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ON THE UPPER SEMI-LATTICE OF J$-DEGREES
JUICHI SHINODA

S. C. Kleene developed the theory of recursive functionals of finite
types in Kleene [5]. He proved that a set A of natural numbers is
recursive in E if and only if A is hyperarithmetical, where E is the type
2 object defined by

0 if anfa(n) = 0],
1 otherwise .

E(@) = {

By relativizing this result to a set B of natural numbers, A is hyperari-
thmetical in B if and only if A is recursive in E and B. Therefore, E-
degrees coincide with hyperdegrees. A type 2 object F is said to be
normal if E is recursive in F. The theory of recursive functions based
on a normal type 2 object is an excellent generalization of the theory of
hyperarithmetical functions. Hinman [4] is a good exposition of the theory
of recursive functionals based on a normal type 2 object. It is natural
to investigate F-degrees for a normal type 2 object F' as a generalization
of hyperdegrees. In this article, we shall discuss the upper semi-lattice
of E,-degrees and more generally of J5-degrees, where E, is Tugué’s object
defined in Tugué [13] and J35(a € O°) are type 2 objects defined in Platek
[6] which are obtained from E by consecutive applications of the
superjump S.

The necessary preliminaries are given in § 1. Transfinite iterations
of the F-jump are considered in §2. In §3, by using Cohen’s forcing
method, independent degrees are discussed. §4 is devoted to the existence
of minimal degrees. In §5, we show the existence of incomparable degrees
whose infimum does not exist.

The author expresses his gratitude to Professor T. Tugué for his
valuable suggestions.
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§1.
Let F be an arbitrary normal type 2 object, which we fix throughout
§1 and §2. We let a =(ay,, -+, @,, @, -+, ). A partial functional ¢(a)
is said to be partial F-recursive if there exists an index e such that ¢(a)
~ {e}*(a). If ¢ is total, we omit the adjunct “partial”’. A predicate P is
said to be F-recursive if its representing functional K, is F-recursive.
The following three lemmas are very useful.

LEmMA 1.1V (S-m-n Theorem). For each m, there exists a primitive
recursive function S™ such that

{S™(, by, - - -, b))} (a) = {e}*(by, - - -, by, ) .

LEMMA 1.2V (F-Recursion Theorem). If (e, a) is partial F-recursive,
then there exists a number e such that

{e}"(0) = (e, a) .

LemMmA 1.3 (Substitution Theorem: cf. Hinman [4; VI. § 21]). There
exists a primitive recursive function y(z, w) such that for all z, w and a

{r(z, W)@ = {2}"(a, {w}"¢, @)) .

If {e}"(a) is defined, the computation of {e}*(a) is represented in the
form of a well-founded tree, whose length we denote by |e:alf. |e:alf is
a countable ordinal. If {e}"(a) is undefined, then we let |e:al” = o (=WR)).
The following lemma of Gandy’s is fundamental in the recursion theory
based on normal objects.

LeMmA 1.4 (Stage Comparison Theorem: cf. Hinman [4; VI. 3.3]). There
exists a partial F-recursive functional x(z, a, w,b) such that if {2}*(a)| or
{w}*(®) | , then y (2, a, w,b)| and

( b) = {0 if |z:alf < |w:b|F,
&G ZA1 i jzralf > |w: b7,

where a = (ah Cr oy Oy Oyt 0 0y “j)) b= (bh Y bm ;81: ) .Bk) and “|” means
“is defined”.

A predicate P is said to be F-semirecursive if it is the domain of a
partial F-recursive functional. Kleene proved that P is E-semirecursive

1) For the proofs of these lemmas, see Hinman [4; VI].
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if and only if it is a I} predicate. Using Lemma 1.4, Gandy obtained the
following result.

LEMMA 1.5 (see Hinman [4; V1. 4.3-4.6]).

(i) A predicate P is F-recursive if and only if both P and 7P are
F-semirecursive.

(ii) If R(n, a) is F-semirecursive, then so are vnR(n, a) and anR(n, a).

(iiil) A partial functional ¢ is F-recursive if and only if its graph is
F-semirecursive.

From (i) and (ii) of the above lemma, we see that if R(n,a) is F-
recursive, then vnR(n,a) and anR(n, a) are also F-recursive. But we can
prove this more directly from the definition of normality: let ¢(n, a) be the
representing function of R(n,a). Then ¢ is F-recursive and hence the
function E(ing(n, a)) is F-recursive because K is F-recursive. It is obvious
that E(né(n, a)) is the representing function of anR(n, a).

If u={e<a,- - -,a,), we use |u|” instead of |e:a,, -- -, a,|7. Let U”
= {e,{ay, - -, a,yy: {e}"(ay, - - -, @,) | }. Thensup{u|":ue U} = w[F], where
o,[F] is the first non-F-recursive ordinal (see Hinman [4; VI. 4.17]). Obvi-
ously U? is F-semirecursive. If P C w is F-semirecursive, then there
exists a number e such that P(a) iff {e}"(e) | . Then, P(a) iff (e, {(a)) e U”.
Thus U? is a complete F-semirecursive set.

Let ¢ be an ordinal. Define L;(s) by:

Ly(0) = {0} ;

Ly(e + 1) = {xCL,(s): x is first order definable over the struc-
ture {L(0), €, F | Ly(¢)) with parameters from L(0)};

Ly(2) = U {LAo): ¢ < 2} if 1 is a limit ordinal .

We use .#.(0) to denote the structure (Ly(¢), €, F [ Ly(o)>. If A (o) is a
model of KP (Kripke-Platek set theory) formulated in the language {e, F},
which we denote by KP(F), then ¢ is said to be an F-admissible ordinal.
We use z,[F] to denote the v-th F-admissible ordinal. In particular, ¢,[F]
= w. For the basic knowledge of KP and admissible sets, see Barwise
[21.

In [4; VIII], Hinman developed the theory of recursive functions of
ordinal numbers. We can relativize it to F by adding the following (x) to
the definition of £,, in [4; VIIL 1.1]:
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(«) for any b and B, if (b, n, g, f(n)) € 2.(F) for all n, then ({5, &,b),
© F(P) € Q.AF).

If we set {a}f(p) = v iff (a, p,v) € 2,(F), then {a}}, defines a partial function
of ordinal numbers. We define {e¢}/ and {a}%, as in Hinman [4; VIIL 1.3].
A partial function of the form {a}f ({e}%, is said to be k-recursive in F
((c0, A)-recursive in F). Other notions such as ‘“s-semirecursive” are easily
relativized to F by using {a}” or {a}L,, so we omit to define them explicitly.
We say that an ordinal x is F-recursively regular if r is closed under all
partial functions (oo, k)-recursive in F. This definition is equivalent to
each of the following (a) and (b):

(a) for all acw and all p <, {a}.(p) =~ {a}!(p);

(b) for all acw and all p, p <k, if {a}i(n, p) is defined for all = < p,
then sup,., {a}7 (%, ) < k.

LeEmmA 1.6. If £ is an F-recursively regular ordinal >w, then r is F-
admissible and for every P C k:

(1) Pis k-recursive in F in parameters if and only if it is 4, on M x(x);

(ii) P is x-semirecursive in F in parameters if and only if it is 2, on
M o(£).
Conversely, if r is an F-admissible ordinal > o, then r is F-recursively
regular.

Proof. Let « be an F-recursively regular ordinal >, then there
exists a map C from « onto L,(x) which satisfies the following conditions
(1) and (2):

@D ve<iClpcC'pandve<rw<r[p<y & Cl)= C"]

(2) the predicates C(z) € C(v) and C(p) = C(v) are k-recursive in F.
For every 4, formula &(v,, - - -, v,) of the language { ¢, F}, we see by induc-
tion on the length of @ that the predicate @(C(y,), - - -, C(y,)) is s-recursive
in F. For example, if &, ---,v,) is 3v,€ v,¥(Vy, vy, - -+, V,), where ¥ is a
4, formula, then

P(Cws), - - -5 Clera)) <> Ay < [ Clpe) € Clerr) & V(Cleto), Cles), - - -, Cp))] -

Since the set of all predicates k-recursive in F is closed under bounded
quantifiers, @(C(y,), - - -, C(u,)) is «-recursive in F by the induction hypo-
thesis and (2). From this, the implications from the right to the left in
(i) and (ii) are obvious. In order to prove that ¢ is F-admissible, it suf-
fices to show that the 4, Collection Axiom holds in # (). Let @(v, v, vy)
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be a 4, formula and ¢, ¢ < k. Suppose that

@) vxe Clo)ay e Lo(x)D(x, y, C(z)).
We have to prove that for some p < &,

4) vxe C(o)ay e Clp)d(x, y, C(z)).
From (3), we have:

v < oy < k[C(p) € C(o) —> O(C(p), C(v), C(z))] .

