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INFINITE DIMENSIONAL ROTATIONS

AND LAPLACIANS IN TERMS

OF WHITE NOISE CALCULUS

TAKEYUKI HIDA, NOBUAKI OBATA* AND KIMIAKI SAITO

Introduction

The theory of generalized white noise functionals (white noise calculus) initi-

ated in [2] has been considerably developed in recent years, in particular, toward

applications to quantum physics, see e.g. [5], [7] and references cited therein. On

the other hand, since H. Yoshizawa [4], [23] discussed an infinite dimensional rota-

tion group to broaden the scope of an investigation of Brownian motion, there have

been some attempts to introduce an idea of group theory into the white noise cal-

culus. For example, conformal invariance of Brownian motion with multi-

dimensional parameter space [6], variational calculus of white noise functionals

[14], characterization of the Levy Laplacian [17] and so on.

The paper aims at establishing the fundamentals of infinite dimensional har-

monic analysis within the framework of white noise calculus, namely, based on the

calculus of differential operators dt and their dual operators 9*, where t runs

over a time parameter space T. We develop a general theory of operators acting

on white noise functionals and, as a particular case, discuss infinite dimensional

rotations and Laplacians in detail.

Let us now recall some notions of white noise calculus, for more precise in-

formation see Section 1. Let T be a topological space with a Borel measure v. We

consider T as a time parameter space including a multi-time parameter case where

quantum field theory may be formulated. Let E c L2(T, v; R) = H c £ * be a

Gelfand triple constructed by means of a particular self-adjoint operator A. Let μ

be the Gaussian measure on £"* and put (L2) = L2(E*, μ; C), which is canonical-

ly isomorphic to the Boson Fock space over HQ. We then obtain a Gelfand triple

(E) cz (L2) c ( £ ) * by means of the second quantized operator Γ(A). An element
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of (E) (resp. (E)*) is called a test (resp. generalized) white noise functional For

each t e T we define

dtφ(x) = lim

where δt ^ E* is the Dirac δ-function at / ^ 71. Then 9/ becomes a continuous

derivation on (2?) and 9* a continuous linear operator on ~(E)*. They correspond

to the annihilation and creation operators at a point t ^ T, respectively, and satisfy

the canonical commutation relation.

In this paper we establish an effective theory of continuous operators on (E)

expressed as superposition of dt and 9* with normal ordering:

(0-1) Ξ,,m(/c) = ί Λ : ( 5 I , . . . , sh t1,...,tm)ds* -ds*dn' 'dtmdsι- dsιdt1' 'dtm.
J jΊ+m ι '

By means of duality argument we prove that (0-1) defines a continuous operator

from (E) into (E)* for any tc e (Eciι+m))*, namely, for any distribution K in

(/ + m)-variables (Theorem 2.2). The integral (0-1) is, therefore, understood in a

generalized sense and Ξι,m(κ) is called an integral kernel operator. Moreover, we

have a criterion for checking when Ξι>m{tz) defines a continuous operator on (E)

(Theorem 2.6). Since practically most important (usually unbounded) operators

acting on (L2) are expressed as in the form of (0-1), our theory will be effective

to a systematic approach to the operator theory on a Fock space and further ap-

plications as well.

Let O(E; H) denote the infinite dimensional rotation group in the sense of

Yoshizawa, namely, it is the group of orthogonal operators on H which induce

homeomorphisms of E. In other words, it is the automorphism group of the Gel-

fand triple E c H c E*. Recalling that x(t) = dt + 9* is multiplication operator

by a white noise coordinate (Proposition 4.4), we naturally come to a continuous

operator from (E) into (£)*•'

(0-2) x(s)dt - x(t)ds = ds*dt - d?ds,

which is a formal analogy of an infinitesimal generator of finite dimensional rota-

tions. Using the general theory established in this paper, we investigate a definite

role of (0-2). Namely, if X is an infinitesimal generator of a regular one-parameter

subgroup of O(E H), there exists a skew-symmetric distribution K ^ E ® E*

such that

dΓ(X) = f /c(s, t)(d*dt - d?ds)dsdty
J TxT
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where dΓ is the differential representation (Theorem 4.3).

Infinite dimensional Laplacians have been so far discussed within the

framework of white noise calculus, see e.g., [2], [10], [12], [19]. With our integral

expression (0-1) the Gross Laplacian and the number operator are respectively

expressed as

ΔG = I τ(s, t)dsdtdsdt,
J TxT

N= f r(s, t)d?dtdsdt,
J TxT

where r ^ £ ® i ? * is the trace, namely, defined by (r, ξ ® η) = (ξ, η) ,

ξ, η ^ E. By means of rotation-invariance we will characterize these operators

among second order operators (Theorems 5.1 and 5.2).

The paper is organized as follows. Assembling some basic notions of white

noise calculus in Section 1, we establish in Section 2 a general theory of integral

kernel operators. In Section 3 we investigate some results on one-parameter

groups of transformations in general. As a corollary we obtain the Taylor formula

for white noise functionals. In Section 4 we prove that an infinitesimal generator

of a one-parameter subgroup of the infinite dimensional rotation group is de-

scribed in terms of d*dt — d?ds. Finally, in Section 5 we discuss infinite dimen-

sional Laplacians in connection with their invariance under the infinite dimension-

al rotation group. The Appendix contains a few useful inequalities.

There have been a few approaches to the Levy Laplacian [15] from the view-

point of white noise calculus [8], [12], [13], [17]. We now have good hope that the

Levy Laplacian could also be characterized within our setup.

ACKNOWLEDGEMENTS. The authors welcome this opportunity to express their

sincere gratitude to Professor J. Potthoff for interesting conversations which im-

proved this paper considerably. The main part of the joint work was completed

during the second named author's stay in Tubingen, Germany. He is very grateful

to Professor H. Heyer and the Alexander von Humboldt Foundation for their warm

hospitality.

