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INFINITE DIMENSIONAL LANGEVIN EQUATION

AND FOKKER-PLANCK EQUATION

YOSHIO MIYAHARA

§ 0. Introduction

Stochastic processes on a Hubert space have been discussed in con-
nection with quantum field theory, theory of partial differential equations
involving random terms, filtering theory in electrical engineering and so
forth, and the theory of those processes has greatly developed recently by
many authors (A. B. Balakrishnan [1, 2], Yu. L. Daletskii [7], D. A. Dawson
[8, 9], Z. Haba [12], R. Marcus [18], M. Yor [26]).

The most basic concept arising there is the so-called cylindrical
Brownίan motion, abbr. c.B.m., (see Definition 1.2). It is thought of as a
natural generalization of a finite dimensional Brownian motion, and it can
be formed from multi-parameter white noise as is briefly illustrated in what
follows.

First we introduce a (Gaussian) white noise μ indexed by a space-
time parameter running through D X T, where D is a domain of the d-
dimensional Euclidean space Rd and T is i?1 on which the time t runs.
Namely, μ is the standard Gaussian measure on <f* determined by the
characteristic functional

||τ?||2=f \
JDXT

\ V \ 2 d x , v e £ ,

where 3* is the dual of £ forming a Gelfand triple:

Γ c ^ = L\D x T) c <?* .

We are now given a generalized stochastic process in the sense that (τg9 ω),
η e if, ω e (f*, is an ordinary random variable, where < , > is the canonical
bilinear form connecting S and <ί* (I.M. Gelfand and N. Ya. Vilenkin [11]).
The bilinear form < , ) [extends to the case where η is of the form ξ ® χ[M]
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in such a way that <f (g) χ[M], ω} is still a random variable on
With this remark in mind, set

Then it is a Brownian motion with parameter space R1 with variance
||f|||2(Z)). In view of this, Bt(-) is called a cylindrical Brownian motion.
Stochastic integrals with respect to c.B.m. can be defined in a usual man-
ner. Details will be discussed in § 1 to some extent. It is noted that
white noise is given as soon as we take the time-derivative (d/dt)Bt( ) of
Bt(), and it is indexed by ξ.

In § 2 we shall summarize some known results, which have been ob-
tained by the author ([19] and [20]) about stochastic differential equations
on a Hubert space. In § 3 we shall focus our attention on the most basic
equation

(1) dXt = -ώXtdt + dBt

on H = D ([0, TΓ]), where Bt is a c.B.m. on H and ώ = V^2 (Δ = d2/dσ2:
Laplacian on U ([0, TΓ]) with Neumann boundary condition). Unfortunately
the equation (1) has no solution in H, and so we are led to extend the
state space. Put H = {X e H; (X, ΐ)H = 0}. If ώ is restricted to H, it is a
strictly positive operator such that ώ'1 is of Hilbert-Schmidt type. We are
therefore able to construct a Hubert scale derived from ώ (for definition
see Yu. L. Daletskii [7]):

flL c c Hι c Hm c H c H_m c ff_, c c &_„ ,

and hence the equation (1) is viewed as an equation on H or on this
Hubert scale instead of on the original H.

We are now ready to state our main results. The equation (1) has a
unique solution on i2*_1/2J which comes from the discussion in § 2. There
exists a unique invariant probability measure v of Xt given by (1) on ff_1/2

and it is proved that the transition probability P(t, X, dΫ) of the Markov
process Xt is always equivalent to v(dΫ). As for the Radon-Nikodym
derivative P(t,X9 Ϋ) = dP{t,X, )ldv(-) we have a version, still denote by
the same symbol, satisfying enough analytic properties as is prescribed by
the following theorem.

THEOREM 3.4. The function P(t, X, Ϋ) has the following properties:

( i ) P(t, X, Ϋ) is a continuous function on (0, oo) x H_1/2X H_m.
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(ii) P(t, X, Ϋ) = P(t, Ϋ, X), that is P(t, X, Ϋ) is symmetric.

(iii) For fixed t > 0 and XeH_ί/2, P(t,X, Ϋ) is an Lp(dv)-function of

Ϋ for every p > 0. But P(t9 X, Ϋ) is not bounded.

(iv) P(t, X, Ϋ) is the fundamental solution of the following equation

(3.14) a P (*> ^ Ϋ) = l j Γ P ( ί , X, Ϋ) - [πώΫ(σ)dP(t>β>Ϋ)dσ ,
dt 2 Jo gγ(σ)

(3.15) P(t, X, 7) •

J F denotes the Volterra Laplacίan and δPlδΫ(σ) denotes the func-

tional derivative (see I. Kubo [16] § 7 and Remark 3.1 given below), and

where the precise meaning of (3.15) is that

f P(t, X, Ϋ)f(Ϋ)dv(Y) • f(X) as 110
J S-in

for any continuous bounded function f(Ϋ) of if_1/2.

Another main theorem is concerned with the generator L, associated

with Xt, acting on the Hubert space L2(H_1/2, dv). Let Φ{n.} be a Fourier-

Hermite polynomial (see § 3). Having extended L to be a closed operator

on L\dv), we have

THEOREM 3.6. ( i ) The functions {Φ{nj](Ϋ)}9 ty = 0,1, , Xj ty < oo,

satisfy the following formula

(3.20) LΦlnj](Ϋ) = - (Σ Jn)jΦ{nfl{Ϋ).

The operator L, acting on L2(dv), is non-positive definite and self-adjoint.

(ii) The function P(t,X, Ϋ) satisfies the equation

(3.21) -2f-(t, X, Y) = LP(t, X, Y)9 t > 0, for fixed X .
dt

These results are interesting in connection with the theory of string

model as well (C. Rebbi [22], M. Kaku and K. Kikkawa [15], and Z. Haba

and J. Lukierski [13]). In fact, the equation (3.14) is similar to (3.4) of

[15] and the formula (3.13), which is given in § 3, is similar to (4.2) of [15]

in appearance. Actually, our approach was inspired by these works.

In the last part of § 3, we shall briefly discuss equations of the form

dXt — —ώXtdt + BdBt, where B is a bounded linear operator on Ή.

As we have mentioned above, c.B.m. Bt() is derived from a white

noise μ. We therefore expect some intimate connections between the space
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L\S*->K) arising from white noise μ, K being a Hubert space, and sto-
chastic integrals with respect to Bt( ). In fact, we shall be able to see
them in § 4 in the Wiener's direct sum decomposition of L2(#* —• K) and
its representation formula by means of multiple Wiener integrals or of
iterated stochastic integrals w.r.t. c.B.m. In the case of K = R\ the above
results are known (see T. Hida [14]), however our generalization, where
K is infinite dimensional, requires to establish some basic techniques such
as iterated stochastic integrals, the correspondence between σ2(L?((DχT)n),
K) (= a Hubert space consisting of all Hilbert-Schmidt operators from
D((D x T)n) to K) and D((D X T)n -> K), and etc.

We then come to another important topic to discuss the equation of
the form

(2) dXt = -ώXtdt + XtdBt ,

where Xt is a multiplicative operator defined by (Xt-h)(σ) = Xt(σ)χh(σ).
Similar equations, but somewhat different equations of this type have been
investigated by many authors (D.A. Dawson [8, 9, 10], A.V. Balakrishnan
[2], A. Shimizu [23]), however we can show that (2) can be dealt with in
line with the analysis on Ώ{$% -> K).

The equation (2), describing actual phenomenon, is itself interesting,
but unfortunately it has no solution on H, and even not on a Hubert
scale. We shall therefore consider in § 5 a modified equation of the form

(4) dXt = -ώXtdt + (ΓΓ(σ, σ')Xt(σ')dσ')*dBt

where Γ(,) is an element of H X Hx. This equation does have a unique
solution in H_x (Theorem 5.1). Our discussions in § 5 are based on the
theory developed in § 4, and the main results are Theorem 5.2 and Theorem
5.5. The former (Theorem 5.2) gives a system of equations in terms of
the kernels of the integral representation of Xt, while the latter (Theorem
5.5) gives a system of ordinary differential equations on H_x which is proved
to be equivalent to (3).

The author wishes to thank Professor T. Hida for his valuable sug-
gestions and kind encouragement in preparing the manuscript.

§1. Multi-parameter white noise and cylindrical Brownian motion

Let D be a domain of the c?-dimensional Euclidean space Rd. Let H
be a real Hubert space L\D) and let Jfbe a real Hubert space L\Dχ T),
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where T = R\ We start with a Gelfand triple

^ c # = L\D x T) c δ * ,

where if is a nuclear space and # * is the dual space of £. Given a char-

acteristic function

||2 = f
J

1? fdx
DxT

we are given a probability space (δ*9 ^ , μ) such that

Cμ(η) = f e^dμlω) ,

where <(, > is the canonical bilinear form connecting ef and if*.

DEFINITION 1.1. The probability space (<f *, J>, μ) is called a (Gaussian)

white noise on H or a (Gaussian) white noise with parameter space D X T.

In this paper we adopt the white noise space (if*, ^ , μ) as the basic

probability space, and we denote by 881 the σ-field generated by {(j), ω}

j y e ^ ω e f , supp {97} c D x (-co, ί]}.

We next will give a definition of a cylindrical Brownian motion. As-

sume that a probability space (Ω, F, P) and an increasing family of σ-field

Ft, t ^ 0, Ft c F, are given.

DEFINITION 1.2 (M. Yor [26]). A mapping Bt(h, ω): [0, 00) x i ϊ x Ω -> i?1

is called a cylindrical Brownian motion (abbr. c.B.m.) on H if it satisfies

the following conditions:

( i ) B0(h, ) = 0 and Bt(h, ) is F radapted.

(ii) For any h e H, h Φ 0, (1/H/ιlDJBχ/ι, ) is a one-dimensional Brownian

motion.

(iii) For any t 6 [0, 00) and α, /3 e i?1 and h, ke H, the following for-

mula holds

Bt(ah + /3£) = aBt{h) + ^ ( Λ ) , (P-a.s.) .

Remark 1.1. If necessary, we can take a continuous version of Bt(h).

The process Bt can not be regarded as a process on if.

We will now form a c.B.m. on H = L2(JD) from a white noise. Put

£,(£) = <£ ® χ[M], ω>, where ξ e H and χ[0 | ί ] is the defining function of the

interval [0, t] and ω e *f *. The function <£ (x) χco,t3, ω> is not well-defined

on <?*, because ξ ® %ίQ,tl may not belong to δ. But, we know that if η3 ->
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η in L\DχT), then (ηj9 ω) -> <τ?, ω) in &(£*, μ). By using this fact, we

are able to define a random variable <f ® z[0,i], ω> as the mean square limit

of a sequence (ηp ω)9 j = 1, 2, , where ^ 6 £ and ^ -* ξ ® χ[0)ί]. It is

easy to see that the mapping Bt(ξ) = <? ® ĉo,ί]> ω ) satisfies the conditions

(i)—(iii) in Definition 1.2.