We let:
min {p < £: C(p) € Clo) —> D(C(w), Cl), C(z))} if p<eo,
0 otherwise.

f(/"7‘7’7): {

Then f is s-recursive in F. Hence sup,., f(#,0,7) <& by (b). From (1),
there exists a p < « such that C(f(y, g, 7)) € C(p) for all 4 < ¢. It is easy to
see that (4) holds, and thus the 4, Collection Axiom holds in .# ().

Now let ¥ be an F-admissible ordinal > w. By using the Second Re-
cursion Theorem in .#,(x) (see Barwise [2; V. 2.3]), we shall show that the
relation {a}[(g) ~ v is X, on A (r). Find a 3, formula (v, v, v, v,) such
that for all ¢, g, v <« and all cco,

M (k) = o, alpy,v)  iff (a, 4, v) € QU(F) ,

where 2°(F) is the o-th stage of the inductive definition of 2,(F). Such
a Y, formula ¥ can be obtained by writing down the definition of Q7 (F).
For example,

U(o, {5, k, b), (pey,v) iff 3pVn e wir < o[¥(z, b, {n, ), f(n)) & F(B) = v] .

Let X = U,«. 2.(F). We show that X = Q,(F). Let (a, g,v) € 2.(F).
By induction on min {¢|(a, g, v) € 2.(F)}, we prove that (a, ¢#,v) € X. Except
for the case where (a), = 3, 4 or 5, the proof is straightforward. We con-
sider the case where (a), = 3. Other cases can be treated similarly. Let
bew,p, p <r and assume that vz < p3&(b, r, g, &) € X Then,

M (k) = Vr < p383c¥(z, b, (=, o), &) .
But since & is F-admissible, there exist », ¢ <& such that
MF(K) = Vvm < pE!"E < 7737 < O‘W(‘L', b’ <7ta #>7 $) .

This means that ((3, &, b), p, g, v) € X, where v = sup,, {b}(x, p).
To see that « is F-recursively regular, we must show (b). But it has
been proved in the above.
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The implications from the left to the right in (i) and (i) are clear
since the relation {a}{(yg) = v is 2, on A (x). Q.E.D.

LEMMA 1.7. o,[F] is the first F-recursively regular ordinal larger than
o, and for every P C o™

(i) P is F-recursive if and only if P is 4, on M (w,[F]):

(ii) P is F-semirecursive if and only if it is X, on A (w,[F]).

Proof. By a simple application of the ordinary recursion theorem, we
have a primitive recursive function f such that

(© {f(@}(m) =~ {a}"(m)
for all F-recursively regular ordinal # > . Since o,[F] = sup {{u|f: ue U7},

all the computations in o,[F] can be coded by elements of U”. That is,
there exists a primitive recursive function g such that

@ {alm(wls - - lwl) = [{g@} (w, - - -, wdl”
for all acew and all u,, ---, u, € UF. The proof of this assertion is same
as that of VIII 4.2 in Hinman [4] except for the case where {a} r(z) =
F@n{b}; r(n, ¢)). So we consider here only this new case. g is defined
by induction on the length of the computation of {a}], (). We assume
that g(b) is already defined and satisfies:

{bY (vl [2]7) = {g (D)} (v, I

for all u, ve U”. Also assume that {a}5,~(p) = F(An{b}.r(n, p,)). Let a: @

— U7 be a primitive recursive function such that |a(n)|" = n for all n. By

Lemma 1.4, the relation |u|" = n is F-recursive, and hence the function
B defined by

n if luff =n

Alu) = {T if |ul” > o

is partial F-recursive. Let y be a primitive recursive function such that

{rw)} () = FQ@np({w} (a(n), w))).
Such a 7y exists by virtue of Lemma 1.3. We set g(a) = 7(g(d)), where &
= (a)z-

Using (d), it is seen that w,[F] is an F-recursively regular ordinal (cf.
Hinman [4; VIII. 4.4]). From (c¢) and (d), we have that for all P C ",

(e) P is F-semirecursive iff it is w,[F']-semirecursive in F.

and thus
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(f) P is F-recursive iff it is o,[F]-recursive in F.

Every function defined on ,[F] and with constant value < w,[F] is w,[F]-

recursive: let <C w X o be a well-ordering on w which is F-recursive.
Then the function A defined by

h(n, g) = v iff n is the v-th number in the order <

is o,[Fl-recursive. If p is the length of <, then p = sup {A(n, g): necw}.
Thus the function with constant value p is w,[F]-recursive.

In view of (e), (f) and Lemma 1.6, we have (i) and (ii).

Let £ be an arbitrary F-recursively regular ordinal > w, and <Cw X
® be an F-recursive well-ordering. Then, by (c), <1is k-recursive in F,
and so < € # (x) by Lemma 1.6. Hence the order type of < is less than
k. Thus o,[F] < k. Q.E.D.

For any set A C w, we use Lg(o, A), M (s, A) and o,[F,A] instead of
Ly, 45(0), M v, 1(0) and o,[(F, A)], respectively. Relativizing the above lemma
to A, we have the following corollary.

CoroLLARY 1.8. For every set B C w, B is F-recursive in A if and
only if Be Ly(w,[F, A], A).

The superjump S(F) of F is a type 2 functional defined by
0 if e} ()| ,

1 otherwise .

&m@m={

Let e be an index such that

0 if Fla) =n,
1) otherwise .

{wmw={

Then F(a) = pn[S(F)(S'(e, n), «) = 0], and thus F is S(F)-recursive uni-
formly for F. An ordinal « is said to be F-recursively inaccessible if k is
F-admissible and is the limit of F-admissible ordinals < x. Recall that
7,[F] is the k-th F-admissible ordinal.

LemMMA 1.9. An ordinal k is F-recursively inaccessible if and only if
.[F] = k.

Proof. Let r be an F-recursively inaccessible ordinal. For each v <&
such that ¢,[F] < &, let f(v) = 7,[F]. As easily seen, fis X, on A4 (x). Sup-
pose that # < 7,[F], then domain (f) < k. This implies that range (f) € Ly(x)
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by 2 Replacement in #,(x). Hence there exists an F-admissible ordinal
o < k such that U range (f) < ¢. This is a contradiction, and we have
£ = t,[F].

The converse implication is trivial. Q.E.D.

LemMA 1.10. o,[S(F)] is the first F-recursively inaccessible ordinal.

Proof. Put x = o,[S(F)]. Since F is recursive in S(F), by a simple
application of the Recursion Theorem, we have a primitive recursive func-
tion f such that

{f(@} () = {a}(p)

Hence « is closed under all partial functions (oo, k)-recursive in F. Thus
x is an F-admissible ordinal. By VIII. 4.12 in [4], ¢ is the limit of F-
admissible ordinals < k. Let p be an arbitrary F-recursively inaccessible
ordinal. We want to show « < p. Using the Recursion Theorem, we can
find a primitive recursive function g such that

{g(a, &)} (m, p1) = {a}"(m, An{e};(n, p2)) .

The existence proof of g is quite similar to the proof of the Substitution
Theorem (cf. Hinman [4; VI. § 2]), so we consider only the following case
as an example:

{a}"(m, &) = FQj{b}(j, m, @) .
Assume that g(b, e) is already defined and satisfies
{8, Y, m, g) = {b}(J, m, An{e}i(n, p)) .

Since the predicate v < o is p-recursive in F, there exists an index d such
that

F(2j{g(b, e)}i(j, m, p)) if in{e}(n, p) is a total
{d}i(m, p) = function from o to o
1 otherwise .

Such a d may be computed from @, e and an index for g. Thus we let
g(a, e) be such an index d.

Now we claim that there is a primitive recursive function A such
that

{Ma, e)};(z) = S(F)a, in{e};(n, g)) .
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From this, by using the Recursion Theorem, we have a primitive recursive
function & which satisfies:

{k(@)}; (m) = {a}*(m) .

Therefore, as in the proof of Lemma 1.7, we see that o,[S(F)] < p.

We return to the proof of our claim. Recall that p is F-recursively
inaccessible. For each g < p, we let n(y) be the least F-admissible ordinal
larger than max (0, ). Then z is p-recursive in F, and

S(F)(a, in{e}(n, p)) = 0
<« {a}"(Anfe}j(n, ) |
<~ {g(a, &)} () |
<~ {g(a, )} () | -

The last clause can be written by

3¢ < n()R(g(a, €), , &)

where R is a relation (oo, 0)-recursive in F. This is a generalization of
the usual Enumeration Theorem (for the proof we may refer to Hinman
[4; VIII. 2.6]). Let ¢ be an index such that

0  if min{¢& < n(g): R(z, g, &)} < n(pe) ,
1 otherwise.

