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FOR RATIONAL BINARY QUADRATIC FORMS
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§ 0. Introduction

0.1. Let X be the space of nondegenerate rational symmetric matrices of size
2 and put

G=1{ge GL,(Q) | det g > 0} and "= SL.(Z).
The group G acts on X by
g*xx= (detg) '-gx'g.

We are interested in the space °(I"\ X) of I-invariant C-valued functions on X
and its subspace S\ X) of functions whose supports consist of a finite number
of I'-orbits. The Hecke algebra # (G, I') of G with respect to I acts naturally on
these spaces.

For an x € X, let K=Q(yV—detx) or QP Q according as — detx &
Q)% or € (Q*)2 Take a positive rational number # such that #r is primitive
half-integral and let f(x) be the conductor of #x. For any positive integer f, denote
by O} the group of units with positive norm of the order of conductor f of K. We
define the Eisenstein series (zeta functions of binary quadratic forms) on X by

1 1
E(z; 51, 82) = N 2 - o
“ veZ2/S0(x) 4 | vty |$‘+E | det = |52—Z
vrty>0

where u(x) = [01:0k»] . As a function of x the series E(x; s, $2) is in
%=(I'\ X) and will turn out to be a #(G, I')-eigenfunction.

The purpose of the present paper is analysing the structure of S(I'\ X) as
H (G, I')-module through an integral transform with kernel function E (x; s, S2),

which we call the Fourier-Eisenstein transform.
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0.2. Let K= Q@ Q or a quadratic number field and D = Dg the discrimi-
nant of K. We understand that D =1 if K= Q@D Q. For »r € Q, » > 0, we put

2
Xp, =z X’ detz = — 2L}
and, if D <0, we further put
r?D . . .
Xi,={re X|detx= — —4 » T is positive definite},
r’D . . .
Xo,={reX|detx=— —4 T is negative definite}.

Then the G-orbit decomposition of X is given by

x={U Ux) U{U U s U xel
D>0 reQ DO yeQ
>0 >0
This yields the decomposition

SO\D =8 B 80\ X0 | BB & W\ X35) BSU\X5,)) |

D>0 reQ D<0 yeQ
>0 >0

into direct sum of #(G, I')-submodules. Here we denote by S\ X5%)) the sub-

space of S\ X) consisting of functions whose supports are contained in Xj%.

For a fixed D> 0 (resp. D <0), all S\ Xp,) (resp. S\ XE)) (r € Q,
r > 0) are isomorphic #(G, I')-modules. Therefore it suffices to consider
S\ X), where X = Xp, or X&1.

Let XP" be the set of all primitive characters of the narrow ideal class groups
of (not necessarily maximal) orders of K. Then we can define an orthogonal family
of projections {py | x € X} of the #(G,I")-module SU'\ X) and we have the
direct sum decomposition

(0.1) SI\X) = éBrd(F\X)x,
where S(I\ X), = p(ST\ X)). -
Let
R=C2+23+3. .. p+p7...],

where p runs over all rational primes. Define a homomorphism TL#(G,T)— R
by

TG, p) =1,T®,1) =p2(p' + p™") for any rational prime p,

whereT (p, p) and T(p, 1) are the characteristic functions of F(‘g 2)F and
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I"(g (1)> I, respectively. We consider the ring R as an # (G, I')-module through

this homomorphism. Then our main result (Theorem 3) is as follows:

TuEOREM. (i) For ¢ € S(I'\ X),, put
FAo) ) =a, { £ o@u@E@; 1, 0) /() L{xi t+3),
rel\X

where L(x; s) is the Hecke L-function attached to the class chavacter X and ay is a
normalizing constant. Then F, (@) (t) is contained in R and the mapping

Fi: S8\ X),— R

is an isomorphism of H (G, I') -modules.
(ii) We have an # (G, I')-module isomorphism

SIN\X), = #(G, /I,
where $ is the ideal of #(G, I') generated by

{T(p, p) — 1| p: rational primes}.

We define a structure of pre-Hilbert space on S(I"\ X), via the inner pro-

duct
o, Ps= 2 p@e@)d).
rel'\X

Let L*(I'\ X), be the completion of S(I"\ X),. Moreover we construct a Hilbert
space 2 which is a completion of M with respect to an explicitly given inner
product <, >, and prove that the mapping F, can be extended to an isometry of
L>(I'\X) onto %% (Theorem 4). This result may be considered as the Plancherel
formula for the (normalized) Fourier-Eisenstein transform F.

An explicit form of the inverse transformation of F; follows quite easily from
the Plancherel formula (Theorem 5). Furthermore, using the main theorem, we can
determine all #(G, I')-eigenfunctions in €°(I"\ X) (Theorem 6).

0.3. Let K be a real quadratic field. Then the set K — Q can naturally be
identified with the space X = X1, where D is the discriminant of K. The action
of G on K — Q is given by linear fractional transformation. Arakawa [A] and Lu
[Lu] constructed certain # (G, I')-eigenfunctions by arithmetic means. In §5, we
shall dicuss these eigenfunctions from our point of view.
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0.4. In [M1] and [M2], Mautner took up the same problem for positive
definite forms and obtained the decomposition (0.1). He further noted that
# (G, I')-eigenfunctions are products of local eigenfunctions. Qur investigation
can be viewed as a development of his work. We complete his results with the
Plancherel formula, an explicit formula for eigenfunctions, the relation between
eigenfunctions and zeta functions of binary quadratic forms, and a generalization
to the case of indefinite forms.

0.5. In [SH], we have defined Eisenstein series and Fourier-Eisenstein trans-
forms for reductive symmetric spaces and showed that analogous results can be
obtained at least for the symmetric spaces GL(n) X GL(n)/A(GL(n)), GL(2n)
/Sp(n) and GL(m + n)/ GL(m) X GL(n). Thus it is quite natural to expect that
the results in the present paper will turn out to be one of the simplest examples of
a general phenomenon.

