?) :f(vn "'avk)7 v; = <Ej) fv>’ J: 17 29 ) k’ fe Coz(Rk) )
belongs to the domain of L and satisfies

(3.18) (LF)Y) = [l s TSy, O

2 =1 v} =1 7 v ]UJ‘:“J‘:?) '
Proof. We need only to prove (3.18). A process X} given by
Xp=(a-o,xh),  x=(,%)

is a k-dimensional Ornstein-Uhlenbeck process, and the components of X}

satisfy
(3.19) dxj = —jxidt + dB,&), j=1,2---,k.
Now, the conclusion of the theorem follows. (Q.E.D)

COROLLARY 3.2. Let D(L) denote the domain of the operator L. Then
D(L) N L¥dy) is dense in LXdy),

Proof. The set

Cg = {Fe Lz(dy); F(Y) = f(vla ] vk)’ vj = <$jy Yv>y
j: 1y27"'>k’ feC(Z)(Rk)’ k= 1127 }7
is dense in L,(dv). Since C:c D(L) by Theorem 3.5, D(L) N L*dy) is dense
in L(dv). (Q.E.D).

By Corollary 3.2, L can be considered as an operator on L¥H .., dv).
Let the closed extension on L be denoted by the same symbol L.

Noting that v is the H,,-standard Gaussian measure on H. .,
L¥H _,,, dv) is decomposed in the form

L¥H_,p, dv) = i‘ @ H, (Wiener’s direct sum decomposition) ,
n=0
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where s#, is the closed subspace spanned by {[]; H, ,(1/ i <&, 17>), >n; =
n} (H, Hermite polynomial of degree n) (see §4 or T. Hida [14]). We
note here that

-1/2 - ~
{@{n/) = (n nj '2nj> n H,,I(N/] <$j3 Y>)9 nj = 0: 1’ A
J J
j=1’21"" an<°°}

is an orthonormal base for L*dv).

THEOREM 3.6. (i) The functions {0,,(Y), n, = 0,1,--+, X n, < oo},
satisfy the following formula

(3.20) Lo, (Y) = P Jn)@ua(Y) .
The operator L, acting on L¥dv), is non-positive definite and self-adjoint.
(ii) The function P(t, X, Y) satisfies the equation

dP

3.21
3.21) 7

X, Y)=LP¢t X,Y), t>0, for fixed X.

Proof. When F(Y) is expressed in the form
F(?):f(vu"',vk% vj:<$j,?>, j:l,-o-,k,

with a polynomial f in v,’s, F(Y) satisfies

(3.18) wn@® =t T 5 o

2 7= ovy 7 oy, ]v,=<e,~,f’>

If, in particular, f(v, ---, v,) = [[%., Hn,(«/ jvu;), then we have

Ljfi]l H, (Wi, T)) = [_;_ > 7 5o, 3

31)3' al)j]vj=(5j, 7>

1.0°H,, . 0H, } ]
= ol Shutinl.? R L] H, .
; [{ 2J 0x} 7 ox; igi Az=vices v

Using a formula

d*H,
dx?

dH,

— 2 a 2nH, =0
X dx + 2n

for the Hermite polynomial, we obtain

LT H, VT @ T = =(Zin) [ B i <6 T,
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which proves (3.20). Since {@w,(f’)} is an orthonormal base for L*(dy), the
formula (3.20) proves that L is non-positive definite and self-adjoint.

Let P,(i, X, 17) and (t, x, y) be functions given in the proof of
Theorem 3.4. Because P,(t, X, 17) is a tame function, it is easily seen that

P,

(3.22) T

X D) =LP X D) = (St n)P X ).

Recall that
(3.23) Pt X, Y)—> Pt X,Y) in L¥d) .
We can further prove that

oP,
ot

(3.24) ¢ X 7)—> ?a%(z, X Y)  in I¥dv)

and
(625) LPG X ¥) = (kz 1p,,)Pn(t, %7 —> (kf;l xpk)P(t, X V) in L¥d).

Since the operator L is closable, the formulae (3.24) and (3.25) prove
that P(t, X, Y) e D(L), ¢ >0, and that

(3.26) LPt X ¥) = imLP(t, X, ¥) = (i «pk)P(t, 7).
N~ k=1

It is easily verified that dP/dt the derivative of P( X, -) in L¥(dy)-

norm is equal to the point-wise partial derivative oP/dt. Therefore the

equality (3.21) follows from (3.22), (3.24) and (3.26). (Q.E.D.)

We will now consider a generalized equation of (3.2)
(3.27) dX, = —eX,dt + BdB,,

where B is a bounded linear operator defined on H. We can carry on
the same analysis on (3.27) as we have done on?(3.2), to obtain the following
results:

1. There exists a unique invariant probability measure v, supported
by ﬁ_m and its characteristic function C, (£) is given by

C 8 = J,; e-ie:Dgy, (X) = exp {—%HB*@‘/Z&W}, ceH,,.

-1/2

2. There is a dichotomy that the measures v; and v are either mutually
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equivalent or singular. They are equivalent if and only if ¢*BB*¢™'* — I
is of Hilbert-Schmidt type.

3. The solution of (3.27) is continuous in H _i2 DOrm.

4. In order that the transition probability measure Pz, X, dy) is
equivalent to vy(dY), it is necessary and sufficient that T.X e S(H_,,,) and
that S;*T,S,T,S;'* is of Hilbert-Schmidt type, where S,=(1/2)o" 2 BB*¢~'",

5. A necessary and sufficient condition for Pz, X, Y) to be yy-sym-
metric is that the operator BB* commutes with .

Remark 3.3. Our methods are applicable to some generalized cases.
Let H be any real separable Hilbert space and let A be a positive unbounded
operator on H such that A-' is of Hilbert-Schmidt type. Then, for the
equation on H of the form

dX, = —AX,dt + dB, ,

we can do the same discussions as we have done for the equation (3.2).