We will define stochastic integrals with respect to the c.B.m. Bt con-

structed above. Let φ(t, ω) be a J^-adapted measurable function on [0, oo)

X <f* into H such that

E LfJ
where E[ ] means the expectation with respect to μ. Then a real valued

oo /»£

martingale 2] (φ(s)> en)dBs(en) is well-defined in the ordinary sence, where
w=l Jo

{en}, n = 1, 2, , is an orthonormal base in H.

DEFINITION 1.3. The stochastic integral (φ(s), dBs) of φ is the mar-
Jo

tingale given by

i t oo Λί

(φ\S), dBsy = Σ I \Φ\s/> en)dBs(en),
0 7ϊ=ljθ

Remark 1.2. We can easily prove that the definition of stochastic

integrals does not depend on the choice of a base {ej, and that the fol-

lowing equation holds:

Given two Hubert spaces H and K, we denote by σ2(H, K) the Hubert

space consisting of all Hilbert-Schmidt operators from H into K. Let

Φ(t, ω) be a σ2(H, lf)-valued J*Γadapted function defined on [0, oo)χ#* into

σ2(H, K) such that

Then the integral

P (Φ*(s)y, dBs), Φ*(s) the dual operator of Φ(s) ,
Jo

is well-defined for every y e K, and it is linear in y.
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DEFINITION 1.4. The stochastic integral of Φ is the Jf-valued mar-

tingale Mt which is uniquely determined by

(y, Mt)κ = P (Φ*(s)y, dBs), yeK,
Jo

fit

and it is denoted by Φ(s)dBs.
Jo

Remark 1.3. It is easy to verify

§2. Stochastic differential equations on a Hubert space

Given two real separable Hubert spaces H and K, we consider a

stochastic integral equation on K

(2.1) Xt = Xo + P a(X3)ds + Γ G(Xs)dBs ,
Jo Jo

where a and G are mappings such that a: K—>K, G: K-+σ2(H,K), and

Bs is a c.B.m. on H. For simplicity, we write the equation (2.1) in the

form of stochastic differential equation

(2.2) dXt = a(Xt)dt + G{Xt)dBt .

In the case where K—H and where a and G have suitable properties,

the equations of this type have been well investigated (e.g., M. Yor [26]).

This paper deals with such equations without much restriction on G but

with a specific drift term. Namely, we consider the equation of the form

(2.3) dXt = -AXtdt + G(Xt)dBt

where A is an unbounded linear operator with the domain D(A) of dense

in K. We will summarize the results obtained by the author in [19] and

[20] for the equation (2.3).

We assume that —A is the infinitesimal generator of a semi-group

{Tt}, t ^ 0, of class Co and that G satisfies the following condition

where cx and c2 are constants. The equation (2.3) is expressed in the form

(2.4) Xt = XQ+ P -AXsds + P G(Xs)dBs .
Jo Jo
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Since A is unbounded, the condition Xse D (A) is not always satisfied.

While, by the assumptions on —A, the conjugate operator —A* of —A

is the infinitesimal generator of the conjugate semi-group {Tt*}, which is

of class Co, and the domain D(A*) of A* is dense in K. Taking these facts

into consideration, two different kinds of solutions can be defined.

DEFINITION 2.1 (κ;-solution). A weak solution of (2.4) is a ^-adapted

process Xt on K which satisfies the following conditions:

( i ) E\[ \\Xt\\2ds\ < oo for any t^ 0 .

(ii) For any YeD(A*), the equality

(2.5) (Y, Xt) = (Y, Xo) + f (-A^Y, Xs)ds + Γ <G*(XS)Y, dBs), a.e.
Jo Jo

holds for any t >̂ 0.

DEFINITION 2.2 (e-solution). An evolutional solution of (2.4) is a g§r

adapted process on K which satisfies the condition (i) in Definition 2.1

and satisfies the following equation

(2.6) Xt = TtX0 + P Tt_sG(Xs)dBs .
Jo

The equivalence of the above two definitions of solutions is not valid

in general, but the following theorems can be proved.

THEOREM 2.1 (Y. Miyahara [20]). An e-solution of (2.4) is a wsolution

of (2.4).

THEOREM 2.2 (Y. Miyahara [19]). Suppose that A has point spectrums

and that AX is expanded in such a form as

(2.7) AX=ΣUX,en)en,

where {en}, n = 1, 2, , is an orthonormal base of K consisting of eigen-

vectors of A. Then a w-solutίon of (2.4) is an e-solution of (2.4).

The existence and the uniqueness of the solution of (2.4) is given in

the form of the following theorem.

THEOREM 2.3 (Y. Miyahara [20]). If G: K -> σ2(H, K) satisfies the

Lίpschitz condition, then the equation (2.4) has a unique e-solution.

Remark 2.1. These theorems are proved in the case of K = H in [19]
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and [20]. The methods used there can be applied in the case of K ψ H

without any difficulties.

The equation (2.3) is considered as an equation obtained from a dif-

ferential equation dX(t)jdt = —AX(i) by random perturbation. From this

point of view, we can treat the stability problem of the equation (2.3), and

indeed they are treated in [20] (the main result is Theorem 4.2 of [20]).

§3. Infinite dimensional Ornstein-Uhlenbeck process and Fokker-

Planck equation

We are interested in an equation formally described as

) + χ{.t,σ), ί ^ O , a e I 0 . i t ] ,
ot

where ώ— V — Δ = V — (d2/dσ2) and χ(t, σ) is a 2-parametar white noise. The

precise definition of which will be given later.

In order to give a realization of this formal equation (*) as a stochastic

differential equation on a Hubert space, we will proceed in the following

manner.

Put H = L2([0, π]). The Laplacian Δ = d2jdσ2 on H with the Neumann

boundary condition is well defined; indeed Δ is a non-positive self-adjoint

operator for which {—j2; j = 0, 1, 2, } and {ξ0 = 1/V π, ξ} = V2/π cosjσ; j =

1, 2, •} form the eigensystem. We then define an operator ώ by ώ = V — Δ.

It is a non-negative self-adjoint operator on H, and {j} and {ξs}9 j = 0, 1,

2, , form the eigensystem of ώ.

Now we can regard the stochastic differential equation

(3.1) dXt = -ώXtdt + dBt

as a realization of the formal equation (*), where Bt is the c.B.m. on H

given by Bt(ξ) = <£ ® χ[0,£], ω} (see § 1).

It is easy to see that any solution to the equation (3.1) is not found

in H (see, e.g., Y. Miyahara [19]), so we must extend the Hubert space H

to a larger Hubert space K in which the solution lives.

Since the constant part of Xt (i.e., (Xt, ξQ)ξQ) and the remaining part

are treated separately, we focus our attention on a subspace H = {Xe H;

(X, f0) = 0} of H. The operator ώ is strictly positive on H and or1 is of

Hilbert-Schmidt type, so we obtain a Hubert scale derived from ώ

Hβc cffβc -cff1cffcff.1c...cH.βc...cff.M
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where Ha (0 < a < oo) is a Hubert space with the inner product (ξ, ξ')a =

(ώaξ, ώaξ')β, and H.a is the dual space of Ha (see Yu. L. Daletskii [7] for

details).

We are now ready to rephrase (3.1) so as to be an equation on the

extended space ίiLα,

(3.10 dXt = -ώXtdt + I0,-adBt ,

where I0)_a is the injection of H into H_a. If α>l/2, then IOt_β e σ2(ίf, iY_α)

and we can apply the results in § 2 to (3.10 to see that (3.10 has a unique

solution. To fix the idea, we take a to be 1 and we have

(3.2) dXt = -ώXtdt + IOt^dBt .

As was seen in § 2, the unique solution of (3.2) is given by

(3.3) Xt = TtX0 + Γ Tt_sdBs ,
Jo

which is called an infinite dimensional Ornstein-Uhlenbeck process.

We use the notation (ξ, Xy to denote the dual bilinear form on Ha X

H_a, i.e. <£, Xy = (ώ«ξ, ώ-aX)ff for ξ e Ha and XeH_a.

Recall that a solution to a stochastic differential equation is often

made to be stationary with a suitable choice of initial probability distri-

bution at t = 0. This distribution is called the invariant measure.

THEOREM 3.1. The process Xt has a unique invariant probability meas-

ure v, supported by i7_1/2, with the characteristic functional

(3.4) cv(ξ) = ί eί<ζ>*>dv(X)
J H-H2

= exp{-l||£ | |2_1/2} = expj-lllώ- 1^II 2}, ξ e H1/2 .

Proof. By definition, the solution Xt satisfies the following equation:

(3.5) d(ξj9 Xty = -(ώξp Xtydt + dBt(ξj)

= —j(ξp Xtydt + dBt(ζt)9 j = 1, 2, .

Since {Bt(ξj)}9 j = 1, 2, , are mutually independent 1-dimensional

Brownian motions, {(ξj9 Xty}, j = 1, 2, , are mutually independent 1-

dimensional Ornstein-Uhlenbeck processes. Therefore each (ξj9 Xty has

the invariant Gaussian measure vό with mean 0 and variance 1/2/.

Let v be the measure on #_j with characteristic functional (3.4), then
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the distribution of the random variable (ξj9 X) is equal to vj9 which proves

that v is an invariant measure of Xt. The uniqueness of the invariant

probability measure follows from that of vj9

Finally we must prove that the measure v is supported by H-ί/2. Con-

sider a functional C(η) on H_m given by

C{rj) = exp |- l | |ώ-^ | | 2 _ 1 / 2 } , η e H_ί/2 .

Since ώ'1 is a Hilbert-Schmidt operator, there exists a Gaussian measure

v on £Γ_1/2 such that

Γ
J 3-H2

= C(rj) .

Put η = ώξ for ξ e # 1 / 2, then (7, X)_1/8 = (ώ1/2ί, ώ"1/2X) = <f, X>. We there-

fore have

ί e^^dϊiX) = f e^^-^dv(X)
J 3-112 J 3-112

= exp{-l||ώ-^||2_1/2} = exp|-l||f||2_1/2} .

This implies that v = ΐ>. (Q.E.D.)

COROLLARY 3.1. ( i ) The invariant measure v is an Hί/2—standard

Gaussian measure supported by H-ί/2.

(ii) The space Hί/2 is equal to the set of all ξeH_ί/2 such that v is

quasi-invariant under the translation by ξ.