ACKNOWLEDGEMENT. We would like to express our gratitude to T. Arakawa
for his helpful comments on the material in §5. A part of this work was done
while the second author was staying in Gottingen under the support of the SFB
170.

§ 1. Function spaces and the invariant measure on the set of rational
binary quadratic forms

1.1. Let
X=1{g<GL(Q) |'g=g and G = GL}(Q) = {g € GL,(Q) | det g > 0}.
The group G acts on X by
g¥ = (det g) l-gx'g.
Put I' = SL,(Z) and consider the following function spaces:

€ ('\X) ={p: X—Clo(r * x) = @), for every y € I'},
ST\X) ={p <€ T'\X)| ¢ =0outside a finite union of I-orbits},
¢ (I'\Y) ={p €6 (I'\X) |Suppo C Y},

SI\Y) ={p € ST\X)|Suppy C Y},

where Y is a G-stable subset of X. Denote by chrer (¢ € G) the characteristic
function of the double coset I'gl" As usual, the Hecke algebra # (G, I') of G with
respect to I' is defined to be the C-vector space spanned by {chrer| g € G} with
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product

chrer-chppr = > miChrer,
rxrer\¢/r

where
mk=#{(i,j)|gih,€k1"},FgF= Ug,F,FhF= [_Ih,»F.
1 j

Here we use the symbol || to indicate disjoint union. We define an action of

#H(G, T') on €°(I'\ X) by
{chrer * @) () = 2 @(gi* * x), where I'gl'= || gil".

Then, for any G-stable subset Y, the spaces €*(I'\Y) and SU'\Y) are
# (G, I') -submodules of €=\ X).

Our aim is to determine the # (G, I')-module structure of S(I"\ X). For the
discriminant D of a quadratic field or Q and » € Q, » > 0, put

Xp,={r<€ X|detx=—r2D/4) it D >0,
Xi,={r<e X|detx = —»2D/4, x is positive definite} if D < 0,
Xp, = {xr € X|detx = — v2D/4, x is negative definite} if D < 0.

Then G acts on these subsets transitively and we get the orbit decomposition

x={U Ux) U{U U U x),
st s

and the direct sum decomposition
SI\D =8 &S0\ X)| ®[® & I\ X3) D ST\ X5}
D>0 yeQ D<0 yeQ

r>0 >0

as #(G, I')-module. Since Xp, = {rr|x € Xp1} for D >0 and X3, = {£ rx
|z € Xg1} for D < 0, we have the following isomorphisms of # (G, I') -modules:

S\ Xp,y) = SN\ Xpy) (D >0),
ST\ Xy = ST\ X5) (D <0).

Hence it suffices to consider only S\ Xp1) (D > 0) and S\ X51) (D < 0).
1.2. In the following, we always fix the discriminant D of a quadratic field
or Q and put X = Xp, (resp. Xg1) if D > 0 (resp. D < 0). We also put

QPQ ifD=1

E=f= [Q(x/ﬁ) i D+ 1.

We define the norm N : K— Q by
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1122 ifD=1and z= (11, x2)

N(x) = { .
Ngqlx) if D # 1.

Let P be the set of rational primes. We define Dirichlet characters xx and Xk
with f € N as follows: for p € P,

xk@)= 1 ifD=1,
1 if p splits in K

xk@) =1—1 ifpisinertin K if D+ 1,
0 if p ramifies in K
—_ xx@) pAXf
XK‘f(p) { 0 1fplf'

For each natural number f, let 0y be the Z-order in K of conductor f, i.e.

{(x,y) €Z?|z=y(mod )} ifD=1
0, = [1,L——(DJ§‘@)] iD#1,

and let
Or={x€0,/Nx)=1}.

We have used the symbol [a, B] to denote the Z-lattice in K with Z-basis {«, 5}.
For simplicity, we write § = @, and 0* = 0}.

For an Os-ideal a, we define its norm by Ny(a) = [0, : al. Then , for o € 0y,
we have Ny (a0, =| N () |.

A full Z-lattice a in @ is called an Os-proper ideal if {x € K| ax € a} = 0.
Let I; be the multiplicative semigroup of all Os-proper ideals. As usual, we write
a~Db if b=ax for some x € K with N(x) > 0. Then the narrow ideal class
group Cl; is defined by Cl; = I;/ ~ . We denote by A, the order of Cls. It is
known that the class number Ay is given explicitly by

= hK —_ -1
(1.1) hy J—ml: G L= a@)p™,

where hx = h,y (cf. [L, Chapter 8, Theorem 7], for example). For D = 1, it is easy
to see that

L=Al(n, mt), 0, fOH1|n,t>0,0<m<f, (f, m) =1, n=mtmod f)}
and

Cly=(Z/f1)~.
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Now we recall the correspondence between the set of ideal classes and the set
of equivalence classes of primitive binary quadratic forms. For S, T € X, we say
that S and T are equivalent and write S ~ Tif T = 7 % S for some y € I'. Put

ler:{(a b/2>
b/2 ¢

Then

a, b,c€Z, (a, b, c)=1, b2~4ac=f2D].

1
f

1

x=ULxr Lxr={Lo]zexr].
on S f
‘ . 1 yor _
;o =4 .
We say that x is of conductor f if x € 7 X7'. If D=1, a complete set of repre

sentatives of X'/~ can be chosen as

{ ( m f/2>
f/2 0
Then, as is well known, there is a bijective correspondence between X'/~ and
Cl; induced by

0£m<f,(f,m)=1}.

(m f/2

f/2 0 )H[(m’m),(O,f)] it D=1.

b/2
<a )H[a,b+ m] fD#1,
b/2 ¢ 2

By this bijection we identify the both sets and use the following notation to indi-
cate the corresponding classes:

X}]r/"’ hand CIf

[S] ~  [as]
[Sa] < [al.