§ 1. Standard setup of white noise calculus

We begin with some general notation. For a real vector space 3£ we denote its

complexification by 3£C If X is a topological vector space, the dual space £ * is al-

ways assumed to carry the strong dual topology. For two topological vector spaces
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3£ and 2) let iP(3£, §)) stand for the space of continuous linear operators from 36

into 2). If 3£ and ?) are nuclear spaces, we denote simply by 36 ® ?) the completion

of the algebraic tensor product X (8) aig ?) with respect to the π-topology, or

equivalently the ε-topology, see e.g., [20], If H and K are Hubert spaces, we de-

note again by H® K the completed Hubert space tensor product (hence H® K is

again a Hubert space). The somehow ambiguously used symbol, however, will

cause no confusion in the context. If £ is a Hubert space or a nuclear space, let

%®n c dc®n denote the closed subspace of symmetric tensor products. We also use

the symbol (dc®n)fym for the same meaning in case of dual spaces.

We then assemble some basic notions and notations of white noise calculus

principally following [7], see also [1], [10], [11], [18] and [22].

Let T be a topological space equipped with a Borel measure dv(t) = dt. Let

H— L2(T, v\ R) be the real Hubert space of square integrable functions on T.

Its norm and inner product will be denoted by | | 0 and <-,*>, respectively. Let A

be an operator on H with domain Όom(A). We assume that H admits a complete

orthonormal basis {βj}f=o ^ Dom(Λ) such that

(Al) Ae, = λjej for λ} e R;

(A2) 1 < λ0 <λ1 < v . — oo;

(A3) Σ%oλy2 < oo.

Obviously, A'1 is extended to an operator of Hilbert-Schmidt class. Put

p = λo1 = WA-1 II, δ = ( ± λjψ = M " 1
 \\HS.

We also note the following apparent inequalities:

0 < p < 1, p<δ.

For p ^ R let Ep be the completion of Dom(Ap) with respect to the Hilbertian

norm \ξ\P = \Apξ\0, ξ e Dom(A*), where Όom(Ap) = H for p < 0. We then

come to a chain of Hubert spaces:

• c Epcz -" d Eqcz "- c £ 0 = # c: c £_ 9 c (z E-p cz ,

0 < ^ </?.

Equipped with the Hilbertian norms {| |/>}/>>o,

£ = Π £ ,
/>>o

becomes a nuclear Frechet space and its dual space is obtained as

£ * = U E-p.
p>0
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It is known that the strong dual topology of IT* coincides with the inductive limit

topology. The canonical bilinear form on £"* X £ is denoted again by (*, ) and it

is extended to a C-bilinear form on E^ X EQ. The symbols | \p and <•, •) are

used for tensor products as well. For instance, it holds that

(1-1) \f\p<p"\f\p+l, f<ΞEgn, p<ΞR.

By construction ξ ^ E is a function on T determined up to v-null functions.

We then assume the following three conditions which are suggested by Kubo and

Takenaka [10].

(HI) For every ξ ^ E there exists a unique continuous function on T which coin-

cides with ξ up to y-null functions.

We agree then that E consists of continuous functions.

(H2) For each t ^ T the evaluation map δt : ξ •-* ζ(t), ξ ^ E, is continuous, i.e.,

δt e E*.

(H3) The map t»-+ δt G E*, t e T, is continuous.

Under these conditions one may prove that any function in E§n, n — 1,2,..., is a

continuous function on Tn.

Let μ be the Gaussian measure on £ * which is uniquely determined by the

characteristic functional:

exp(-τ | 2

0 ) =

We put (L2) = L 2 ( £ * , μ; C) for simplicity and let || ||0 denote its norm. The

Wiener-Itδ decomposition theorem says (L2) is canonically isomorphic to the Fock

space over He'.

(1-2) (L2) = Σ Θ C

If φ ^ (L2) corresponds to (fn)n=o, fn e H§n, we have

| | 0 H § = Σ « ! | / , | S .

In that case we may write

(1-3) φ(x) = Σ <:x®":,f«>, fn^H§n.
w=0

Here:x 0 M : ^ (£ l < 8 ) W)*y m is defined inductively as follows:
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x®1: = x

{n-ι): - (n - n > 2,

where τ e (E <g) £ ) * y m is defined by

(1-4)

Note that

r =
; = 0

2_!= Σλ74<δ2.
; = 0

In (1-3) each (:x<s>n:,fn) is defined only as L2-function and the series is con-

verges in (L2) according to (1-2).

Through (1-2) and (1-3) we may introduce a second quantized operator. Let

Dom(Γ(A)) be the subspace of φ e (L2) given as in (1-3) such that (ϊ) fn = 0 ex-

cept finitely many n; and (ii) fn ^ Όom(A) ® a i g * * * ®aig Dom(i4)(«-times). Then

for φ e Dom(Γ(i4)) we put

(1-5) = Σ < : x 0 w : ,

As is easily seen, Γ(A) satisfies (Al) and (A3) with replacing A with Γ(A). As

for (A2) we observe that the smallest eigenvalue of Γ(A) is exactly one. We then

apply the method of constructing E from A to the white noise case.

Let (Ep) be the completion of Γ (A)p with respect to the Hilbertian norm

§= Σ n ! | M

where φ and (fn)n=o are related as in (1-3). Equipped with the norms {||*!/,}/>>0,

(E) = Π (Ep)
p>0

becomes a nuclear Frechet space. Moreover, we note the following result due to

Kubo and Yokoi [11], see also Yokoi [22].

PROPOSITION 1.1. Let φ ^ (L2) be given as in (1-3). Then φ ^ (E) if and only

if fn <= Eξn for all n = 0,1,2, . . . and Σn=o n\ \ fn \l < °° for all p > 0. In that

case the right hand side of (1-3) converges pointwisely and becomes a unique con-
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tinuous function on E* which coincides with φ up to β-null functions.

By the above fact we always regard (E) as a space of continuous functions

on £ * . Let ( £ ) * be the dual space of ( £ ) . An element in ( £ ) (resp.(£)*) is

c a l l e d a test ( r e s p . generalized) white noise functional. W e d e n o t e b y « * , * ) > t h e

canonical C-bilinear form on ( £ ) * X ( £ ) . When 7 = R and A = 1 + t2 -

(d/dt)2, (E) and (E)* are often denoted by (s£) and (J£)*, respectively.