§4. Multiple Wiener integrals on a Hilbert space

In this section we will first consider the Wiener’s direct sum decom-
positions of L*(6*, p) and L¥(&* — K), and then we will proceed to investi-
gate their integral representations. (See § 1 for the notations.)

1. Functionals of multi-parameter white noise.
Introduce the space of real valued functionals of white noise

I, = L") = L%, 2, 1)
= {#5] 1p@iduo) < ).

Then we are able to obtain the Wiener’s direct sum decomposition of (L?),
as follows.

For any ¢ e (L?), define ¢ by
@D (T = | eIpadpa),  ges.
Putting

§0) = exp (282 —p) = 5 LHG WD, il =1,

where H,( ) is the Hermite polynomial of degree k, we obtain
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o0 = o 5, 2 5

Therefore we have proved
(4.2) (7 H(( o)V 2))n) = CopW 2@, n)'s [l =1.

We then show a generalization of (4.2). Put ¢(w)= [[7, Hx ({n;, @)[v 2),
>, K; = n, where {;}, »,€ &, is an orthonormal system in s# = LD xT).
Then we can easily prove that

(790 = Cl 2oy [1 G n)"

—Cir| o [Fa wro, e w)dx o da,
(DXT)n
=it | e [F e wdro, - w)dx - da,
(DXT)n
where F(x,, - - -, %,) = 2"2[p,(x;) - - - pu(xe)] -+ [+ - pux)], and Fx,, - -, x,)
= symmetrization of F(x,, ---,x,) = 1/n! > F(x.q, - -+, X.(my), T; Permuta-
tion of (1,2, ---, n), and »"® = n-times tensor product of 7.

The following formulae can easily be proved:

1Pl = 2%, Bl = 2 (] 22)

Jj=1

On the other hand it is obvious that

m 72
Iglams = (1 2t) 2,
and so we have established

(4.3) lollizerp = (n!)l/zuﬁllLﬂ((DxT)") .

Let s, be the subspace of (L?), spanded by the Hermite polynomials
of degree n. Then we can prove

), = i ® 2, (Wiener’s direct sum decomposition).
=0

In fact the correspondence between ¢ = [[ H,(<{y; o)/v'2) and Fe
L¥(D x T)") can be extended to the one-to-one mapping from 2, to
LD X T)),n=0,1,2, - - -, where L(D x T)*) = {F; Fe LX(D x T)") and
F is symmetric}. We denote this transformation from s#, to LH(Dx T)")
by z. Thus we have obtained the following diagram.
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L)y=>@H, =3 @®n! (D x T)», under z:

i g—>rpe LD X T)), deH,,

A0 = Co) [ o [eple, o wI O, -, x)dE -
[|¢H<L2>D = +/n! |7 ll2coxmyny -

DEerFINITION 4.1. ¢ is called the kernel of the integral representation
of ¢.

“4.4)

ExampLE 4.1.
(] He (s Y[+ 2)) = the symmetrization of 2" [[ ® i@,
j j
where {y;} is an orthonormal system in LD X T).

2. Multiple Wiener integrals and iterated stochastic integrals I.

We are going to define multiple Wiener integrals I(F), F e LX(D x T)").
Let {&,} be an orthonormal base in H and let {,} be an orthonormal base in
LXT). Then {5;}, where 5, is of the form &, ®{,, is an orthonormal base
in # = L(DXT), and {y;,..;, = 9, &®--- ®7;,} is an orthonormal base in
L¥(D x T)*). Therefore, if we define the multiple Wiener integrals for
Nivein We can extend this definition to all functions of L*((D x T)"). Let
B, be the cylindrical Brownian motion on H = L*D) introduced in §1.
Put F(x, - +,%x,)=19;,,® - Qn(x, ---,x,), then the multiple Wiener
integral I(F) of F is given by the next formula

IF) = LE) = [ [tu@) - 6,0)dBu.) - dBLE.D

where B, (5,), k= 1,2,---,n are respectively l-dimensional Brownian
motions, so the right hand side of the formula is well-defined as the usual
(finite dimensional) multiple Wiener integral of degree n. By simple cal-
culation we know that I(F) is of the form

I(F) = 2~ n H ((pp 0)V2), 3k

n ?
where k; is the multiplicity of »; in »,,...;..

DerFintTION 4.2. For F, Fe L*(D x T)"), I(F) is called the multiple
Wiener integral of F. The set of all I(F), Fe L¥(D X T)"), is called the
space of multiple Wiener integrals of degree n.

From the definition of I(F), we can easily prove that

(4.5) I(F) = I(F) .
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THEOREM 4.1. It holds that
{I(F): Fe L{(D x T)")} = {I(F): Fe LD x T)")} = #,.
And the mapping I\t pxrymny, the restriction of I, is the inverse of .

Proof. From the formulae

I(.s) = 27 [ HeCnp @)V 2), 2k,

n,

and

r([j'[ H, ({n;, 0y[v 2)) = symmetrization of [] ® 7%®,

it follows that ¢ = I(z¢) for ¢ = [] H, ({9 wY/v/'2) (note (4.4)). This
equality holds true for all ¢ € #, by the linearity of r and I. (Q.E.D.)

We have obtained the following diagram:

r: g —>tpe LD x T)"), ¢e#, Dbijection,
I. F—> I(F)e #,  FeL(D xT)",
¢ = I(z¢),

1 llzarp = (n!)m“f?S“Lz((DxT)") .