Proof. Consider a Gelfand triple

•t^2/2 CI -"1/2 ̂  -"-1/2

where the space H*1/2 (the dual space of fl"_1/2) is identified with Hm under

the isomorphism H$2 ~ H1/2. The canonical bilinear form ((ξ, X)) is expres-

sible as

((ξ, X» = (ώξ, ώ~'X)U2 = (ώ^ξ, ώ-^X) = (ώξ, X) .

Thus it holds that

f ewΛ)dv(X) = ί e^
J 3-112 J 3-112

{—i||ώ?||i1/2} = θxp{—ί|= exp
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The last formula proves the assertion (i). The assertion (ii) follows from

(i) by using Corollary 5.3.2 of H. Xia [25]. (Q.E.D.)

Theorem 3.1 assures that the equation (3.2) determines a stationary

process on H_1/2. In fact, a process Yt given by Yt = \ Tt_sdBs is a reali-

zation of such a process.

We now turn to the investigation of the continuity of Xt. The key

theorem of our approach is the following (see P. Billingsley [3] or K. R.

Parthasarathy [21]).

THEOREM (Kolmogorov-Prokhorov). If there are two constants a > 0

and β > 1 such that

J 5 [ | | X t - X , | | " ] ^ c | ί - s | ' , for O^s<t^ T,

then Xt is continuous on [0, T] with probability 1.

Our result is

THEOREM 3.2. The solution of (3.2) is continuous with respect to JΪ_1/2

norm with probability 1.

~ ~ ft
Proof. First we assume Xo = 0, that is Xt = \ Tt_sdBs9 and for no-

Jo
tational convenience we put Y = Xt — X89 0 <J s < t. In order to apply

the Kolmogorov-Prokhorov theorem to Xt with a = 4, we will calculate

E[\\Y\\U/2]

Put ηj = </j ξj, j = 1, 2, . Then {ηj9 j = 1, 2, } is an orthonormal

base in iJ_1/2. Hence

[E\\Y\\ί1/2] =

where it is noted that (Y, ηn).ί/2 and (Y, ^m)_ 1 / 2 are mutually independent

if n Φ m. The random variable (Y, 3?n)_i/2 is a Gaussian random variable

with mean 0. Its variance is calculated as follows

E[(Y, Λ 2 ] =

By using

- I π"2{2(l - e-^'-'O - e~2ns(l - e-
n(t-s))2}

^ n~2(l - e~n{t~s)) .
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E[(Y,VnY-lfl\ =

we have

E[\\ Y||i1/2] £ 3 Σ n
n

We will prove that there exists a constant δ > 1 such that

(3.6.1) Σ ^"X1 - e~n(t-s))2 £ const. \t - s\δ ,
n

(3.6.2) Σ tt~2(l - e-w ( ί" s )) ^ const. \t - s\δ/2 .
TO

The inequality (3.6.1) follows from (3.6.2). Therefore we have only to prove
(3.6.2).

Put γ = t - s (> 0) and f(z) = z~2(l - e~ΐZ), z>0. Then f(z) > 0, f'(z)
< 0, and so f(z) is a decreasing function. Therefore we get

(3.7) Σ fin) rg /(I) + Γ f(z)dz = (1 - β"0 + Γ /(z)de .
w = l J l J l

It is easy to see that

Γf(z)dz= ( l -e-9 + r Γ — dv>
Ji Jr V

and to see that

(3.8) if γ ^ 1, Γ f(z)dz ^ const, j-

(3.9) if 0 < γ <1, Γ /(z)d^ ^ (1 - e"0 + ^ Γ — d ϋ + const, γ
Ji J r V

ίg c(ε)^ε, for arbitrary ε, 0 < ε < 1 .

From (3.7), (3.8) and (3.9) it follows that

(3.10) Σ n~\l - e-n(t~s)) = Σf(n) £c\t~ s\', 0 < s < t £ T«oo).
n n

If we fix an ε, 1/2 < ε < 1, and put δ = 2ε, then the inequality (3.10) turns
into (3.6.2). Thus we have proved the theorem under the assumption Xo

= 0.

In the general case where Xo Φ 0, the continuity of X— TtX0 + Tt_sdBs

Jo

follows from that of TtX0, because the second term has just been proved
to be continuous. (Q.E.D.)
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Since the equation (3.2) has a unique solution for any initial data Xo

eH_ί/2, it determines a Markov process on H_ί/2. Let P(t,X, dΫ) be the

transition probability measure of this process. Then we obtain the fol-

lowing theorem.

THEOREM 3.3. The transition probability measure P(t, X, dΫ) is equiva-

lent to v{dΫ) if t> 0 and Xe H-U2.

Proof. Since the solution Xt of (3.2) with initial value X is given by

Xt = TtX+ f Tt_sdBs, the transition probability measure P(t,X, dΫ) is a

Gaussian measure with mean TtX and supported by H.ί/2. The variance

of {η3, Xί)_i/2 is equal to

Xt)l1/2] f ( l e ) .

Therefore the covariance operator V(t, X) of P(t, X, dΫ) is given by

(3.11) V(t, X) = l (ώ- 2 - Tlώ->) = l ώ - ( Z - 27)ώ-> .
Δ Δ

While, as was seen from the proof of Theorem 3.1, the covariance operator

Vv of the measure v is of the form

(3.12) Vv = l o r 2 .
Δ

These two operators are linked by V(t, X) = *JTV{I - Tf)*JλΓv. Since TtX

eff+oo = Γ)a>oHa for t > 0 and Vv(H_1/2) = ώ~2(H_ί/2) = H3/2, it holds that

TtXe Vv(H_ί/2). Hence, we can apply the well-known theorem on Gaussian

measures to v(dΫ) and P(t,X, dΫ) (see H. Kuo [17] or A.V. Skorohod [24])

to obtain that P(t, X, dΫ) is equivalent to v(dΫ). (Q.E.D.)

COROLLARY 3.2. Let P{t, X, Ϋ) be the Radon-Nίkodym deriυatiυi of

P{t, X, dΫ) with respect to v(dΫ). Then P(t, X, Ϋ) is expressed in the form

(3.13) P(t,X,Ϋ)

= Π ( l - e-^yi/2 exp {- (j(x) + y))e-^ - 2jxJyJe-»)Kl - e~^)}

where X = 2 Xjξj and Ϋ = 2 3>,ί>

Proof. In case X = 0, the formula (3.13) is immediately obtained by

the use of Theorem 3.3 of H. Kuo [17] p. 123 or Theorem 4 of A.V. Skorohod
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[24] p. 95 (note that Wv= (1/VlOαr1 is a Hilbert-Schmidt operator). In

the general case, applying Theorem 2 of A. V. Skorohod [17] p. 83 to

P(t, X, dΫ) and P(t, 0, dΫ), we get

Π

The formula (3.13) follows from this by the use of the formula

Pit XΫλ- dp(t>X>-) - dP(t,X, ) dP(t,0, •)
l ί > Λ > X) d^T) d P < f 0 )dP<f,0,.) &(•) '

(Q.E.D.)

With the explicit expression of P(t, X, Y) we are able to speak of its

further properties.

THEOREM 3.4. The function P(t,X, Ϋ) has the following properties:

( i ) P(t9X, Y) is a continuous function on (0, oo) x H_ί/2 X iT_1/2.

(ii) P(ί, X, Ϋ) = P(t, Y, X), ίΛαί is P(ί, X, Y) is symmetric.

(iii) For ^xed t > 0 αzid I e E . 1 / 2 , P(ί, X, Y) is ατι Lv (dv)-function of

Ϋ for every p > 0. J5ι/ί P(ί, X, Y) is noί bounded.

(iv) P(ί, X, Ϋ) is ί/iβ fundamental solution of the following equation

(3.14) a r κ h A> x } = — ΔvP(t, X, Y) - ώY(<
a^ 2 Jo

(3.15) P(£, X, Y) • 3*(Y) (ί I 0) ,

where Δv denotes the VoUerra Laplacian and δPjδYiσ) denotes the functional

derivative (see I. Kubo [16] § 7 and Remark 3.1 given below), and where the

precise meaning of (3.15) is that

f P(t, X, Ϋ)f(Ϋ)dv(Ϋ) • f(X) as 110

for any continuous bounded function f(Y) of H-m.

Before we come to the proof we need some interpretation of the

Volterra Laplacian and a lemma.

Remark 3.1. The function P(t, X, Ϋ) can naturally be extended to be

a continuous function on (0, oo)χff.1χff.1) and then P(t,X,Ϋ) can be

expanded in the same form as (3.13) on the extended domain (0, oo) x H_1

X H_λ. Putting E = i?! and E* — H^ί in I. Kubo's notations, we know
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that Δv is well-defined in the sense of § 7 of I. Kubo [16]. The functional

derivative δP/δΫ(σ) can be understood to be an element of H% in the same

way. Since ώYe H_2, the dual product ώΫ(σ)(δPlδΫ(σ))dσ is well-defined.

In our cases, the Volterra Laplacian ΔVP can be expressed in the form

άrP(t, X, Ϋ) = Γ P<2>(ί, X, Ϋ; σ, σ)dσ
Jo

where P(2)(t, X, Ϋ; σ, σ') is the second functional derivative of P(t, X, Ϋ).

LEMMA 3.1. Let {Xn}, n = 1, 2, , be a sequence of random variables

such that Xn-+X a.e. and supTC E[\Xn\
p] < oo. Then Xn-+X in Lp/ for all

p\ 0 < pf < p.

We are now ready to give a proof of the Theorem 3.4.

and

Proof of Theorem 3.4. Put

φβt x, y) = (1 - e-^yi/2 e χ p

Pn(ί, X, Ϋ) = ff ^(ί, xj9 yj),

~ e~2jt)}

X=Σ Xjξj and Ϋ =

Then Pn(έ, X, Ϋ) -> P(ί, X, 7) (as n -> oo) uniformly on Γ X A X S c (0, oo)

X -ff-i/2 X ff-1/2? where T7 is a compact subset of (0, oo) and where A and

J3 are respectively bounded subsets of H_ί/2. This proves (i). The asser-

tion (ii) is obvious from (3.13).

We then come to the proof of (iii). First, observe the moment

\\pn(t, x, Ϋ)\*dv(Ϋ) = f[ Γ
J J = l J - o

exp {[-jp(l -p + (P - (p -

It is easy to see that this product converges (as n —• oo) if Σ x)lJa < °°

for some a > 0, and in fact this condition is always satisfied for Xe £Γ_1/2*

Thereforej \Pn\
pdv(Ϋ\, n = 1, 2, ,>is bounded. Applying Lemma 3.1 to

{Pn}, 72 - 1,2, , and P, we prove that P(t, X, )e Lp.

