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LOCAL DEFORMATIONS OF ISOLATED SINGULARITIES
ASSOCIATED WITH NEGATIVE LINE BUNDLES
OVER ABELIAN VARIETIES

HIDEO OMOTO and SHIGEO NAKANO

Introduction

Let V be an analytic space with an isolated singularity p. In [1]
M. Kuranishi approached the problem of deformations of isolated singu-
larities (c.f. [2] and [3]) as follows; Let M be a real hypersurface in the
complex manifold V — {p}. Then one has the induced CR-structure °T"/(M)
on M by the inclusion map i: M — V — {p} (c.f. Def. 1.6). Then deforma-
tions of the isolated singularity (V,p) give rise to ones of the induced
CR-structure °T”(M). He established in §9 in [1] the universality
theorem for deformations of the induced CR-structure °7”(M), when M
is compact strongly pseudo-convex (Def. 1.5) of dim M = 5. Form this
theorem we can know CR-structures on M which appear in deformations
of °T"(M).

Here we assume that V is 1-convex in the sense of Andoreotti-Grauert
such that dim; V = 3 and that M is a compact real hypersurface in V —
{p} defined by strictly plurisubharmonic function p on V such that o =0,
that is, M = {ge V; p(@) = c}, here ¢ is a constant. Then as Prof, V = 2,
we find in terms of [2] that the infinitesimal deformation H(V, 0) (c.f. [1])
of the isolated singularity (V, p) is regarded as a subspace of the infini-
tesimal deformation H'(M, °T"(M)) of °T"(M) (cf. §3). Therefore in
order to solve the problem of local deformations of (V,p), it is enough
to determine the infinitesimal deformations H(M, °T"(M)) and complex
structure on a neighborhood of M in V — {p}, which induce CR-structures
on M appearing in deformations of °T"(M).

In this paper we shall prove, using the above Kuranishi’s theory, the
following.
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THEOREM 5.1. Let T be an abelian variety of dimT =2 and B a
negative line bundle over T. Let (B, T) be the isolated singularity defined
by the exceptional variety O(T) in B, here O(T) denotes the zero section of
B. Then local deformations of (B, T) are also isolated singularities (B, T"),
where T' and B’ are abelian varieties and negative line bundles over T,
respectively.

Remark. (B, T) is 1l-convex with dim,B = 3.

The above theorem has been essentially proved by M. Schlessinger
[2]. However we want to publish this paper as an example of applications
of Kuranishi’s theory to deformations of isolated singularities.

In §1 we describe basic notions of CR-structures and in § 2 determine
the induced CR-structure °7”(B,) on the unit sphere bundle B, of the
negative line bundle B over the abelian variety 7 using a normalized
automorphic factor for B. In § 3 we calculate the infinitesimal deformation
H(B, °T"(B)).

In §4 and §5 we show that H(B, °7""(B)) has basis which are inte-
grable CR-structures and that these integrable CR-structures are induced
from some negative line bundles B’ over abelian varieties 7".

§1 Basic definitions

Let M be a real oriented smooth manifold of dimension 2n + 1, n =
1,2, --+, and let °T” be a subbundle of the complexified tangent bundle
CTM. Let E be a vector bundle over M. We denote by I'(E) the set of
C~-sections of E.

DEerFiNtTION 1.1. The subbundle °7” is called an almost CR-structure
on M, when the following condition is satisfied;
1.1 °T" N °T"=0, dim; °T” =n.
Moreover an almost CR-structure °7T" is a CR-structure, provided that

°T’” is integrable in the sense of Frobenius, i.e. if Z,, Z, are sections

1.2
-2 of °T”, then so is their Lie bracket [Z,, Z,].

Now let °T” be a CR-structure on M. Since °T” is the complex
vector subbundle of CTM of complex fiber dimension n and is invariant
under complex conjugation, there is a real line bundle F of T'M such that
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1.3 CTM = °T" ® °T" ® CF.

From now on we fix this decomposition of CTM. Put

1.4) T'=°"T"®CF,

and we denote by n'(z) the projection of CTM onto T'(°T""), respectively.

DEerFINITION 1.2. An almost CR-structure E” on M is said to be of
finite distance to °T” if n’oiz.: E” — T is an isomorphism, where iz.: E”
— CTM is the inclusion map.

ProposiTiON 1.3 [1]. Let E” be an almost CR-structure on M of finite
distance to °T”. Then there is a unique element ¢ of I'(M, Hom (°T",T"))
such that

(1.5) E'={X—¢X); Xe°T"}.
Conversely let o I'(M, Hom (°T”, T")) and we write

=0+ ¢
where ¢, e I'(M, Hom (°T"”, °T")) and ¢, e I'(M, Hom (°T”, CF)). For any ¢

satisfying (X)) + X or ¢p(X)) # ¢AX) for all Xe°T”, (X+0), the
formula (1.5) defines an almost CR-structure E” of finite distance to °T".

The almost CR-structure E” defined by (1.5) in terms of ¢ will be
denoted by ¢T”. We identify *T” with ¢, and ¢ is also called an (almost)
CR-structure on M, when ¢*7” is an (almost) CR-structure.

Next we will examine when T is integrable, i.e.,, a CR-structure on
M. For any XeI'(CTM) we put

XT’ = ﬂfl(X) and X»TI' - ﬂ(X) .

The following formulation for the integrable condition is due to T. Akahori

[4].

ProrosiTioN 1.4. Let o I'(Hom (°T”, T")) be an almost CR-structure
on M. Let P(p) be a map of I'(N\*°T") into I'(T") defined by

Plp)(X, Y) = [X — o(X), Y — o(V)]rr + o([X — o(X), Y — ¢(¥)]-7~)

(1.6)
for X, YeI'(°T").

Then ¢ is integrable if and only if
P)=0.
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In order to compute the infinitesimal deformation of °7”, we must define
the operator o : I'(T" @ \* (°T")*)->I'(T' @ \*** (°T")*), p=10,1,2, - - -.
At first for p =0, o2: I'(T") - I'(T' ® °T") is defined by

.7 @OPu)X) = [X, ulr , for ue I'(T") and XeI'(°T").
For convenience sake we set
Xu = [X, u], .
For p=1,
OV, + - -5 Xpi)
W8 = D (DTEKNK, o R, Xp)

A

+ Z (“1)j+k1!"([Xi’ Xj]9 Xh R Xt’ Sty Xj,' T T Xp+l) )

1<

where X,, -+, X,,, € ['(°T"), and ¥ € I'(T" @ A*(°T"')*). From definitions of
o it is clear that 0@V .o = 0, i.e.,

0—> I(T") L5 I(T @ TV L5 (T ® NHETY) —> - - -

is a complex.

