P. W. Sy and T. Sunada Nagoya Math. J. Vol. 125 (1992), 141-150

DISCRETE SCHRÖDINGER OPERATORS ON A GRAPH

POLLY WEE SY* AND TOSHIKAZU SUNADA

In this paper, we study some spectral properties of the *discrete* Schrödinger operator $-\Delta + q$ defined on a locally finite connected graph with an automorphism group whose orbit space is a finite graph.

The discrete Laplacian and its generalization have been explored from many different viewpoints (for instance, see [2] [4]). Our paper discusses the discrete analogue of the results on the bottom of the spectrum established by T. Kobayashi, K. Ono and T. Sunada [3] in the Riemannianmanifold-setting.

§1. Discrete Laplacians

Let X = (V, E) be a locally finite connected graph without loops and multiple edges. Here V and E are, respectively, the set of vertices and the set of unoriented edges of X. In a natural manner, X is regarded as a one-dimensional CW complex. We assign a positive weight to each vertex and also to each edge by giving mappings $m: V \to \mathbb{R}_+$ and w: E $\to \mathbb{R}_+$. Let $C_0(V)$ and $C_0(E)$ be the space of all complex-valued functions on V and E with finite support, respectively. Define inner products on $C_0(V)$ and $C_0(E)$ by

(1.1)
$$\langle f,g\rangle = \sum_{x\in V} f(x)\overline{g(x)}m(x)$$

(1.2)
$$\langle \omega, \eta \rangle = \sum_{e \in E} \omega(e) \overline{\eta(e)} w(e) .$$

The completions of $C_0(V)$ and $C_0(E)$ with respect to those inner products will be denoted by $L^2(V)$ and $L^2(E)$, respectively.

Each edge has two orientations. We use the symbol E^{or} to represent the set of all *oriented* edges, so that forgetting orientation yields a twoto-one map $p: E^{\text{or}} \to E$. Reversing orientation gives rise to an involution on E^{or} , which we denote by $e \mapsto \overline{e}$. We shall use the same symbol w for

Received December 13, 1989.

^{*} Research was supported in part by Japan Society for the Promotion of Science.

the composition $w \circ p$, which is a function on E^{or} . For an oriented edge e, o(e) and t(e) denote the origin and terminus point of e, respectively. Let $\mathcal{O}_x = \{e \in E^{\text{or}}; o(e) = x\}.$

We fix an orientation on each edge by giving a subset E_0 of E^{or} such that $E^{\text{or}} = E_0 \cup \overline{E}_0$ (disjoint) and we identify E_0 with E by the map p. Define the operator $d: C_0(V) \to C_0(E)$ by

(1.3)
$$df(e) = f(\mathfrak{t}(e)) - f(\mathfrak{o}(e)),$$

which is a natural analogue of the exterior derivation on a manifold.

A simple calculation gives the following formula for the formal adjoint d^* of d:

$$d^*\omega(x) = m(x)^{-1}\left\{\sum_{\substack{e \in E_0 \\ t(e) = x}} \omega(e)w(e) - \sum_{\substack{e \in E_0 \\ o(e) = x}} \omega(e)w(e)\right\}.$$

The discrete Laplacian $\Delta = \Delta_x$ is now defined by

(1.4)
$$\Delta f(x) = -d^*df(x) = m(x)^{-1} \{ \sum_{e \in \mathscr{O}_x} f(t(e))w(e) - (\sum_{e \in \mathscr{O}_x} w(e))f(x) \} .$$

Note that \varDelta is independent of the choice of orientation on edges.

Remark 1. Let $h: V \to \mathbb{R}$ be a function defined by

$$h(x) = (1/m(x)) \sum_{e \in \sigma_x} w(e) .$$

Then the operator Δ is bounded as an operator acting in $L^2(V)$ if and only if h is bounded. For the sake of completeness, we shall give a proof. Suppose that h is bounded. Then for any $f \in C_0(V)$,

$$\begin{split} \|df\|^{2} &\leq 2 \sum_{e \in E_{0}} (|f(\mathfrak{t}(e))|^{2} + |f(\mathfrak{o}(e))|^{2}) w(e) \\ &= 2 \{ \sum_{x \in V} \sum_{\substack{e \in E_{0} \\ \mathfrak{t}(e) = x}} |f(\mathfrak{t}(e))|^{2} w(e) + \sum_{x \in V} \sum_{\substack{e \in E_{0} \\ \mathfrak{o}(e) = x}} |f(\mathfrak{o}(e))|^{2} w(e) \} \\ &= 2 \{ \sum_{x \in V} |f(x)|^{2} (\sum_{e \in e_{x}} w(e)) \} \\ &\leq c \|f\|^{2}, \end{split}$$