If T€ X, Se€ X" and f| fi, then aras is an

O¢-proper ideal. We denote by
T S & X" the matrix corresponding to aras, which is determined up to
I-equivalence.

1.3. We recall the definition of the completions of G and X (cf. [SH]). Let
I" (n) be the principal congruence subgroup of level # € N:
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I'n)={rerI'ly=1(modn)}.
We define the completions G and X of G and X, respectively, by

G=1lmG/I'(n) and X =lim "' (n)/X.
" n

Then G is a locally compact totally disconnected unimodular topological group and
X is a locally compact totally disconnected topological space. Since the action of G
on X is uniquely extended to a continuous action of G on X, we use the same sym-
bol % to denote the extended action.

We may identify G with the closure of G in GL2(Ay), where A; = II, Q,, the
finite part of the adele ring of Q. In the present case, since the group SL, satisfies

the strong approximation theorem, we have
G = {g< GL,(A)) | det g € Q, det g > 0}.

We denote by T the closure of I'in G. Then we get natural bijective corres-
pondences between I'\ X and '\ X, and between I'\G/I" and I'\G/T, so we
may identify €= (I"\ X) with

6I\X) ={p: X—Clo@i*x) =90, rerl},
ST\ X) with

SI\X = {p € €'\ X) | ¢ : compactly supported}
and #(G, T') with

f : compactly supported, }

#(G, 1) = {f ¢—C flwr) =f@) (r, e € 1)

We normalize the Haar measure dg on G by fr_dg = 1. Then the multiplica-
tion of # (G, I') can be expressed as

(fi-f2(h) = _/;3 Hhg) (g7 Wdg, fi, - € H(G, T)
and the action of (G, I') on €°(I'\ X) can be expressed as

U *0@ = [ f@ee™ * 0dg, [€HG, D), g€ ET\X),

By Proposition 2.6 of [SH], the space X carries a G-invariant measure du.
For x € X, denote by I the isotropy subgroup of I" at x. We fix a base point
X, € X' (€ X) and we normalize du by setting
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du = 1.

I* xo

Then, by Proposition 1.9 of [SH], we have

(1.2) fm dy = [y : golhgs'l,

where g € G for which xy = g, * x. For simplicity, we write u(x) = f*& du.
T'xx
For later use, we compute the value of y(x).

LemMa 1.1. Ifx € X is of conductor f, then u(x) = [0': G}. In particular, if
D=1, then u(x) =1 for everyx € X.

Proof Let D=1 and x € X. Denote by G4 the isotropy subgroup of GV =

0 1/2
SL,(Q) at x. We may take x, = <1/2 0 ) as base point. Then we get
]"I: Fﬂgz"G}“gxz {i <l 0)]
’ 01
Thus we get ¢(x) = 1 by (1.2).
1 a b/2 .
LetD# 1, x==55,S= €X! and xp = T € X{". Then
f b/2 ¢
S t
GV =GP = ) b €6V, b eq— (0 0]
— =t s+t
a a
So we obtain an isomorphism
0} — I;
w w
I — bu au
D 2 0 t/’2 0
S P OB
2 t+ bu —u 0 0 t/2
— cu D)

Take a ¢ € G such that g % & = x,, equivalently (f det g)-T = gS'g. Then we
see
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gI}g‘l:[T( 0 uf)+(t/2 0 ),H_—”@e@}],

—uf 0 0 t/2 2
while
0 t/’2 0 N
Ih=‘T< ”>+< )‘UUMQeﬁq.
—u 0 0 t/2 2
Now, by (1.2), it is obvious that y(zx) = [0* : O}]. [ |

§ 2. Decomposition of S(I"\ X) by characters of class groups

For a positive integer f, let 2(f) be the character group of Cly. If fi| f then
there exists a canonical surjective homomorphism pfl : Cly— Cly, induced by a
a0;,; hence we have a natural injective map

Ind}' X(f) — X£(f)

w w
X P X
The conductor fy of x € X(f) is defined by
f, = min {fi € N|fi devides f, x € Ind}(®(f))}.

If f= fy then x € X(f) is called primitive. Let X" be the set of all primitive
characters of arbitrary conductor.

Denote by ch; the characteristic function of I' % x for x € X. Let x € X'
and T € X}". Taking f, satisfying fy | f1 and f| f1, we put

Px(Ch}T)Z% > X(P;;([S])Ch}@*&.

1 [SleCls

It is easy to see that the right hand side is independent of the choice of such an f;,
hence we get a linear operator p, on €=(I"\ X). The operator p, stabilizes
ST\ X).

For a ¥ € ¥ and a positive integer f such that f, | f, set

_ 1 )
Cor T [SECUX(P/X([S])Ch§s-

The purpose of this section is to show the following proposition.
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ProposiTion 2.1, (i) Let ST\ X)y = p,(ST\X)). Then the space ST\
X)), is spanned by cx; (f € N f | £).

(it) The operators py commute with the action of #(G, ') and we have an
H (G, I') -module isomorphism

ST\NX) = & S\ X),.

xexer

For the proof of Proposition 2.1, we need the following lemmas.

Lemma 2.2, Forany T € X}', we have

0 Ff A f
L(chir) =
Pr(chin) [z<m>cx,f LS,

where

x (LT = x([TD.

Proof. It is easy to see that the identity holds for the case f | f Let i X f
and take a common multiple fi of f and f,. Then we have

pelehyn) =5 T chyres T 1 @L(UD)

[SleClr [WeCls
PRUD=18]

=5 T e @PATD) T x @RIV,
fLis x

leCls VieKer(p,h
where [Us] € Cly, with p£* [Us] = [S]. Since f, ¥ f, we get
b X(PE([W)) =0, |

[VIeKer(p/h)

hence

pelchiz) = 0iff, £ f.