We explain the convexity of the CR-structure °7"” on M. Let X, ---,
X, be a frame of I'(°T”|U) for some open set Uin M. Then X, ---, X,
become the frame of I'(°T”|U). Take a cross-section S of I'(F|U) such
that S(p) # 0 for any pe U. Hence we obtain smooth functions C,. on

U defined by

Vv=I[X,, X.] = C,.S (mod °T" @ °T") ,

1.9
(1.9) for 1<j, k<n.
It is trivial that the functional matrix

1 Cyell is hermitian .

DerFinNtTION 1.5. °T” is strongly pseudo-convex, when for any p e M,
there is a cross-section S of I'(F|U) such that

1Cuxll >0, on some neighborhood U of P.

Finally let us consider a complex manifold V and an imbedding i: M
— V, where dim¢; V=n + 1 and dimpy M = 2n + 1. Then a complex sub-
bundle °T” on M is defined as follows: For any point p e M,



ISOLATED SINGULARITIES 45

(1.10) °T/ = Cip,TM N T,V

where T,V denotes the holomorphic tangent space of V at i(P). Since
(M) is a real hypersurface of V, °T”(M) becomes the subbundle of CTM
of complex fiber dimension n. Clearly °T” is integrable, i.e., this sub-
bundle defines a CR-structure on M.

DrriniTiON 1.6. Let i: M — V be an imbedding as above. Then the
CR-structure °7T” on M defined by (1.10) is called the induced CR-
structure by i, or simply the induced CR-structure.

§2. CR-structures on negative line bundles over abelian varieties

2.1. Let T be an abelian variety with an n X 2n-matrix o =
(0)1<1<n,1<a<en 28 a period matrix, that is, let C* be the space of n complex
W

. ———A e
variables (2, --+,2,) and let Z** = Z X -.. X Z. The elements of C" and
Z* are written as column vectors of length n and 2n, respectively. For
any element d = {(d', - - -, d**) of Z**, we put

w-d= ‘<2an wld®, - -, j‘iw;‘d") .
a=1 a=1
if A denotes the lattice {w-d;d e Z*"} in C*, then
T=cC"A.

Now let B be a negative line bundle over 7T and let = be the projection
of C* onto T. Then the induced bundle z~(B) of B under r is isomorphic
to the trivial bundle C* X C. From this fact there exists a holomorphic
map f: C*™ X Z* — C — {0}, called an “automorphic factor” of B, satisfy-
ing the following conditions (6);

(C.1) For d,,d, in Z**, and ze C",
f(z,d, + d) = f(z + od,, d,)f(z, d,) .

(C.2) let ~ be the equivalence relation in C* X C defined by
(21, ) ~ (2, &) & there is d € Z*" such that
(22’ CZ) = (zl + C()d, f(zls d)zl) .

Then the line bundle B over T is isomorphic to C" X C/~. It is clear
that automorphic factors of B depend on the choice of isomorphisms of
7-Y(B) onto C" X C. And we can take an automorphic factor f of B
which has the following form (c.f. pp. 111, [5]);
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For any ze C" and de Z%",

2.1) f(z, d) = exp {27V —1(2Q@d + $dA°d + ‘b-d)}
where
Qn; - Qm
e=|:
Quis 5 Qua
is an (n X n)-matrix such that ‘Q = —@, and A° is a (2n X 2n)-matrix

and b denotes a real column vector of length 2n. We fix the above aut-
omorphic factor f with (2.1). Let h: C": — R be the smooth positive fun-
ction defined by

(2.2 h(2z) = exp (—27v —1°2Q3%) .

Then we have A(z) = h(z + wd)|f(z, d)| for every de Z* and zeC", so
that % induces the hermitian metric / on the line bundle B over 7. Hence
the Chern class ¢(B) of B equals to the de Rham cohomology class of

1 . n —;
— 1 Slogh= 3 Qudz'Ad )
( oy —T 0108 = 2. Qs 2
However since B is negative, we have v —1Q < 0, that is, the hermitian
matrix v —1@Q is negative definite.

2.2. From the negativity of B we know that if 7' is regarded as the
zero-section of B, then there exists an analytic variety T and a holomor-
phic map g of B onto T such that for some point € T.

g is a bi-holomorphic map of B — T onto T — {f}, and g(T) = i.
(cf. [6]) 3

Clearly T has the isolated singularity point %, which is denoted by
(T,%). Let S be a real hypersurface around %, in 7 — {#,}. Then local
deformations of isolated singularity (f’, t,) induce ones of the induced CR-
structure on 8 by the inclusion ig: S — T — {§,}. However in terms of the
biholomorphic map g: B — T— T — {t,} we shall consider local deforma-
tions of the induced CR-structure on a real hypersurface around 7T in
B-—T.

Now let B, be the unit circle bundle over T' defined by the hermitian
metric 2 on B, i.e.,

B, ={eecB;h(e) =1} .
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ProposiTioN 2.1. Let °T"(B,) be the induced CR-structure on B, by
the inclusion ¢5,: B, — B. Then °T"(B,) is strongly pseudo-convex, that is,
B, is the real (2n + 1)-dimensional compact strongly pseudo-convex manifold.

This proposition is proved by the following two lemmas. At first let
4 be the natural projection of C" X C onto B=C" X C/~ as in §1.
Here put

V=44 'B)C C" X C).
Then it is trivial that
V={z0eC" X ChR@)[L] =1}.
Moreover let + be the diffeomorphism of C" X S! onto V defined by

VI

z,0=<z,—€j), for (2,0)e C" X S',
W& 0) Vh(2) @9

here # is the angular coordinate of S'.