We now introduce a differential operator dt which plays a fundamental role

in the white noise calculus. For Gm ̂  (E§m)* and fm+n e E§ m+n we denote by

Gm ®mfm+n ^ EQ uniquely determined by

<Gm <g> Fn, fm+n> = <Fn, Gm ®mfm+n> , Fn

For example, if fn+\ e E§ "+ , then

δ, ®i/»+i(/i,. . . ,ί») = /»+i(ί,ίi ί»

For φ ̂  (£) and y £ £ * we put

(1-6) Φyφ)(x) =
w = l

where/w ^ £ c " is given as in (1-3), see also Proposition 1.1. Since

I y ® J n \p < p ^ - 1 ] I y UP+q) I fn \P+Q, p , q > 0 ,

which is easily verified by Fourier expansion or by Proposition A.I, we obtain

(1-7) || A/0 L ^Mι\y\-(p+q)\\φ\\p+q. Φ^ (E).

where

Mi = Mi(p, q) = sup/w pq{n~ι) < oo. ? > 0.
n>0

Therefore Dy is a continuous linear operator on (E). It is known that

(1-8) ( D y φ ) ( ^

We now denote A?, simply by dt.

It is often convenient to use so-called exponential vectors. For ξ ̂  Ec define

φξ e (£) by

(1-9) 4
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Then {φξ; ξ e EQ) spans a dense subspace of (E). Note that

(1-10) «0 e , φv» = e<tΊl>, ξ, η e £ c ,

(1-11) Dyφt= <y,ξ> φξ, z / ^ £ * , £ € Ξ £ C .

In particular,

(1-12) dtφξ = ξ(t)φξ, t^T, ξ e £ c .

These are easily verified.

§ 2. Integral kernel operators

Having introduced the differential operator dt in the previous section, we now

develop a general theory of operators which are expressed as an integral of dt and

9*. We begin with

LEMMA 2.1. For φ, φ ^ (E) we put

(2-1) r)φAsi,...,Sι, h,...,tm) = «ds^"'d^dtι'"dtmφ, φ».

Then for any p > 0 we have

(2-2) I „ I < p-*(lιmm)ι/2 {f\-2fe\og

In particular, ηφ>ψ e Ac

Frew/. For simplicity we put η = 0̂,0 and suppose

= Σ <:x*H:,fn> and 0(x) = Σ <:

where /», gn

 e E§n Then, by a simple calculation we have

(2-3) r?(si,...,5/, ίi,...,/«)

= «dtι'-dtmφ, dSι'"dslφ»

_ f, (ι« + »)!(/ + w ) ! , , , v
- z . , > ? « U i , . . . , 5 / , Γ i , . . . , r m ; ,

where

ί 7 n ( 5 i , . . . , 5 / , ^ i , . . . , / O T )
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= < (δtι Θ ® δtm) ®m fm+n, (δsι <8> ® δsi) 0/ £/+w>

= I fm+n(tmt . . ,^1, ^ 1 , . . . fUn)gi+n(Sir . . . ,S/, U\, . . . ,Un) dU\ ' ' ' dun.J Tn

Then, using the Schwarz inequality and Corollary A.2, we obtain

(O Λ\ -n — I ί ΔP\ ® ( / H

{Δ-^t) ϊjn p — I \ri )

< n2ί>n \ f I I σ—- H I J ni+n \p I &l+n

Hence from (2-3) and (2-4) we see that

I <r v ( ^ + ^) !(/ + n)}

nl
Vn\p

< Σ l~
n)\ ί

p
2pn

W = O V nl V nl

<M2(Σ (m + n)l\fm+n\
2p)"~[Σ (/ + *)!

n)! I / w + » ί

where

Hence

(2-5)

M2 = sup
n\

0.

M2

and therefore, ϊ] — 77̂ ,0 ^ £ c

 m . Finally, using repeatedly an elementary fact

mΆxxe~βx = 4~. β > 0,

we obtain

(2-6) M2 < p-p(lιmmy/ Ί-P \(l+m)/2

2/>e log,

Then (2-2) follows from (2-5) and (2-6) immediately. Q.E.D.

THEOREM 2.2. For any tc *= (Ec m ) * there exists a continuous linear operator

(2-7) , 0
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where r)φ,ψ is given in (2-1). Moreover, for any p > 0 with | tc \-p < °° it holds that

(2-8) I ΞU>c)φ U < p~p (Vmm)U2 {-2Ppe\ogpTm)n ] κ '"' •' φ "*•

Proof. Note first that φ, ψ *-* (tc, ηφ)φ), 0, 0 e (E), is a continuous bilinear

form on (2?). In fact by Lemma 2.1 we have

( 2 - 9 ) I </c, τ?0,0> I <
-p

< p-p(iι™m)ι^-2fe[ogpy
+m)/21 K Up II 01

Therefore there is a continuous linear operator Ξι,m(tc) ^ ί£((E), (E)*) such

that

((Ξι,m(tc)φ, 0 » = <£, 7?0,0>, 0,

Hence (2-9) becomes

, φ»

from which (2-8) follows immediately. Q.E.D.

In view of (2-7) we also employ a formal integral expression:

Ξι,m(κ) = j τ + m fc(su.. .,5/, ί i , . . .9tm)d*' - -d$dtl

m' 'dtmdsr - 'dsidh' -dtm.

This is called an integral kernel operator with kernel distribution tc.

Here we discuss some basic properties of integral kernel operators. We begin

with the uniqueness of the kernel distribution. For K ^ £(? +m we difine Sι>m(tc)
i , 1 r i

by the formula:

<s,,m(ιc), rji<S>-"ηι®ξi<S>'-ξm>

where ξ, , rjj ^ JEC Then a direct verification implies the following

PROPOSITION 2.3. For any tc e £®{ι+m) {t ^ ^ 5 ^ α ί Ξι,m(sι,m(tc)) = Ξι.m(κ). If

Ξι>m(tc) = 0, thensι,m(tc) = 0.
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Recall that (E) is a nuclear Frechet space and hence reflexive. If Ξ G

, ( £ ) * ) , its adjoint 5 * belongs to # ( ( £ ) , ( £ ) * ) again. For the adjoint of

an integral kernel operator we have

PROPOSITION 2.4. Let fc^Ec(l+m\ Then ΞLm(ιc)* = Ξmtl(tm,ι(tc)),where

tm,ι(fc) is defined by

O,/0c),>?Θζ> = Or, Z®η>, V^Eξm, ζ^E§1.