LemMA 2.3. (i) For any chavacters ) and ¢ in XP*, we have

DPx°Po = Do° Px = OxoDx,

where Oy is the Kronecker delta.
(ii) For any S € X/", we have

chig= 2 7@ ([SD)crs.
T
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Proof. Trivial from the orthogonality relation of characters. |

Two lemmas above show that S(I\X), = p,(SUT\ X)) is spanned by
{cos | FEN, £l 3 and ST\ X) is a direct sum of ST\ X), (x € %) as
C-vector space. Therefore, to prove Proposition 2.1, it suffices to show that the
operators p, commute with the action of # (G, I'). For this purpose it is conve-
nient to introduce another #(G, I')-action on €~(I'\X). For ¢ = ch; €
€*(I'\X) and f = chrgr € #(G, I') with T'gl’'= ||, Ik, put

(2.1) fro=2 Chh,-*z-

It is easy to see that (2.1) induces an # (G, I')-action on €=(I"\ X). Define a
C-linear map V : €°(I'\ X) — €>(I'\ X) by V (chs) = u(x)ch,.

Lemva 2.4. For every f € #(G, T') and €'\ X). the following identity
holds:
f*o=V(* (V').
Proof. We have only to show the identity for f = chrer € #(G, I') and
¢ =ch, € "'\ X). Let
Irgr= U gr'= Ll I'y= || I'm[%,
i J !

where I = {y € I'| 7 % £ = x}. Then we get

fx o = #{ilyc gl * 2
= # {i| there exists kI, € g.I'/T such that k * x = y}
= #{kl,€Tgl'/T |k % x=y}.

We see that the number of left Iy-cosets in I'mlI, which give the same element
ym ¥ xin X is equal to [Dpsy : mIym™ N I'l. So we obtain

f * QD = Z [Fm,*z . Wlll"z”’ll_1 ﬂ ”Chm,*x-
!

On the other hand we get

f* =2y Iy 0 mi* Tmdchy s,
1

since the number of left ['-cosets I'k satisfying I'hly = I'kl'y is equal to
(I;: Ty N h~Th]. We obtain
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[[: TN m I'm] = [mlem™ 1 Dypsx) (D - L em™ N 1
and, by (1.2),

[mIom™ : Dysal = p(m * )/ p(x).
Hence we get the required density. [ |

By Lemma 1.1 and Lemma 2.2, we see that
DoV ="Vep,.
Hence the proof of the commutativity reduces to the proof of the identity
(2.2) p(f* @) =% (0(9), FEHG, D), ¢ €E(I\X).

In the rest of this section, we consider the case D # 1, since the proof for
D =1 is much easier. We need the following lemma due to Shintani (cf. [Sn, Lem-
mas 2.3 and 2.5]).

LEmMMA 2.5.  Let a be an Os-proper ideal and p be a rational prime.

(i) Among p + 1 sublattices in a of index p, there are p — xx(p) Orp-proper
ideals and 1 + xx(p) Or-proper ideals if p X f, and there ave p Ory-proper ideals and
one Osp-proper ideal if p| f.

Let {ay,. . .,ahf} be a complete set of representatives of ideal classes in Cly and B
the set of all sublattices of a, (1 < 1 < hy) of index p.

(ii) For every C € Clyy, theve ave [0} : O%] lattices b in B such that b is Oyp-
proper and b € C.

(iti) If p X f, then for every C € Cl;, theve ave 1 + xx () lattices b in B such
that b is O proper and b € C.

(iv) If p | f then for every C € Clyyp, there ave hy/hyp lattices b in B such that
18 O t1p—proper and b € C.

Recall that #(G, I') is generated as a C-algebra by the elements

{T, D, T, n*|p € P},

where T (p, p)*' (resp. T(p, 1)) is the characteristic function of the double

0\*! p 0 L o
resp. . Since it is clear that the identity
0 p 01

(2.2) holds for every T(p, p)** € #(G, I'), it suffices to show the following

I'-coset containing (

identity for every p € P and x € %X}“:
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(2.3) (T, 1) % chy) =T (p, 1) * p(chy).
We denote by (R) (resp. (L)) the right (resp. left) hand side of (2.3).

Write les, S € X7'. First we consider the case where fy X f Then
(R) = 0 by Lemma 2.2. If f, X fp, then clearly (L) = 0. If f, X fp, then we get by
Lemma 2.5,

) = p:((6): 03] Tenyn)
= 10}: 031 (Z 202 ATH)) o
(7] x

where the summation is taken over all [ 7] € Cls, satisfying p;p([T]) = [S].
Since fy £ f, we have (L) = 0. Thus, we see that (L) = (R) = 0if f, ¥ f.

Now we assume that fy | £ The conductor of a lattice b in K is, by definition,
a positive integer f for which b is an Os-proper ideal and we denote it by f(b).
We may choose an ideal as coprime to pf from the ideal class corresponding to S.
We get

L) = Z 10 crim),
b
where b runs over all sublattices of as of index p and

X @ (6D) it £ | £(®)

0 if f £ £(b)

We consider the right hand side (R). For [T] € Cly with fi | f’, we simply write
x(T) for x(p;;[T]). Let

x (b) ={

5 (S)

Rym=232" 5 1(T) Zehys,

[TleCls b

where the summation with respect to b is taken over all sublattices b of ar satis-
fying [az : b] = p and f(6) = m. Then we see by Lemma 2.5 (i) that

R)p + (R), ifpXf
(R)pp+ (R)pp il

If b is a sublattice of ar of index p and f(b) = fp, then bO; = ar, and so we get by
Lemma 2.5 (ii)

(R)={

R)sp = % (S)
= (0 — xx,@NX(S) “Cxp

X[

hfp[@}’ . @pr] ¢
hy
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(for the definition of x ks see §1.2). If b is a sublattice of ar of index p and f(b) =
f/p, then b ~ ar0,,. Hence, if p| f, we get by Lemma 2.5 (iv)

R)pp = x(S) b3 Chgu > x ()

hf [UleClin ¥l

0 iffxz%’%

X(S)exsp iffy l {;,

where the summation is taken over all [ 71 € Cl; such that pf/p([T]) =[U]. If
p A f then we obtain, by Lemma 2.5 (iii),

®), =25 5 (1) T chures,

hf [TleCls bSO,
W, :0)=p,f0)=f
= 2 X (B) ey z.
bCay
lag:bl=p,fL)=f

Hence we see that (R) = (L), and this completes the proof of the commutativity,
and so we finish the proof of Proposition 2.1.