Let X be an element of ίf_1/2 such that 2 i ^ — °° The maximum
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of Pn(t, X, Ϋ) is Π"=i (1 - e-2ίί)"1/2 exp {&}} which* is attained by y, = e'%,
j = 1, , n. Put Γπ = 2]"=i e"*j£j Then the sequence

P(ί, X, ΫJ = ft (l-e-**)-1" exp { xj} Π (1 - e"wi), n = 1, 2, • ,
.7=1 j = n + l

diverges as n -> co. Thus we have proved the unboundedness of P(t, X, Ϋ).
Finally we will prove the assertion (iv). It is easy to see that the

function 2 j = 1 z^dφβ, x^y^/dyj) of Z and Ϋ" (where t > 0 and XeH_1/2 are
fixed) converges uniformly on every bounded set B X B' c £Γ_1/2 X H.1/2.
From this it follows that P(t, X, Ϋ) is Frechet-differentiable as a function
of Y. Similarly, it is easily verified that P(t, X, Ϋ) is £-times Frechet-
differentiable, where k may be taken arbitrarily large.

Using the equation

dt 2 dy2 dy

we get

——-(*> x, y) = φj(t, x, y) x ψj(t, x, y)

where

Therefore we obtain

It is clear that the sequences {Σ%i Ψj} a n d {Pn} converge uniformly on
any ί-interval (α, 6), 0 < a < 6 < oo. We therefore prove that there exists
the derivative dP/dt and it satisfies

(3.16) ^ = lim ^ L

functional derivatives of P is calculated as follows

P'(t, % Ϋ; ξ,) = ^ ?
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P«\t, X, Y; ξ,, ξ,) = {[2j(Xje-" - yfi-*")IQ. -

- 2je-*"l(l - e-^)}P(t, X, Ϋ).

Thus we have

\ΔrP(t, X, Ϋ)

= [ έ {2pe-»'(xj - yfi-'ΎIQ. - e^J - je^'Kl - β""')}]^, X, Ϋ) •

On the other hand, it holds that

P'(t, it, Ϋ; σ) = P'(t, X, Ϋ; i.)

yt,X, Ϋ) .

From the formula ώΫ(σ) = Σ>jJyfiAσ)> & follows that

[*ώΫ(σ)P'(t,X,Ϋ;σ)do
Jo

= {Σ 2Λθ(*,e-« - ^e-2Ό/(l - e-Wί)}P(ί, X, Ϋ) •

Finally we obtain

(3.17) —ΔyP{t, X, Ϋ) - [ώΫ(σ)-^-dσ

2 J δY(σ)

= [ Σ ψ/ί, x, y)]^, x, Ϋ) •

From (3.16) and (3.17) it follows that P(t, X, Ϋ) satisfies the equation (3.14).

From the definition of P(t, X, Ϋ), it follows that

J P(t, X, Ϋ)f(Ϋ)dv(Ϋ) = $f(Ϋ)P(t, X, dΫ) = E[f(Xt)], X, = X.

Since Xt is continuous on H.1/2 and since f(Ϋ) is a bounded continuous

function on H.1/2, we have

]im E[f(Xt)] = E[f(X0)] = f(X) .
tio

Thus the condition (3,15) is satisfied, which proves the theorem. (Q.E.D.)

Remark 3.2. Theorem 3.4 holds true even if the function P(t, X, Ϋ)

is considered as a function on (0, oo) x H_a x H_a for any a, 1/2 <£ a < oo.

Let {Ut}9 t^>09 be the semi-group on L°°(Ή_m, v) determined by the
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transition probability measure P(t, X, dΫ), that is

(Utf)(X) = ί P(t, X, dΫ)f(Ϋ) = ί P(t, X, Ϋ)f(Ϋ)Λtf)
JH-H2 J H~ll2

feL"(H_1/t>v),

and let L be the infinitesimal generator of the semi-group {Z7J. We denote

by Co(Rk) the class of twice continuously differentiable functions with

compact support in Rk. Then we obtain the following theorem.

THEOREM 3.5. A function F(Ϋ), given by

F(Ϋ)=f(υ19...,υk), ι;, = <£,,Ϋ>, j = 1, 2, • , *, feQ(R*)9

belongs to the domain of L and satisfies

(3.18) (LF)(Ϋ) = \l±.ξL- ±jv,JL]

Proof. We need only to prove (3.18). A process Xf given by

is a ^-dimensional Ornstein-Uhlenbeck process, and the components of Xf

satisfy

(3.19) dx{ = - x/cft + dJ5t(f), = 1, 2, , & .

Now, the conclusion of the theorem follows. (Q.E.D.)

COROLLARY 3.2. Let D(L) denote the domain of the operator L. Then

D(L) Π L\dv) is dense in L2(dv),

Proof The set

Cl = {FeL\dv); F(Ϋ) = /(*;,, . . . , vk), v5 = <?,, 7>,

; = 1,2, ..,A,/eCJ(Λ fc), A = 1,2,...},

is dense in L2(ώ). Since C§ c D(L) by Theorem 3.5, D(L) (Ί L2(dv) is dense

in L2(dv). (Q.E.D).

By Corollary 3.2, L can be considered as an operator on L\H_1/2, dv).

Let the closed extension on L be denoted by the same symbol L.

Noting that v is the H1/2-standard Gaussian measure on Jϊ_1/2,

L2(JΪ_1/2, dv) is decomposed in the form

L2(H_1/2, dv) = 2 Θ^fw (Wiener's direct sum decomposition) ,
0
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where f̂n is the closed subspace spanned by {[\jHnj(*J j (ξ3, F » , Σjnj —

ri\ (Hn Hermite polynomial of degree ή) (see §4 or T. Hida [14]). We

note here that

[Φ{nj] = ( Π *J Unj)~1/2 Π H«jW7<ξj, Ϋ», n, = 0 , 1 , . . ,

is an orthonormal base for L\dv).

THEOREM 3.6. ( i ) The functions {Φ{nj](Ϋ), n^, = 0, 1, - , ]ΓJ ^ < oo},

satisfy the following formula

(3.20) LΦ{nj](Ϋ) = - ( J ] j ^ { ,

7%e operator L, acting on L2(dv), is non-positive definite and self-adjoint

(ii) The function P(t,X, Y) satisfies the equation

(3.21) -^-(t, X, Y) = LP(t, X, Y), t > 0, for fixed X.
dt

Proof. When F(Ϋ) is expressed in the form

F(Ϋ)=f(υ19...9vt), υj = <£„?>, 7 = 1, . . . , fe,

with a polynomial / in υ/s, F(Y) satisfies

(3.18) (LF)(Ϋ) = Γ I Σ J l _ Σ J t . 1
L2 y=i dϋj y=i 3 ^ J«/-<o,f>

If, in particular, /(u1? , vk) = f]5=i HnjWJvj), then we have

t π H,lWm, f» - [i Σ %

Using a formula

- ^ t _ 2 x ^ ^ + 2nHn = 0
αx2 ax

for the Hermite polynomial, we obtain

LJ[H%i{Sj<M,, y » = - ( Σin,) Π HM(Si'<s,, y » ,
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which proves (3.20). Since {Φ{nj](Ϋ)} is an orthonormal base for L2(dv), the

formula (3.20) proves that L is non-positive definite and self-adjoint.

Let Pn(t, X, Ϋ) and ψk(t, x, y) be functions given in the proof of

Theorem 3.4. Because Pn(t, X, Y) is a tame function, it is easily seen that

(3.22) -?§!-(«, X, Ϋ) = LPn(t, X, Ϋ) = (± ψk(t, xk, yS)P,(t, X, Ϋ).

tit \*=1 /

Recall that

(3.23) Pn(t9 X, Ϋ) • P(t, X, Ϋ) in L\dv) .

We can further prove that

(3.24) ^-{t, X, Ϋ) > - ^ ( ί , X, Y) in L\dv)
ot tit

and

(3.25) LPn(t, X, Ϋ) = (± ψk)Pn(t, X, Ϋ) • ( Σ Ψ*)P(t, X, Ϋ) in L\dv).

Since the operator L is closable, the formulae (3.24) and (3.25) prove

that P(t, X, Ϋ) e D(L), t > 0, and that

(3.26) LP(t, X, Ϋ) = lim LPn(t, X, Ϋ) = (£ ψk)P(t, X, Ϋ) .

It is easily verified that dP/dt the derivative of P(t, X, ) in U(dv)-

norm is equal to the point-wise partial derivative dPjdt. Therefore the

equality (3.21) follows from (3.22), (3.24) and (3.26). (Q.E.D.)

We will now consider a generalized equation of (3.2)

(3.27) dXt = -ώXtdt + BdBt ,

where B is a bounded linear operator defined on H. We can carry on

the same analysis on (3.27) as we have done on^(3.2), to obtain the following

results:

1. There exists a unique invariant probability measure vB supported

by H"_1/2 and its characteristic function Cva(ξ) is given by

CJξ) = f e-*«.*>d,a(X) = exp f - 1 \\B*άf<*ξ\A ξ e Hm .

2. There is a dichotomy that the measures vB and v are either mutually
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equivalent or singular. They are equivalent if and only if ώ1/2jBjB*αΓ1/2 — I

is of Hilbert-Schmidt type.

3. The solution of (3.27) is continuous in H.ί/2 norm.

4. In order that the transition probability measure PB(t> X> dY) is

equivalent to vB{dΫ), it is necessary and sufficient that TtXe S^H.^) and

that Sϊ1/2TtStTtSϊ1/2 is of Hilbert-Schmidt type, where S1=(l/2)ώ-1*JBJB*ώ-1'2.

5. A necessary and sufficient condition for PB(t, X, Y) to be j^-sym-

metric is that the operator J3JB* commutes with ώ.

Remark 3.3. Our methods are applicable to some generalized cases.

Let H be any real separable Hubert space and let A be a positive unbounded

operator on H such that A"1 is of Hilbert-Schmidt type. Then, for the

equation on H of the form

dXt = -AXtdt + dBt ,

we can do the same discussions as we have done for the equation (3.2).

§4. Multiple Wiener integrals on a Hubert space

In this section we will first consider the Wiener's direct sum decom-

positions of L2(ίf*, μ) and L\$*-+K), and then we will proceed to investi-

gate their integral representations. (See § 1 for the notations.)

1. Functionals of multi-parameter white noise.

Introduce the space of real valued functionals of white noise

Then we are able to obtain the Wiener's direct sum decomposition of (L%

as follows.

For any φ e (L2)D define $~φ by

(4.1) (fφXη) = f ei<^>φ(ω)dμ(ω), η 6 g .

Putting

φ(ω) = exp f2ί-%2>- - A = Σ -£•».«*> ^/V^), ||9||

where Hk( ) is the Hermite polynomial of degree k, we obtain
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Therefore we have proved

(4.2) (*-Hk«7), ωyif2))(η) = Cμ{η)(j2i)\i), η)\ \\v II = 1 .