We next discuss when an integral kernel operator Ξι,m(tc) belongs to £((E),

(E)) which is a subclass of £{(E), ( £ ) * ) . For that purpose we first recall the

canonical isomorphism between £(E§m, E§1) and (E§1) & (Ec™)* ^

(i?c ( / + m ) )*, where all the tensor products are topological as we agreed at the

beginning of Section 1. If K e (Eg1) ® (£c™)* and if e ^ ( £ ^ m , £ ^ ' ) are in

correspondence, then

(2-10) <«, r?; <g> ζM> = <!?,, π ζ w > , η, e £ ^ ' f ζM e £ £ " ,

for further details, see e.g., [20: Chap.50]. The next result is easily derived.

LEMMA 2.5 For K ^ (E§ ί+m )* the following two conditions are equivalent:

(i) e e(££ ' )® (££*)*;
(ii) for any p > 0 f/ierg m s ί C > 0 and q > 0 5wc/ι ί/iαί | </c, r; 0 ζ> | <

C U |_, I ζ U , /or η G £ ^ z and ζ e £ ^ m .

THEOREM 2.6. Lβί K e ( £ ^ ( / + m ) ) * . T/im S'/.mί/c) e ί ? ( ( £ ) , (£)) i/ and only

Proof First suppose that K e ( £ ^ z ) (8) ( £ ^ Γ ) * and let X

be the corresponding operator determined as in (2-10). Let φ, φ ^ (E) and we

keep to the notations in the proof of Lemma 2.1. We then observe from (2-3) and

(2-4) that

Then, by (2-10) we have

(2-11) «Ξ,,m(κ)φ, ψ» = Σ ( m + w )J, ( / + w ) ! <^+κ, (K®I®n)fm+n>.

Since X is continuous, for a given p > 0 we may find # > 0 and C — C(p, q)

> 0 such that | Kη \p < C\ rj \p+q, ϊ) ^ EQ™. Then, applying Proposition A.I, we
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obtain

(2-12) I <gι+H, (K®I®n)fm+n> I < I gl+n Up I (K®I®n)fm+n \p

< Cpm I fm+n \ρ+q I gl+n \-ρ

In view of (2-11) and (2-12) we obtain

V ( ^ + ^) ! (/ + ^) ! Γ qn I f
^ ^j ^ P I Jm+n

n=0 n-
oo

<M3 Σ Λm + n)\ I fm+n \p+g yfζJTW. I ̂ /+» \-P
w=0

/ oo \l/2 / oo

< M 3 Σ (m + n)! | fm+n |J + ί ) ( Σ ( / + » ) ! +» I2-J

< M3II 0 IIJ+0 H ̂  ii-/,,

where

3 = M3(/, m, />, ί ) = sup / - — n ] I n] Cρqn < °°

for q > 0. Consequently,

| | S ; W ( Λ : ) 0 L < M 3 | | 0 | U .

This means that Ξι>mM is a continuous linear operator on (E).

Conversely, suppose that Ξι>m(tc) ^ £((E), (E)). Then, for any p > 0 there

exist C > 0 and q > 0 such that

Now consider

φ{x) = <:xβ w:, ζ>,

where r? ̂  £ ^ ' and ζ ^ £ c m By definition we have

«ΞlM(κ)φ,φ» =llml<κ,η®ζ>,

and therefore,

It then follows from Lemma 2.5 that /c e (£^ J ) (g) ( £ ^ m ) * . Q.E.D.

The action of Ξι,m(κ) on exponential vectors (see (1-9)) is given explicitly.
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PROPOSITION 2.7. (1) Let K e ( £ ® ( / + w ) ) * . Then

«Ξlιm(ιc)φt, φr» = <AΓ, ry β / (8)ξ β m > *<*•*>, f, ry e £ c .

I ^ G (£c') ® (#c W ) * and ί e ί (E§m, Eg1) the corresponding operator de-

nnined as in (2-10). Then

x) = Σ
n=0 n '

) For y e £ * it holds that

Dy = ΞoΛv) = Γ y(t)dtdt.
U T

Proof. (1) We need only to combine (2-7), (1-10) and (1-12).

«Ξι>m(tc)φξ, φη» = </c, «dtl--dtmφξ, dSl'"dsιφηy>>

= <ιc, η(sx)' -ηisdξitύ '' ξ ( U > « 0 ξ , Φv»

Let φ(x) be the right hand side of the identity to be verified. By definition,

«φ, φr» = Σ (/ + n)! < i (Kξ®m) (8) ξβ«, - ^ y y

view of (1) we conclude that Ξι,m(κ)φξ — φ.

) It follows from (2) and (1-11) that

lerefore Ξ0Λ(y) = Dy. Q.E.D.

Remark During the proof of Theorem 2.6 we have observed the following

suit: Let K e i£(Egm, E§1) and /c G (Eg') ® ( £ c m ) * be related as in (2-10).

I ϋΓη \p < C I ry \p+q with some /? > 0, q > 0 and C > 0, then || Ξι>m(κ)φ \\p <
r | | 0 | | ί + ί with some M > 0. Specializing this result for K — y ^ £ * and £Ό,i(?/)

Z^, we obtain a result due to Yan [21J: If | y\-p < °° and q < p, then \\Dyφ\\Q

C || φ \\p. This is, of course, the same as (1-7).

Combining Proposition 2.4 and Theorem 2.6, we come to the following
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THEOREM 2.8. If K €= (Eg1) <g> (Egm)*, then

Ξm,ι(tmJ(fc)) = Γ /c(si,.. .,$/, tl9...,tm)d£' -d?mdsι' "dsιdk" -dtmdsγ- 'dst

is extended to a continuous linear operator from (E)* into itself.

If Ξ ^ !£((E), (£)*) can be extended to a continuous linear operator from

(£)* into itself, the extension is denoted by Ξ. For example, Dξ is extended to

Dξ e # ( ( £ ) * , (£)*) whenever ξ e £ .