8§3. Eisenstein series

3.1. We define the Eisenstein series on X, which is a slight modification of
the zeta functions of binary quadratic forms, by the following formula:

(3.1) E.(x;s1, s2) = plx)t 3 sgn®(vx'v)

1 1’
vezeor, | vxty |92 | det x |53
vxto#E Q0

where e = 0or 1, sgn®( ) = {sgn()}*and [ ={y €T 7 % x = 2.
This Eisenstein series coincides with the one introduced in [SH, §3.1, (3.7)]
up to the factor {(2s1 + 1) (see also [SH, §3.2]). The right hand side of (3.1) is

absolutely convergent if Re(s;) > % has a meromorphic continuation to the whole
C? and satisfies the following functional equation (cf. [S]):

A(x; 23, 21) = Ae(T; 21, 22),
where

A(x; 21, 22) = ﬁZI_ZZF(ZQ —z+ ’%)Uzm(zz —z+ %)Es(x; Z, — 2, — 2),
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1 ifD<O0
Np.e(s) = {cos(sn/2) ifD>0ande=0
sin(st/2) ifD>0ande=1.

3.2. As usual, for S € X" and s € C, we define

= 1 — N, (as)s
3.2) (s) = > = X f
( . ez, WSV e N(@)®
vS'w>0 N(a)>0
and, for C € Clyand s € C,
1
(3.3) P(Cs) = X .
C aeC N(a)s
at+f0,=0,

The series {s(s) and {Y’(C;s) are absolutely convergent for Re(s) > 1. It
is obvious that {s(s) depends only on [S] € CI,.

THEOREM 1. Letx = %S, S, € X}, Then we have
_opel
E.(x: s) =f—(sx+%—)(%> +y

% (e (pactsnis +3)

ar 10*: 0}
+ (= DL (piU IS s+ 3)) i D >0
X 3 ' 2
a» (@ l .
% [@1 @)] C (pd([s]) Sl > sz < Oy

where Jr is the ideal class in Cly containing the ideal

(fVD) if D> 1
(f, =) ifyD=1.

Proof. From (3.1), (3.2) and Lemma 1.1, it is easy to see that
1

(cs(se +2) + = Dte(ss +3))
E@;9) =5, @l]fs” < ) T x itD>0

Cs(sl + %) if D<0



HARMONIC ANALYSIS FOR BINARY QUADRATIC FORMS 137

where [S1 = J;-[S]. Hence the theorem is an immediate consequence of the fol-
lowing lemma. |

Lemma 3.1. (i) Let C € Cly. If a € C satisfies a + fO; = Oy, then

D(C- ¢) = N(@)*
HCEE N

N@>0,@f)=1
where (a, )= 1 means a0 + fO = 0.
(i) For S € X",

Gty = S 10h: 00 (£) o uas; o).

alf

Proof. (i) We put

where for x € K,

B {(b, a) if D=1and x = (a,b)
I = _ , :
a—b/D fD#landx=a+ b/D, a, b € Q.

Then we get
N(a) = N(d) and aa = N (a)0,,
and so
LUUC; s) = LV(CTY ).
There is a bijection

{a€alN(@ >0, (a, /) =1}/6; — {beC'|o+f0,=0,

aa
@ ~ N (a)

and so we obtain the identity.
(ii) Let a be an ideal belonging to the class [as] such that a + f@; = 0. Then
we see that

al0p N O, = a0y, if f1| f2 and fo | f,

and

Nl’(a) = Nfl(a@/’l) 1ff1 If
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We see that, for « € a — {0} and d which divides £,

(a, f)o S dO if and only if d7'a € a0z,

For d| £, put
a? = {a€alla, fle=do},
then
a— {0} = || a?.
dif
Now we get

_ Ny(a)*
CS(S) ’% ueu%/m N(a)s

N@>0
= Nf(a)* 2 2 e
W pewwn, V(@R

B.f/d)=1,N(B)>0

= > [0}y : 0Yd™* C(//d) ([aBf/4l; s)

dlf

=3 10300 (£) 1 (a0 ). ]

dlf

§ 4. Fourier-Eisenstein transform and Plancherel formula
4.1. Let 93, be the C-vector space of Dirichlet series

E(z, z2) = 2 c(my, ma) mi™ my™™

m,m€ Q%
which converge absolutely for Re(zz) — Re(z) > % , have meromorphic
continuations to the whole C? and satisfy the functional equation
E(z, 21) = 5 (2, 2),
where
- — 21—Z22 1 1
Bz, ) =17z~ at5) bz~ at15)§ (2, 2).

We define the Fourier-Eisenstein transform on S (I"\ X) as follows:
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(4.1) F.: 3N\ X) — 924

W w

@ = Fe(p)(s) = L@(I)Ee(x; S1, S2) du(x).
Here we consider E:(x; s) as a function in €°(I"\ X). Note that F:(¢)(s) is a fi-
nite linear combination of the Eisenstein series. In fact, by Lemma 1.1, we have

F.(@)(s) = 2 o) [0": O}»)] Ec(x; s1, $2),
rel\x

where f(x) is the conductor of x. Hence F:(¢) is in DJe.
Let

N=Clry, x3,...,7,...1, Z=p" +p" (pEP).