We then show a generalization of (4.2). Put φ(ω) = f] J=ι HKj((jjj9 ω>/vΓ2"),

2] i£/ = ft, where {̂ }, ^ e <?, is an orthonormal system in jf = D(DχT).

Then we can easily prove that

= W ί " f f ί ί*,, , x n ) t ® ( x u ••-, x n ) d X i , • • d x n

= Cfy)ίn ί f Fix,, ••-, xn)ηn®(xu •••, x n ) d x x ••• d x n

w h e r e F{xu . , x n ) = 27l/2[ηί(x1) ^ ( x k j \ [ -ηm(xn)], a n d F ( x l 9 , x n )

= symmetrization of F(xl9 , xn) = 1/n! 2], ^\**(i)> * > **cn)X ^ permuta-

tion of (1, 2, , n), and ^TO(g) = ra-times tensor product of η.

The following formulae can easily be proved:

1/2

On the other hand it is obvious that

( m \ 1/2

and so we have established

(4.3)

Let 2/?n be the subspace of (L% spanded by the Hermite polynomials

of degree n. Then we can prove

{U)D = £ θ &\ (Wiener's direct sum decomposition).

In fact the correspondence between φ = f] Hkj((ηjf ω} j </~2) and F e

U((D X Γ)n) can be extended to the one-to-one mapping from J?n to

D((D X T)% n = 0,1, 2, , where L 2 ( φ x Γ)w) = {F; FeL2((D x T)TC) and

F is symmetric}. We denote this transformation from J^n to U((DχT)n)

by r. Thus we have obtained the following diagram.
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(L% = Σ ® ^ S Σ Φ V » ! L\(D X TY), under r:

τ: φ > τφ e U((D X T)"), ^ 6 j f „,

( 4 4 ) ( ^ ) ( 7 ) = » C(?) f f τφ(xu •••, xn)ηn®(Xl, •••, x n ) d X l • • • d x n ,

DEFINITION 4.1. τ0 is called the kernel of the integral representation

of φ.

EXAMPLE 4.1.

r(Π HkJ((ηp ω}lV~2)) = the symmetrization of 2n/2 [J ®η)j® ,

where {η3) is an orthonormal system in L2(D X T).

2. Multiple Wiener integrals and iterated stochastic integrals /.

We are going to define multiple Wiener integrals I(F)9 F e L2((D X T)n).

Let {ξa} be an orthonormal base in H and let {ζ̂ } be an orthonormal base in

L\T). Then {η^\, where ηs is of the form ξa ® ζβ, is an orthonormal base

in jf = L2(DχT), and {̂ ...̂  = ^ x ® ® ̂  J is an orthonormal base in

L2((D X T)71). Therefore, if we define the multiple Wiener integrals for

Vji—jn* w e c a n e χtend this definition to all functions of L\(D X T)n). Let

Bt be the cylindrical Brownian motion on H — L2(D) introduced in § 1.

Put F(xu . , xn) = ηh ® ® ηJn(xl9 - - -, xn), then the multiple Wiener

integral I(F) of F is given by the next formula

= J jζβl(Ul) CίttJdBJfJ dBUn(U ,

where BUk(ξak), k = 1, 2, , n are respectively 1-dimensional Brownian

motions, so the right hand side of the formula is well-defined as the usual

(finite dimensional) multiple Wiener integral of degree n. By simple cal-

culation we know that I(F) is of the form

I(F) = 2-^2 Π Hkj((Vp ω>/vΓ2"), Σk, = n,

where ks is the multiplicity of ^ in ηjl...jn.

DEFINITION 4.2. For F, FeL2((D x T)n), I(F) is called the multiple

Wiener integral of F. The set of all I(F), FeL2((D X T)n\ is called the

space of multiple Wiener integrals of degree n.

From the definition of I{F), we can easily prove that

(4.5)
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THEOREM 4.1. It holds that

{I(F): FeU((D x T)n)} = {I(F): FeU((D x Γ)»)} = Jfn.

And the mapping / |£ a ( ( ΰ x ϊ . ) B ) , the restriction of I, is the inverse of τ.

Proof. From the formulae

KVH...JJ = Z-n/2 Π # * / < ^ *>//2), ^ = 71 ,

and

τ(Π #*,«ft, ω>/vΊΓ)) = symmetrization of
j

it follows that φ = I(r0) for φ= \\ HkJ((Vj, ω}IV2) (note (4.4)). This

equality holds true for all φ e J^n by the linearity of τ and J. (Q.E.D.)

We have obtained the following diagram:

(4.6)

τ: φ > τφ e L2((D X T)n), φ e 3fn, bijection,

/: F > I(F) e^n, Fe L\(D x T)%

Φ = I(τφ),

D = (nψ2\\τφ\\m{DxT)n) .

We will now give the definition of iterated stochastic integrals. Let

F(xu , xn) be an element of L\(D x T)n). At first we assume that F is

a simple function. Then, for fixed (x2, , xn) and tx F( ) is identified

with an element of L\D) = H. So we can consider the stochastic integral

(defined in § 1)

(4.7) P (F(x19 x2, , xn), dBtχy = Γ (F, dBtχ{xxy> = UF)(xl9 • • . , * „ )
J —oo J — oo

for all (*2, , *„), and we have

(4.8) f itiFXxt, •••, xjfdμ(ω) = Γ \\F\\ldt, ^ | | F | | 2

i 2 (
J^* J-00

,2(Z)XΓ)

For fixed (x3, , xn), l^F) is a function of x2 and ω, and it is ^ί2-adapted.

Considering these facts, we know that the following formula holds

= ί WtiFniwdx* ^ f \\F\\lHDxT)dx2 < oo ,
JDXT JDxT

for all (x3, , xn). Therefore the stochastic integral
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ϊ2(F)(x3, • • •, xn) = Π </2(F), dBt2} = P </2(F), d£ ί 2(* 2)>
J -oo J -oo

is well-defined. Thus we are given the iterated stochastic integrals ϊz{F)y

ί4(F), , ϊn(F) = 1(F), and we can easily verify the following inequality

(4.9) \\lk(F)(xk+u • • - , # „ ; ω ) \ \ l H i D x T ) n - k χ ^ £ \\FfLHiDxT)n), k = 1, 2, ., n,

where we have introduced the notation 1 in order to discriminate the
iterated stochastic integral from the multiple Wiener integral I(F).

The set {F: FeL2((D X T)n) and F is a linear combination of simple
functions} is dense in L2((D X T)n). From this and (4.9), the mapping ϊk

can be extended to be a bounded linear mapping from L2((D X T)n) to
D((D χT)n'kX £*). Therefore the iterated stochastic integral Ϊ(F) = ίn(F)
has been defined for all FeL2((D x T)n).

The following notations will be used to denote ϊk(F):

Γtk + i Γtk Γί2
= ) J " " J <F>dB'> -

(4.10) = J (j ( J (F, dBH\

THEOREM 4.2. If FeU((D x T)n), then the next formula holds

(4.11) I(F) = nlϊ(F).

Proof Let F = ηtι ® ® ηJu, ηjk = f ifc ® Cy», and put

F = — Σi pπ (syπimetrization of F) ,
n\ *

where F*(x19 , xn) = Ffed), , xκ(n)). From the definition of I(F), we
obtain

= J J ζΛ(«.) ζu(Un)dBUl(ξh) • • • dBUn{ξjn)

= Σ f f :«,<«.) UuJdB.,^,) dB.'.(
π J Jπ J

Δπ = {(uu - - , un); uπ{ί) < wπ(2) < < Mr(n)}

= Σ f * * ί Ci.«("i) * C^^
π J Ui<"'<un J



LANGEVIN EQUATION AND FOKKER-PLANCK EQUATION 203

Since {F; F is in the form of ηjx (g) <g) ̂  J is dense in L 2 ( φ X T)n), the

theorem has been proved.

COROLLARY 4.1. φe^n has the following representation

(4.12) $ = / ( ^ = n ! ^ )
= n! f • f < ^ ( x l y , x n), dBUl

J Ui<' <un J

Remark 4.1. The equality (4.12) explains the reason why we call τφ

the kernel of the integral representation of φ.

3. Hubert space valued functionals of white noise.

Let if be a real separable Hubert space and put

L V * > K) = [ φ ; <?* > K, J^ \\Φ(ω)\?κdμ(o>) <

First we shall consider the Wiener's direct sum decomposition of L2(*f * —•

K). Let ψ be an element of K. Then (φ, ψ)κ is an element of (Z/%, so

we can apply the mapping F (which is already defined by (4.1)) to (φ, ψ)κ:

(4.13) (rΦXψ, η) = (f(Φ, ψ)κ(v) = ί e^*>>(Φ, ψ)κdμ(ω) .

By (4.4), (Φ, ψ)κ has the integral kernel τ(Φ, ψ)κ which belongs to U((DχT)n)

and satisfies

(4.14) ||(Φ, Ψ)X\\M» = (nψ2\\τ(Φ, f)κ\\LH{DxT)n) .

Put

(4.15) Jfn(K) = {Φ e L2(^* -> Jί); (Φ, ψ)π e jfn for any ψ e K) .

Then the mapping (Φ, <ψ)->τ(Φ, ψ)^, where Φ e ^ i ί ) and ψ e K , gives a

bounded bilinear operator from Jfn(K) X if to L2((D x T)n). The mapping

T can be regarded as an operator from JΊ?n(K) to Sf(K -> L2((Z) X Γ)π)) such

that

(4.16) rΦ: ψ • (rΦ)(ψ) = r(Φ, ψ) x € L2((Z) X Γ)w), ψ 6 K ,

where Jδf(JSΓ1 -> if2) is the linear space of all bounded linear operators from

Kx to K2.
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THEOREM 4.3. For ΦβJίfn(K) the operator τΦ: K->L2((Dχ T)n), is of

Hilbert-Schmidt type and satisfies

(4.17) WΦWm^v =(nl)1/2\\τΦ\\H_s,

where \\ \\H.S stands for the Hilbert-Schmidt norm.

Proof. It is easy to see that τΦ is a bounded linear operator. The

Hilbert-Schmidt norm of τΦ is calculated as follows. Let {β;} be an

orthonormal base in K. Then it holds that

\\τΦ\\2H-s = Σ IWΦ, βj)*lli.(u>χΓ)«) = Σ -\-\\( s\$»D

j j n\ n\

(Q.E.D.)

We denote by σ2 (H19 H2) the Hubert space consisting of all Hilbert-

Schmidt operators from Hx to H2.

COROLLARY 4.2. The mapping τ can be regarded as a linear mapping

from Jf?n(K) to σ2(K, L\(Dχ T)n)) and then τ is bijective. The operator norm

\\τ\\ of τ equals (n!)"1 / 2.