{M@m={

And let h(a.e) = S'(c, g(a, e)). Then it is easy to see that this 4 has the
desired property. Q.E.D.

§2.

In this section, we define F-degrees and the F-jump, which are gener-
alizations of hyperdegrees and the hyperjump. We shall extend Shoenfield’s
notation system for ,[F] to that for ,[S(F)], and generalize a result of
Richter [7].

DEFINITION 2.1. For any A, B, C w, A < B means that A is F-recur-
sive in B. This is a reflexive and transitive relation. Thus we can con-
sider F-degrees. That is, A and B have the same F-degrees if A < B
and B < A4, which we denote by A = ,B. We use deg »(A) to denote the
F-degree of A.

We use a, b, ¢, - - - as variables for F-degrees. al|b, a < b and a < b
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are defined as for Turing degrees.

DeriNITION 2.2. ADB={2n:necAlU{2n+ 1: neB}. When a=
deg ;(A) and b = deg (B), we denote the F-degree of A® B by a U b.
a U b is the least upper bound of a and 5.

DerFiniTION 2.3. The F-jump A’ of A is defined by
A = {eecw: S(F)e, K,) = 0} .

If a = deg ;(A), we denote the F-degree of A’ by «'.
From the following lemma, the above definition is well-defined.

LEmma 24. If A< B, then A’ < B. Moreover, A’ is many-one
reducible to B'.

Proof. Let e be an index such that K,(n) = {e}"(n, K;), and f be a
primitive recursive function such that

{f(@}"(K5) = {a}"n{e}"(n, Kp)) .
Then,
acA «—>fla)eB.
Thus A’ is many-one reducible to B'. Q.E.D.
THEOREM 2.5. For any F-degree a, a < a'.
Proof. Let A be such that a = deg, (A), and e be an index such that

0 if a(a) =0,
{e}(a, @) = .
) otherwise ,
Now we have
ae A<« {e}f(a, K,) | «—> {S'e, a)}"(K,) | «—> S'(e,a)e A" .
Hence A is many-one reducible to A’. Suppose that A’ < ,A. We let:

0 if S'(a,0)c A,
1 otherwise .

#a) = {

Then ¢ is partial F-recursive in A. Take an index d such that {d}"(a, K,)
~ ¢(a), then

#(d) | «— S'(d, d) ¢ A’ «— {d}*(d, K) t «—> $(d) 1.
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This is a contradiciton. Thus A’ £, A. Q.E.D.

Clearly A’ is F-semirecursive in A. If a predicate P(a) is F-semi-
recursive in A, then there is an index e such that

P(a) <> {e}"(a, K,) | <> S'(e,a) e A’ .

Therefore P is many-one reducible to A’. Consequently A’ is a complete
F-semirecursive-in-A set. We use 0 to denote the F-degree of F-recursive
sets. Then 0’ = deg, (U7).

THEOREM 2.6. If A is F-semirecursive, then the F-degree of A is 0 or
0.
Proof. Let f be a recursive function such that
acA<«—fla)e UT.

If A is not F-recursive, then sup {f(a)[": @€ A} = o,[F] by the Hierarchy
Theorem (Hinman [4; VI. 4.11]). From this, we have

ue U «<—>3a(ae A and |ul" < |f(@)).
By lemma 1.4, U” is F-recursive in A. Q.E.D.

THEOREM 2.7. For every A C w, 0 < degr (4) if and only if o[F] <
o,[F, Al.

Proof. Suppose 0 < degr(A). Let < C w X v be a well-ordering of
order type o,[F] which is F-semirecursive. Then < is F-recursive in A.
Hence o,[F] < o,[F, A]. Conversely, suppose that o,[F] < w,[F, A]. Then
there exists a ve U4 such that

lul” <{|v["4
for all ue U". From this we have
ue U «—|ulf <|v/"*.
By Lemma 1.4, U” is F-recursive in A. Thus 0’ < deg »(A). Q.E.D.
COROLLARY 28. Ifa <0, then a = 0.

Proof. By lemma 2.4, we see that ¢/ <a’. Take a set A C w such
that a = deg -(A). Then w,[F, A] = »,[F] by Theorem 2.7, so L.(w,[F, A], A)
€ Ly(w,[F, UF], UF). Since A’ is X, on Lg(w,[F, A], A), we have that A’ e
Ly(w,[F, UF], UF). Thus A’ <, U? by Corollary 1.8. Q.E.D.
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For any normal type 2 object F, Shoenfield defined a notation system
O~ for w,[F] and a hierarchy {HY: ae O} for F-recursive functions (see
Shoenfield [10]). We shall devote the remaining part of this section to
extending this system to that for o,[S(F)].

DerFiNiTION 2.9. For each ordinal, ¢, N and H"(a) are defined by
induction on ¢. (Till further notice, the superscript F will be deleted
throughout this section.) If ae N,, we let |a] =¢. Let C, = U {N,: c <g}.

Stage 0. N, = {1}. H(Q) = o.

Stage ¢ + 1. N,,, = {2*:aeN,}. H(2%) = {x e w: An{(x)}**(n) is total
and F(n{(x)}*““(n)) = (x)}.

Stage A(limit). Assume that N, is defined for all ¢ < A.

Case 1. There is an ordinal ¢ < 4 such that for some ae N, and e c o,

(1) 2n{e}"“(n) is total;

(ii) for all n, {e}?“(n)e C,;

(i) {e}*“(0) = a and|{e}*“(n)| < |{e}"“(n 4 1)|for all n;

(iv) 2= sup {|{e}¥“(n)|: new}.

Then, N, = {3-5°:3¢ < 1 [ee N, & a and e satisfy the above conditions
O—GI}.  HE*-5) = {x e w: (x), € H({e}" “((x)o))}-

Case 2. Case 1 does not hold, but there is an ordinal ¢ < 1 such
that for some ae N,, 7“2 C,, Let ¢ <2 be the least ordinal such that
7* ¢ C, for some ae N,. Then, N,= {7*:ae N,}, and H(7*) = {xcw: (x), €
C, & (x), € H((x))}.

Remark 2.10. (a) Except for Case 2 of Stage A, the definition is analo-
gous to that of Shoenfield [10]. We have avoided defining <,. But this
change is not essential as noted in Platek [6].

(b) C,, is the set of notations for ordinals ,[F] defined in Platek
[6; p. 260].

(0 NNON, =0if ¢ # .

(d) The function ¢ — {xcw: (x),€ N, & (x), € H((x),)} is 2, definable in
KP(F) + the Axiom of Infinity.

DerFiniTION 2.11. For any ordinal o:
O,={fi:necw}, where 0 =1and n+1=2", H, = o;

O, = U {Cpra:la| <a}, H,={xeow:(x)e0, & (x), € H{(x))}
for ¢ > 0.
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Let 0 = U{0,: ¢ is an ordinal}. We let |0,] = sup {|a|: a€0,}, and |0] =
sup {a|: a € O}.

Lemma 2.12 (Uniqueness Theorem). There exists primitive recursive
functions [ and g such that:

(i) if be O, then 2x{f(b)}*°*(x) is the representing function of the set
{ac0:|a| <|bl}, where b* = 2°;

(ii) if a, be 0 and |a| < |b|, then H(a) is recursive in H(b) with index
g(a, b).

Proof. The functions f and g are defined by the Recursion Theorem
over 0 as in Shoenfield [10]. All cases not involving a notation of the
form 7¢ can be treated as in [10] and we consider here only the new cases.

Case 1. a="T* and b is not of the form 7°: exactly as in Shoenfield
[10].

Case 2. a is not of the form 7¢ and b = 7%

(i) le| < |b]<>3x(a, x> € H(b)). By Shoenfield [10; (2), p. 104], the
right hand side of the equivalence is recursive in H(b").

(i1) In this case, |a| <|b|. Hence x ¢ H(a) <> {a, x) ¢ H(b), so H(a) is
recursive in H(b).

Case 3. a="T* and b= T

(i) As in Case 2.

(ii) Note that |a|<|b] iff |d| <|e| and that |a| = |b| iff |d| = |e|]. Since
le*| < |b], H(e*) is computable from H(b) as in Case 2, so by the induction
hypothesis it can be checked from H(b) whether |d| <|e| or |d| = |e|. If
|d| < |e], then

x € H(a) «— <a, x) ¢ H(b) ,

and if |d| = |e|, then H(a) = H(b). Thus H(a) is computable from H(b).
Q.E.D.