ProposiTion 4.1, (i) There is a surjective C-algebra homomorphism

G, I — R

L e — a(p(g)) |z
7 o= [ a6 |, f@ae,

wheve p(g) is an element in {<? 5) S Gl b= 0] such that gp(g)™ € I and

a(p(g))and d(p(g)) are the (1,1)-entry and the (2,2)-entry of p(g), respectively.
(i) The following identities hold for any f€ H (G, I') and any ¢ € S\ X):

(4.2) Fo(f % @) (s) = f(s)Fe() (s)

(f * E)(x; 51, $2) = fSDEA(x; 51, 82).

Proof. (i) By the Iwasawa decomposition of GL(2), we see that f— f is a
C-algebra homomorphism. By direct computation, we get

T, 0 O =1and TG, 1 () = p*(¢' + p™).

Thus we obtain the result.
(ii) The former identity is an immediate consequence of [SH, Theorem 2]. Since

Fe(chy) (s) = p(x)Ee(z, 3),
we obtain

(f* E)(x;8) = p(x)'Fe(f* * chy) (s),
where f(g) = f(g™). It is easy to see that f“ % ¢ = f % ¢ for any f € #(G,
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I and ¢ € S(I'\ X). Hence

(f % E)(x;8) = @) 7'f (1) Felchy) (5)
= f (s Ee(x; 5).

This concludes the proof. |

Remark. The homomorphism given in the first part of the proposition above
is nothing but a specialization of (the tensor product of) the Satake transform on
GL(2). We call the homomorphism the restricted Satake transform.

Let x €% and ¢ € S('\X),, and define the normalized Fourier-
Eisenstein transform Fy by
2 F(o)(t, s2)

(4.3) E9) ) = S5 iy

£=0,

It is obvious that the right hand side of the identity is independent of s.

TuroreEM 2. For an m € N, define a function ¢y, (H) € R by setting

Qem(t) = pIII Qoo (t), € = ordy(m),

s Py if Xkr,(9) =0
p 2 {p(e_l),(pm _ j)_l) _p—w—m(p—z: — p—l)}

Grpe@® =1 A +p D@ —p ™) ks () = — 1

p—% {pet(pt + p=1-t — + 5 —%
A= —p P (x(pl) X (P)p2)
—p T AT = () F XD i xks(P) = 1,

where

o) = {x([(p, P, A, LD D=1
X = o(p 00, ifD# 1 and (p) = vp in K.
Then, for fy | f. we have
(4.4) Fy(exp) (1) = 0}, : OH e, ().

In particular, for any ¢ € S\ X))y, Fr (@) is contained in the ring R.
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For the proof of the theorem above, we prepare some notation on L-functions
of quadratic fields. For x € X¥(f) and s € C, let

(4.5) L7 (x;8) = 2 x(O)CV(C;9)
CeCly

and
L(x;s) =L (x;s).
Then, if Re(s) > 1, we obtain

L(x;s) = Ly(x;s) and LV (x5 8) = L(x; S)/TII Ly(x;9),
b plf

where
(4.6) 1 |
fpXfrand D#1
p:prmg mn K 1— X([p n @/]) N(p)—g 1 P f and
pep
1 .
L,(x;s) = tp4f amd D=1
e Q- X([P])P_S) (1 - X([p])p—s) ifp f an
1 it 9 fr.

Here we write x ([p]) for x ([(p, ), @, OD.

Proof of Theovem 2. Let f,| f and put 6= 0 or 1 according as D <0 or D > 0.
Then, by Theorem 1, we obtain

Filen o) = 150 5

[(SleCly

X (] (ASHE(5 5 5)

_sal
f-tonh ()
= W 3|64 : 63d

dlf

1
8 lSIECl;X(p};([S]){C(d)(ptg([S]), S1 + E)

+ (= s o-cm(pé(h- (ST 1 + %ﬂ

(ssdy (D)
=f( )<4) 2| 0y:00ds 2 C“”([T];sl+l>

hf dlf [TleCla 2

2 @l dsh) + (= Do x @hU- ISH))
pgqsn=[fﬂ
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=@+ - Vg ot (B)

281
X Z [@d []d L(d)<ll’ld? (X)’ St + .1_>
i ?

By (1.1), we obtain

Fole,)(s) = A+ (= Do xU)) [0‘ @f] f- - (%)—s2+z

L( ) > dn L;1<X; st %>
X st }illf 1,|4 1= xx(p)p™ '
Hence we get
L 1
— L i g 2t Ly <X; il §> ’
Fule® = 163,: 03 (f) fjj" Se 1= aen (o

L;‘(x; t+ %) o

— [@11 -0Y 11 —eg(H»—;—) 1+ Z 2tn
PO (s an o n? ).
where ¢, = ord,(f/f,). By (4.6), we obtain the identity (4.4). [ ]

Through the restricted Satake transform TLH(G, T)— R given in Proposi-
tion 4.1 (i), we consider the ring R as an # (G, I')-module. Then, by (4.2) and
Theorem 2, the normalized Fourier-Eisenstein transform F, defines an #(G,
I')-homomorphism of S(I"\ X), into R i.e., the following identity holds for any
fEH(G, ) and any ¢ € ST\ X)x:

F,(f % ) () = f(£)-Fy(@) (D).