We will now give the definition of iterated stochastic integrals. Let
F(x, ---,x, be an element of L*((D X T)"). At first we assume that F is
a simple function. Then, for fixed (x,, ---,x,) and ¢ F( ) is identified
with an element of LXD)= H. So we can consider the stochastic integral
(defined in §1)

4.6)

@n [ B x o x),dBY = |1 (F dBux)) = LE), -, )
for all (x,, ---, x,), and we have
@8 [ I wfdue) = [T 1Rt < 1Pl

For fixed (%, - - -, %), L(F) is a function of x, and v, and it is Z.,-adapted.
Considering these facts, we know that the following formula holds

Hjl(F)( » Xy 0, xn)uzLuTx.f*—-H)
= I Hjl(F)Hiz(mdxz = f ||F“iz(z)x1')dxz < oo,
DXT DXT

for all (x,, ---, x,). Therefore the stochastic integral
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LEY G, -y 2 = [ B, By = [ (E), dB.(x)

is well-defined. Thus we are given the iterated stochastic integrals I,(F),
I(F), - -, I1(F) = I(F), and we can easily verify the following inequality
(49) ”jk(F)(xkn, sty X w)Hgﬂ((DXT)""‘XA‘*) g HFHiQ((DxT)")’ k = 1: 2, s, N,

where we have introduced the notation [ in order to discriminate the
iterated stochastic integral from the multiple Wiener integral I(F).

The set {F: Fe L*(D X T)") and F is a linear combination of simple
functions} is dense in L*(D X T)”). From this and (4.9), the mapping I,
can be extended to be a bounded linear mapping from L*(D x T)") to
LM(D X T)** x *). Therefore the iterated stochastic integral [(F) = I.(F)
has been defined for all Fe L*((D X T)").

The following notations will be used to denote I.(F):

I(F) = f J . f’ (F,dB,, --- dB,>
(4.10) - f‘ <f < . j (F,dB.>,dB.), ---,dB,,

_ f i < f < . J (F, dB,(x)>, - -, dB,,,(x,c)>> .

THEOREM 4.2. If Fe fﬁ((D X T)"), then the next formula holds
4.11) I(F) = n!I(F) .
Proof. Let F=2,® - ®9;, 7, = £, ®;,, and put

F= L' > F* (symmetrization of F),
n! =

where F*(x,, -+, x,) = F(x.), -+ *) Xzy)- From the definition of I(F), we
obtain

I(F) = I(F)
= [ e CIdBuE) - dBLE)
=5 f [ G wdBE) - dBIE
dre = {(Uy, -+, )5 Uy < Uery < -0 < Uy}
=5f [t G @)dBYEL) - dBLL)
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— S IFY) = I(z F) = (! F) = n!I(F).

Since {F; F is in the form of 7, ® --- ®y,} is dense in L¥((D x T)"), the
theorem has been proved.

CororLLARY 4.1. ¢ e #, has the following representation
(4.12) ¢ = I(zg) = n!i(zg)

- n!j j<f¢(xl,..-,xn), dB,,--- dB,,)> .
ul<"'<uﬂ

Remark 4.1. The equality (4.12) explains the reason why we call z¢

the kernel of the integral representation of ¢.

3. Hilbert space valued functionals of white noise.
Let K be a real separable Hilbert space and put

(g — K) = {03 & — K, | [0@)[dp@) < oo} .

First we shall consider the Wiener’s direct sum decomposition of L¥(&* —
K). Let 4 be an element of K. Then (¢, )x is an element of (L?),, so
we can apply the mapping 7 (which is already defined by (4.1)) to (¢, ¥)«:

(4.13) (T D)W, n) = (T (D, ¥)xln) = L e AD, ) cdpw) .

By (4.4), (9, ), has the integral kernel (@, ), which belongs to 1':2((D>< 5]
and satisfies

(4-14) |](Q7, ‘!’)K”(m)p = (n!)m”f(@; \V)K”u((uxr)n) .
Put
(4.15) H(K) = {0 e L(&*— K); (D, V), € H, for any v € K} .

Then the mapping (D, V) — (D, ¥)x, where @ € #,(K) and € K, gives a
bounded bilinear operator from #,(K) X K to L*((D X T)*). The mapping
7 can be regarded as an operator from #,(K) to Z(K — L¥(D x T)") such
that

@16)  0: p—> @O)Y) = (D, V) e LD X T)), ek,

where Z(K, — K,) is the linear space of all bounded linear operators from
K, to K,.
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THEOREM 4.3. For @ e # (K) the operator t@: K— L¥(D x T)"), is of
Hilbert-Schmidt type and satisfies

(4.17) 1P llaerry = (RD)"]|2@ |55
where || ||z-s stands for the Hilbert-Schmidt norm.

Proof. It is easy to see that @ is a bounded linear operator. The
Hilbert-Schmidt norm of ¢® is calculated as follows. Let {e;} be an
orthonormal base in K. Then it holds that

1 1
Hf@ ||§1—s = %‘, “T((D, ej)K”%ﬂ((DxT)") = Ejj _n—'H(@’ ej)K“%LZ)D = ;r”@”‘iw*-.m

(Q.E.D.)

We denote by g, (H,, H,) the Hilbert space consisting of all Hilbert-
Schmidt operators from H, to H,.

CoroLLARY 4.2. The mapping ¢ can be regarded as a linear mapping
from # ,(K) to oK, LAZ((DX TY") and then ¢ is bijective. The operator norm
Izl of = equals (n!)="~.

DEFINITION 4.3. The mapping ¢: #,(K) — g, (K, L*(D x T)®) is called
the first representation of »#,(K) and 7@ is called the first representation
of @.

Since @ is a Hilbert-Schmidt operator from K to L*(D X "), (d)*,
the adjoint operator of <@, is a Hilbert-Schmidt operator from L*(Dx T)") to
K and ||(c®)*|y-s = |t ||z-s. We denote the isomorphism form .(K) to
o (L((DXT)"), K) by ¢* (that is t*® = (cD)*).

DErFiNITION 4.4. The operator z*: # (K )~>02(ff((D X T)"), K) is called
the second representation of .#,(K) and *® is called the second represen-
tation of @.

CorOLLARY 4.3. The mapping z* is bijective, and satisfies
(4.18) 1P lzaezy = VRUT*@ s
TuEOREM 4.4. It holds that

(4.19) (&% —> K) = i ® #,(K). (direct sum)

Proof. Let {e;} be an orthonormal base in K. Then any element @
of L}(é* — K) is expanded as @(0) = > 5., ¢,(w)e;, where ¢,w)e (L),. By
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(4.4), ¢/(w) is decomposed as ¢ (w) = 3 ¢, (w), ¢, (0)e H#,, to have O(w)
= S5 Sra b0l Put K, = {§o)e;: go) € #,), then LH6* —K) =
2 @K, ;. Putting K, =, ®K,,; we obtain L(*—-K)=>,®K,.
Since the equality K, = #,(K) is obvious, the proof of the theorem has
been complete. (Q.E.D.)