DEFINITION 4.3. The mapping τ: Jfn(K) -> σ2 (K, U({D x T)n)) is called

the first representation of 3ti?n(K) and τΦ is called the first representation

of Φ.

Since τΦ is a Hilbert-Schmidt operator from K to L\(D X T)% (rΦ)*,

the adjoint operator of τΦ, is a Hilbert-Schmidt operator from U((DχT)n) to

if and \\(τΦ)*\\H-s = \\τΦ\\H_s. We denote the isomorphism form Jfn(K) to

σ2φ((DχT)n),K) by τ* (that is τ*Φ = (τΦ)*).

DEFINITION 4.4. The operator r*: 3>ί?n(K)~>σ2φ((D x T)n), K) is called

the second representation of jfn(K) and r*Φ is called the second represen-

tation of Φ.

COROLLARY 4.3. The mapping τ* is bijective, and satisfies

(4.18) \\φ\\LH^K) = VrΓ!||τ*Φ||*_5

THEOREM 4.4. Λ /ιoZds

(4.19) L2(<ί* > Z ) = Σ Θ ^n{K\ {direct sum)
n=0

Proof. Let {ê } be a n o r t h o n o r m a l base in K. T h e n any element Φ

of L\S* -> i f ) is expanded as Φ(ω) = Σ7=i Φj(ω)ev where ^/α>) e (L 2)β . By
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(4.4), φj(ω) is decomposed as φj(ω) = 2 φn,j(ω), Φnj{ω) e 2%'«, to have Φ(ω)

= Σ7-1 Σϊ-o Φn,j(ω)ej. Put # n J = {#ω)e,: φ(ω) e M>n], then L2(<T* -> if) =

Σ., j θ #„,,. Putting Kw = Σ , 0 KnJ, we obtain L2(<T* - > ί ) = Σ θ έ n .

Since the equality iΓn = jfn(K) is obvious, the proof of the theorem has

been complete. (Q.E.D.)

DEFINITION 4.5. The decomposition L\£* ->K) = Σ® ^n(K) is called

the Wiener's direct sum decomposition of Ώ(β* -> K), and the second re-

presentation τ*Φ, Φ 6 3tf*n{K\ is called the kernel of Φ.

4. Multiple Wiener integrals and iterated stochastic integrals II.

We will now define the multiple Wiener integral of S, S e σ2(L2((DχT)n\

K).

DEFINITION 4.6. For an element S in σ2(D((D x T)n), K), the multiple

Wiener integral of S, call it I(S) = ί ί SdBtl dBtn, is an element of

L\S* -> K) determined by the formula

(4.20) (ί(S), ψ)κ = I(S*ψ) for a n y + e i f ,

where I(S*ψ) is the multiple Wiener integral of S*ψ in the sense of Defi-

nition 4.2. The set of all I(S), S e σ2(L\(D x T)n), K), is called the space

of multiple Wiener integrals of degree n.

Remark 4.2. If S e σ2φ((D X T)n\ K), then S*ψe U((D X T)n) for <ψ.

6 ίΓ. Therefore an element in L\$* -> K) is uniquely determined by

(I(S), ψ)x = I(S*ψ) for a n y ψ e i ί .

J(S) = f ί SdBH - - dJ5ίTC is called the multiple Wiener integral of S.

THEOREM 4.5. (i) For Se σ2(L2((D x T)n), K) put S=S\£HiDxT)n) (the

restriction of S to L2((D X T)n)). Then it holds that I(S) = /(S).

(ii) The operator I: σ2(L\(D X T)n), K) -> L2(^* -> K) is linear and

bounded. In addition, for S e σ2(Π((D x Γ)n), i£), ẑ β have

(4.21)

Proo/. (i) We will first prove that

(4.22) S*ψ = S*ψ for any ψ e K ,

where — stands for the symmetrization. This equality comes from the next
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formulae, for fe L%(D X T)n)

, f)L* = \ Σ ((S*Ψ)% /)* = Λ Σ (S*
n! * n\ *

and

From (4.5) and (4.22) we obtain

which is to be proved.

(ii) Let [e3) be an orthonormal base in K. Then, from (4.6) we have

f ||/(S)||2d^) = f Σ \d(S), e
J δ* J δ* j

= Σ f \I(S%)\2dμ(ω) = Σ n\\\S%

The rest of Theorem is trivial. (Q.E.D.)

THEOREM 4.6. Let Φ(ω) be an element of jfn(K). Then Φ is represented

as the multiple Wiener integral of r*Φ, that is

(4.23) Φ(ω) = I(τ*Φ) = J J τ*ΦdBtl dBtn .

Proof Since the inner product (Φ, ψ), ψ e K, belongs to 3fn, we obtain

(φ, ψ)κ = 7(τ(φ, ψ ) ^ =

On the other hand it holds that

Therefore we have proved the Theorem. (Q.E.D.)

Let Bt be the cylindrical Brownian motion on H = L2(D) introduced

in § 1. Then the stochastic integral S(t)dBt is defined, where S is 3St-

adapted and S e D(Tχ £* -> σ2(H, K)). The integral f S(t)dBt is an ele-
JT
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ment of Ώ(β* —• K). We will treat the iteration of stochastic integral of

this type.

Let S e σ2(H, K), then S is represented as

(4.24) Sξ = Σ W, f > i = f Fs(x)ξ(x)dx

where [ξ3] is an orthonormal base in H, {e3) is an orthonormal system of

K, Σ *) = M s < oo, and Fs(x) = Σ, λjU*)** (FS:D->K). Since F8

satisfies

f \\Fs\?Kdx = Σ f ̂ ?5(χ)d* = Σ 3 = IISIBΓ-* < co ,

Fs belongs to L\D -> K).

PROPOSITION 4.1. The above correspondence of S and Fs determines

an isomorphism between σ2(H, K) and L2(D -> K).

Proof. It is already proved that FseL2(D-+K) and | | F S | | = \\S\\H_S

for any Seσ2(H,K). Let FeL2(D-*K) and put SF the operator defined

by

SFξ= ί F(x)ξ(x)dx, ξeH.
J D

Then SF: H-+ K is well-defined and is a bounded linear operator. The

Hilbert-Schmidt norm of SF is equal to

Thus the proof is completed. (Q.E.D.)

In the same manner we can prove the next proposition.

PROPOSITION 4.2. The following diagrams are true.

σ2(U(Dn), K) s L\Σf -> K)

σφ{Dn), K) = L\Dn -». K)

σ2(L\(D X TY), K) s U({D X T)n -»- X)
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σ2φ((D X Γ)»), K) s L\(D X T)« -> K)

where = denotes isomorphism.

PROPOSITION 4.3. (i) We have the following diagram

L*(g* — • o2(U(D x T), K)) s L\δ* > L2((D x T) • K))

L\T X <?* • σ\L\D\ K) s L\T x <f * • D(D • K))

(ii) If S e L\T X £* -> σ2(L2(D), K)) and S is ^.-adapted, then the

stochastic integral S(t, ω)dBt is well-defined. Put 1(S) = S(t)dBt, then
JT JT

E[\\ί(S)\\U = \E[\\S\\%_s]dt = \ E[\\Fsfκ]dx ,
J J DXT

where Fs is the element of L2{£* X D X T -> K) corresponding to S by (4.24).

Proof, (i) is easily proved by the use of Proposition 4.2. (ii) is obvi-

ous from the definition of the stochastic integral and Proposition 4.1.

(Q.E.D.)

Remark 4.3. We identify the elements of L\T X «?* -> σ2(L2(D), K))

with those of L\£* X DχT~>K) and we use the notation f S(t, ω)dBt
JT

or S(t, ω x)dBXx) to indicate the stochastic integral 1 (S). We also use
JT

the notation S(x1? , xn) instead of Fs(xl9 , xn).

We are now ready to define the iterated stochastic integrals. Let S e

σ2(D((D X T)n\ K), then S is considered as an element of L\(D X T)n -> K)

by Proposition 4.2. We assume here that S is a simple functional. Once

(x2, , xn) is fixed, we can regard S as an element of L2(D x ϊ 7 - ^ K).

While S is also regarded as an element of σ2(L2(D X T), K) or L2(Γ->

σ2(L2(D), K)) by Proposition 4.3 (i), and this function is denoted by SXΛ"m:rn(t^.

Thus we know that the stochastic integral

is well-defined in the sense of Definition 1.4 and we have

JS||/ I(S)(x i,...,ac,)|&= Γ ( f IIS**,, •-,*„) I l i Λ j Λ , ^ f
J U ΰ J J DX

From this inequality we obtain
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f . . . ίE\\US)(x2, , xn)\fκdx2 - dxn £ [ [\\S\\t

κdxί dxn,

7 / O^ /-- T2/jp% v T2//Tί v/ rP\n-l ^ Ί/~\\ , ' 7'2/β>% v /T2//T} \/ ΠΠ\n~

±ι\o) G Xv (<έ > J L ( ( i y XI) > &)) =z L \ώ > σ2(L {(U X 1 )

Using Proposition 4.3, we can define the stochastic integral

Ϊ2(S)(X» • • . , * » ) = Γ3 ί 1 (S)(x 2 , , xn)dBt£x2) ,

which has the same properties as ϊί(S)(x2, , xn) described above. Repeat-
ing this procedure n times, we finally arrive at the iterated stochastic
integral

(4.25) Ϊ(S) = J l p {... {J'2 S**'~"it1)dBtl}dBt, Jd

and /(S) satisfies

(4.26) 11/(5)111,^^, ^ ί f \\S\\Vdx1 dxn =

Since the set {S: S 6 L2(φ X T)n -> Z), S is a linear combination of simple
functions} is dense in L2((D X T)n->K), the mapping /: S-^ί(S), can be
extended to be a bounded linear mapping from D((D X T)n-^ K) (^
σ2(L\(D X m K)) to LV* -> X).

DEFINITION 4.7. The iΓ-valued random variable I(S), which has just
been obtained above, is called the iterated stochastic integral of S.

I(S) is also denoted by

f f S(xu , xn)dBtι(Xl) dBtn{xn)

or simply by SdBtl dBtn,
Jtiύ- ^tn J

Remark 4.4. If S e σ2φ((D x T)n), K) ^ L\{D X T)n -> K)9 then S can
be regarded as an element of L2((D X T)n -> E"). So the iterated stochastic
integral I(S) is well-defined.

PROPOSITION 4.4. Let Sβσ2(L2((D x T)n),K) and put S = S\LHiDxT)n).
Then S e σ2φ((D X Γ)κ), if) α îd F^ = Fs(=the symmetήzatίon of Fs).

Proof. For any feU((D X T)w) it holds that

Fs(xu , xn)f(xu , xn)d^ dxn
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= J J Fξ(xu , xn)f(Xu -, ^n)dxx dxn

= J * JFs(xu ", xn)f(xu ", ocn)dxx - dxn .