LemmA 2.13. There exists a primitive recursive function a @ b such that
for any a, be 0:

(i) a®beo;

(ii) |a® b| = max{al, |b};

(i) b#1—la|<|a® b]
Moreover for every ¢ < |0|:

(iv) a, be0,,,—>a®be0,,,.
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Proof. We define a ® b by recursion on be @ as follows:

1) a®@l=ua.

2 a®2> = 29,

(B) a® 3.5 = 3%®.5/wa:0:9 where p is an index of @ and 6 is a primi-
tive recursive function such that

{8(p, a, b, )}*“®(n) ~ a ® {e}*(n) .

Such a 6 exists by Lemma 1.1 and Lemma 2.11.
4) a® T =3™*.5"@n where r is a primitive recursive function such
that

TOnF1 if |a| < |7,
{m(a, BT ™ (n) = {7 D 2 if le|= |7 and n =0,
adn+1 if [a] = |7°| and n > 0.

Such a 7 exists by Lemma 2.11.

(5) In the case where b is not of the form 1, 2®° 3®1.5®z or 7®s,
we set a®@ b = 0.

(i)—(@iv) are easily proved by induction on b€ 0. Q.E.D.

COROLLARY 2.14. There exists a primitive recursive function B such that
for any ¢ < 0|, a€0,,, and any ec o, if {e}*'“ is a total function from o
into 0,.,, then p(a,e)e0,., and |{e}*“(n)| < |B(a, €)| for all neco.

Proof. Let d be an index of the partial function ¢ recursive in H(a)
defined by:

#(a, e, 0) ~ a, and ¢(a, e, n + 1) =~ ¢(a, e, n) D ({e}**(n) D 2) .
We let p(a, e) = 3%-55"@a9 Tt is easy to see that g has the desired pro-
perties. Q.E.D.

LeEmMmA 2.15. There exists a primitive recursive function h such that
for any o < |0| and any a€ 0,.,, Ax{h(a)}"(x, H,) is the representing function
of H(a).®

Proof. h is defined by recursion on @,,,. Except for the case where
a = 7 for some b, the definition is same as Shoenfield [10]. If a = 7°,
then a € 0, or H(a) = H,. If a€0,, then H(a) = {x: {a, x) € H,}. Therefore,
H(a) is recursive in 0, and H,. 0,is F-recursive in H, since 0,={x:3y{x, y)

2) We identify a set with its representing funection.
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€ H,} and F is normal. Thus H(a) is F-recursive in H,. Q.E.D.
Remark 2.16. We can take the above h such that
a€d,,, <> Ax{h(a)} (x) is total .
Thus 0,,, is F-semirecursive in H,.

LEmMA 2.17. For each o < |0|, there exists a primitive recursive func-
tion 6, and a partial recursive function y, such that if {2}"(a,, - -+, a,, H,) |,
then

(1) 0.z, <as, -+, @) €0,.,

(ii) {&as, -+, an H,) = 1,2, <ay, -+ -, @, HO,(2,{as, - - -, @)

Proof. Let 5 be the representing function of H,. Except for the case
where {2}7(a,, - - -, @,, 1) = 5(a,), 6, and x, are defined as in Shoenfield [10]
and we consider only this new case. If ¢ is a successor ordinal, then
there exists a, b e @ such that H, = H(7%). We let 6,(z,<a, ---,a,)) =T
and y,(z,<a,, - -+, @), @) = a(a,). If ¢ =|3°-5¢| for some b and d, then we
let e be an index such that

{e}mb)(o) = b and {e}mb)(n + ]_) = THEO @
Then it can be seen that 3°-5°¢d,,, and xe€ 0, iff |x| <|3°-5°. We

let 6,(z,<a,, - - -, a,)) = (3°-5°)*. By Lemma 2.12, there exists a partial re-
cursive function ¢ such that Axg(x, H((3°-5)*)) is the representing function
of H,. Let x,(z<a,  --,a,),a) ~ ¢(a;,«). In the case where ¢ = |7°| for

some b, by Lemma 2.12, we see that the set {x:|x| < ¢} is recursive in
H((7)*). Therefore there exists an index e such that if we put a = (7%)*,
then 3¢.5°¢0,,, and 0, = {x:|x| < [3*-5°]}. So we let 6,(2,<a,, ---,a,)) =
32.5° and y.(2,<ay, - -+, a,), ®) = #(a,, @), where ¢ is a partial recursive
function mentioned above. Q.E.D.

Remark 2.18. Examining the above proof, we see that if 4,(z, <a,, - - -,
ay)ed,,, then {z}"(a,, ---, a,, H,)|. From this and Remark 2.16, @,,, is
a complete set F-semirecursive in H,. Thus deg »(0,,,) = (deg -(H,)).

DerintTION 2.19. For each ordinal ¢ < |0|, we denote the F-degree of
H, by 0.

LemMma 2.20. For each o < |0], 0" = (0, and |0, .,| = w[F, H,].

Proof. Since 0,,,={a:31x{a, x) € H,,,}, it holds that 0, ,, is F-recursive
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in H,,. By Definition 2.11,
xeH,,; <> (x),€0,.; & (x), € H((x),) .
If (x),€0,,,, then
(%), € H((x)o) «—> {A((x)o)}"((x),, H) = 0,

where 7 is as in Lemma 2.15. Therefore H,,, is F-semirecursive in H,,
50 H,,; < 70,1
If ae0,,,, then the relation {(x, y):|x| < |y| <|a|} is a prewellordering
F-recursive in H, of order type |e¢| by 2.12 and 2.15. Therefore we have
that |a] < o,[F, H,], and |0,,,| £ o,[F, H,]. Conversely, let < C v X o be
an arbitrary well-ordering F-recursive in H,. Then, by Lemma 2.17, < is
recursive in H(a) for some ae@,,,, and hence the order type of < is less
than o,[H(a)], where o,[H(a)] is the first non-H(a)-recursive ordinal. Let
O#@ be the Church-Kleene notation system relativized to H(e). It is easy
to obtain a recursive function f such that if x e 0%, then f(x) € @,,, and
|x[F@ < |f(x)l. Therefore, o,[H(a)] < |0,..], so the order type of < is less
than |0,,,| and we have that o,[F, H)] <10,.,]. Thus o[F, H,] = 0,.,|.
Q.E.D.

THEOREM 2.21. |0] < o,[S(F)] and for any ¢ < |0|;
( i ) 09 =0 gnd 0V = (0(0))/;
(ii) 0 = sup{0®:v < g} if ¢ is a limit ordinal.

Proof. By induction on ¢ < |0|, we first prove that |0,.,| = 7,.,[F] if
6 <o and |0,,,| = 7,[F] if ¢ = 0, that |0,,,| < o,[S(F)], and that |0,| =
sup {¢,[F]: v < g} if ¢ is a limit ordinal.

Case 1. ¢ < w: it is clear if ¢ = 0. By the induction hypothesis, H,
={xew:|(x)] < 7,[F] and (x), € H((x),)} if ¢ > 0, and H, = w. Hence H, €
Ly(z,,,[F]) from Remark 2.10. (d). By Lemma 2.20, |0, ,,| = o,[F, H,] =, ,[F]
< o, [S(F)).

Case 2. ¢ 1s a successor ordinal > w: exactly as Case 1.

Case 3. o =|3*-5°| for some a and e: let &(n) = |{e}**“(n)|. Then |0,|
= sup {z;w[F1: n e o} < o,[S(F)] by the induction hypothesis. Since |a| <
o,[S(F)], we have that H(a) € Ly(w,[S(F)]) by Remark 2.10(d). Hence the
function n > 7., [F] is 4, on M (0,[SF)], so |0,] < 0,[S(F)]. By Lemma
1.10, |0,| is not F-recursively inaccessible, and therefore |0,| < z,[F]. By
Remark 2.10(d), H, € L(z,[F]), s0 |0,,1| = 7.[F] < 0,[S(F)] as in Case 1.
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Case 4. o = |7°| for some be @: put a = (7°)*, then by Lemma 2.12,
the set {x:|x| <o} is recursive in H(a). Hence there exists a function f
recursive in H(a) such that |f(n)| < ¢ for all new and ¢ = sup,., f(n).
Then |0,| = sup {r;o[F]: ne o} by the induction hypothesis. The rest is
as in Case 3.

(i) is clear from Lemma 2.20.