DEerintTION 4.5. The decomposition LX(é* — K) = >, @ o ,(K) is called
the Wiener’s direct sum decomposition of L¥&* — K), and the second re-
presentation z*®@, @ ¢ s ,(K), is called the kernel of @.

4. Multiple Wiener integrals and iterated stochastic integrals II.
We will now define the multiple Wiener integral of S, S € ¢ (L} (D X T)"),
K).

DEerFINITION 4.6. For an element S in o,(L(D X T)"), K), the multiple
Wiener integral of S, call it I(S) = j e ISch .-+ dB,, is an element of
L (6* — K) determined by the formula

(4.20) I(S), ¥k = I(S*) for any Je K,

where I(S*y) is the multiple Wiener integral of S*y in the sense of Defi-
nition 4.2. The set of all I(S), Se o (L*(D x T)"), K), is called the space
of multiple Wiener integrals of degree n.

Remark 4.2. 1f S e o (LA(D x T)?), K), then S*y ¢ L((D x T)") for +
e K. Therefore an element in L*(&* — K) is uniquely determined by

(IS), Vg = I(S*y)  for any v c K.
1) = f . I@dBt, ... dB,, is called the multiple Wiener integral of §.

TuEOREM 4.5. (i) For Se o (LX(D X T)"), K) put S=S|toxrn (the
restriction of S to LD x T)"). Then it holds that I(S) = I(S).

(i) The operator I: o, (L*((D X T)"), K) — L¥&* — K) is linear and
bounded. In addition, for Se oZ(I:z((D x TY"), K), we have

(4.21) 1I(S)lzegrzy = DSl -5
Proof. (i) We will first prove that
(4.22) é*’ll/‘ = é\*t,/V for any € K,

where ~ stands for the symmetrization. This equality comes from the next
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formulae, for fe ff((D X TH")
B s = 2 S US™ ), s = =+ (4, s
n. = n:. =

= (S*, Pe = (¥, SPx
and
S, e = (W, SNx = (I, s -
From (4.5) and (4.22) we obtain
(I(S), V)i = I(S* ) = I(STY) = IS*y) = AS), ¥)x »

which is to be proved.
(ii) Let {e;} be an orthonormal base in K. Then, from (4.6) we have

[ 1)) = [ T1U(S), e)rdut)

= 5 [ IS e)du) = X nt] S%e,
= n!|S*|f-s = n!|Slk_s .
The rest of Theorem is trivial. (Q.E.D.)

THEOREM 4.6. Let @(w) be an element of # (K). Then @ is represented
as the multiple Wiener integral of t*®, that is

(4.23) D(w) = I(*P) = j . f *0dB,, - -- dB,, .

Proof. Since the inner product (@, V), v € K, belongs to 5#,, we obtain
@, ¥)x = I((D, ¥)x) = (D)) .
On the other hand it holds that
(*0), ¥)x = I(z*®)*¥) = I(z0)*)* V) = (D)) .
Therefore we have proved the Theorem. (Q.E.D.)

Let B, be the cylindrical Brownian motion on H = L¥D) introduced
in §1. Then the stochastic integral I S()dB, is defined, where S is %,-
T

adapted and Se L (TX&* — o(H, K)). The integral f S@t)dB, is an ele-
T
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ment of L(&* — K). We will treat the iteration of stochastic integral of
this type.

Let Seo,(H, K), then S is represented as

(429 St = D a6 8)e, = || Fixeds

where {£;} is an orthonormal base in H, {e;} is an orthonormal system of
K, > 2 =|S|h.s <co, and Fy(x) = >3, 1,&,(x)e; (Fs: D— K). Since Fg
satisfies

[, 1Fsldx = 5 [ Betdx = S = [Sfs < oo,

Fy belongs to L¥(D — K).

ProprosiTiON 4.1. The above correspondence of S and F determines
an isomorphism between g,(H, K) and LD — K).

Proof. It is already proved that Fge LD — K) and || Fs|| = ||Sllz-s
for any Seo,(H, K). Let Fe L (D — K) and put S, the operator defined
by

S,& = I F@E(dy, e H.

Then S,: H— K is well-defined and is a bounded linear operator. The
Hilbert-Schmidt norm of S, is equal to

; IS¢k = Z;: Z;l [(SF€ €kl
= 5[, F @, ede ]
= 3 [ 1FG), e)eldx

= ||F||2L2(D—»K) .

Thus the proof is completed. (Q.E.D.)

In the same manner we can prove the next proposition.
ProrosiTiON 4.2. The following diagrams are true.
o(LX(D"), K) = L(D" — K)

oLX(D"), K) = [X(D" — K)
o(LX(D x T)"), K) = LA(D x T)* — K)
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o LD x TY"), K) = L(D x T)" — K)
where = denotes isomorphism.
ProposiTiOoN 4.3. (i) We have the following diagram
LH&* —> o (LMD X T), K)) = LH&* —> L*((D X T) —> K))
LT X 6* —> o"(LX(D), K) = LT X ¢* —> LX(D —> K))
= [(*XDXxT—> K)
() If Se LT X ¢* — a(LX(D), K)) and S is %,-adapted, then the
stochastic integralj S(t, w)dB, is well-defined. Put I(S) =J S(t)dB,, then
T T

NS = [ EUSE-ddt = | Bl F,fidx,

where Fy is the element of L(&* X D X T — K) corresponding to S by (4.24).

Proof. (i) is easily proved by the use of Proposition 4.2. (ii) is obvi-
ous from the definition of the stochastic integral and Proposition 4.1.

(Q.E.D.)