where $c = 2 \sup_{x \in V} \{(1/m(x)) \sum_{e \in \sigma_x} w(e)\}$. Thus Δ is bounded. Conversely, assume that Δ is bounded. If h is unbounded, then for every positive real number K, there is an $x \in V$ such that $(1/m(x)) \sum_{e \in \sigma_x} w(e) \ge K$. We see that $||d\delta_x||^2 = \sum_{e \in \sigma_x} w(e) \ge Km(x) = K||\delta_x||^2$, where $\delta_x(y)$ equals 1 when y = x and zero elsewhere. It follows that $||\Delta\delta_x|| ||\delta_x|| \ge |(d^*d\delta_x, \delta_x)| = ||d\delta_x||^2 \ge K||\delta_x||^2$. Thus Δ is unbounded. This contradicts our hypothesis that Δ is bounded.

Remark 2. The discrete Laplacian defined above is a bit generalized

one of [2].

§ 2. Bottom of the spectrum

Let M = (V, E) be a *finite* connected graph, and let $\pi: X \to M$ be a normal covering map as CW complexes with the covering transformation group Γ . The covering space X has a graph structure (\tilde{V}, \tilde{E}) such that π is a morphism of graphs. Then Γ acts freely on \tilde{E} and \tilde{V} and $\Gamma \setminus \tilde{E} \simeq E$, $\Gamma \setminus \tilde{V} \simeq V$. We assume that M has weights on vertices and edges. The weights on vertices and edges of X are naturally assigned by using the map π so that they are left invariant under the Γ -action. If we fix orientation on edges of M, then the induced one on \tilde{E} is preserved by the Γ -action. Take any real-valued function $q_M \in C(V)$. We see that $q=q_M \circ \pi$ is invariant under the Γ -action. Since M is finite, $H_M = -\mathcal{A}_M + q_M$ is identified with a hermitian matrix of finite size and its spectrum consists of real eigenvalues.

The operator $H_x = -\Delta_x + q$ is just the lift of the operator H_M on M by the map π and is therefore bounded (see Remark 1) and self-adjoint. We denote by $\lambda_0(H)$ the greatest lower bound of the spectrum of a self-adjoint operator H. Note that $\lambda_0(H_M)$ is just the minimal eigenvalue of H_M .

LEMMA 1. $\lambda_0(H_M)$ is simple and has a positive eigenfunction. Proof. Let $V = \{1, \dots, n\}$. For $1 \le i \le n$, set $\varphi_i(x) = \frac{1}{\sqrt{m(i)}}$ if x = i= 0 otherwise.

Then $\{\varphi_i\}$ is an orthonormal basis of $L^2(V)$. Let $A = (a_{ij})$ be the matrix of Δ_M with respect to this basis. If (i, j) is an edge of M with $i \neq j$, then $a_{ij} = (\Delta_M \varphi_j, \varphi_i) = (1/\sqrt{m(i)m(j)}) w(i, j)$. Hence the off-diagonal entries of the matrix A are nonnegative real numbers. Let $A' = (a'_{ij})$ be the matrix with $a'_{ij} = a_{ij}$ for $i \neq j$ and $a'_{ii} = 0$. Since M is connected, the matrix A'is irreducible. Thus the operator $\Delta_M - q_M$ has the form A' + D, where D is a diagonal matrix with entries $d_{ii} \in \mathbb{R}$. The facts that the maximal eigenvalue $-\lambda_0(A' + D)(= -\lambda_0(H_M))$ is simple and there exists a positive eigenfunction associated with it, follow readily by applying the Perron-Frobenius Theorem [5] to the matrix A' + D + xI for large enough $x \in \mathbb{R}$.

THEOREM 1. $\lambda_0(H_M) \leq \lambda_0(H_X)$. The equality holds if and only if the covering transformation group Γ is amenable.

To prove this, we will employ a representation-theoretic technique. We fix orientation \tilde{E}_0 on \tilde{E} induced from an orientation of edges of M. We also identify \tilde{E}_0 with \tilde{E} .