(ii) Let ¢ be a limit ordinal < |0|. If H, < A for all v <o, then
,[F] < o[F, A], so H, € Ly(o,[F, A], A). Thus H, < ;A. Q.E.D.

THEOREM 2.22. |0| = 0 [S(F)] and for any A C o™, A is S(F)-recursive
if and only if A is recursive in H(a) for some ae€ @.

Proof. If, o <|0|, then by Remark 210 and Lemma 221, H, e
Lo(0,[S(F)]). Hence each H(a) with a0 is S(F)-recursive. Thus if A is
recursive in H(a) for some a e @, then A is S(F)-recursive.

In order to show the converse implication, we define a primitive recur-
sive function 6 and a partial recursive function y such that if {z}5*"(a,,
-++,a,) ], then

(@) 0(z,<ay -+, a,))€0;

B 22 (@ -, @3, HO(Z, < -+, @) = (B5P(a, -+ -, @),

We define these functions by the Recursion Theorem. We consider only
the case where {2}5"(a,, - - -, a,) = S(F)(a,, im{w}5"(m, a,, - - -, @,)). Other
cases can be treated as in Shoenfield [10]. Note that the function 5 defined
in the proof of Corollary 2.14 has the following property: if @ € @ and {e}*‘®
is a total function from o into ¢, then f(a.e) € ¢ and |{e}*“(n)| < |B(a. €)|
for all » < w. By the induction hypothesis and the above note, we can
find a be? calculated from w, <a,, ---, a,) and index of 4 such that |6(w,
{m,a, --+,a,) <|b| for all m. By Lemma 2.12 and the induction hy-
pothesis, we can compute Am{w}**(m, a,, - - -. @,) from an index of y and
H(b). Hence {z}5*"(a,, - --, a,) is calculated from an index of y and H(7%).
So we may take 6(z, <a,, -- -, a,>) = 7"

As in Shoenfield [10], we can show that if A is S(F)-recursive, then
A is recursive in some H(e) with a € 0.

Suppose that ¢ = |0| < o,[S(F)], then for any S(F)-recursive set A, we
have that A e Ly (z,[F]). This is absurd. Q.E.D.

§3.

Iterating the superjump operation S to E, we can define normal type
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2 objects E,, E,, ---, E,, ---, E,. In this section, we consider the E,-degrees
and the E -degrees. The results in this section and the next two sections
can be easily extended to the JS5-degrees, where J5(a € OF) are the type
2 objects defined by Platek [6].

DErFINITION 3.1. A type 2 object E, is defined by recursion on n:
E,=FE and E,,, = S(E,) = {a € w*: {a(0)}**(Ama(m + 1)) | } .

We let E, = {(n,a): aec E,}.
It is well-known that E, in this definition is essentially same as Tugue’s
object E,.

DerFINITION 3.2 (Aczel and Hinman). For any ordinal «:

(a) « is O-recursively inaccessible iff ¥ > o and & is admissible;

(b) £ is n 4+ 1-recursively inaccessible iff « is n-recursively inaccessible
and the limit of n-recursively inaccessible ordinals < «;

(c) r is w-recursively inaccessible iff x is n-recursively inaccessible
for all n.

LeMma 3.4 (Aczel and Hinman [1]). For each ¢ < w, o,[E,] is the first
g-recursively inaccessible ordinal and for all P C o*:

(i) P is E,-recursive if and only if Pe L(w,[E,]);

(ii) P is E,-semirecursive if and only if P is X, on L(w,[E,]), where
L(v) is the set of all constructible sets of order < v.

DerFiNITION 3.3. For any A C w:
L0, A) = w;

Le + 1, A) = {A} U {x C L(s, A): x is first order definable over the
structure (L(e, A), € > with parameters from L(g, A)};

L@, A) = \J {L(o, A): ¢ < 2} if 2 is a limit ordinal.

In the case where A = 0, L(s, A) is simply denoted by L(s). Following
Sacks [9], we introduce a language Z(x, G) which is the syntactical counter-
part of L(x, A).

DeFINITION 3.5. Let £ be an admissible ordinal > w. Z(k) is the fol-
lowing language:

unranked variables: vy, v, -, Uy, -+

ranked variables: vg, vg, - -+, U, - -+ (0 < k);
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predicate symbol: ¢ ;

logical symbols: 7, V,13;

parentheses: (,).
Z(x, G) is the ramified language obtained by adding constant symbols G,
n(n e w) and the abstraction operator ~ to Z(x). A set C(s) of constant
terms of #(x, G) is defined by recursion on ¢:

C0) = {A: neow};

Clo+ D ={2¢(x", ¢, - -+, )t €, - -+, ¢, €Ug, C(x) and $(x°, 3y, « -+, ¥n)
is a formula of Z(r) such that all quantified variables are of rank < ¢};

CA)=U{C):0e < 2} if 2 is a limit ordinal .

Let C= U{C(s): ¢ < r}. The atomic formulas are of the form sct where
s and ¢ are variables or elements of C. A formula of Z(x, G) is said to
be ranked if it has no unranked quantifiers. If ¢ is a ranked formula or
a formula of the form (3v,)¢, where ¢ is a ranked formula, then ¢ is said
to be a 2, formula of #(x, G).

For each ce C, p(c) is the least ¢ such that ce C(s). If ¢ is a ranked
sentence of Z(k, G), then we let p(¢) be the greatest element of {o:(3x7)
occurs in ¢} U {p(c): ¢ occurs in ¢}.

All the above syntactical notions are 4; on L(t). For any A C w,
Z(k, G) is interpreted by L(k, A) as usual. For each element of L(x, A) is
denoted by an element of C. In particular, A is denoted by G. We identify
2° with P(w), the power set of w, and often use L(x,f) in place of L(x,

{n: f(n) = O)).

DeriniTION 3.6. We use p, g, r, - - - to represent finite sequences of 0’s
and 1’s. The Cohen forcing relation p |-, ¢ is defined as usual. For
example,

PlF.fieG<«—>n<Ih(p) and p(n) =0 .

If a real fe2° is generic with respect to this relation |—,, we say that f
is a Cohen real over L(x). That is, for every sentence ¢ of Z(k, G), there
exists a p C f such that p |-, ¢ or p |, 14, where p C f means that f is
an extension of p.

Let x be a countable admissible ordinal > w. The following lemma is
proved in the standard way, so we omit prove it.
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LemMa 3.7. (i) For any p, there exists a Cohen real f over L(x) such
that p C f.

If f is a Cohen real over L(k), then:

(i) L(x, f) = ¢ iff ap(p € f and p |-, ¢);

(iii) L(x, f) is an admissible set and f ¢ L(x).

LEmmA 3.8. Let v and 2 be admissible ordinals such that o < r < A.
If f is a Cohen real over L(R), then it is also a Cohen real over L(k).

Proof. For each sentence ¢ of L(x, G), let ¢* be the ranked sentence
of #(2, G) obtained from ¢ by replacing each occurrence of an unranked
quantifier (3x) with a ranked quantifier (3x). Then for any p, p |, ¢ iff
p 6% If fis a Cohen real over L(1), then for each sentence ¢ of Z(x, G),
there exists some p C f such that p |-, ¢* or p |, 1¢*. Thus f is a Cohen
real over L(k). Q.E.D.

Definition 3.2 and Lemma 3.3 can be relativized to any fe 22,

THEOREM 3.9. Let ¢ < w. If f is a Cohen real over L(w,([E,]), then
degz,(f) > 0 and o/|[E, f] = w,[E,].

Proof. From Lemma 3.3. (i) and Lemma 3.7. (iii), it is clear that
degy, (f) > 0. By the relativized form of Lemma 3.3, w,[E,f] is the first
g-recursively-in-f inaccessible ordinal. In order to show that o[E,, f] =
o,[E,], it suffices to prove that for any n-recursively inaccessible ordinal.
£ < W, if f is a Cohen real over L(x), then £ is an n-recursively-in-f in-
accessible ordinal. We show this assertion by induction on n. In the case
where n = 0, it is obvious from Lemma 3.7 (iii). Suppose that x is n+4 1-
recursively inaccessible. Then r is n-recursively inaccessible and there
exists a sequence k, < £, <---< k;, <--- of n-recursively inaccessible ordi-
nals such that « = sup {¢,: { e w}. By the induction hypothesis and Lemma
3.8, £ and all k, are n-recursively-in-f inaccessible ordinals. Thus £ is an
n + 1-recursively-in-f inaccessible ordinal. Q.E.D.