Remark 4.3. We identify the elements of LT X &* — o(LX(D), K))

with those of L*(&* X D X T— K) and we use the notation f S(t, w)dB,
T

or I S(t, w; x)dB,(x) to indicate the stochastic integral I(S). We also use
T

the notation S(x,, - - -, x,) instead of Fy(x,, ---, x,).

We are now ready to define the iterated stochastic integrals. Let Se
a{L* (D x T)"), K), then S is considered as an element of L*((D X T)" — K)
by Proposition 4.2. We assume here that S is a simple functional. Once
(x5, - -+, x,) is fixed, we can regard S as an element of LD X T — K).
While S is also regarded as an element of ¢, (L*(D X T), K) or LT —
o(LA(D), K)) by Proposition 4.3 (i), and this function is denoted by Sz27n(¢t,).
Thus we know that the stochastic integral

LS -0 = [ S+o(e)dB,,
is well-defined in the sense of Definition 1.4 and we have

IS - x)li = [{[ 185G, -, xladujdn < 1S/,

From this inequality we obtain
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wamﬂ o jEHZ(S)(xQ, ey ) |kdx, - - dx, < wam“s“%‘d’c‘ oo dx,,
1(S) e L(¢* —> LY(D X T)"'—> K)) = LY&* —> af(LN(D X T)" 1, K)) .

Using Proposition 4.3, we can define the stochastic integral

LSWW“JD=rﬂ$mrw%m&WL

which has the same properties as I,(S)(x,, - - -, x,) described above. Repeat-
ing this procedure n times, we finally arrive at the iterated stochastic
integral

“25)  I(S) = j{ f { : { f ” S“'"“(t,)dBtl}dB,g " }dBtM}dBtn,

and I(S) satisfies
(4.26) im&mwmgj ~~M&M%md%=wmp
(DXT)n

Since the set {S: Se L((D X T)" — K), S is a linear combination of simple
functions} is dense in LX(D X T)" — K), the mapping I: S— I(S), can be
extended to be a bounded linear mapping from L(D X T)"— K) (=
oL (D x TY, K)) to LY&* — K).

DeFINITION 4.7. The K-valued random variable f(S), which has just
been obtained above, is called the iterated stochastic integral of S.
1(S) is also denoted by

Llémgt" e Is(xx, <o, 2,)dB(x) - - - dB, (x,)

or simply by f . JSdB“ --. dB,,.

{1+ Sin

Remark 4.4. If Seo(LX(D x T)"), K) = LX(D x T)*— K), then S can
be regarded as an element of L*((D X T)" — K). So the iterated stochastic
integral f(é) is well-defined.

PROPOSITION 4.4. Let Se o (LA(D X T)"), K) and put 8 = S|asqoxrm-
Then 8 € o(LX(D X T)"), K) and Fs = F(=the symmetrization of Fy).

Proof. For any fe L{(D x T)") it holds that

sfzj... IFs(xl,--~,xn)f(x1,~--,xn)dx1 cev dx,
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—_—‘[ IFS“(xl,n-,x,,)f(x,,---,xn)dx,--- dx,
=J---Jﬁs(xl, e ) e, 2 - do,

Therefore we obtain Fg = F,. (Q.E.D.)
We will finally discuss the connection between I(S) and I(S).
THEOREM 4.7. It holds that

4.27) I(S) = n!I(S)  for any Sea((D X T)", K).

Proof. Let Seo,(LX((D x T)"), K), then by Proposition 4.2 there is a
function Fge L¥((D X T)" — K) such that

Sf = I e JFs(xl, s ) (X, -, x)dxy - dx, fe LD X T)7) .
Define the operator S*=» e ¢, (LD X T), K) by
Sevrtmy = [ Feny 2, -, wn(e)ds,

Then S®= 2= ijg well-defined for almost all (x,, - - -, x,), and the next equality
holds

((szmx")*‘[’, 77)L2(D><T) = (\!’a Smmz"’?)x
= (b [ Fulmy 2 -, x ()
= I (‘h Fs(xn Xy =t 0y xn))KU(xx)dxl

for e K and »e LD X T). We can regard ((S*7)*y)(x,) as an element
of LX((D x T)™), and then we have

(S ) ) (x1), 7 @ &) r2cwxrym
(4.28) - .[ T ‘[«S@...xn)*w’ Droxr 8%y, + -, x,)d%x, - - - dx,
(DXT)r—1

=[ [ o Foadgte, - wods, - dx,
(DXT)n

for ge L*((D X T)*""). On the other hand it holds that
(S*V, 7 Q 8)recoxrym = (W, S*( ® g))x
(4.29) = (0 [+ [Pt s ), o, 20 - - v,

K
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= [ [ Fomedgta, -, x)d, - d,.
From (4.28) and (4.29) we obtain
(8™ = ) (xy) = (S*y)(=,, - -+, x,)  in LD X T)") ,
and so we know that for almost all (x,, - - -, x,)
(4.30) (S7e) g = (S*Y)(-, X, + -+, Xa)
in LD X T) sense. From this equality it follows that
Wy L(S)(xs, - -+, X))

= [ ¢S, dB.x)
= ["«s @, - %), B

for almost all (x,, - - -, x,).
Now we shall prove inductively that

@) L= [ [T¢sHdB, - dBY

for almost all (x,,,---,x,), k=1,2,---,n. Assume that (4.31) is proved
for £ —1. Then, by the definition of I._,(S), for any » € LD X T) we have

(jk-l(s)*‘lf’ 7])L2(D><T) = (‘ky jk-l(S)ﬁ)K
(4.32) = [ L) - mDer(xds
DXT
= ((‘!"a jk—l(s))K’ 7])L2(D><T) .

Using the assumption of induction and (4.32), we know that

LoSyv = [ (-o [T<s*v.dBY, - dB, ),
So we obtain

O 1S = [ < iS)* . dBLD
= [ (- [ sty aB, - dB ) B,

which is to be proved.
Putting £ = n in the formula (4.31), we obtain
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(W, 1(S))xc = I(S*y) .
Let Sea(L((D x T)"), K), then S*y e L¥(D X T)"). By Theorem 4.2 we
have
(W, I(S))x = I(S*y) = nlI(S*y) = n!(v, I(S)«
for any € K. Thus we have proved (4.27). . (Q.E.D.)