TuEOREM 3. Let x € X,

(i) The normalized Fourier-Eisenstein transform
F: ST\ X),— R

is an isomorphism of H (G, I') -modules.
(i) The space ST\ X)y is generated by ¢ys, as an #(G, I') -module and we
have an # (G, I') -isomorphism

SI\X)y = #(G, I/ 5,
where $ is the ideal of #(G, I') generated by {T (p, p) — 1|p € P}.
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Proof. 1t follows from Theorem 2 that Fy is bijective. This proves the first
part. Since Fy(cyr) = 1, we get

SIT\X)y = #(G, ') * cyy,.
This also implies that ST\ X), = #(G, I')/ 4, where J is the kernel of the res-
tricted Satake transform. By the proof of Proposition 4.1 (i), we see that $ is
generated by {T(p, p) — 1|p € P}. |

4.2. We define a hermitian inner product on S(I"\ X) as follows:

Gps= [Lo@dDdu@) (9, ¢ € ST\X)).

Thus S\ X) becomes a pre-Hilbert space. Let L2(I"\ X) be the completion of
SWT\NX):

LI\ X)={lpe¢T\X)| Z u@)|o@)l? <+ o},

rel\X

We denote by L2(I"\ X), the closure of S(I'\ X), in L2(I'\ X).
Now we introduce a pre-Hilbert space structure on . For p € P, put

R, = Clp' +p7'].

Then R is canonically isomorphic to the restricted tensor product Qjep Ry. First
we define a hermitian inner product on R,.

Let @, =y—1 (R/

102;[1) Z) and let dpf be the Haar measure on 9,

normalized by f@ d,t = 1. Consider the measure w,(t) on @, given by
b

Llx1+5)

2

(4.7) wp () = L 2x2D7 dyt
' ? 2 G (21) b
where {,(2t) = 1——}1)_7 Then we can define an inner product on R, by

@ 0s = [, 5 OBO,O @, gy € Ry).

The inner product on R = &’ R, is now defined by
peP
0. 0} - :
{p, PP = [ A ) 2 aibiI}<<Pm, Go.i? v
1,7

x
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for

p=2a <® %.f) and ¢ = 2 b, (® ¢p.f> (@i, b; € C, @piy ¢ps € Ry).
i b j »

We denote by ¥2 (resp. £%,) the completion of R (resp. R,) with respect to the in-
ner product <, >, (resp. <, > 4,). The Hilbert space ¥2 is the Hilbert restricted
product of €%, (p € P).

THeOREM 4 (Plancherel formula). The normalized Fourier-Eisenstein transform
F: S\ X),— R

can be extended to an isometry of L*(I'\ X)y onto £%. In particular, for every @, ¢ €
S\ X),, the following identity holds:

(4.8) <§0’ Py = <Fx((p), Fx(¢)>x

First we prove the following result on local factors of the inner product.

LEmMA 4.2, For any p € P, we have

0 ifd# e
1 ifd=e=20
{Drper Prpa?p = _ v ¢
P d=e>0
1= np V477
Proof. By (4.6), we have
lp'—p7' I if Xk, @) =0
1 2 t __ p—t |2
L"<X;t+ §> _ ] f;t—_% if Xk () = — 1
G20
t — At 2
I t ? t j)t 1t if XK,f,((p) = 1,
(bF — X WP GF — LWp D)
where
():{x([p]) ifD=1
e x(p N Ol it D#1and (p) =ppin K.
Let xx.r(p) = — 1. Then we get

[ e ®derettiony®)
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_ ~(d+e)/2 f ( Q(e~1)t _ Q—(e—l)t )
2(1 + p~1) D, p—Zt — p—l pZt — p—l
X {p=@-vi(p=2t — p-1y _p(d—lit(pzt —pY) dyt

= 2(21—(:;/_21) f@ (3 pi+lerai+it — S pom—(erzmiDry

120 m=0
X {p—(d—l)t(p—m _ p—l) _p(d—l)t(pZt — p—l)} dpf
1 ifd=e=0

—_— —¢ M —_—
= —2_1+p“1 ifd=e>0

0 ifd+#e.

We can prove the other cases similarly.
Proof of Theovem 4. We have only to show the identity (4.8) for ¢ = ¢y.er,
and ¢ = ¢yqr, with e, d € N. It is easy to see that

[0*: @é)‘]

<Cx,e/,, Cx,df)d = Qe h'efl .

On the other hand, we get
[0': 0} ] p e
CF (@), Fx(9)) 4 = 0ea =505, : O P Tl
((0) (¢) X d h/x fx fx sle 1 _ XK,fx(p)p_l

where ¢, = ord,(e). By the class number formula (1.1), we obtain the result.

We define a function w,, in €'\ X) ¢ R by

_ 1
Wyt = [—@1—@}—] f%f Iy Drsrr (B) Cxs.

THEOREM 5. For every ¢ € S(I'\ X)4, we have

o) = {F (), wz (),

namely, the inverse transformation of Fy is given by

F (o) = <Fx(§0)y wi.t>x-

Proof. By the definition of the inner product <, >, we have
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1

(@) {p,ch 4.

p(x) =

It is easy to see that

<Px(0: ¢>z3 = <¢’ px¢’>ﬁ
for any ¢, ¢ € €°(I'\ X), if one of ¢ and ¢ is in ST\ X). If ¢ is in ST\ X),,
then ¢ = p,¢. Hence, we get
w@) @] ASH) e, e if fil f
O lf fX *fy

where f is the conductor of x and S = fx € X/'. By Theorem 4, we have

<§D, s = <Fx((P),Fx(Cx,f)>x~

ox) = {

Now the theorem follows immediately from (4.4). ]

4.3. Theorem 3 enables us to determine .all #(G, I')-common eigen-
functions in ®€°(I'\X). Since R =@ R, we can define an algebra
3

homomorphism Az : % — C for any £ = (¢)ep € CF by setting

(@ ¢p) = II @p(ts) (Pp € Ry, ¢p = 1 for almost all p).
»

peP
Composing Ay with the restricted Satake transform "~ :# (G, I') — R given by

Proposition 4.1 (i), we obtain an algebra homomorphism
#HG, 'Y — C
f = f () = 2:(f).
Any algebra homomorphism of #(G, I') into C can be obtained in this manner

for some t € CF.
For t = (¢))sep € CP, define a function wy s € €=\ X) by

= [—@11—@}T /;:U Ry Prsrr () Co,

Wyt

where

Durrr () = 11 ypes(ty), e = ordp(f/fy).