Therefore we obtain F$ = F s . (Q.E.D.)

We will finally discuss the connection between I(S) and /(S).

THEOREM 4.7. Λ TioZds ί/iαί

(4.27) I(S) = nll(S) for any S e σ2((D x T)n\ K).

Proof. Let S e σ2(D((D X T)n), K), then by Proposition 4.2 there is a

function Fs e L%D X T)n -> if) such that

Sf = J ]>,(*,, , *„)/(*,, , xjcfa, dxn9 fe L\(D x TY).

Define the operator Sx*~'Xn e σ2(U(D X T), if) by

S*.-*-, = J Fs(xu x2, , xj^x^rfxi .

Then Sx*'"Xn is well-defined for almost all (x2, , acn), and the next equality

holds

((S**'~*»)*ψ,v)LHDxT) = (ψ, S * - — ^

= (ψ, J Fs(xu x2, --, xn)v(χi)dxi)κ

= J (ψ, ί 1 ^ , X2, , Xn))κη(x1)dx1

for ψ e K and ^ e L\D X T). We can regard ({Sx*~'Xn)*ψ){xγ) as an element

of L\(D x T)n), and then we have

(4.28) = f f ((Sf — )*ψ, η)IΛ^T)g{x29 , xn

= ί I (ψ, Fs)κη(xι)g{x2, , xJcίXi d

for geL2((D X T)71"1). On the other hand it holds that

(S*Ψ, ^ ® ^ ( ( . x ^ ) = (Ψ, S*(^ ® ̂ ))^

(4.29) = ^ ψ, I I Fs(xl9 -", xn)η(xί)g(x2, ", xn)dxx
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= J J ( ψ , Fs)η(xx)g(x2, •-, xn)dx, - -. dxn .

From (4.28) and (4.29) we obtain

((S*- *«)*Ψ)(*i) = (S^Xx,, , xn) in L\{D X Γ)») ,

and so we know that for almost all (x2, , xn)

(4.30) (S*.-*»)*ψ = (S*ψ)(., x2, , *n)

in L2(D X Γ) sense. From this equality it follows that

(ψ, US)(x2, , Λ:n))κ

(x1, •-.,xn),dBtl(x1))

for almost all (x2, , xn).

Now we shall prove inductively that

= J ί f c + 1 ( f f2 <s*ψ, d s ί x > , . . . , dBtky

for almost all (xk+1, , xn), A = 1, 2, , τι. Assume that (4.31) is proved

for A - 1. Then, by the definition of ί ^ S ) , for any 57 eL2(D X Γ) we have

(Ik-i(S)*ψ,η)LHDxT) = (ψ, ϊk-i(S)η)κ

(4.32) = f (ψ, Λ-i(S)fe, , ̂ ))^(x,)c?xfc

JZ)XΓ

= ((ψ, Ik-i(S))κ, η)L2(DxT) .

Using the assumption of induction and (4.32), we know that

so we obtain

(ψ, Λ(S)). = J*+1 <ΪUS)*Ψ, dBtk)

which is to be proved.

Putting & = 71 in the formula (4.31), we obtain
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Let Seσ2φ((D X T)% K), then S*ψeL2((D x T)% By Theorem 4.2 we
have

(ψ,

for any ψ e £ Thus we have proved (4.27). (Q.E.D.)

Summing up what have been discussed, we have obtained the follow-
ing diagram:

(4.33)

x Γ) ), # ) s SήiL\(D X Γ)κ • ίΓ) ,

r * φ ». Γ*φ e <r2(L
2(φ X 71)"), ίΓ) s £2((D X Γ)n • K),

Φ 6 tfJK), bijection ,

I-.F—+ I(F) = n!/(F) = f ίFdBtί • • • dBtn,

FeL2((DχT)n—>K),

IT* = identity .

Before closing this section, we mention an interesting result in con-
nection with the stochastic differential equation (3.2) in § 3. Since the
unique solution Xt of (3.2) is an element of L\$* -> £f_1/2), Xt has a kernel
of integral representation.

THEOREM 4.8. The kernel of the integral representation of Xt with Xo

— 0 is given by

Proof. This result follows from the above discussions without any
difficulties. (Q.E.D.)

§5. Stochastic diflFerential equations with multiplicative operator

This section is devoted to a development of our theory. Actually we
shall discuss the so-called bilinear stochastic differential equation on the
Hubert space H — L2([0, π]) given by

(5.1) dXt = -ώXtdt + XtdBt ,

where ώ (=—V—J) was given in § 3 and Xt- denote the multiplicative
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operator, i.e. (Xt-ξ) (σ) = Xt(σ)ξ(σ), σβ[0, π].

Although our techniques developed in § 3 are not available to the

equation of this type, our results established in § 4 do work in the in-

vestigation of the equation above. The reason could be seen in the dis-

cussions what follow.

Before we come to details, we have to overcome a difficulty. Namely,

there is no solution to (5.1) living even in H_oo formed by the Hubert scale

derived from ώ. To avoid this difficulty, we are led to consider a modified

equation (5.4) under the assumption (5.5) (note that if Γ(σ, σ') — δ(σ — σ'),

then (5.4) turns into (5.1)), which will be prescribed later.

We first investigate some properties of the multiplicative operator.

Let A be a positive self-adjoint operator on H determined by

Aξ0 = ξ0

Aξj = όjξj = jξjy j = 1, 2, ,

where {ξj}, j = 0,1, 2, , is the orthonormal base for H given in § 3 (i.e.

ξ0 = π-v* and ξj = (2/τr)1/2 cos σ). Since A"1 is of Hilbert-Schmidt type, a

Hubert scale {Ha}, — oo<#<oo, is generated by A, where Ha is a Hubert

space with an inner product (ξ, η)a = (Aaξ, Aaη)H.

Put Tt = e~tώ, t ^ 0, (Tt is the same operator as given in § 3, but the

domain is H, not H). Then we have

PROPOSITION 5.1. ( i ) The multiplicative operator X-, XeH, is not

bounded on H. If £ > 0, then the closed extension of TtX is a Hilbert-

Schmidt operator on H.

(ii) The multiplicative operator X-, XeH, is considered as a bounded

operator from H into H_a, a > 1/2. Moreover it holds that X- βσ2(H, H_a)

and that

\\X- IIU,H_α) ^ const, (l + f; k~A\\X\f .

(iii) If Xe H_a for some a>0 but XeH, then TtX g σ2(H, H_β) however

large β may be chosen.

Remark 5.1. For XeH TtX- is of Hilbert-Schmidt type by Proposition

5.1 (i). But the integration \\Tt_sX \\2

σ2,H)ds does not always converge.
Jo

For example, if XφO and an >̂ 0 in the expansion X = J^anξn, then

Γ| |Γ ί_.Z \\l2(H)ds diverges.
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Proof of Proposition 5.1. ( i ) Take an element X in H = L2([0, π])

such that XgL4([0, π\). Then XX= X2eH, i.e. X is not a bounded

operator on H. Having the X expressed in the form X=Σ an$n> we obtain

(5.2)

Σ II τt(XξJii2 = Σ Σ (Tt(xςJ, ξky
0 k

" *'<?.?., ?*))2

Σ
m k

Σ= Σ Σ ίΣ

(if t > 0) ,

where we have used the following formula

(5.3)

The inequality (5.2) proves that the closed extension of TtX> is an element

of σlH).
(ii) With the expression X = Σ α«?«> w e obtain

II-XΓ lli.(2r,H.β) = Σ li^ fmll2-« = Σ (*•£», ?,)-«

= Σ ( Σ β.(f.f«, ?*)-«)2

7Γ

1

π

K

+

+*+ a,Λ.ti)

if TO,

i, if mi

if /n =

kl

k =

= k

ϊ l ,

0 , 77

= 0.

ϊ + 1,

= Σ ( Σ *.(£.£», fo)) + Σ Σ A-

^ 4;r2 Σ «m + ^"2 Σ k-2° Σ (o«+

^ 6;r2||X||2(l + Σ * - )

(iii) Suppose that Σ α« = °°> Σ n~2aa<2n < °° a n ( i that αn ^ 0 in the

expansion X = Σ α^f n If ^ X were well-defined and ΓfX e σ2(iϊ, iϊ-^),

then the following formula should hold

Σ

= Σ f (Σ
TO L\ n

Σ
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+ Σ &-2

Therefore we conclude that TtX> & σ2(H, H_β). (Q.E.D.)

If the equation (5.1) has a solution in H, then the solution should be

given by Xt == TtX0 + Tt_sXsdBs. As was mentioned in the Remark 5.1,
Jo

rt
the integral Tt_sXsdBs does not always converge in the space H. Sup-

Jo

pose next that a solution Xt were obtained in H_^ Then, by Proposition

5.1 (iii), the integral Tt_sXsdBs would not be defined in i/.^. Thus we
Jo

have seen that the equation (5.1) has no solution in H^. Accordingly,
we will consider a modified equation of the form

(5.4) dXt = -ώXtdt + f(Xt)dBt ,

where / is a mapping from H_a to H (a > 1/2).

THEOREM 5.1. //the mapping f: H_a->H, a> 1/2, is Lipschitz continu-
ous, then the equation (5.4) has a unique solution in H_a for a given initial
data Xo e H_a.

Proof. From Proposition 5.1 (ii) and the Lipschitz continuity of /, it
follows that

\\f(X) - f(Y)\\l^H.a) ^ const. (l + Σ k-2a)\\f(X) - /(Oil2

^ const. | | X - 7||2_α .

Therefore f(X) is a Lipschitz continuous mapping from H_a to σ2(H, H_a).
Using Theorem 2.3, we know the existence of a solution of (5.4) as well
as uniqueness. (Q.E.D.)

From now on we treat only such a special case as / is linear and of
the form

(5.5) f(X)(σ) = ΓΓ(σ, σ')X(σf)dσ\ XeH_l9
Jo

where Γ(σ, σ') is an element of if® if1# Now, by Theorem 2.1 and Theorem
2.2, the equation (5.4) is equivalent to
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(5.6) Xt = TtX0 + Γ TUf(Xs) )dBs .
JO

We are now ready to apply the results obtained in § 4 in terms of the

integral representation of (5.6).

LEMMA 5.1. Let SeL\T X ^* -> σ2(H, H^)) and assume that S(t,ώ)

satisfies the following conditions:

( i ) S(t, ω) is J*radapted.

(ii) S(t, •) e L V * -> o2(H, H_1)) and the Wiener's direct sum decompo-

sition of S(t) is given by

S(t, ω) = £ Sn(t), Sn(t) e yfn(σ2(H, ί U ) ,

Sn(t) = Sn(t; *!,-•-, xn;x), xs = (xj9 t3)eD xT, xe D ,

where Sn(t; , , •) e L\{Dy^T)n x f l - > H^\ D = [0, TΓ] and T = [0, oo).