§ 3. One-parameter groups of transformations in general

In this section X denotes a barreled Hausdorff locally convex vector space

with defining seminorms {|| ||α}αeΛ. Recall that every Frechet space is such a

space, for further information see [20]. Let GL(Έ) be the group of linear

homeomorphisms from X onto itself. We put £(Έ) — £(£, 3B) for simplicity.

Obviously, GL(X) c f ( ϊ ) ,

A one-parameter subgroup {GΘ)ΘSK ^ GL(3ί) is called differentiable if

\imθ-+o(Gθξ — ξ)/ θ converges in dc for any ξ ^ 3£. If {Gθ)θen is differentiable, a

linear operator X from ϊ into itself is defined by

(3-1)

As usual, this operator X is called the infinitesimal generator of the differentiable

one-parameter subgroup {GΘ}Θ<=R ^ GL(ϊ) . The next result is immediate from the

Banach-Steinhaus theorem, e.g., see [20: Theorem 33.1].

PROPOSITION 3.1. Let {Ge}θ<=n ^ GL(Έ) be a differentiable one-parameter sub-

group. Then its infinitesimal generator X is always continuous, i.e., X

Moreover, the convergence (3-1) is uniform on every compact subset ofdc, namely,

(3-2) limsup Geξ-ξ
= 0

0-0 ξeK

for any a ^ A and any compact subset K <z

Remark. When 3£ is a nuclear Frechet space, every bounded closed subset of

3£ is compact. Therefore, in that case the topology of ί£(Έ) induced from uniform

convergence on every compact subset of 3£ is equivalent to that of uniform con-
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vergence on every bounded subset of 9£.

A differetiable one-parameter subgroup is uniquely determined by its

infinitesimal generator, namely, we have

PROPOSITION 3.2. Let {GβlβeR and {HβϊβeΈt be two differentiable one-parameter

subgroups of GL(3£) with the same infinitesimal generator X. Then GΘ = HΘ for all

For the proof we need two straightforward results.

LEMMA 3.3. Let {Gθ)θeκ ^ GL(3£) be a differentiable one-parameter subgroup

with infinitesimal generator X. Then for any θ €= R and any ξ €= X we have

GθXξ = XGθξ = lim Gβ+εξ ~ Gβζ.
ε-0 ε

Moreover, the convergence is uniform on every compact subset in X.

LEMMA 3.4. Let {GΘ^Θ&H C GL(X) be a differentiable one-parameter subgroup.

Then,

lim sup || Gβ+εξ — Gθξ \\a = 0

for any a ^ A and any compact subset K c 3c.

Proof of Proposition 3.2. Let ξo ̂  dc be arbitrarily fixed. For simplicity we

put ξ(θ) — H-βζo. It becomes a differentiable curve in 3£ and from Lemma 3.3 we

see that

jgξ(θ) = -XH.θξ0= -Xξ(θ).

Furthermore, {Gθξ(θ)}θ<=τt is also a differentiable curve in 3£. In fact, a simple

verification with Lemma 3.4 leads us to the following

~ (Geξ(θ)) = Gθ(- Xξ(θ)) + XGβξ(θ) = 0, θ e R.

Namely, Gθξ(θ) = Goξ(O) = ξo for all 0 e R, and therefore Gθξ0 = Hθξ0. Since

ξo ^ X is arbitrary, we conclude that GΘ = He. Q.E.D.
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In general, not every X G £(•£) can be an infinitesimal generator of a diffe-

rentiable one-parameter subgroup of GL(£). We give here a sufficient condition.

PROPOSITION 3.5. Let X ^ ϋ?(3£) and assume that there exists r > 0 such that

{(rX)n/nl)n=o is equicontinuous, namely, for every a ^ A there exist C — C(a) > 0

and β = β (a) e A such that

sup-^\\(rXyξ\\a<C\\ξ\\β, ξ e ϊ .

Then there exists a differentiable one-parameter subgroup {GΘ)Θ<=R ^ GL(Έ) with

infinitesimal generator X.

Proof By assumpiton, the series

(3-3)
0 n

θ\<r,

is convergent in X and || Gθξ \\a < C( l - I θ\ /r)~ι || ξ \\β, namely, G^

for 1^1 < r. Furthermore, Go = I and GΘ1+Θ2 ~ GΘ1GΘ2 whenever |

I ft + 2̂1 ^ r We now define G/? for all 0 ^ R. For a given θ ^ R choose a posi-

tive integer ^ such that | θ/n \ < r and put GΘ — (Ge/n)n. As is easily seen, this

definition is independent of the choice of n, and therefore GΘI+Θ2 — GΘIGΘ2 for all

0i, 02 e R. Since

Gθξ-ξ
-Xξ

{Gθ)θeκ is a differentiable one-parameter subgroup of GL(Έ) with infinitesimal

generator X. Q.E.D.

During the above proof a somewhat stronger property of

observed, cf. (3-2): for any a ^ A there exists β ^ A such that

has been

lim sup = 0 .

If a differentiable one-parameter subgroup has this property, we call it regular.

This notion will be useful when we consider the second quantization of the action

of the infinite dimensional rotation group, see the next section.
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Remark. For X £= i?(3£) consider the following condition: for any a £ A

there exist constant numbers C > 0, 0 < δ < 1 and /3 ^ A such that

This condition is apparently stronger than that in Proposition 3.5. Under this con-

dition Gθ is defined by (3-3) for all θ e R

We end this section with an example. For y & E* we defined a differential

operator Dy on (E) by the formula (1-6). In a similar way as in (1-7), for p > 0

and q > 0 we obtain

where

I(k + ή)l ak /
= sup / - — , ? pqlc <

k>o

By a simple calculation C(w) < ww/2 whenever q > (— 21ogp)" 1 . Taking ^ > 0

large enough to hold | y \-(p+q) < °° too, we obtain

y h < ί + 9 ) || φ \\p+q < C(n\)δ

for some C > 0 and 0 ^ δ < 1. (In fact, by the Stirling formula we may take any

δ with 1/2 < (5 < 1.) Therefore Z)# is an infinitesimal generator of a regular

one-parameter subgroup of GL((E)). As is expected from (1-8), the

one-parameter subgroup is given by {Tθy)θ^n, where

Furthermore, as a direct consequence of the above Remark, we obtain the Taylor

formula for white noise functionals due to Potthoff and Yan [18].