Let ρ be a unitary representation of Γ on a Hilbert space W and $L^2_{\rho}(V) = \{s : \tilde{V} \mapsto W; s(\sigma x) = \rho(\sigma)s(x) \text{ for all } x \in \tilde{V} \text{ and } \sigma \in \Gamma\}$ with the natural inner product

$$\langle s_1, s_2 \rangle = \sum_{x \in \mathscr{D}_V} \langle s_1(x), s_2(x) \rangle_W m(x) ,$$

where \mathscr{D}_{ν} is a finite fundamental subset in \tilde{V} for the Γ -action; i.e., \mathscr{D}_{ν} is a subset of \tilde{V} such that for every $x \in \tilde{V}$, there exists a unique pair $(\sigma, x') \in \Gamma \times \mathscr{D}_{\nu}$ satisfying $\sigma x = x'$. Note that $\tilde{V} = \bigcap_{r \in \Gamma} \mathcal{T} \mathscr{D}_{\nu}$ and $\mathcal{T} \mathscr{D}_{\nu} \cap \mathscr{D}_{\nu} = \phi$ for $\gamma \neq id$. One can easily check that the inner product is independent of the choice of \mathscr{D}_{ν} . Let $L^{2}_{\rho}(E) = \{\varphi : \tilde{E} \mapsto W; \varphi(\sigma e) = \rho(\sigma)\varphi(e) \text{ for all } e \in \tilde{E} \text{ and } \sigma \in \Gamma\}$ with the following inner product

$$\langle arphi_1, arphi_2
angle = \sum\limits_{e \in \mathscr{B}_E} \langle arphi_1(e), arphi_2(e)
angle_{\scriptscriptstyle W} w(e) \, ,$$

where $\mathscr{D}_{\mathcal{E}}$ is a finite fundamental subset in \tilde{E} for the Γ -action. This definition also does not depend on the choice of $\mathscr{D}_{\mathcal{E}}$.

The bounded operator $d_{\rho}: L^2_{\rho}(V) \to L^2_{\rho}(E)$ is defined by

$$d_{\rho}s(e) = s(t(e)) - s(\mathfrak{o}(e))$$

LEMMA 2. The adjoint operator of d_{o} is given by

$$(d^*_{\rho}\varphi)(x) = m(x)^{-1}(\sum_{\substack{e \in \tilde{E}_0 \\ \mathfrak{t}(e) = x}} \varphi(e)w(e) - \sum_{\substack{e \in \tilde{E}_0 \\ \mathfrak{o}(e) = 0}} \varphi(e)w(e)).$$

Proof. First note that the correspondences

$$d_1: s \longmapsto \varphi_1 \qquad \varphi_1(e) = s(t(e))$$

$$d_2: s \longmapsto \varphi_2 \qquad \varphi_2(e) = s(\mathfrak{o}(e))$$

give rise to operators of $L^2_{\rho}(V)$ into $L^2_{\rho}(E)$, and $d_{\rho} = d_1 - d_2$. Let \mathscr{D}_V be a fundamental set in \tilde{V} , and put

$$\mathscr{D}_{E} = \{e \in \tilde{E}_{0}; \mathfrak{t}(e) \in \mathscr{D}_{V}\}.$$

Then \mathscr{D}_{E} is a fundamental set in $\tilde{E} = \tilde{E}_{0}$, and

$$egin{aligned} &\langle d_1 s, \varphi
angle &= \sum\limits_{e \in \mathscr{G}_E} \langle s(\mathfrak{t}(e)), \varphi(e)
angle_w w(e) \ &= \sum\limits_{x \in \mathscr{G}_F} \sum\limits_{e \in E_0 \atop \mathfrak{t}(e) = x} \langle s(x), \varphi(e)
angle_w w(e) \,. \end{aligned}$$

144

Thus we have

$$d_1^* \varphi(x) = m(x)^{-1} \sum_{\substack{e \in E_0 \\ \mathfrak{t}(e) = x}} \varphi(e) w(e) .$$

Similarly, we obtain

$$d_2^*\varphi(x) = m(x)^{-1}\sum_{\substack{e\in \mathcal{E}_0\\ \circ(e)=x}} \varphi(e)w(e).$$

This completes the proof.