“Tf,
It is not hard to check the identity

(4.9) f¥ one=f®wne (FE€ H(G, ).
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THEOREM 6. Let W be an #H (G, I') -common eigenfunction in €=\ X) satis-
fying

f*U=Ff) Tfrallf €#(G,T).

Then W is a (not necessarily finite) linear combination of {wy¢| x € ¥°}, namely, &
1s of the form

U= 3 a,w (a €C).
X

Proof. We identify €°(I"\ X) with Hom¢(S(I'\ X), C) via the nondegen-
erate bilinear form

(Y 8" (M\X) X ST\X) — C
W, ¢) - (T, g0>=j;?§[f(x)go(x)dﬂ(x).

Since {p(T), > = (T, p;(¢)> for any ¥ E€ €'\ X) and ¢ € S\ X), the
space €°(I'\ X))y = p,(€°(I'\ X)) can naturally be identified with Homc(S "\
X)z C). By Proposition 2.1 and Theorem 3, we have

E(r\X)= I €T\X),.

xEXPr

Let ¥ be as in the theorem and denote by ¥ the €°(I'\ X),-component p,(¥) of
. Then, for any f € #(G, I'), we have

W, f* ey =T, f* cgr
= <f* Qf, C{f)
=F LT, czs)
= F ()W, czr).

On the other hand, by (4.9), we have
e, [ * i) = f () oe, e
=7 [Thf@ﬁ {ensys Cur? 3
=f@®.
Hence
U, — ay-wye, f¥czpp =0 (FE H(G,T)),
where we put

ay = Wy, cir.
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Since S\ X), = #(G, I') * ¢, s, by Theorem 3, this implies that

U, = ay wyt.
Thus we obtain

U= 2 a, w.. |
X

Remark. For the space of nondegenerate binary quadratic forms over p-adic
fields, results analogous to Theorem 2-6 have been obtained in [H1], [H2].

§5. Examples of Hecke eigenfunctions

Let K be a real quadratic field with discriminant D. As in the previous sec-
tions, we put

X=Xp.={xeMQ2,Ql'r==1x, detx=— D/4}.

Put K’ = K — Q and consider the bijection

K — X
a — S,
given by
g - VD ( 1 —tr(a)/Z)
“a—a\—-tr(@)/2 N /)

b
Then, for any g = (a d> € G = GL}(Q), we have
C

da — ¢

g% Sy = Sen, ga= “baFa

Thus we can identify the space €°(I"\ X) with the space
(F\K) ={p: K'—=CloGa = ¢l (re D).

Hence the Hecke algebra # (G, I') acts on €°(I'\ K’).
We give examples of Hecke eigenfunctions in €°(I'\ K’).

ExampLE 1. In [A], Arakawa introduced the Dirichlet series

E = 5O (@ e g
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and proved that
(1) £(s, ) converges absolutely for Re s > 1;
(2) £(s, @) has an analytic continuation to a meromorphic function of s on C;
(3) £(s, ) has a simple pole at s = 1.
Let ¢c_i1(a) be the residue of £(s, @) at s = 1. Then the following is a refor-
mulation of [A, Theorem 2.16]:

THEOREM (Arakawa). The function c—1(@) belongs to €°(I'\K’) and satisfies
the identity

frea=F(=5)en (FEH(G, ).

ExampLE 2. For an a € K, let

ak.+ —_—
a, + 'l’

be the expansion into periodic continued fraction. Using the block of periodic
terms aj,...,da;, we define the Hirzebruch sum ¥ (&) by
0 if k is odd

U(x) =1 & )
2(— 1)*a; if kis even.
7=1

In [Lu), Lu studied the behaviour of ¥ (&) under the action of the Hecke algebra.
Put

@) = T@/u@, w@ =uS) = [ de

Then the following is a reformulation of [Lu, Theorem 7}:

THEOREM (Lu). The function Wo(@) belongs to €°(I\K’) and satisfies the
identity

fxu=7(-%)w (rexc. .
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In other words,
reu=f(-H v e, .

Thus the functions ¢-;(a) and @y(a) belong to the same eigen space of # (G,
I'). Arakawa proved that these two functions essentially coincide with each other.

ProposSITION (Arakawa).

(@) = Uy(a),

Glogs

where € is the totally positive fundamental unit of K with ¢ > E.

In 84.3, we proved that any #(G, I') -common eigenfunction in €°(I"\ X) is
a linear combination of wy¢’s. If all £, coincide with a fixed ¢ € C, then, by (4.4),
we have

_ Iy . (fx)t+l/2
21/2[@1 @1]D1/4 L< f+ )

P (E) (x5 8, 0),

Wyt = Wyt

where

E(x;t, 0) =Ey(x; t,0) + E(z:¢,0).

Hence if L (X? t+ %) # 0, eigenfunctions of # (G, I') corresponding to the

eigenvalue f— f (f) should have an expression in terms of special values of the
Eisenstein series (zeta functions of binary quadratic forms) at (¢, 0).

For the function ¢-;(@), such an expression has been obtained by Arakawa, if
the conductor of S, is equal to 1 ([A, Proposition 3.1]). Namely, under this
assumption, he proved that

(5.1) ca(a) = ~102g7rE E(Sa, - %’O)

By Theorem 6, the €°(I"\ K’),~component of an # (G, I')-eigenfunction can be
determined uniquely up to constant multiple by the corresponding eigenvalue.
Hence, by (5.1), we have the following:

TueoREM 7. For any character x of Chi, the following identity holds:

Ple) @ = —F pu(B)(Sw — 5.0) (@ € K.

log €
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