DeriNiTION 3.10. We say that a finite set {f,, ---,f,} € 2* is F-inde-
pendent if f; £ {fi, -+ fisrs frary - - - fny for alli. A set X C 2° is F-inde-
pendent if all finite subsets of X are F-independent.

TaEOREM 3.11. For each ¢ < w, there exists an E,-independent set with
cardinality of the continuum.

Proof. We set £ = w,[E,]. We consider the ramified language Z(x, G, - -,
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G,) defined in the same way as Z(x, G). We can extend the forcing relation
|-, to the language Z(x, G, ---, G,). We denote this extended forcing
relation by {p,, - - -, p.) " ¢. It is well-known (cf. [11]) that if {f,, -- -, f.>
is generic with respect to |7, then

(1) each f; is a Cohen real over L(k);

2 fieLsfi, -+ ficss fosrs -+, fo) for all i;

@) L,f, ---,f,) is an admissible set.
Let 6, be the sentence of Z(x, G, ---, G,) defined by:

n

0. = /\ [Gi € L(Gu Tty Gi-—l’ Gi+17 ) Gn)]

=1
Let P be the set of all finite sequences of 0’s and 1’s. For any p,, - - -, p, € P,

there are reals f, ---,f, such that p, Cf, ---,p. Cf, and {f,, ---,f> is
generic with respect to|—". Then L(x,f,, ---,f.) =0, by (2). Hence there

are QD tt qn eP SUCh that P - q; - ‘s Pn - (¢ £% and <q19 ) Qn >“_:Len'
Thus we have proved the following (4):

(4) (Vpu ',Vpnep)(a%, aqnep)[plcql& &pncqn&<q17 Tty
|2 0,1

Let (¢?:iew) be an enumeration of all sentences of ZL(x, Gy, - - -, G,).

We define a p,e P for each se P.

Let pe, = <.

Assume that all p, with IA(s) = n are already defined. Put m = 2**,
By (4), we can find incompatible extensions p? and p: of p, such that
<p20 ,,,,, 0)s pzo ----- 0y ‘yp%,.--,:), ph ----- 1}>H__zn am’ where <0’ ) O>’ ) <1’ ] 1>
is the enumeration of {se P:[h(s) = n} in the lexicographical ordering.
There exist extensions q! of p! (lA(s) = n,i < 1) such that for each k< n

and for any combination gq,, - - -, g of ¢¥s such that ¢, D py,...0 - =+, D D
9, (K0, - -+, 0>, <<+, (1, ---, 1) is the enumeration of {tc P: [A(f) = £} in
the lexicographical ordering), {g,, - - -, guy decides ¢@, ---. %% We set

Dswiy = q, where sx¢ is the concatenation of s and ¢.
Clearly {p,:se P} defines a perfect set A C 2. It is easy to verify
that A is E,-independent. Q.E.D.

Lemma 3.12. If f is a Cohen real over L(w[E,]), then fO0 =g, f,
where O and f’ are the E -jumps of 0 and f, respectively.

Proof. Put k = w|E,]. It is trivial that f® 0 <z, f. Let 6(x) be a

3) In any forcing relation [~ we say that p decides ¢ if p I~ ¢ or p [—"14.
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2, formula of Z(x, G) such that
g’ = {neo: Lk, g) F 6(n)}
for all g with o,[E,, g] = #. Then,

nef «<— @p C flp|—.6(m)] .
Since {{p, n):p|-.0(n)} is 3, on L(x), we have that f’ <, f® 0. Q.E.D.

THEOREM 3.13.2 There exist E,-degrees a and b such that (a U by =
a UV and a|b.

Proof. Put r = o,[E,]. Let {f,g> be generic over L(x) with respect
to|2 Then both f and g are Cohen reals over L(x). Put a = degy, (f)
and b = degy, (g), then a|b (see the proof of Theorem 3.11). It is clear
that @/ U¥ < (@aUb)y: Since P X P~ P in L(x), f® g is a Cohen real over
L(x) (¢f. [11]). By Lemma 3.12, (aUb) = (aUb)UV = aU@BUY) =aUb’ <
a Ubl. Thus, @ UV = (aUb). Q.E.D.

Remark 3.14. We can take the above a and b such that a,b < 0’ (see
the proof of Theorem 3.16).

An admissible ordinal « is said to be projectible into 1 if there exists
an injection from x into A which is 4, on L(x). The least 2 < ¢ such that
£ is projectible into 4 is called the projectum of r and denoted by #*. An
admissible ordinal « is called a recursively Mahlo ordinal if every closed
unbounded subset of x# which is 4, on L(x) contains an admissible ordinal.
Aczel and Hinman [1] showed that every w,[JS] is less than the first re-
cursively Mahlo ordinal > w.

LemmA 3.15. If « is less than the first recursively Mahlo ordinal > o,
then r is projectible into .

Proof. If not, then «* is a recursively Mahlo ordinal > w, which is
a contradiction (see Barwise [2; V. 7.25]). Q.E.D.

THEOREM 3.16.Y For each o < w, there are E,-degrees a and b such
that a UV < aUb < 0.

Proof. We put £ = w,[E,]. Let 6(x) be a 2, formula as in the proof
of Lemma 3.12. We will construct two Cohen reals f and g over L(x) such
that f/ D g’ <;, P g <z 0. Let {(¢,: ncw)eL(x*) be an enumeration of

4) These are analogues of Spector’s results (see Spector [12]).
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all sentences of #(x, G), where r* is the first admissible ordinal larger
than k. Such an enumeration exists because x is projectible into w by
Lemma 3.15. By recursion on n, we define two sequences {(p,:necw) and
{g,: new) of forcing conditions.

Stage 0. p, = qo = {).

Stage 2n + 1. Assume that p,, and gq,, are already defined and have
the same length. Let p’ be an extension of p,, such that p’ decides g¢,,,
say p’ = pn.xs. Put ¢ = q,,xs. Let ¢’ be an extension of ¢’ which decides
&uny 82y @7 = @'«t. We put p” = p’xt. Then it is clear that both p” and
q’ decide ¢,,. See whether there exists an extension p of p” such that

bl—.0(m) .

If so, let p be the least such extension. Define:

DPonsi = P(0) and q;,,, = q"*ux(1),

where p = p”xu. If not, define:
Poni1 = p//*<1> and Qons1 = q”*<0> .

Stage 2n + 2. The definition for stage 2n - 2 is as for Stage 2n + 1
with the symbols p and ¢ interchanged throughout.

It is easy to see that the above constructions of p, and g, are ac-
complished in L(x*) since {{p,¢>:p|—.¢} is a set in L(x*). We let f=
U{p.:neco}and g =U{g,: ncw}. Then f and g are Cohen reals over L().
Let iy, 2, - - -, I,, - - - be the members of {i € w: f({)== g (i)} in increasing order.
Then,

ff={necw: Lk f)E6n)} ={neco: @i, =0} .
Hence, f/ <5, D@ g <z, 0. Similarly, g’ <, f® g <. 0. Q.E.D.

COROLLARY 3.17. There exist E -degrees a and b such that
(i) d UV +~(aUb);
(ii) a<0,b<0 andaUb=20.

Proof. Let a and b be as in Theorem 3.16.

(i) dUb =aUb<(aUb).

(i) Since @’ < a U b, we see that ¢/ < a U b and hence a U b = 0.
If a =0, then 0 = a’ < 0. This is a contradiction. Q.E.D.
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§ 4.

In [3], Gandy and Sacks constructed a minimal hyperdegree by the
forcing method with perfect sets. We shall extend this result to minimal
JS-degrees. As in the preceding section, we shall consider only the cases
where ¢ < o.

DerFiNtTION 4.1. A set P of finite sequences of 0’s and 1’s is called a
tree if pe P& q C p— qe P, where ¢ C p means that p is an extension
of q. A tree P is said to be perfect if pe P—3q, reP[pC q&pCr&gq
and r are incompatible]. For each perfect tree P, we denote the set {f:
(vn)f(n) e P} by [P].

Let £ be a countable admissible ordinal > » which is projectible into
o. We use P,Q, R, --- to represent perfect trees in L(x).

DeriniTION 4.2 (Gandy and Sacks). For any ranked sentence ¢ of
ZL(, G),

(i) P~ ¢ iff (vfe[PDL(,f) E ¢.
For unranked sentences ¢ and ¢:

(ii) P~ 7 ¢ iff for all subtrees @ of P, Q|- ¢;

i) Pl—¢\ ¢ iff Pl—¢ or Pl—¢.
If ¢(x°) and ¢(x) are unranked formulas, then:

@iv) P | @x)¢(x") iff P |— ¢(c) for some c e C(o);

(v) P @x)é(x) iff P |— ¢(c) for some ce C.
We say that a real f is Sacks over L(x) if for any sentence ¢ of Z(x, G),
there exists a perfect tree P in L(x) such that fe[P] and P decides ¢.