Summing up what have been discussed, we have obtained the follow-
ing diagram:

(4.33) I(&* —> K) = Zio ® 7 (K),

# (K) = Vnlo(LX(D x T)), K) = Vo LX(D X T)" —> K) ,
%1 @ — > *@ e o (LUD X T)), K) = L(DXT)" —> K),
® e #,(K), bijection ,

I F—> I(F) = n'I(F) = j IFch ... dB,,

1=+ Stn
Fel{(DxT)—> K),
I.7* = identity .
Before closing this section, we mention an interesting result in con-
nection with the stochastic differential equation (3.2) in §3. Since the

unique solution X, of (3.2) is an element of L¥&* — H _1/2)s X, has a kernel
of integral representation.

THEOREM 4.8. The kernel of the integral representation of X, with X,
= 0 is given by

Xro,1(10) ]Z:i e It-mE (o), .

Proof. This result follows from the above discussions without any
difficulties. (Q.E.D.)

§5. Stochastic differential equations with multiplicative operator

This section is devoted to a development of our theory. Actually we
shall discuss the so-called bilinear stochastic differential equation on the
Hilbert space H = L¥]0, z]) given by

(5.1) dX, = —oX,dt + X,-dB,,

where & (=—+'—4) was given in §3 and X,- denote the multiplicative
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operator, i.e. (X,-&) (o) = X,(0)é(0), o€ [0, x].

Although our techniques developed in §3 are not available to the
equation of this type, our results established in §4 do work in the in-
vestigation of the equation above. The reason could be seen in the dis-
cussions what follow.

Before we come to details, we have to overcome a difficulty. Namely,
there is no solution to (5.1) living even in H__ formed by the Hilbert scale
derived from @. To avoid this difficulty, we are led to consider a modified
equation (5.4) under the assumption (5.5) (note that if I'(s, ¢’) = é(c — o),
then (5.4) turns into (5.1)), which will be prescribed later.

We first investigate some properties of the multiplicative operator.
Let A be a positive self-adjoint operator on H determined by

Ago =&
AEj:d)Sj:jEjy j:172)"')
where {§}, j =0,1,2, ---, is the orthonormal base for H given in § 3 (i.e.

& =z and &; = (2/r)"”* cos jo). Since A~' is of Hilbert-Schmidt type, a
Hilbert scale {H,}, —co <a<(co, is generated by A, where H, is a Hilbert
space with an inner product (&, ), = (A%, A“))y.

Put T, =e*, t >0, (T, is the same operator as given in § 3, but the
domain is H, not H). Then we have

ProrositioN 5.1. (i) The multiplicative operator X-, Xe H, is not
bounded on H. 1If t> 0, then the closed extension of T.X- is a Hilbert-
Schmidt operator on H.

(ii) The multiplicative operator X., X e H, is considered as a bounded
operator from H into H_,, o > 1/2. Moreover it holds that X- e o,(H, H_,)
and that

X IEsnny < const. (14 3 k)| X[F

(i) If Xe H_, for some a >0 but X ¢ H, then T, X- ¢ o,(H, H_,) however
large B may be chosen.

Remark 5.1. For Xe H T, X- is of Hilbert-Schmidt type by Proposition
5.1 (i). But the integration f t I1T,_sX- |2,@ds does not always converge.
For example, if X0 and Zzn = 0 in the expansion X = ) a,&,, then
_[: T, X |, ads diverges.
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Proof of Proposition 5.1. (i) Take an element X in H = L%[0, z])
such that Xe L*[0,~]). Then X-X = X*¢ H, i.e. X- is not a bounded
operator on H, Having the X expressed in the form X =3 q,£,, we obtain

S ITUXEDE = 35 (T(Xen), &)
5.2 = 2 3 (2 el et £
<2r7? Zk: et }7; (@sr, + Qi)
< 6r | X|P> e ™ < oo Gf ¢t > 0),
where we have used the following formula

Lo v aps),  ifm k=1,
(s

(5.3) Z an(EnEm’ gk) = —"\/_1—2—‘7[(am+k + a|m~kl)’ if mk = 0’ m ‘+‘ k % 1 ’

1, fm=k=0.

The inequality (5.2) proves that the closed extension of T,X.- is an element

of o,(H).
(ii) With the expression X = > a,&,, we obtain

1K Moo -0 = 23 1 X-&nllle = gn(X' s §)a
= ,;,L(Z @ (Enéms §i)-0)°
- ; (Zn: an(En‘Em; ‘EO)) + g;lzm k—z::(; an(&n&m’ ék))z
<4r* Z a, + n* kZ>:1k—2a 2 (@i + a[m—k()2
< 6z X + :;ak*“) .

(iii) Suppose that > a2 = oo, > n"*al < oo and that @, = 0 in the
expansion X = 3] a,8,. If T.X. were well-defined and T, X- eo,(H, H_)),
then the following formula should hold

“TzX‘ ||32<H,H_p> = %: “TtX‘Sm“‘z—ﬁ
— 2 {(@Xen & + 3 (TXew B8,

= 2{(Z auetn 80) + T Ere (D aeiu ) )
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= S an + 3 (et 5 @+ atni))
= (1/47r2)<1 + glk'“e‘z’“)(%] afn) = oo,

Therefore we conclude that T'.X- ¢ g(H, H_,). (Q.E.D.)

If the equation (5.1) has a solution in H, then the solution should be
given by X, = T X, —}—f T, X,-dB,. As was mentioned in the Remark 5.1,
0

t
the integral J T, . X, -dB, does not always converge in the space H. Sup-
0
pose next that a solution X, were obtained in H_.. Then, by Proposition
13
5.1 (iii), the integralf T,_,X,-dB, would not be defined in H__.. Thus we
0

have seen that the equation (5.1) has no solution in H_.. Accordingly,
we will consider a modified equation of the form

(5.4) dX, = —aX,dt + f(X)-dB, ,
where f is a mapping from H_, to H (a« > 1/2).