LEmMMA 2.2. Let °T"(V) = CTV N T"(C" X C) be the induced CR-

structure on V. Let Z;, - - -, and Z,, be vector fields on C" X S* defined by
2.3) z,= 2 _ -l dlgh 9 iy n.
03’ 2 0z’ 00

Then {V4(Z;)}:-, become the global basis of °T"(V).
Proof. By direct calculations we obtain
beun( ) = B - L lowh e 2 1 dlogh e 3
0z’ oz 2 o9 Vh o 2 9@ VB &
and
wweol ) = U 3 = v )
Here we have

0logh 0

0 .
R ) = — — = 1’ ey .
@4 )= L 2 n

This means Vr;,,(Z;) € Ty4,0(C" X C), for any (2,60) € C* X S', so that the
¥4(Z;) are cross-sections of °T”(V). It is clear that {y*(Z;)}}.. is the
global base of °T"(V). Q.E.D.
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Next let °7"(C" X S*) be the complex subspace of CT(C" X S
generated by the basis {Z;};.,. Then from the above lemma it is trivial
that °T"(C" X §") = °T"(V), and that °T"(C" X S') is the CR-structure
on C* X S'. CT(C" X S) has the following decomposition; let F' = {R(3/06)}
be the real line bundle over C” X S!, spanned by /6. Then we get

CT(C* X §) = °T"(C* x 8H) @ °T"(C" X SYDCF .
LemmaA 2.3. °T(C" X 8") is strongly convex.
Proof. Put Z,=Z;(j=1,---,n). By (2.3) and (2.2) it follows that

' _ dlogh o _ ] . .
@9  12,2]=v=1Z18h 0 5. a<ij<n

On the other hand since @ is negative definite, °7"(C" X S is strongly
convex. Q.E.D.

Remark. The next formulas are trivial;

2,21 = 12, 21 = |2, -2 | = |2, 5] = 0

for1<i,j<n.

(2.6)

We shall express the induced CR-structure °7"(B,) by using {Z;}7...
Let ¥ be the canonical projection of C* X C onto B = C* X C/~ and
the composite map of 4 and +;
b=gop:Crx 85 x ¥ B.

It follows from (C.2) in 2.1 and the definition of + that for (z, 6), (2, )¢
C" X 8!, 4z, 6) = ¥(2, &) means that there is a d e Z** such that

Z2=z+wod, and & =0+ argf(z,d).
LemMA 2.4. For (z,0)eC" X S', and de Z*"

1p':k(z,ti)(zj) == 1p‘>l<(z+md,.9+arg f(z,d))(Zf) ’ (j = 19 Ty n) ’
and

A d o d
‘P*(z,o)(—ﬁ) = "I"*(z+md,0+arg'f(z,d))<¥) .

Therefore {¥4(Z)};1,..... and ¥,(3/06) become vector fields on B,.
Proof. It follows that
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\I"*(umd, § +arg f(z,d))(ZJ)

— 3 (6§J _zlogh(z-l-wd) _i)
) w %)
Here set
¢ — @/ =10 +are £ (2d)
"7 T VR(zZ + od)
and

A= \p'*((z+md,0+arg f(z,d)))(Zi) .
Using A(z) = h(z + od) |f(z, d)|} as in §1, we get

o 5 dlog f(z, 4) 9 dlog h(z) » 0
(2,7) A= ‘P*(zi-md,Co)( o357 + 03! ac TCE—E) )

On the other hand let g, be the bi-holomorphic map of C* X C onto C"
X C defined by

842,80 = (2 + od, f(z, d)}) , for any de Z* .

Then we have

. (2) = (2 + 2Bl 2)
d(z, f (z,d)=130) 65‘1 azj azj aC gd(z, f (z,d) = 1o ’

and

) =%)
gd(z,f(z,d)—lco)( P ¢ % )t r e °

Hence from (2.7) it follows that
A = 8desea-w(VxwnZy)  (cf (2.4)
But as {.g; = ¥, we have finally
A = VyanZ; -

Similarly it is proved

a a
) ‘I’*(zﬂ:d 0 +arg f(z, d))( ) QED

‘[’*(z 6)( 90 50

Let us return to the proof of Proposition 2.1. By virtue of Lemmas
2.2 and 2.4. the induced CR-structure °7"(B,) on B, is spanned by (%),
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-+, and V4(Z,), denoted by {{¥«(Z), - - -, ¥x«(Z,)}}. Furthermore we have
the next decomposition of CTB,;
2.8) CTB, = °T"(B)® °T"(B,) ® CF(B) ,
where

*T"(B) = {¥s(Z), - - -, ¥4(Zn)s}}
(29) OT,/(BI) = {{‘IA"*(ZI): ] \D*(Zn)}} ’
CF(B) = {{‘i’*(a/aﬁ)}} .

Thus our proposition is completely proved.

§3. Infinitesimal deformations of °7"(B)

Notations being as in § 2, let us first consider relations between almost
CR-structures of finite distance to °7”(C™" X S') on C" X S' (c.f. Lemma
2.3) and ones of finite distance to °7"(B,) on B,. For this purpose we set

°T(C™ X 8Y) = °T"(C* X 8Y) ® CF
and
T'(B) = °T"(B,) ® CF(B) .

From Proposition 1.3 it is enough to consider the correspondence between
I'Hom (°T"(C" X 8", T(C" x S%)) and I'(Hom (°T”"(B,), T'(B,))). Here we
put for simplicity

oM — °TC" X ) and T = T(C" X S).

Let Z;, ---, and Z, be the basis of °T” defined by Lemma 2.2. Then
we have the following

ProrosiTioN 3.1. For any o€ ' (Hom (°T”,T")) we can write
(3.1) W2y = 2, ¢iZe + 901360— G=1---,m,

where ¢% and ¢; are smooth functions on C* X S'. Then ¢ induces an
element of I'(Hom (°T"(B,), T'(B)))) if and only if the following condition
(C) is satisfied;

©) {90’5(2, 0) = ¢i(z + od, 0 + argf(z,d))
02,0) = o)z + od, + argf(z,d)),
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for each de Z** and (z,0)e C" X S

Proof. Let t be the linear map from I'(Hom (°T"(B,), T'(B))) to
I'(Hom (°T"”, T")) defined as follows; let ¢ be any element of I"(Hom (°T"(B,),
T’(B))). Then we put, for any (z,6)e C" X S,

[(795)(Zj‘)]<z,a> = ‘f’;l@(z,o)(sb(\i’*(z,a)(zi)» .