THEOREM 3.6. For any y e E* it holds that

Tyφ= Σ^γDϊφ, 0 e (£),

where the series is convergent in (E).

§ 4. Infinite dimensional rotations

For X ^ !£{E) we introduce two operators Γ(X) and dΓ(X) on (E). Let

φ ^ (E) be given by
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(4-1) φ(x) = Σ <: x9":, /„>, x e E*, fn

as before, see Proposition 1.1. Then we define

(4-2) (Γ(X)φ)(x) = Σ <:x*Λ:9X*Hfn>,

(4-3) (dΓ(X)φ)(x) =

It is not difficult to prove that both Γ ( Z ) and d Γ ( Z ) belong to %((E)). Howev-

er, it is not clear whether {Γ(GΘ)} becomes a differentiable one-parameter

subgroup of GL((E)) for any differentiable one-parameter subgroup {GΘ)ΘGR of

GL(E). In this connection we have

THEOREM 4.1. Let {GΘ}Θ<=ΈI be a regular one-parameter subgroup of GL(E) with

infinitesimal generator X. Then, {Γ(GΘ)}ΘGR is a regular one-parameter subgroup of

GL((E)) with infinitesimal generator dΓ(X).

For the proof we need some inequalities. Suppose that p *Z 0 is given. From

the regularity of {GβiθeB. there exists q Ξ> 0 such that

(4-4) lim sup = 0.θ -1

Moreover, we may assume that with some C Ξ> 0,

(4-5) \Xζ\P <C\ξ\P+q,

(4-6) δpq+1 + 2pq+2 < 1.

Suppose next ε > 0 is given. In view of (4-4) there exists θo > 0 such that

(4-7) \ρ+q, <

Furthermore, by (4-6) we may assume

(4-8) δp(ε + C)θo + δpq+1 + 2pq+2

We then obtain

(4-9) \Gθξ-

and
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(4-10) \Gθξ\p <M4\ξ\p+Q,

where | θ \ < θ0 and M4 = (ε + C) θ0 + pq.

Proof of Theorem 4.1. For simplicity we put

\(n-l-k), w > 1,

By a simple calculation we have

Jn\Λ) — ZJ \1
k = Q

-Q Λ I v9 (JΓ

w - l

Σ
A=0

and therefore, for /„ e E§" it holds that

®n r _ r
β Jn Jn _(4-11) θ

< Σ

r»(X)f«

r®^ ^ / J^iGθ-I - Z ) (8) Gf (n-1"*) )fn

n-\

+ Σ
A=0

In view of (4-7), (4-10) and Corollary A.4, we obtain

(lm (g) ( ^ Ϋ 1 - X) ® Gt^-ήfn
< r Λ/fn-l-knl + iq+ΌkXn-l-k I f
-^ t IVI4 μ U \ Jn

Hence,

(4-12) I Y
(Jθ I Jn

<εpM5

n-ι\fn\p+Q+1

<εp\pM,γ-"\fn

where M5 = (5M4 + pq+ι. On the other hand, by (4-9), (4-10) and Corollary A.5

we get

1-13) \{Gf in-ι'k) - z®'- 1-*') a, \p < ω
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In view of (4-5), (4-13) and Corollary A.4, we obtain

I (I®k®X® (Gf* - I^n'ι~k)))fn\P.

< Cp piε + C) Mr2'" I θ I pn-ι'k+W)kδ\fn

= Cδp2(ε + C) Ms'1 (pM5)
n-1-kp"+2)k \θ\\fn

< Cδp-"+1(ε + C)(pMs)
n-ι-kpft+m \θ\\fn U + 2 ,

where we used Mfι < p~q~ι. Therefore we have

(4-14) Σ11 (I®k®X® (G?in-ι-k) - /
k=Ό

< Cδp~«+1(ε + C) (pM5

From (4-11), (4-12) and (4-14) we see that

θ\\fn U + 2 .

f»~f" - γn(X)fn
U

< εp2(pM5)"-1
/ , \p+q+2

+ Cδp-"+1(e + C)

Since pM5 < pM5 + p9+2 < 1 by (4-8), the last quantity is bounded by

fn U ,

{εp2(pM5y
ι + Cδp-"+1(ε + C)(pM5

< {εp-« + Cδ(ε + C) p-2"-1

θ\}\fn \P+g+2

θ\)\fn

where Mf1 < p~"~ι is used again. Since dΓ(X) = Σ«=o7«(^0, we conclude that

- dΓ(X)φ I < (ep-« + I θ I C(ε +
\\p

U, + 2 )

whenever | θ \ < θo. Consequently,

lim sup
0-*° | | 0 | | * > + g + 2 < l

which completes the proof.

= 0,

Q.E.D.

We are now going to a discussion on the infinite rotation group. Following

Yoshizawa [23] a linear homeomorphism g e GL(E) is called a rotation of E if

I gζ lo — I ζ lo. i.e., if it can be extended to an orthogonal operator on H —

L2 (Γ, v\ R). Let O(E; H) denote the group of all rotations of E. Obviously, it is

a subgroup of GL(E).

It is noted that (Γ, (L2)) is a unitary representation of O(E\ H). In fact,

(Γ(g)φ)(x) = φ(g*x), φ e= (I2), x e £*,
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where g*x is defined by

ix,gξ> = <g*x,ξ>, x ^ E * , ξ ^ E .

Let U((E); (L2)) be the group of unitary operators on (L2) which is defined

similarly as O(E; H). It then follows that Γ(g) e U((£) (L2)) for any

g(Ξ O(E;H).

Let {GΘ)Θ(=R be a differentiable one-parameter subgroup of O(E; H) with in-

finitesimal generator X. As is easily seen, X is skew-symmetric in the sense that

(4-15) <Xξ, η> = - <ξ, Xη>, ξ,η^E.