THEOREM 5.1. If the mapping f: H_,— H, a > 1/2, is Lipschitz continu-
ous, then the equation (5.4) has a unique solution in H_, for a given initial
data X,c H_,.

Proof. From Proposition 5.1 (il) and the Lipschitz continuity of f, it
follows that

IF) = (D) oy S const. (1+ 3 k)IfX) = AV

< const. | X — Y. .

Therefore f(X)- is a Lipschitz continuous mapping from H_, to ¢,(H, H_,).
Using Theorem 2.3, we know the existence of a solution of (5.4) as well
as uniqueness. (Q.E.D.)

From now on we treat only such a special case as f is linear and of
the form

(5.5) f(X)(o) = L I(0,0)X(o)dd’,  XeH._,,

where ['(¢, ¢’) is an element of H® H,. Now, by Theorem 2.1 and Theorem
2.2, the equation (5.4) is equivalent to
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©.6) X, = T.X, + [ 7. (f(X)-)dB, .

We are now ready to apply the results obtained in § 4 in terms of the
integral representation of (5.6).

Lemma 5.1. Let Se LT X &* — a,(H, H_))) and assume that S(t, w)
satisfies the following conditions:
(i) S, v) is %,-adapted.
(i1) S, -) e LY(&¢* — o(H, H_))) and the Wiener’s direct sum decompo-
sition of S(t) is given by
S(t9 (D) = Z Sn(t)9 Sn(t) € 'yfn(oz(H’ H—l)) ’
Sn(t) = Sn(t, Xy * 00y Xy x)’ xj = (xj, tj) € D X T’ X € D ’
where S,(t; -, -+, 3 ) e L(DXTY x D—H.), D = [0, 7] and T = [0, o).
Then the #,..(H_,)-component of Jt S(s)dB, is equal to f S.(s)dB, and
0 0

its kernel is given by

(5.7

1 1 X[O,t](tnn)sn(th; Xy 0y X5 xnn)y tl é tz é tr é tn+l .
Proof. Using the results in § 4, we get
J * S.(s)dB, = f n! 1(S.(s))dB,
0 0

= n! f fsn(tn+1; Xy 005 Xy xn+1)dBt1(xl) ce dB[n+1(xn+l)
0St1EStn+15t

1
n

= (n + 1)!j< 1X[0,L]S7L(tn+l; Xyy * 00y X5 xn+1)> .

LemMA 5.2. Let Ze L(&*—H) and let Z,(x,, - -+, %,3%x), n=0,1,2, - - -,
be_the kernels of the integral representation of Z. Then the kernels F,(x,, -- -,
x,;x), n=20,1,2,---, of the integral representation of the multiplicative
operator Z- € LX(&* — a(H, H_,)) are of the form

(5°8) Fn(xl’ ety Xns x) == Zoi Zn(xu crry Xgs x)gj(x)gj, n = 0, 19 29 R
7=0
Proof. Put (Z), = # . (H)-element of Z. Then (Z), satisfies

(@06, ¢) = [ D00} ()do = (D). 86
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= I([} 2w, - 32 D50 0)do)

Therefore we have

@6 = 135 (] 2w, -+, 525 D0 () ), )

=0

From this equality we obtain

29, = @& = 1(3 ([ 265, -+, 205 202 0)do )

o
7=0

(.9)
- Ig {ZZ(" SR % 0)51(0)'Ej}§(a)do> .
The equality (5.9) proves (5.8). (QED)

LEmMMA 5.3. Let Ze LT X &* — H) and let Z,(t; %y, -+, X,3 X), N =
0,1,2, .., be the kernels of Z. Then the kernels of the operator T,_(Z(s)-)
are of the form

(5.10) Z, (85 %y v vy X x){i e‘“““&(x)fj} .

j=0

Proof. From (5.9) it follows that
T, (Z(9)-§),
= I(j’r {i Zn(s, Xy o0ty X o‘)gj(g')e‘j(t—s)f]}é(o)do_) .

o Lj=0
This equality proves the lemma. (Q.E.D.)

LEMMA 5.4. Let X, e L(&* — H_) and let its kernels be @,(s; x,, - - -, X,
o), n=0,1,2, -.--. Then the kernels of the integral representation of

J” (0, )X, (¢")de’ are expressed in the form
0

(5‘11) .rt F(G’ 0,)@71,(3; Xip o0ty Xns 0/)d0/ ’
0

where the integration should be understood in the same sense as in (5.5).

Proof. This lemma is obvious from the definition of kernels.

(Q.E.D.)

CoroLLARY 5.1. Under the same assumptions as in Lemma 5.4, the
kernels of the operator T,_(f(X,)-) are given by
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(56.12) JF(x, ), (s; x,, - -+, x,; 0 )do’ ji]oe‘“““fj(x)éj .
Proof. This comes from Lemma 5.3 and 5.4. (Q.E.D)

We are now in a position to describe the equation (5.6) in terms of
the integral representation.

TueoreM 5.2. (i) Let X, be the solution of (5.6), where f(X) =
r (o, )X (")da’, and let @,(t;x,, ---, x,; -) be the kernels of the integral
0

representation of X,. Then @,,n =0,1,2, ---, satisfies the following func-
tional equation

@nﬂ(t; Xyt Xpvas ')

1 n+ o -Jj(t- 1
= XEO,:]D@)(tn Tty tn+1){Z e It-tas )gj(xn+l)§j}
n -+ 1 7=0

(5.13) X ‘fxr(an’ a,)@n(tnu; Xiy * vy Xns ai)dol ’
0

tlétzé"' _S_tn-l-l’ n=0>1’2,"' ’
Qo(t; ): Tth-

(ii) Conversely, if a solution @,(t; %, --+,%,;+), n =20,1,2, .-, of the
equation (5.13) satisfies the following condition

(5.14) iﬂ () f t

then 3.5 I(9,(8) is the solution of (5.6).

f 10,2 adx, - - dx, < oo,
in

PESPET

Proof. (i) follows from Lemma 5.1 and Corollary 5.1. The condition
(5.14) assures that >, I(?,() € L'(6* — H_;). Hence (ii) follows from the
uniqueness of the integral representation. (Q.E.D.)