The Laplacian \varDelta_{ρ} acting on $L^{2}_{\rho}(V)$ is now defined by $-d^{*}_{\rho}d_{\rho}$ which is equal to

The twisted discrete Schrödinger operator is then defined as the selfadjoint operator $H_{\rho} = - \Delta_{\rho} + q$.

LEMMA 3. If ρ is the right regular representation of Γ , then $(H_{\rho}, L^{2}_{\rho}(V))$ is unitarily equivalent to $(H_{X}, L^{2}(\tilde{V}))$; and if ρ is the trivial representation 1, then $(H_{\rho}, L^{2}_{\rho}(V))$ is unitarily equivalent to $(H_{M}, L^{2}(V))$.

Proof. Let $W = L^2(\Gamma) = \{\varphi : \Gamma \to \mathbb{C} \mid \sum_{\sigma \in \Gamma} |\varphi(\sigma)|^2 < \infty\}$ and ρ be the right regular representation ρ_r of Γ on W. From now on, we simply write ρ for ρ_r . To prove that H_ρ and H_x are unitarily equivalent to each other, we have to show that there exists a unitary map $\Phi : L^2(\tilde{V}) \mapsto L^2_\rho(V)$ such that $H_\rho \circ \Phi = \Phi \circ H_x$.

Define the map $\Phi: C_0(\tilde{V}) \mapsto L^2_{\rho}(V)$ by

$$\Phi(f)=s\,,$$

where the function s is defined to be $s(x)(\sigma) = f(\sigma x)$ for $x \in \tilde{V}$, $\sigma \in \Gamma$. One can check that $s(\mu x) = \rho(\mu)s(x)$ for any $\mu \in \Gamma$, $x \in \tilde{V}$. By the definition of fundamental set, we have

$$\|s\|^{2} = \sum_{x \in \mathscr{D}_{V}} \|s(x)\|_{W}^{2} m(x)$$
$$= \sum_{x \in \mathscr{D}_{V}} \sum_{\sigma \in \Gamma} |f(\sigma x)|^{2} m(x)$$
$$= \|f\|^{2}$$

for any $f \in C_{\varrho}(\tilde{V})$. Thus $s \in L^{2}_{\varrho}(V)$. Hence the map Φ is extended uniquely to an isometry of $L^{2}(\tilde{V})$ into $L^{2}_{\varrho}(V)$.

Next, we claim that Φ is onto. Take any $s \in L^2_{\rho}(V)$, define $f: \tilde{V} \to \mathbb{C}$

by f(x) = s(x)1, where 1 is the identity element of Γ . Since

$$\begin{split} \sum_{x \in \tilde{\mathcal{V}}} |f(x)|^2 m(x) &= \sum_{x \in \tilde{\mathcal{V}}} |s(x)1|^2 m(x) \\ &= \sum_{x \in \mathfrak{S}_{\mathcal{V}}} \sum_{\sigma \in \Gamma} |\rho(\sigma)s(x)1|^2 m(x) \\ &= \sum_{x \in \mathfrak{S}_{\mathcal{V}}} \sum_{\sigma \in \Gamma} |s(x)\sigma|^2 m(x) \\ &= \sum_{x \in \mathfrak{S}_{\mathcal{V}}} \|s(x)\|^2 m(x) , \end{split}$$

therefore $f \in L^2(\tilde{V})$. Put $s' = \Phi(f)$. Then $s'(x)(\sigma) = f(\sigma x) = s(\sigma x) \mathbf{1} = [\rho(\sigma)s(x)]\mathbf{1} = s(x)(\sigma)$ for every $x \in \tilde{V}$ and $\sigma \in \Gamma$. Hence $\Phi(f) = s' = s$.

For any $f \in L^2(\tilde{V})$, we have

$$\begin{split} (\{H_{\rho} \circ \Phi(f)\}(x))(\sigma) &= (\{H_{\rho} \circ s(x)\}(\sigma)) \\ &= -\frac{1}{m(x)} \{\sum_{e \in \sigma_x} s(t(e))\sigma w(e) - (\sum_{e \in \sigma_x} w(e))s(x)\sigma\} + q(x)s(x)\sigma \\ &= -\frac{1}{m(x)} \{\sum_{e \in \sigma_x} f(\sigma t(e))w(e) - (\sum_{e \in \sigma_x} w(e))f(\sigma x)\} + q(x)f(\sigma x) \\ &= -\frac{1}{m(x)} \{\sum_{e \in \sigma_{\sigma_x}} f(t(e))w(e) - (\sum_{e \in \sigma_x} w(e))f(\sigma x)\} + q(\sigma x)f(\sigma x) \\ &= H_x f(\sigma x) \\ &= (\{\Phi \circ H_x(f)\}(x))\sigma . \end{split}$$

This proves the first part of the theorem.