If ¢ is an element of I'(Hom (°7"(B,), T'(B,))) with the expression
§huZs) = 35 0Z) + ot )
k=1 aﬁ
then it follows that
DNZ) = 35 @5 e+ @o )

Thus ¢ satisfies the condition (C). Conversely an arbitrary element
pe'Hom (°T”, T)) satisfying (C) induces an element ¢ of I"(Hom (°T"(B,),
T'(BY))), and we have

=13, Q.E.D.

We denote by I'¢,(Hom(°T”,T’)) the set of all smooth-section of
Hom (°T”, T") satisfying the condition (C). The above Proposition 3.1 shows
that

o: I'(Hom (°T"(By), T'(BY)) — I'¢c,(Hom (°T", T"))

is isomorphic.

More generally let I'((A*(°T”)*® T’) be the set of all smooth-
sections ¢ of A*(°T")*®T’, (k=0,1, ---,n) such that, when ¢ is ex-
pressed as

0
»J _37 ’
<<~ <jr<n).
Then all coefficients ¢j,....;, and ¢,, ... ; satisfy the condition (C). Then
7 induces the isomorphism of I'(A\*(°T"(B,))* ® T'(B,)) onto I' ¢,(\*(°T")*
® T"). Here we have the following commutative diagram;
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5O

0 —> I'(T'(B)) — I'(Hom (°T"B), T'(B))
Foo y
0—> I'o(T) —> I (Hom (°T”, T")

50

—>T'(\*CT"(B)® T'(B)) —>

lr
1)

—> T (N CT*RT) —>
where the 9% denote the operators defined by (1.7) and (1.8).

Let H*(°T"(B)) and H{,(°T"”) be the k-th cohomologies of complexes
{L(N*CT"(B)* ® T'(B)), 05°}i=e and {I'e)(A* (CT")* ® T"), 9{}i-o, respec-
tively. Then we know that

H*(°T"(By)) = H&(°T") .

3.1. We shall determine explicitly a basis of the first cohomology
H,,(°T”), that is, the infinitesimal deformation of °T"(B,). First of all
let ¢ be an element of I'¢(Hom (°T”, T") with

n a .
(3.1) o(Z) = 2 9052 + o)— (=1,---,n).
E=1 o0

Then we obtain the following

ProposiTioN 3.2. It follows that d"¢ = 0 if and only if for all i,
je{lv”',n}’

(3‘2) Zz@’; - Z.KDI{ =0 ’ (k = 1: ) n)
and
(3.3) k; (@D — 0k Di3) + Zip; — Zzp, = 0,

where we put
(3.4) 0; =2rQ;;  (cf. (2.1)).
Proof. By (1.8) and (2.6) we see that
08°¢(Zs, Zy) = [Zs, (Z7)r — [ 23, p(ZD)]
= 312 — ZOZ + 3 @2 Ll — oH1Z5, Zi1r)

ad
+ (Zi% - Z]Soz)ﬁ .
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However as [Z;, Z,] = 27Q,;(3/90) (c.f. (2.5)), it is trivial that
o2 Z) = 3 (Zgh — Zi)Z

+ {Icz—:—l (¢i2nQu; — ¢i2nQur) + Zip; — ZJ%}% )

This fact proves Proposition 3.2. Q.E.D.

In order to study properties of the {¢% ¢} k,j=1,---,non C" X S
satisfying the differential equations (8.2) and (3.3), we denote by S(f) the
Fourier expansion of any function f on C* X S' with respect to the angular
parameter of S'. Let us put

(3.5) S(e)(z, 0) = ,§z o w(2)e¥Tme

Then from the uniqueness of Fourier expansions and the condition (C) it
follows that

(3.6) O (2 + od) = ¢f (e~ Y-Tmare 1)

for any de€ Z** and m =0, 1, +2, ---.
At first we consider the differential systems (3.2). By (2.3), (3.2) means
that

dt  dpf /=1 (dlogh(z) 9t  dlog h(z) gk ) _o
(3.7 0zt 0z’ 2 \ o0zt 00 837 20 ’
(1£i’j’k£ n).

LemMmA 3.3. For each me Z, the {¢% .} k,j = 1, - - -, n satisfy the follow-
ing equation;

Gl ok m (dlog h dlogh
3.8 hin _ 00k m( gh, _ dlogh . m) =0.
(38 9zt iz T e\ am P oz' "

Proof. This lemma is trivial from (3.7) and definitions of the ¢% ,.
Q.E.D.

Moreover we have

LemmA 34. Let ¢, be the element of I o, (Hom (°T”,T")) defined by

OulZ;) = 3 eVTimegt (DZ, (meZ).
k=1
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Then there exists an element ¢, of I' ¢,(T") for every non-zero integer m such
that

= 3 e@z.,

and

(39) WCa(Z)) = 0u(Z) + 3 00—

Proof. Put 4% ,.(2) = ¢4, .(2)h™*(2). Then we find from (2.2) and (3.6) that

V(2 + od) = ¥} (2)e- "mimae sedj(z, d) "™ = 44 (2)f(z, d)™,
deZ™).

Therefore if we set
= 2V} .dZ,
i=1

V% is regarded as the cross-section of the vector bundle B-"® A" (T)
over the abelian variety T, where A" (T) represents the bundle consist-
ing of (0, 1)-type differential forms on 7. Let 0 be the usual exterior
derivation of type (0,1) on 7. Then it is clear that

oV = >, (a%g’"‘ _ 9 "‘)dz N

i\ 0zt 0z’

But

Vim _ [ 0¢fm + My, m : alogh e
03¢ 0zt g P

so that using (3.8), we obtain, for any me Z,
gwfIL:O’ (k=1""9n)'

Now let m 2 0. Then, since B is a negative line bundle and the holo-
morphic tangent bundle of T is analytically trivial (dim¢ T = 2), there is
an element 7% of I'(B™™) such that, for any m (= 0),

377"fcn= I:n’ (k:]-’"'yn)-

If we write 7% the pull-back of 7%, by the projection +4: C" — T, %, is the
cross-section of the trivial bundle C* X C over C" and satisfies the following
relations;
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(3.10) {gin;z: g) = Dz, d)™"  deZ™),
Furthermore let % be the smooth function on C* X S' defined by
w2, 6) = e/~ (2)h”"(2)
We have then from (3.10)
Wz + od, 0 + arg f(z, d)) = {3(2,0) ,
that is, the vector field ¢, defined by

tn= 3,082

k=

belongs to "¢ (T").
This ¢, satisfies (3.9). Indeed it follows that

OLadZ) = 3 (EZ+ 3 s, Z)