TaEOREM 5.3. The equation (5.13) has a unique solution for a given
initial data X,€ H_,, and the solution @,(t) itself satisfies

(5.15) | o 10@Rds - dr < Laerr,
TS 128 n!

where ¢, and ¢ are positive constants.

Remark 5.2. The condition (5.15) is equivalent to

(5.16) I D) Brcgrt_ < %coc"t" .
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Proof of Theorem 5.3. When a point X,e€ H_, is given, {®,(); n =
0,1,2,---} is determined inductively by (5.13). The proof of (5.15) pro-
ceeds by induction. Since |T}|| £ 1, @(f) satisfies (5.15) with ¢, = || X3,
Let ¢, be a constant which satisfies

2
< |l XA, for any Xe H_,

“ f I'(-, )X (o)do'

Put ¢ = (1 + >5.,1/»)c,. To prove the induction step from n to n + 1,
we note that

@+ (10 @ dx -
2 e_j(t_t"H)fj(xnu)Ej “2—1}

o]
0St1S+-Stn+15t ji=0

(5.17) <[ TG IOt 3y 205 00 [, - i,y
0
é (n!)QcJ JH@n(tn+1; Xy =005 Xys ')Hz—ldxl st dxndtn+1
0<(1S - Stn+15¢t
g i n+lf tn+1dtn+1 — 1 f———COC"-”t?Hl .
n! n + 1)!
Then, we have proved (5.15). (Q.E.D.)

CoOROLLARY 5.2. The equation (5.4) has a unique solution X, under the
assumption that f(X) = jz I'(-,d)X(¢")dd’, and X, satisfies
0

(5.18) | X |2eor—rr_y = (| Xo][2 1€ .

Proof. From Theorem 5.2 and 5.3, it follows that >, I(®,(f) is the
unique solution of (5.4). The inequality (5.18) is obvious from (5.16).
(Q.E.D.)

Remark 5.3. The results in Corollary 5.2 are in fact part of Theorem
5.1, because the estimation (5.18) can be obtained by successive approxi-
mation method.

Since I'(s, ¢’) has been assumed to be an element of H® H, I'(o,d’)
is expressed in the form of

I'(o,0) = “zf 0 E(0)E()
(5.19) -

1 frge, = Z. ay, + Z Z a; i’

k=01i=1
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Then we have the following theorem.
THEOREM 5.4. When I'(o,0’) is of the form (5.19), the unique solution
of (5.18) is given by
0t) = T.Xo = 3 e ek ,
D,(t; x,, xj)
G20 =L ) [ D) exn (—it — 1))

>< { i Oaknin T ak;i;ékn(xn) exp {'—in(tn - tn—l)}éin(xn-l)

e
X oo X () exp {— oty — £} ()40 (x,) exp (~i1t1}ci,}] ;
L<t, <o <ty n=12---,
where X, = >.5.,¢;&;,€ H_, is a given initial value.

Proof. Using the expression (5.19), we are able to solve the equation
(5.13) step by step in an explicit form. Carrying out this procedure, we
can obtain the formula (5.19). (Q.E.D.)

For 5e & put
(5.21) U™ = J e f@n(t; Xy v vy Xy 0Ky, - - -, x,)dx, - - dy,
and put
(5.22) Ut 7) = 5, UG5 0) -

Then it is easily seen that the system {U(¢;7); n<€ &} determines {@,(¢;
Xy %), n=0,1,2 ...} completely. Without loss of generality, we may
assume that {y: » = §® (e &} is dense in & We therefore conclude that
{U(t;9): 9 = E®@ e &} determines {@,(t); n=0,1,2,---} completely.

TuEoREM 5.5. For 5 = £ ® (€ &, U(t; ) satisfies the following equation
(5.29) 1%%2=—ammnwwmmth>a Uo;9) = X, ,

where G is a linear operator on H_, depending on I' and & (the explicit
form of G is given in the proof).

Proof. Using (5.20), we get
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U™(t; )
(5.24) —ntf f@(t Ty e 0s (- -, %,)dx, - d,
=§ammmf~%wbmmhf-mMW?uﬁm, .....
where
by — j £(EE)do, i k=0,1,2, -,
and

N OR | [exp (=it — t) =+ — i)
0st15---Stast

XC(tl)g(tn)dtl' dtna n:1a29"' .
From
Q0.0 = [ exD {0 — LA e8I,

it follows that

d
(5.25) dt (ll i), ](t)
= C(t)d((?xj-l-)-,in—l),in(t) - ((znx A Sin—1), J(t) n= 1’ 2’ T

where d9(f) = 0.
From (5.24) and (5.25) we have

d
lr(n) t;
dt &

(5.26) = —oU™(t; 7)

+ C(t) ]Z::OEJ[Z Agepin " " ak;i‘cixbjkn * bzgk,d(ﬁ v ©yin—1) 1"(25)]

Introduce an operator G on H_,

(5.27) G (z apsp) . (}jb,qaqp a,,)sj .
p=0 0 \p,q
Then the second term of (5.26) is equal to {()GU™(¢; 5). Thus we have

LU n) = —eUE ) + COGU ),  n=12-,
(5.28) d
LU ) = —oU (1) -



222 YOSHIO MIYAHARA

Summing up (5.28) for n =0, 1,2, ---, we obtain (5.23). The convergence
of the series appeared above is guaranteed by Theorem 5.3. (Q.E.D.)

Remark 5.4. The operator G is expressible as
G =G®r

where G(¢) is a bounded linear operator on H, linearly depending on &,
and where ' is the bounded linear operator from H_, to H given by (5.5)
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