T/ien the jf n+ί(H_ ̂ -component of S(s)dBs is equal to Sn(s)dBs and
Jo Jo

its kernel is given by

(5.7) —^-z-XioΛtn+άSΛtn+t; xί9 - , x; xnil), tx ^ t2 ^ . £ tn+1 .
n + 1

Proof Using the results in § 4, we get

ΓsB(s)dB. = Γn!ί(Sn(β))d£.
Jo Jo

= n\ ί fs«(*» + i; x» -yXn Xn+ddBtlxύ . dBtn+1(xn+1)

l _ χ ι : 0 ί ί ] S n ( ί n + 1 ; x u - ' , x n ; x n + 1

(Q.E.D.)

LEMMA 5.2. Let ZeL2(£*-»H) and let Zn(xu , xn; x), n = 0,1, 2, ,

be the kernels of the integral representation of Z. Then the kernels Fn(xu ,

xn; x), n = 0,1, 2, , o/ Λ̂e integral representation of the multiplicative

operator Z- e L2($* -> (72(ίΓ, H_$) are of the form

(5.8) Fn(xί9 , xn; x) = Σ £»(*i, , ^ n ; jc)f/jc)f̂ , n = 0,1, 2, .

Proof Put (Z)n = ^n(iϊ)-element of Z. Then (Z)n satisfies

((Z)nf, f, ) = Γ(Z)n(σ)f
Jo
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= (I(ZJ, ξξ3) = I(Z*ξξj)

= l(\]Zn(x» •••,*,; σ)ξ(σ)ξj(σ)dσ) .

Therefore we have

(Z)πξ = l(jt^Zn(xu •••,xn; σ)ξ(σ)ξj

From this equality we obtain

(Zξ)n = (Z)nξ = l ( t (\'ZK(X, • • , xn; σ)ξ(σ)ξj{σ)dσ)ξ)
(5.9) \J=O\JO / /

7 ( £ { Σ Zn(xu • - ,xn; σ

The equality (5.9) proves (5.8). (Q.E.D.)

LEMMA 5.3. Let ZeL%T x S* ->• H) and let Zn(t; xu • • •, xπ x), n =

0,1, 2, , be the kernels of Z. Then the kernels of the operator Tt_s(Z(s)-)

are of the form

(5.10) Zn(s; * „ . . . , * „ ;

Proof. From (5.9) it follows that

This equality proves the lemma. (Q.E.D.)

LEMMA 5.4. Let Xs e L2{£* -> H_^ and let its kernels be Φn(s; xu , xn;

<y
/)? n = 0,1, 2, . Then the kernels of the integral representation of

Γ(σ, σ/)Xs(σ/)dσ/ are expressed in the form
Jo

(5.11) [V(σ, σ')Φn{s; xί9 . , xn; a')daf ,
Jo

where the integration should be understood in the same sense as in (5.5).

Proof. This lemma is obvious from the definition of kernels.

(Q.E.D.)

COROLLARY 5.1. Under the same assumptions as in Lemma 5.4, the

kernels of the operator Tt_s(f(Xs)-) are given by
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(5.12) \r(x, σ')Φn(s; Xu , xn\o')daf ± *- '< '-%(*)?, .

Proof. This comes from Lemma 5.3 and 5.4. (Q.E.D.)

We are now in a position to describe the equation (5.6) in terms of

the integral representation.

THEOREM 5.2. ( i ) Let Xt be the solution of (5.6), where f(X) —

Γiσ.σ^Xiσ^dσ', and let Φn(t; xl9 , xn; •) be the kernels of the integral

Jo

representation of Xt. Then Φn,n = 0,1, 2, , satisfies the following func-

tional equation
" ' j ^ j i f l i " /

n + 1 U-o
( 5 1 3 )

J

X \'Γ(xu+u
Jo

U ^ t2 ^ £ tn+1, n = 0,1, 2, • ,

Φ0(t; •) = TtX0.

( i i ) Conversely, if a solution Φn(t; xu • •, xn; •), n = 0,1, 2, , of the

equation (5.13) satisfies the following condition

(5.14) Σ («!)' f f llΦ.ωil'-idx. dxn < oo ,
n=0 J ti^t2U'"^tn J

then 2]~=o I(Φn(t)) is the solution of (5.6).

Proof, (i) follows from Lemma 5.1 and Corollary 5.1. The condition

(5.14) assures that 2]Γ=o I(&n(t)) e Z/(<ί* -> H^). Hence (ii) follows from the

uniqueness of the integral representation. (Q.E.D.)

THEOREM 5.3. The equation (5.13) has a unique solution for a given

initial data XQeH_u and the solution Φn(t) itself satisfies

(5.15) (niy ί f WΦnitn^dx, - - dxn £ -±-coc
ntn ,

Jίi^ ί̂n J n\

where c0 and c are positive constants.

Remark 5.2. The condition (5.15) is equivalent to

(5.16) || I(Φn(t)) \\U^*-* £ -\cQcntn .
nl
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Proof of Theorem 5.3. When a point XoeH_ί is given, {Φn(t); n =

0,1,2, •••} is determined inductively by (5.13). The proof of (5.15) pro-

ceeds by induction. Since \\Tt\\ <; 1, Φ0(t) satisfies (5.15) with c0 = ||X0||-i.

Let Ci be a constant which satisfies

(r(.,σ')X(σ')dσ'\\2 £ c^XWU for any XeH_x .
J II

Put c — (1 + 27=i (l//2))^. To prove the induction step from n to n + 1,

we note that

((rc + l) ! ) 2 ί ••• f||Φn+i(ί)l|!-i^i dxn+1
J ί i ^ ^ίn + i J

= («02 f f {| |Σ e-Ί'-' +^x.
Jθ^t1^" ^ t n + l ^ t J 1 1 1 . 7 = 0

(5.17) X j j Y ( * K + 1, σ')Φn(tn + 1\ x19 - >,xn; σ^d

^ (n!) 2c f f | | Φ n ( ί n + 1 ; *!,••-, x n ; O l l - i ^ d x n Λ n + 1

-I Λί 1

n! Jo (n + 1)!

Then, we have proved (5.15). (Q.E.D.)

COROLLARY 5.2. The equation (5.4) Λαs α unique solution Xt under the

assumption that f(X) = Γ( 9 σ')X(σ')dσ', and Xt satisfies
Jo

(5.18) \\Xt\?LH**-+H-x)^\\X«\Uect .

Proof. From Theorem 5.2 and 5.3, it follows that Σn=o KβJt)) is the

unique solution of (5.4). The inequality (5.18) is obvious from (5.16).

(Q.E.D.)

Remark 5.3. The results in Corollary 5.2 are in fact part of Theorem

5.1, because the estimation (5.18) can be obtained by successive approxi-

mation method.

Since Γ(σ,σf) has been assumed to be an element of H®HX< Γ(σ,σ)

is expressed in the form of

Γ(σ, σ') = ± VuUσ)Uσ') ,

(5.19) *'*=°

I I * \\H%U\ — L-X Ufc0 ~i Z_J Z_i '
k = 0 Λ = 0 i = l
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Then we have the following theorem.

THEOREM 5.4. When Γ(σ, σ') is of the form (5.19), the unique solution

of (5.13) is given by

Φ0(t) = TtX0 = Σ e-^cjξj ,

Φn(t;xl9 • • - , * „ ; • )

(5.20) = \χtMt» •••,*») Γ Σ {f/*») exP {-j(t - O}?/ )}
nl L/=o

X { Σ aknin ' ' α*iiχ£*.(*

X X ?*a(*2) exp {-i2fe

ti^U^ ^tn9 n = 1, 2, ,

where Xo = Σ7=o^fj^ίί-i ^s α •̂iuen initial value.

Proof. Using the expression (5.19), we are able to solve the equation

(5.13) step by step in an explicit form. Carrying out this procedure, we

can obtain the formula (5.19). (Q.E.D.)

For η e δ put

(5.21) U™(t;η) = J \®n(t\ xw ••,*»; >f Θ (* i , -,Xn)dXι dxn ,

and put

(5.22) t7(ί; 9 ) = Σ U™(t; η) .

Then it is easily seen that the system {U(t; η); η e £} determines {Φn(t;

x19 - - , xn), n = 0, 1, 2, } completely. Without loss of generality, we may

assume that {η: η = f ® ζ e }̂ is dense in #. We therefore conclude that

{U(t; rj): η = ξ (x) ζ e }̂ determines {Φn(ί); τι = 0,1, 2, •} completely.

THEOREM 5.5. For η = f ® ζ e <?, C7(ί; 37) satisfies the following equation

(5.23) d t 7 f o ^ = -ώC7(ί; 9 ) + ζ(t)GU(f; η), t > 0, U(0; η) = Xo ,

where G is a linear operator on H.x depending on Γ and ξ (the explicit

form of G is given in the proof).

Proof. Using (5.20), we get
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lΛ">(ί; η)

(5.24) = n\ f ••• [ Φn(t; x u ,xn; ^ ( x , , • , xjdx, • • • dxn

= Σ UΣ a*«u • αwA^A...-, K*ίdlϊi, .M.M >

where

δu = I* Uσ)ξk(σ)ξ(σ)do, i, k = 0, 1, 2, ,
Jo

and

rf((S,..,^),/0 = f f exp {~j(t ~tn) UU)
JO^t^' ^tnSt J

X C(ί.) ζiOdtt • • • dtn, n = 1,2, .

From

Jo

it follows that

(5.25) ώ ( i - u j ( ί )

?,iΛ-ύ,iM - Jdfo?.,i.-ύM n = 1, 2, ,

where d(0)(ί) = 0.

From (5.24) and (5.25) we have

4rU{n\t; η)
at

(5.26) = -ώUin)(t; rj)

+ Φ) Σ UΣ a*nin ' akltlcixbJkΛ bi2kld^.,in_l)iin(t)] .

Introduce an operator G on ff.j

(5.27) G (f; apξp) = f] ( E M , , «,)f i

Then the second term of (5.26) is equal to ζ(ί)GL^(ίl-υ(ί; η). Thus we have

4rUw(t; η) - -ώU^(t; η) + ζ(t)GU^Kt; η), n = 1, 2, ,

(5.28)

at
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Summing up (5.28) for n = 0,1, 2, , we obtain (5.23). The convergence

of the series appeared above is guaranteed by Theorem 5.3. (Q.E.D.)

Remark 5.4. The operator G is expressible as

G = G(ξ)Γ

where G(ξ) is a bounded linear operator on H, linearly depending on f,

and where Γ is the bounded linear operator from H_x to H given by (5.5)
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