= Y] e¥=ims /A h-m2Z, + 3 C"@k-—a— G=1,---,n).

z oz w80 T
Here using d7%, = 4% in (3.10), we have
O = T &m0y 2+ 3 Dy

= YleVTimgk 7 4+ > CED,; . Q.E.D.

k k
Next for (3.3), we set
(@SDj)(Z, 0) = Soj,m(z)ef:imﬂ ’ (] = 1, Y n) .

mezZ

Let ¢, €' o, (Hom (°T”, T")) be as in Lemma 3.4. If we define the element
¢n €1 o,(Hom (°T”, T")) for each me Z, by

) — 3 .
om(Z3) = ¢ulZ;) + soj,me“—“"”ﬁ , (G=1,---,m,

then each ¢, is the e'-im-component of the Fourier expansion &(¢) of ¢,
that is,

Sp) = ,,;z P -
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Here ©&(p) is defined by
CONZ) = T SW)Z: + Gl -r (1 =1,--,m).

Since ’¢ = 0, we find
0 e, =0, for every me Z .

Moreover we can write, for any non-zero integer m, using ¢,, in Lemma 3.4,

BI)  (pn — IOCZ) = §.m(2)e’ 7m0

» .=1,"'9n)
a7

where the ¢, ,(2) are smooth functions on C" such that
&sm(2 + od) = 3, .(2), for all (z,d)e C" X Z*" .

LEmMmA 3.5. Let m by any non-zero integer. Then ¢, — 0°C, in (3.11)
is d-boundary, i.e., there exists an element 77,”330— of ', (T") such that
9%"’(77mi) = @n — 03Cm -

o0

Proof. As 3{°(¢, — 3"C,) = 0, the family of functions {¢; n};-1,,...,., iD
the right hand side of (8.11) satisfies the following relations;

0B,,m _ 0Bim ﬂ(alogh~ __dlogh )_0
oz T2\ o O oz em ’

1<1,j<n.
Therefore this lemma is proved in the same way as Lemma 3.4. Q.E.D.
We obtain from Lemma 3.5 the following

ProrosiTiON 3.6. Let ¢ be an arbitrary element of I c,(Hom (°T"”, T"))
such that 0°¢ = 0. Moreover let S(p) be the Fourier expansion of ¢ with
respect to the parameter 0 of S*;

Sp) = 2. ¢n
mezZ
where the ¢, are elements of I' ¢,(Hom (°T”, T")) defined by
ou(Z) = (5 @2 + 0@ 1) -

Then for all m(++ 0) e Z, we have,
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On = 0Cm , for some C, el (T .
Furthermore we can prove the following
ProprosiTiON 3.7. Let all notations be as in the above proposition.
Let pe I o)(Hom (°T”, T"), with d°¢ = 0. Then ¢ is o,-cohomologous to
@0, Where ©(p) = 03 — 21z @ om Pne

Proof. In general let f be any C~-function on C" X S*. Then &(f)
converges uniformly on every compact subset of C* X S'. Now for any
pel ¢(Hom (°T”,T’)), we define the norm, denoted by |¢|, as follows;

Let o(Z) = X ¢5Z, — goj%. Then we have

lo| = max {sup |¢%], sup |} .
1</ k<n

This is well-defined because of the condition (C). Here if we put
S@) = D imi<k Pm, for any non-negative integer %k, we find that for any
¢ > 0, there exists an integer k() = 0, such that

lp — Grn@| <e.

Let 7 be the isomorphism of the complex {I'(A\* (°T"(B))* @ T'(B)),
05} onto {I'c,(A\*(CT")* @ T"), dx(k)} as in the proof of Proposition 3.1.

On the other hand we impose the hermitian innerproduct, {, > on
CI(B) such that, ¥(Z), - - -, ¥v4(Zy), V(2), - -+, ¥*(Z,) and ,(3/36) are
orthonormal basis. For every ¢ge I'(A* (°T(B)* @ T'(B))), we set

el = _ 25 _ <80hulZ5)s - s balZyds §00(Z3), - -5 ¥ulZ7IDE -

The L,norm, denoted by | ||z, on I'(A*(°T"(B))* ® T'(B))) is defined by

161, = [ lipllde

where dv denotes the volume element associated with the hermitian inner
product ¢, > on CT(B)).
We can further form the formal adjoint

0" T(AN* (CT"(B)y* @ T'(By) — I'(\*" CT"(B))* ® T'(B)

of o~V with respect to the above norm | ||z, (=1, ---, n).
Now take an element ¢ of I",((°T")T") with 6§°¢ = 0. For any ¢ > 0.
there exirts an integer k(¢) such that
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(3.12) z7% — 7 (@)l <.

Moreover it is clear that d{’z7'¢ = 0. Since °T"(B,) is strongly pseudo-
convex and dimy B, = 5, we know from § 6 [1] that there exists ¢ I'(T"(B,))
and e I'(°T"(B)* ® T"(B,)) such that

el — 7l = + 3PC,

where (0"-3> + o9V = 0.
We shall show 7 = 0. Indeed suppose 7 2= 0. Then it follows that
lz7'e — t7'olla, Z 17|z, > &1 for some ¢, >0.

Here for any ¢ > 0 with ¢ <e, we choose an integer k() satisfying (3.12),
and put

Gi9) = Gro() — 0 -
It follows from Proposition 3.6 that there is an element ¢ € I'(T") such that
Ginlp) = ¢,
so that we have
e> |t — 7l — TS wm(@ s, = 177 — 7000t |5, = |75, -
This is a contradiction and so our proposition is proved. Q.E.D.

By virtue of the above arguments, in order to determine the infini-
tesimal deformation H{,,(°T"”) (= H'(°T"(B,))), it is enough to consider the
following subcomplex (8.13) of {I"'c,(A? CT")* @ T"), d}; Let

pe '(N*(CT")*Q®T")
and set

S ) . .
(P(Ziv Tt Zik = ;?51,-“,% « 1 ¢jly“’jk6? (1 < Jus oy Jk = n) .