PROPOSITION 4.2. Let X be a continuous operator on E which is skew-symmetric in

the sense of (4-15). Then there exists a skew-symmetric distribution K €= E ® E*

such that

(4-16) dΓ(X) = f κ(s, t)(d?dt ~ d?ds) dsdt.
J TxT

Proof. Consider

(4-17) κ = \ Σ (euXe,>et®e,.
Δ ί,; =0

Since X is continuous, there exist q > 0 and C > 0 such that | Xξ | 0 ̂  C \ ξ \q.

Hence,

(βi, Xβj) I < I e, |o I Xej lo ̂  C I ej \q = Cλ)

and /c ̂  (E ® E)*. Moreover, by a direct calculation, we have

(4-18) <κ, τ?(8)ζ> = | < i ? , Z ζ . > .

This shows that tc ̂  E <S) E* and that A: is skew-symmetric. The right hand side

of (4-15) is, therefore, equal to 2Ξ\,\{ιc) which is a continuous operator on (E) by

Theorem 2.6. Since dΓ(X) is also continuous, we need only to show that

2Ξι,i(κ)φξ = dΓ(X)φξ for exponential vectors φξ ^ (E) defined as in (1-9). By

(4-3) we have

(dΓ(X)φ()(x) = nΣ ( w i υ , <: ̂ β":, (X?) 0 e0"1"1')

and therefore
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«dΓ(X)φξ, φΏ» = Σ n! (nJ1)lnl

On the other hand, in view of Proposition 2.7 and (4-18) we have

f, φv» = 2</c, η®ξ> e^y = (η, Xξ>

This completes the proof. Q.E.D.

In view of Theorem 4.1 and Proposition 4.2 we obtain the following

THEOREM 4.3. Let X be an infinitesimal generator of a regular one-parameter

subgroup of O(E; H). Then, there exists a skew-symmetric distribution K ^ E ® E*

such that

dΓ(X) = f tc(s, t)(d*dt - d?
J TxT

dsdt.

For a fixed t e T we define Φt e ( £ ) * by

«Φt, φ» =Mt)

for φ G (E) given as in (4-1). It is convenient to use a somewhat formal notation

x(t) = Φt(x) which is regarded as a coordinate function in white noise calculus.

Note that a product Φφ = φΦ e (/?)* is defined for Φ e ( £ ) * and 0 e (E) in a

usual manner.

PROPOSITION 4.4. x(t)φ(x) = (dt + d*)φ(x) for any φ e ( £ ) .

The proof is direct, see e.g., [10], [12]. We can thereby regard

d*dt - d?ds = (dt + ds)dt - (d? + dt)ds = x(s)dt - x(t)ds

as a direct analog of an infinitesimal generator of finite dimensional rotations.

Therefore Theorem 4.3 is a direct extension of a well-known fact on finite dimen-

sional rotations to the white noise case.

§ 5. Infinite dimensional Laplacians

We now discuss rotation-invariance of infinite dimensional Laplacians as a
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simple application of a general theory established in the previous sections.

The distribution τ ^ (E §ξ) E)* is already defined in (1-4) and, in view of

Theorem 2.6, we see that

= f r(s, t)dsdt dsdt = ΔG

J TxT

becomes a continuous operator on (E). On the other hand, note that τ e E ® E*.

In fact, since <r, η <8> ζ> = (η, ζ> for η, ζ e £, the corresponding operator in

£(E) is nothing but the identity (see (2-10)). Hence, using Theorem 2.6 again, we

observe that

Si i(r) = Γ r (5, /)9*9ί M = N
J TxT

is also a continuous operator on (£"). These operators are called the Gross Lapla-

cian and the number operator, respectively. Note that ΔB — ~ N is often called the

Beltrami Laplacian, see e.g. [12]. In fact, with the help of Proposition 2.7, for an ex-

ponential vector φξ, ξ G EQ, we obtain

Ξ0,2(τ)φξ(x) = Σ X <:x®\ <τ
n=0 n '

and

- 2, —γ \:x :, ξ

= Σn (:x®n:, ^ p ) = Nφ,.
n=0

In this section we characterize ΔG and N among quadratic forms of operators dt

and 9* in terms of rotation invariance. The main assertions are the following.

THEOREM 5.1. If

ΞoM) = f λ{s,t)dsdtdsdt. λ^{Ec®Ec)*,
J TxT

is invariant under O(E; H), then it is a constant multiple of the Gross Laplacian.

THEOREM 5.2. / /



8 8 TAKEYUKI HIDA, NOBUAKI OBATA AND KIMIAKI SAITO

Si,iW) = f λ(s, t)d?d,dsdt, λ e EC®E&
J TxT

is invariant under O(E; H), then it is a constant multiple of the number operator.

First note that if a continuous operator Ξ on (E) is invariant under

O(E H) then

(5-1) [Ξ,dΓ(X)] = 0

for any infinitesimal genarator X of a regular one-parameter subgroup {Geleen C

O(E; H). In fact, with the help of Theorem 4.1 one can differentiate at θ = 0 the

identity Γ(Gθ)Ξφ = ΞΓ(Gθ)φ, φ^ (£), to obtain (5-1).

LEMMA 5.3. Let λ €= ( i ?c®i?c )* and f̂ aw infinitesimal generator of a

regular one-parameter subgroup of O(E, H). Then, for an exponential vector φ%,

ξ ^ £ c , we have

L5Ό.2GΪ), rfΓ(Z)]0e = 2 O , Z ξ Θ $ > φξ,

where λ is the symmetrization of λ.

LEMMA 5.4. Let λ ^ EQ ® -Ec ^nd X an infinitesimal generator of a regular

one-parameter subgroup ofO(E; H). Then, we have

[ΞιΛ(λ),dΓ(X)] = -dΓ([X,L]),

where L is a continuous operator on EQ defined by Cϊ, ξ ® η) — (ξ, Lη) ,

ξ, V ^ Ec.

First we note that dΓ(X) = 2Ξhl(tc), where tc <^ E® E* is given as in

(4-15). Then, for the proofs of the above lemmas we need only to apply Proposi-

tion 2.7. It is noteworthy that £Ί,i(Λ) = dΓ(L) for λ and L being the same as in

Lemma 5.4.