Lemma 4.3. The following relation Force; is X, on L(x):
Force; (P, ) <> P is a perfect tree in L(x) & ¢ is a X, sentence of
Lk, G) & P |— ¢.
Proof. From clause (v) of 4.2, ranked ¢’s need be considered. Since
£ 1s projectible into w,
L(x) &= every set is countable .

Hence for any set x e L(x), there exists a set A € L(x) N P(w) such that x¢
L(w,[A], A). Let &(x, y, 2) be a 2, formula such that for any A € L(x) N P(v),
if Pe L(w,[A], A) and ¢ is a ranked sentence of Z(r, G) with p(¢) < w,[A],
then

L(w,[A], A) = O(P, 4, A) iff vfe[P] L(w[ALf) = ¢.
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For the existence of such a formula @, see Gandy and Sacks [3; Lemma 1],
where it is proved that if Pe L(w,) and ¢ is a ranked sentence of #(v,, G),
then vfe[P] L(w,f) = ¢ is a II} relation of P and 4. It is well-known
that every I} relation is X, on L(w,). Relativizing this result to A4, we
can find a required 2, formula &(x,y, 2).

Then for any P and any ranked sentence ¢, we have:

P |- ¢ iff @A e L(x) N P())[P, ¢ € L(w,[4], 4) & L(w,[A], A) = (4, P, )] .

Thus the relation P |— ¢ restricted to ranked sentences ¢ is 2, on L(x).
Q.E.D.

LEMMA 445 (V)(VP)@Q C P)[Q decides 4].

Lemma 4.5 If f is a Sacks real over L(x), then:
(1) L f) = ¢ iff @P)[fe[P] and P |~ ¢];

(ii) L(x, f) is admissible and f ¢ L(x);

(i) ge Lk, f) —> ge L(k) or f € L(x, 8).

For every perfect tree P in L(x), Sacks defined the local forcing relation
p |- ¢ where pe P and ¢ is a sentence of Z(r, G) (see Sacks [9: 2.8]). We
say that a real f is P-Cohen over L(x) if f is generic with respect to |-7.
Obviously, every P-Cohen real belongs to [P].

LemMA 4.6. If & is o-recursively inaccessible and P is a perfect tree in
L(x), then there exists a perfect tree P*C P in L(x*) such that for anyf e
[P*1, f is P-Cohen over L(r) and r is o-recursively-in-f inaccessible, where
k* is the first admissible ordinal larger than k.

Proof. Note that {{p,¢>:pe P and p |-7 ¢} € L(x*). Let {(¢,: ncw)e
L(x*) be an enumeration of all sentences of £(x, G). Such an enumeration
exists since x is projectible into w. For each se Seq (2), we define p,e P
by recursion on lh(s), where Seq (2) is the set of all finite sequences of 0’s
and 1’s.

Let poy = ().

Assume that lh(s) = n and p, is already defined. Let p,. € P and
Daay € P be incompatible extensions of p, such that both p.., and p.q
decide ¢,.

We set P*={pe P:(3se Seq (2)[p C p, or p, C pl}. Then P* is a per-
fect subtree of P. Obviously the above construction of p, (s € Seq (2)) can

5) See Gandy and Sacks [3].
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be performed in L(x*). Thus. we see the that P*e L(x*). By a similar
proof to that of Theorem 3.9, x is o-recursively-in-f inaccessible for all
fe[P*]. Q.E.D.

TeHEOREM 4.7. For each ¢ < w, there exists a Sacks real f over L(w,[E,])
such that w[E,, f] = o,[E,].

Proof. Put £ = o,[E,]. In the case where ¢ = 0, the existence of such
an f is due to Gandy and Sacks [3].

Now we consider the case where ¢ =m + 1 for some mew. Let kg, <
£ < -+ <k, <--- be a sequence of m-recursively inaccessible ordinals
such that r = sup {r,: new}, and {(¢,: n € w) be an enumeration of all sen-
tences of Z(x, G). We define a sequence {(n;:icw) of natural numbers
and a sequence {P;:icw) of perfect trees in L(x). We let n, = 0 and P,
= Seq (2). Suppose that n, and P, are already defined. Let n,,, is the
least n such that n > n, and P, e L(x,). By Lemma 4.6 and Lemma 3.15,
there exists a perfect tree @ C P, such that @€ L(x) and «,, is m-recur-
sively-in-f inaccessible for all fe[@]. Then, by Lemma 4.4, there is a
perfect tree R C @ such that Re L(x) and R decides ¢,. We let P,,, = R.
Since 2° is compact, there exists an fe N{[Pl:icw}. It is easy to verify
that such an f has the desired property.

In the case where ¢ = o, let £, <k, <--.-<&k,<--- be a sequence of
ordinals such that each &, is n-recursively inaccessible and r=sup{«,: n € o}.
By the same argument as above, there exists a Sacks real f over L(x) and
a subsequence {x,,:icw) of {x,:necw) such that k,, is n,-recursively-in-f
inaccessible for each iew, so & is w-recursively-in-f inaccessible.

Q.E.D.

In the above proof, every fe N{[P]:icw} is P,-Cohen over L(x,,) and
hence does not satisfy the minimality condition:

ge L(Icnvf) —> g€ L(Eni) or fe L(xnn g) .

But we can construct a sequence (P;:i € ») such that the minimality con-
dition holds as follows: by induction on ¢ < w, we can show that for every
o-recursively inaccessible ordinal « less than the first recursively Mahlo
ordinal and for every perfect tree P ¢ L(x), there exists a perfect tree @ C P
such that @ € L(x*) and every fe [@] is a Sacks real over I(x). Then the
construction of (P;:i¢ ) is similar to that in the proof.

Moreover we can construct {P;:ie€w) such that N{[P]l:icw} is a
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perfect set, and so there are 2™ f’s which satisfy the condition of Theorem
4.7.

COROLLARY 4.8. For each ¢ < w, there exists a minimal E,-degree a
such that a < 0.

Proof. Let f be a Sacks real over L(w,[E,]) such that o,[E,, f]=0,[E,].
As is known from the proof of Theorem 4.7. we can take such an f so
that fe L(w,[E,]*). We let a = deg ;,(f). Then a is a minimal E,-degree
by Lemma 4.5, and a < 0/. By Corollary 3.17, there is an E,-degree between
0 and ¢’. Thus we see that a < 0. Q.E.D.

§5.

In this section. we shall prove that for each ¢ < w, the set {0:y <
w[E,.] of E,-degrees does not have the least upper bound. In the case
where ¢ = 0, this result was proved by Sacks in [9]. We use the forcing
method with absolutely pointed perfect trees.

DerFiNniTION 5.1. A perfect tree P is said to be E, -pointed if:

(vfe[PDIP <g,f1.

When we require that:
(vfe [PDIPe L(w[E,, D],

we say that P is absolutely E,-pointed. Obviously, absolute E,-pointedness
implies E, -pointedness.
Let £ be a o-recursively inaccessible ordinal projectible into w.

Lemma 5.2. Let Pe L(k) be an E,-pointed perfect tree and X e L(x) be
a subset of o such that P <;, X. Then there exists an absolutely E,-pointed
perfect tree Qe L(x) such that @ C P and X <, Q.

Proof. By Proposition 2.12 of Sacks [9], there is a Ye L(x) N P(w)
such that X is recursive in Y and Y e L(w,[Y]) C L(w,[E,, Y]). Hence there
exists an E,-pointed perfect tree Qe L(k) such that Q C P and Q@ =, Y
(Sacks [9;2.3]). Take an fe[Q] to see that @ is absolutely E,-pointed.
Since @ is E,-pointed, we see that w,[E,, @] < w,[E,, fl. On the other hand,
Qe Ll[E, Y]). Since @ =5, Y and Ye L(w,[E,, Y]). Consequently, ¢
L(w,[E,, f]). Q.E.D.
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LeMMA 5.3. The set of all absolutely. E,-pointed perfect trees in L(k) is
2, on L(k).

Proof. Firstly we shall show that for each ¢ < , there exists a ranked
formula 6.(x) of #(x, G) such that

Lk, f) E 6.(0) «—> v is o-recursively;in-f inaccessible

for all fe2® and v < 7. As an example, we consider the case ¢ = w.
Let @ be the predicate defined by

O, f)<—>v >0 & v is a limit ordinal & Vv¢(¢ is an axiom
of KP——> L(v,f) = ¢) .