We denote by I'z(A* (°T")* ® T") the set of all pc I'(A* (°T")* ® T”) such

that ¢%,,...; and ¢, ...; are smooth functions on the abelian variety T.
Then the complex
EI)
(8.13) 0—>I')(T)— T (CT"*RT)
5 5@

o T (N TP RT) = -,



ISOLATED SINGULARITIES 59
is the required one.

THEOREM 3.8. Let °T” be the strongly pseudo-convex CR-structure on
C" X 8" (n=2) induced from the negative line bundle B over the abelian
variety T (dim¢ T = n), as before. Let eI o ((°T")* @ T") with

3.1 0Z) = 3 CZ o, G=1m),

where the C% and the a; are arbitrary constants such that

(3.15) SCQu=2CQy, (1A<ij<n.
k=1 k=1

Then any element of H;(°T"”) can be represented by some element p as
above.

Proof. Take pe ' ,((°T")*® T") such that d{’¢ = 0 and

n P R

Recall that ¢% and ¢, are C~-functions on 7. By Proposition 3.2, "¢ = 0
means that ¢ satisfies equations (3.2) and (3.3). Here using ¢% and ¢, in
(8.16), we put

v=2 ¢l ®dF, o=>3 ¢d7,

n
J
k=1 0z2F j=1

and

O =3 O;dz! Ade' (= v—1ddlogh), (cf. (12),

1y5=1

where 9,; = 27Q),;.
Let A®2(T) be the set of all differential forms of type (p, q) on T.

Moreover let ~ be the generalized interior product, that is, for any
e NP2 (TQI'(T(T)) with

b= NN DAL 82 A Ade A dE A

F1yeeesdq fgeees i 9
S AdERQ®

0z*

the linear map ¥+~ : AC™(T) — A“?~4m*2(T) is defined by
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o AdZP A dEEA o A dFA B2 A
. -1 _a_ e e g b1 e Sbm
Ndze A (Sodz ) A oo Ade NdEP A - A da

Then (3.2) and (3.3) are rewritten as follows;

(3.17) =0,
and
(8.18) YARD—0w=0.

Next we examine conditions for J;-boundary in the complex (3.13).
For this aim let

n . a
= SIWZ, 4+ 9L
¥ J; Vi + 7y Y
be an element of I',(7") such that ¢ = ”y. Then we obtain

o :
o5 = a‘; 1<j,k<n),

(3.19) . 3
o= N WDy + L, (j=1---,n).

k=1 0Z

Set here
g= v -2
k=1 0z

Then (3.19) means that
(3.20) v=06 and o=&ARD+ 0.

Therefore in terms of (3.17), (3.18) and (3.20) the complex (3.13) reduces
to the following one;

0—>TI'(T(T)) ® C=(T) _af_> (A(T) @ I'(T(T)) @ N\ (T)
50

—> (A(T) ® T(T(T)) ® A (T) ,

where
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IP(E, ) = (06, € N @ + In)
and
W, o) = @V, ¥ KO — i),
for (¢, 7)€ I'(T(T)) ® C~(T) and (¥, &) e (A" (T) ® T(T)) ® AN (T) .

Now let (V,o')eKerdoy. As dy' =0, it follows that there exist
constants {C% 1< j, k< n and &eI'(T(T)) such that

v=3

" CidE ® 0 + ok .
k=1 0z
Moreover we have

(3.21) WARO—00 =3, Ci0udz’ Ndz' + 0 RDP — o) =0
575k

Therefore the d-cohomology class of X, ,  C¥0,:dz’ N\ dz' is zero. How-
ever since C% and @,; are constants, we get

(3.22) ST Cibdz! A dzt =0
N

This fact shows (3.15). Moreover it follows from (3.21) and (3.22) that
(&~ D — o) =0, so that we are able to write

(3.23) ERND — o = i a,dz’ + op, ,
j=1

where the a, are constants and 7, is a smooth function on 7. Clearly

2
0z*

(Z 0 ®ds, > a,dzf)
Jik J
belongs to Ker 05°. It follows that (4, »’) and

0
0z*

(z il @dz, 3 a,dzf)

are 0y’-cohomologous. Indeed we have

roN & 0
W, of) (,,T;Cf 2

= (08,6 N @ — o) = 05°(§, — 7o) -

®dz, 3 a,dzf)
J

Thus our theorem is completely proved. Q.E.D.
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§4. Integrable CR-structures on C" X S

Let all notations be as before. Recall that °7" is the strongly
pseudoconvex CR-structure on C” X S' induced by 4:C"* X 8'— C* X C
(see the bottom of Proposition 2.1). Let now ¢pe I’ ((°T")* ® T”) be at
finite distance from °7”. Then 7" = {X — ¢(X); X e °T”} becomes an
almost CR-structure on C™ X S'. It follows from Proposition 1.4 that ¢
is integrable if and only if P(p) = 0, where the linear map P: I'((°T")* ®
)TN\ (CT")* ® T") is defined by (1.6).

ProposiTioN 4.1. Let pe I ¢((°T")* @ T") be as in Theorem 3.8. Then
¢ is integrable.

Proof. This is trivial from the definition of P and (3.14). Q.E.D.

For convenience sake we write £ the set of all o I' ,((°T")*® T")
satisfying (8.14) and (8.15) in Theorem 3.8, so that ' is isomorphic to
H{,(°T"). Let ¢ be any element of ' with

v—1 9
a,——— ’
2 o0

) dZ)= 3% -

where the norm |¢| of ¢ is sufficiently small. Then ¢ is at finite distance to
°T” and we get

@) Z—o2) = (2 - S o)

i1 " oz2*
v—1/(dlogh 2 dlogh )a
— Ct —a,) 2
5 e TARY T T
j=1---,n.

And the CR-structure ¢T” is generated by {Z; — o(Z})} j =1, ---, n.

We shall next determine complex structures on C" X C which induce
CR-structures ¢pe#' on C*"X S' by the map ¢:C" X S'—C" X C.
Remember that + is defined by

. e«/—_w » 1
Wz, 6) = (z, W> for (z,6)e C* X S .