Proof of Theorem 5.1. Suppose that Ξ0t2(λ) is invariant under O(E; H). It

then follows from Lemma 5.3 that

α~, Xξ 0 ξ) = 0, ξ e Ec,

for any infinitesimal generator of a regular one-parameter subgroup of O(E; H).

Suppose that i Φ j are arbitrarily fixed non-negative integers and define X as
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Xet = ej

Xek = 0, kΦ i,j.

Then we obtain

0 = <U, Xe, Θ et) = (λ, e} ® βi)

and

0 = Q, X(et + βj) (£> (βi + e})) = (λ, Xet ® e, + Xβj ® ei>

Hence O , ^ ® £*> = c is independent of i = 0,1,2, . . . and O , d ® £,•> = 0 for

* =£ . Therefore λ — cτ and we conclude that £0,2 W) — £0,2 W) — £0,2 (cτ) — cΔG.

Q.E.D.

Proof of Theorem 5.2. Suppose that £Ί,iOΪ) is invariant under O ( £ ; / / ) . It

then follows from Lemma 5.4 that dΓ([X, L]) = 0 , and therefore [X, L] = 0.

Let X be the same as in (5-2). Then, for k Φ i, j we have

0 = LXek •=- XLek - Σ <JLekt eι)Xeι

— (Lek, βi) Xet + (Lek, βj) Xe}

—- \ I p T p / p — \ T p 1 p / p'

Therefore, (Lek, e\) — (Lek, βj) = 0. In other words,

G , et® e}) — (et, Lej) = 0 i Φ j .

On the other hand,

<Lei9 βi) - - <LXe,9 e{) = ~<XLeJf et>

Namely, <U, ,̂ ® ^̂ > — (et, Lei) — c is independent of i — 0,1,2,.... Therefore λ

= cτ and SΊ.iCΪ) = 5Ί,i (cτ) = cΛ .̂ Q.E.D.

Remark During the above discussion we used only a subgroup of O(E\ H)

consisting of rotations which act identically on the subspace spanned by

ien, en+u . .} ίo r some n — 0,1,2, . . . . This group is sometimes denoted by (λo

and is an inductive limit of O(n). It is also interesting to consider another sub-

groups, for example, a group of transformations of T which is naturally imbedded
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in O(E; H). In general, a one-parameter subgroup of O(E; H) arising from

transformations on T is called a whisker and plays an interesting role in a study of

symmetry of Brownian motion, in this connection see [4], [14], [23].

Appendix. Some inequalities

PROPOSITION A . I . Let K e £(E§m, Eg1) such that \Kη\p< C\η \p+q, η

Eg m, for some p , q ^ 0 and C > 0. Then, for any n > 0,

i )Jm+n \ρ -̂  ^ P I/w+« lί+9>

Proo/. By Fourier expansion we have

®(m+n)

fm+n =fm+n = Σ

where ^ p...,ίM

Then,

and

f |2 — y ;2r. . . )2r I - |2
m+n \r Δu Λiι Λfn \ giv...,in \r,

tv...,ιn=0

I®n)fm+n |ϊ = I Σ # * , , ,. <8) ̂  <8) <g> e,n

. I2(p+q) |2\p+q

< n2n2qn \ f 12

where we used 1 < p " 1 = Λo ^ /ii ^ ^2 ^ * * *. Q.E.D.

COROLLARY A . 2 . For fm+n G Eg(m+n) and p > 0, w have

m / 1 V^i )fm+n |θ ^ P I /w+n |/>.

PROPOSITION A.3. For z = 1,2, . . . , <£ /eί isΓί G ί£(EcM\ Ech). Assume that

I ϋΓ, ξ, \p < d I ξ, \q, ξi G Egm\for some p, q > 0 and Ct > 0. 77κ?n, /or any i w g

have

\(Kι®- ®Kd)ω\p<Cι- "Cdp
mδm-mi I ω U , ω e £ ^ w ,



INFINITE DIMENSIONAL ROTATIONS 91

where m — m\Λ V md.

Remark Putting m, = max (mi, ,rnd), we obtain the best estimate. Since

p < δ, we have

I (Ki® ®Kd)ω\p < Cι'"Cdδ
m\ω\q+i. ω e E§m.

This is also useful.

Proof. It is sufficient to prove the inequality for i = 1. Let $, be the basis of

he \ namely,

0}.

Then, each α> e E§m is expressed as

ω= Σ
2<!2ί

where ^(/2,••-,/,) e ^ " ' a n d

I α> I? = Σ I

Then, using the Schwarz inequality, we obtain

(Σ\Kιg(f2,...,fd)\P\K2f2

fϊ w • • fd \QY

I f 2 . . . I f |2
9+1 I / d I« +

Kdfd I,)2

< Ci2 C | | ω | 2

ί + 1 / o 2 m i Π Σ

enmi), we have | // \q — (λja) '' 'λj(m.))\ and therefore

) = Σ (λjd)- - 'λj(mi))~2 — ( Σ λj2) = δ mt.
1/ ;(l),...,;(w i)=0 V=0 7

x (ΣIg(f2,...jd) l*-+2iIg(f2,...,Λ) I2,1hliΐi

Since | g(J2,.. . ,/d) |« ̂  p w i I ̂ ( Λ , . . . Jd) L+i, we obtain

If /, = em)

Σ

Consequently,

This proves the assertion. Q.E.D.
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COROLLARY A.4. For i = 1,2, . . . ,d, let K( e £(E§mi, Eξli). Assume that

I Ktζi \p < Ct I ζι \p+q, ξi G E§m\ for some p, q > 0 and Ci > 0. Then, for any i we

have

a
m = md.

Proof Immediate from Propositions A.I and A.3. Q.E.D.

COROLLARY A.5. Let B

( B - I ) ζ \ p < C 2 \ ξ \p+q. Then,

that \ Bξ \p < CΊ | ξ \p+q and

Proof We need only simple calculation and Corollary A.4.

— 1 )jn n 1) $9 1 )Jn

This completes the proof.

< "t CΓι-kC2p
ι+iQ+mδ"-ι-k I /„ \P+g+1

k=0

Q.E.D.
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