Then &(v, f) says that v is O-recursively-in-f inaccessible. Note that all
quantifiers in @(v, f) can be restricted to L(z, f/) whenever v < z. Similarly.
for each n, the predicate which says that v < r and vy is n-recursively-in-f
inaccersible is represented by a bounded formula all of whose quantifiers
are restricted to L(z,f). Let ¥ be the following predicate:

U(s,n,v,f,i)<—> s is a function & dom(s) = (n+ 1) X 7 & rng(s) < 2
&iec2&s(n,) =i&va <[s0,x) = 0« D, )]
&vji<nva<z[s(j+ 1, a)=0<«—>s(j,a) =0
&vp<aar<af=7&s(r)=0].

Then it is easily seen that for all v < z and fe2°,

v is w-recursively-in-f inaccessible
«—>vn < wise Lz, ¥ (s, n,v,1.0).

From this, we can obtain a required ranked formula 6.(x). The sequence
{0.(x): = < k) is X, on L(x).

Now, for each perfect tree in L(x), we let A(P) = min {v < x: P e L(v)}.
Obviously, A is 2, on L(x). Let ¢, be a ranked sentence of #(x, G) such
that for any fe 2°,

Lk, f) = ¢p <—> Vv < A(P) (v is not ¢-recursively-in-f inaccessible) .

Such a ¢, can be constructed using 6,,(x). Therefore, the function P
¢p is X, on L(x). By the definition of A(P), we have:

L(x, f) = ¢p <—> MP) < o/[E,, f]
«~—> PeL(wlE,,f]) .
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Consequently, for every perfect tree P in L(k),
P is absolutely E,-pointed <« vfe [PlL(x,f) = ¢p .

But the right hand side means P | ¢, see Definition 4.2). Thus the lemma
follows from Lemma 4.3. Q.E.D.

We define a forcing relation P|}|—°¢ as in 4.2 except that P varies
through absolutely E,-pointed perfect trees in L(x). We use P,Q,R, ---
to represent absolutely E,-pointed perfect trees in L(x).

DeriniTION 5.4. We say that a real f is ¢-Sacks over L(x) if for each
sentence ¢ of Z(x, G), there exists a P such that fe[P] and P decides
¢G.e., P|—"¢ or P|—"T4).

It is well-known ([8]) that the above definition is equivalent to: f is
o-Sacks real over L(x) if and only if fe U {[P]: Pe D} for any dense set
D of absolutely E,-pointed perfect trees which is definable in L(x), where
we say that D is dense if (vP)@@)[Q@eD & Q C P].

From 4.3 and 5.3. we obtain the following lemma.

Lemma 5.5. The relation P |—° ¢ restricted to X, sentences ¢ of Z(x, G)
is 2, on L(x).

LEMMA 5.6. (Vo) (VP)AQ)[Q C P & Q decides ¢].

For the proofs of this lemma and the following lemma, see Sacks [9].
Although his proofs are for hyperdegrees, we can easily modify them for
E,-degrees by using Lemma 5.2.

Lemwma 5.7. If f is a o-Sacks real over L(x), then:

(1) L, f) E ¢ if and only if @QP)[fe[P] and P|—° ¢];

(ii) L(x, f) is an admissible set and [ ¢ L(x);

(i) geL(x,f)—> ge L) or @X)[Xe L) N Plw) and f <z, &, X].

TueoREM 5.8. If r is a o-recursively inaccessible ordinal projectible
into o, then there exists a ¢-Sacks real f over L(x) such that o/[E,, ] = «.

Proof. The proof is similar to that of Theorem 4.7, but we must ar-
range for all perfect trees to be absolutely E,-pointed. Let § be an arbitrary
ordinal less than x. Then, by Lemma 5.2, the set {P e L(x): P is absolutely
E -pointed and § < o,[E,, P]} is dense and definable in L(x). Consequently,
for every o-Sacks real f over L(x), it holds that x < w,[E,,f]. Hence we
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need to show the existence of a o-Sacks real f over L(x) such that ¢ is
g-recursively-in-f inaccessible. In the case where ¢ = 0, it is clear from
Lemma 5.7. We consider the case where ¢ = m -4 1 for some m < w. Let
8, <8, <---<8,<--- be a sequence of ordinals such that x = sup {5,: n € w}.
For each n < w, we define an m-recursively inaccessible ordinal &, and
an absolutely E, ,,-pointed perfect tree P, by recursion on n. Let P,=
Seq (2) and £, = min {v < ¢:v is m-recursively inaccessible}. Assume that
k, and P, are already defined and that «, = min {v < x: v is m-recursively
inaccessible and P, € L(v)}. By Lemma 4.6, there exists a perfect tree @ C
P, such that @ € L(x}) and &, is m-recursively-in-f inaccessible for all fe¢
[@]. Note that «; < w,[E,.,,, f] for all fe[P,] because P, is absolutely
E, . .-pointed. Consequently, @ is also absolutely E,,,-pointed. In view
of Lemma 5.2, there exists an absolutely E,,,-pointed perfect tree R C @
such that Re L(k) and 6, < w,[E,,,, R]. From Lemma 5.6, we can find an
absolutely E,, . -pointed perfect tree P,,, C R such that P,,, ¢ L(x) and P, .,
decides ¢,, where ¢, is the n-th sentence of #(x, G) in an enumeration
of all sentences of #(x, G) which we fix throughout the proof. We set
kney = min {v < k: v is m-recursively inaccessible and P,,, € L(v)}.

It is easy to verify that for any fe N {[P,]: n <o}, f is an m + 1-Sacks
real over L(x) and each k, is m-recursively-in-f inaccessible, and hence &
is m + 1l-recursively-in-f inaccessible.

By the same way as in the case where ¢ < w, we can construct a
sequence {P,: necw) of absolutely E,-pointed perfect trees and a sequence
{k,: new) of ordinals such that x = sup {¢,: n € w}, and that for every f ¢
N{[P,]: new}, f is an w-Sacks real over L(x) and each &, is n-recursively-
in-f inaccessible. Hence, o,[E,, f] = £ for all fe N {[P.]: nc o). Q.E.D.

THEOREM 5.9. For each ¢ < w, there are E,-degrees a, and a, such that:
(i) 0% <a, for all v < wl[E,,] and all i £ 1;
and that for any E,-degree b:
(ii) d<a and b < a,—> (W < o/[E,,. Db < 0*];
(i) (vi < DAy < olE, Db <a,—> b < 0]

Proof. Wesetc=w,[E,,,] and consider the ramified language Z(x, G,, G,)
defined in the same way as Z(«, G). For each pair (P, P,> of absolutely
E,-pointed perfect trees in L(x) and for each sentence ¢ of Z(k, G,, G,), we
define a forcing relation (P, P,) |’ ¢. For ranked sentence ¢, (P, P,>
I ¢ iff (Vf, € [P)(VS: € [PDIL(k, fo, /) = ] For unranked sentences, the
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definition of |- is similar to 4.2. It is well-known (cf. [11]) that if {f,, f>
is generic with respect to |, then

(1) f, is o-Sacks over L(r) (i = 0, 1);

(2 L, f N Lk, f) = L(x).
By the same way as Theorem 5.9, we see that there exists a pair {f,, f,)
of reals such that (f,,f,> is generic with respect to | and w[E,,f] =
o [E,, f] = k. We set a, = degy, (f;) and a, = degy, (f;). Recall that 0% =
degz, (H,), where {H,: v < x} is the hierarchy for E,-recursive sets obtained
in §2. By Lemma 5.7, 0 <a, v <k,i1<1). If 5 <a, and b < a,, then
b < 0 for some v <t by (2). Thus we have proved (i) and (ii). (iii) is
clear from Lemma 5.7. Q.E.D.

CoroLLARY 5.10. For each ¢ < w, there are E,-degree a, and a, such
that {a,, a)} does not have the greatest lower bound.

Proof. LET a, and a, be as in Theorem 5.9. If b < a, and b < a,, then
b <0 for some v < wlE,,]. Then 5 < 0**" and 0°Y < aq, (=0,1).
Thus b is not the greatest lower bound of {a,, a,}. Q.E.D.

CoroLLARY 5.11. For each o < o, the set {0¥:v < o/[E,, ]} does not
have the least upper bound.

Proof. Let a, and a, be as in Theorem 5.9. Then each a, is an upper
bound of the set {0%:v < o,[E,,]}. If 8 < a, (i =0,1), then  can not be
an upper bound of {0*:vy < w[E,,,]} as is known from the proof of 5.10.

Q.E.D.
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