ProposiTiON 4.2. Let pe #* with (4.1). Let 2, ---,2" and { be the
canonical coordinates of C* X C, and put
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5 8___",_66> (" ,_,alogh_)_a_
Zj~(azf kz;icjaz" + ,;;C, 02" ajCGC’
(4.3) G=1---,n).
K
g
Then the CR-structure *T” on C™ X S' is the one which is induced from
the complex structure {{Z, - - -, Z3,3/dC}} on C* X C by 4, that is,

@) o) = veTe x SO ({Z, - 2, T

Proof. First of all we see the system (4.3) is integrable. In fact it
follows that

S 7 z °logh 9°log h)
z3, 2 = - 33 (cx —Cs 9
[zt 23] k;:t 0270z* 0z'02" ¢ o

~V=1 31 (C1Qy ~ CiRuG- =0
and

[Zy,—ac—]=0, a>ij<n.

Thus (4.3) is integrable. We next show the relation (4.4). For this aim
it is enough to prove that

werne{{z, -z, —a%}} :

However it follows that for all (2,0)e C" X S,
Vaao(Z; — o(Z3)

- Cr «ologh ) 9
N ( 0z’ Zk: 7oz )w: 0) + {(71?: G 0z" @)% o }wz,o)

_[(1 dlogh _ «0logh )—j_}
{<2 02! ;CJ 0z* @ C@C vo)

G=1,---,m. QED.

Now for any ¢e #' with (4.1), we denote by T,(C" X C) the sub-
bundle of CT(C" X C) generated by the system (4.3) in Proposition 4.2, or
the complex structure on C" X C defined by (4.3). Moreover let T% be
the diffeomorphism of C* X C onto C” X C defined by
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jo — j—-n Z——k .= “ e
ZoT(w,t) = w ,‘;Ckw, Gg=1,---,m),

(4.5) LoT¥w, t) = texp {27:«/ -1 i} Q.;CiCiw'w’

TyJ k,8=1

j=1

kyi,j=1

where (w, t) and (2, £) are usual coordinates on C* X C.
Then we have the following

ProposITION 4.3. Let ¢ be an element of #' with (4.1). Then the
complex structure T, (C* X C) is induced from the standard complex structure
on C™ X C by the diffeomorphism T¢: C" X C — C™ X C defined by (4.5), that

is,
0 d 0
roer - (fels) o ) )
AC™ X ) *\ow* *\ow" T ot
Proof. By direct calculations we have
o d — 0 — n 3 0 )
T*(awf) o ( oz’ & C oz*

—{~2:v=1 3 @uCiETy) - ate T

oo Tr o3
ow! aC
However from h(z) = exp Qrv —1 37 ,., Q;2'Z%), it follows that

’ (j=13""n)°

Srepdloeh _ _9rv=i 3 Quoir,
k=

i=1 0z* i%=1

so that we find, for every (w,f)e C X C,
0 0 u d
» — _— k
T*m’t)( ow’ ) ( 0z’ kéi ¢ 0z )T"(w,t)

h ook o) 8y (&)
+ {(kz; G 02* ta COC T (w,0) + ow’! oC /rtw.n’

G=1,--m

On the other hand it is clear that

ry( L) = 2T 0
o

9t o -

Then the above equations show
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ve o= {(n(g) () n(5)).  eso

§5. The main theorem

We shall complete in this section the proof of the following.

THEOREM 5.1. Let T be an abelian variety of complex dimension n
(n=2), and let B be a negative line bundle over T. We denote by (B, T)
the isolated singularity defined from B and T, as stated at 2.2 in §2. Then
any local deformation of (B, T) is also (B, T'), where T" is an abelian
variety of dimg T’ = n, and B’ represents a negative line bundle over T'.

First of all recall that the infinitesimal deformation H'(°T"(B,)) of
(B, T) is isomorphic to #" as in the previous section, and that any element
of #" is integrable (c.f. Proposition 4.1.). Therefore we shall at first prove
that small CR-structures in 2" are induced ones from negative line bundles
over abelian varieties.

Now let us take any element ¢ of #' with o(Z;) = >3, CiZ, —
v —1a,3/36), (j = 1, - - -, n), whose norm |¢| is sufficiently small, and fix ¢.
Then the CR-structure *7"(C* X S') on C" X S* defined by (4.2) is induced
from the complex structure T, (C" X C) on C" X C determined in terms of
(4.3) in Proposition 4.2. Moreover from Proposition 4.3, 7(C" X C) arises
out of the standard complex structure on C* X C by the map T%: C" X C
— C™ X C which is defined by (4.5). We regard this map 7 as the bundle
map between two trivial bundles C* X C over C*. Thus in order to prove
the above statement it is enough to show that there exist an abelian
variety T’ and a negative line bundle B’ over 7" such that the bundle
map T%: C* X C— C* X C induces canonically a bundle map 7*: B X B.

From now on we shall show the above statements. For this aim let
us put

and

D
Il
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Then the condition (3.15) becomes
(38.15 1CQ = ‘QC

where ¢ denotes the transpose of matrices. Furthermore the map T* is
also represented as follows;

T(w, t) = (w — C — o, t-exp {27V — 1'*QCCw

(.5Y — V=1'w'QCw + ‘aw}) ,
where

w

w=|: |eC"

w"
Here we set
(5.1) gw) = exp {21V ~1'W'QCCw — v —1x'w*'QCW + ‘aw} .
so that it follows that
(5.2) T*(w, t) = (w — Cw, g(w)t) .

Now we write o’ and f'(w, d) a periodic matrix and an automorphic
factor respectively, corresponding to an abelian variety 7” and a negative
line bundle B’ over 7" to be required for the given CR-structure ¢ e 5#".
Then since 7 in (5.2) induces a bundle map of B’ onto B,«’ and f’ must
satisfy the following conditions;

(5.3) o —cv =
and
5.4 gw + d'd)f' (w, d) = gw)f(w — Cw, d),

for all (w,d)e C" X Z*",

where o is the periodic matrix of T and f denotes the automorphic factor
of Bin §2. Since |¢|is sufficiently small, there exists a unique o’ satisfy-
ing (5.3), and we fix o’. Furthermore we obtain the following.

ProposITION 5.2. Let f' be the map of C™ X Z** into C defined by
(5.4). Then f’ becomes an automorphic factor for the periodic matrix, o,
that is,

(5.5) f’ is the holomorphic map of C™ X Z** into C — {0},
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and

5.6 fw,d, + d) =f(w+ o'd, d)f (w,d) , '
for we C" and d;e 2" (i=1,2).
The proof of this proposition is due to the following two lemmas.
LEmMA 5.3. For an arbitrary (w,d) e C* X Z*", we have
(5.7 fw, d) = f(w, d)g(w'd)* exp (—2zv/ — 14@'d)'QCCw} .
Proof. At the beginning we get, using (5.1), (6.3) and ‘QC = ‘CQ,

gw + o'd) = g(w)g('d) exp {2nV —1'W'QC(Co’ — @')d

5.8 ~
(5.8) + 27+ —14@'d)'QCCw} .
Therefore it follows from (5.4) that

fl(w, d) = f(w — Cw, d)g(o'd)™ exp {—22v — 10 QC(Co’ — @)d
— 2z¢/ = 14@'d)'QCCs} .
On the other hand we find from (2.1)
f(w — Cw, d) = exp {227/ — 1w — Cw)Qad + A(d)},
where we put A(d) = ¥dA°d + ‘bd, so that we obtain

f(w,d) = g(o'd) " exp {—2rv — 1Y@ d)'QCCw}
X exp {—2zv/ —1'w'QC(Co’ — @')d}
X exp {27V — 1w — Cw)Q@ — Co')d + A(d)}
= g(w'd) exp {—2zv/ —14@'d)'QCCw}f(w, d) . Q.E.D.

Moreover we have
Lemma 5.4. f satisfies (5.6).
Proof. From (5.7) it is clear that

f(w,d, + d&) = f(w, d, + d)g(o'(d, + d,))™*
X exp {—2rnv — 1@ (d, + d,))’QCCw} .

Using the fact that f is the automorphic factor, we get from (5.8)

go'd, + o'dy) = g(o'd)g(w'd;) exp {2rv/ —14(@'d,)'QC(Co’ — @)dy}
+ 27v/ —1Y@'d,)'QCCw'd}} .

Hence it follows that
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f(w,d + d) = f(w + od,, d)f(w, d)g(v'd))'g('d)™
(5.9) X exp (—2rv — 1@ d)'QC(Ce’ — @)d, — 2rv/ — 14(@d,)'QCCuw}
X exp {—22v — 1@ d,)'QCC(w + o'd)} .

But we get
fw + o'd,, dy) = f(w + o'd,, d;) exp {22+ —1(— Ca'd)Q@ — Co')dy} .

Finally noting 4Ca'd)Q = Y@'d,)'QC, we find in terms of (5.9) and the
above relation,

fw,d + d) = fw + o'd,, dy)g(e'dy)™
X exp {—21v/ —14@'d,)'QCC(w + «'d,)}
X f(w, d)g('d,)™" exp {—2nv/ —1"@'d,)'QCCw} .

This equation shows (5.6). Q.E.D.

From the above lemmas, Proposition 5.2 is proved. Further let 77 and
B’ the abelian variety and the line bundle over 7", respectively, defined
from o’ and f’ in Proposition 5.2. Then we have that following.

ProposiTiON 5.5. Let all notations be as above. If C is sufficiently
small, then B’ is negative. Moreover the map T*: C* X C— C" X C defined
by (4.5) (or (4.5)) induces canonically the bundle map T*¢: B — B.

Proof. This is trivial from constructions of 7% and B'. Q.E.D.

Thus all small CR-structures in 2#' are induced ones from negative
line bundles over abelian varieties.

Now from the universality theorem in §9 [1], we know the following
facts; Let ¢5,: B, — B be the inclusion map as before and let N be any
neighborhood of B, in B. When N, is a deformation of the complex
structure on N which is the open submanifold of B, where w e I'(N, T"(N)*
® T'(N)) and an embedding i: B,— N is given, we denote by woi the in-
duced CR-structure on V by i: B,— N. Finally let s#% be the harmonic
space in I'(°T”(B)* @ T'(B,)) with respect to the operator o»*9%» 4+ oVaL*
(dimp #% < ). Then there exists a differential map

Yt Hx — T'(CT"(B)* @ T'(B,)) satisfying the following conditions;

(@) Vvx(0)t =t for any te H#%.

(f) If N, is a deformation of N such that n,-Sobolev-norm |w|,, of @
is sufficiently small (n, is a sufficiently large integer), then there
are a point ¢, € #% and an embedding i,: B, — N, such that
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woiw = \I’K(iw) M
Moreover i, and £, are infinitely differentiable on », and when o
is zero, it follows that ¢, = 0 and weo’w = ¢.

Here we can prove the following

ProrositioN 5.6. For any sufficiently small point te #%, V() is an
induced CR-structure on V form a negative line bundle over an abelian
variety.

Proof. At first, for any small ¢ 5" with the expression (4.1) we
have shown that the complex structure 7, on B defined by (4.3) becomes
one of a negative line bundle B’ over an abelian variety 7" (c.f. Proposi-
tion 5.5) and that the CR-structure is induced from B. Here let T be
the smooth map of #" into I'(T”(B)* ® T'(B)) defined by

)

T(w)(%) —0

l

0
s

(2 ) = 50+ (508 —a)el, G=1-m

d =1 02* ¢’

for any ¢e " with (4.1), (see (4.3)). Moreover let #* be a sufficiently
small neighborhood of 0 in ' such that Proposition 5.5 and the above
statement (8) hold good. Then we have from (f) a smooth map

i #—> #%  such that T(p)oir,, = Vxl(c(p)) and 2(0) =0 .

In order to prove this proposition it is enough to show that the derivation
iy of ¢ at 0 is injective, because of dim s#" = dim 5#%. Here let s be a
small real number. Then it follows from Theorem 7.1 and (5.16) in [1] that

(5.10) lim 269 iran — Tsp)oeBl _ 0,

50 s

where £ is an element of I'(T"(B)).
On the other hand we get from the definition of T

(5.11) li TG60) 0B, — T(0)o¢B, _

50 s

Therefore we have from (5.10) and (5.11)

dT(50) © ircee,

d , =P T
S 5=
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Furthermore it follows, using (8), that

ﬁ_«!:z&dlsﬁ =709,
S s=0

so that

(5.12) )=+ p.

Now suppose that z/(0)-¢ = 0. Then it is clear from (5.12) that the
o{-cohomology class of ¢ is zero, but as ¢ belongs to #' we have ¢ = 0.
Thus 7’(0) is injective. Q.E.D.

Our main Theorem 5.1 is obtained from the above Proposition 5.6.
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