The second part of the theorem is easy to prove.

The Kazhdan distance $\delta(\rho, 1)$ (or $\delta_A(\rho, 1)$) between ρ and 1 is defined by

$$\delta(
ho,\mathbf{1}) = \inf_{v\in w \atop \|v\|=1} \sup_{\sigma\in A} \|
ho(\sigma)v - v\|,$$

where A is a fixed finite set of generators of Γ . The following lemma shows that the distance does not depend essentially on the choice of A.

LEMMA 4. Suppose that A and B are any finite sets of generators of Γ . Then there exist positive constants k_1 and k_2 such that

$$k_{\scriptscriptstyle 1} \delta_{\scriptscriptstyle B}(
ho, \mathbf{1}) \leq \delta_{\scriptscriptstyle A}(
ho, \mathbf{1}) \leq k_{\scriptscriptstyle 2} \delta_{\scriptscriptstyle B}(
ho, \mathbf{1})$$
 .

Proof. Let $C = A \cup B$. Choose an integer N large enough such that every $\sigma \in C$ can be expressed as

$$\sigma = \mu_1 \mu_2 \cdots \mu_n$$
 ,

where $\mu_i \in A$ and $n \leq N$. Then

$$egin{aligned} \|
ho(\sigma)v-v\|&\leq \|
ho(\mu_{1})\cdots
ho(\mu_{n})v-
ho(\mu_{1})\cdots
ho(\mu_{n-1})v\|\ &+\|
ho(\mu_{1})\cdots
ho(\mu_{n-1})v-v\|\ &\leq \|
ho(\mu_{n})v-v\|+\|
ho(\mu_{1})\cdots
ho(\mu_{n-1})v-v\|\ &\leq \sum\limits_{i=1}^{n}\|
ho(\mu_{i})v-v\|\ &\leq N\sup_{\mu\in A}\|
ho(\mu)v-v\|\,. \end{aligned}$$

It follows that $\delta_A \ge c_1 \delta_c$ for some constant c_1 . Similarly, one can also show that $\delta_B \ge c_2 \delta_c$ for some constant c_2 . On the other hand, since $A, B \subset C$, we have $\delta_c \ge \delta_A, \delta_B$. These inequalities together prove the result.

To prove Theorem 1, it suffices to establish the following Theorem (cf. [4] [7]). For, in the next theorem, when ρ is the right regular representation ρ_r , Theorem 1 follows from the fact that $\delta(\rho_r, 1) = 0$ if and only if Γ is amenable.

THEOREM 2. There exist positive constants c_1 and c_2 such that

$$c_1 \, \delta(
ho, 1)^2 \leq \lambda_0(H_
ho) - \lambda_0(H_1) \leq c_2 \, \delta(
ho, 1)^2$$

for all ρ . In particular, $\lambda_0(H_{\rho}) = \lambda_0(H_1)$ if and only if $\delta(\rho, 1) = 0$.

Proof. Note that

$$\lambda_{\scriptscriptstyle 0}(H_{\scriptscriptstyle
ho}) = \inf_{s \in L^2_{\scriptscriptstyle oldsymbol{\theta}}(V)} rac{\langle H_{\scriptscriptstyle
ho} s, s
angle}{\|s\|^2} \, .$$

By Lemma 1, we may take a positive solution $f \in L^2(V)$ to the equation $H_M f = \lambda_0(H_1) f$. We have

(2.1)
$$\langle \mathcal{\Delta}_{\rho}(fs), fs \rangle = \sum_{x \in \mathscr{G}_{Y}} \langle \sum_{e \in \mathscr{G}_{X}} f(\mathfrak{t}(e)) s(\mathfrak{t}(e)) w(e) \\ - (\sum_{e \in \mathscr{G}_{X}} w(e)) f(x) s(x), f(x) s(x) \rangle$$

Substituting the following equality

$$\sum_{e \in \mathscr{O}_x} w(e) f(x) = \lambda_0(H_1) f(x) m(x) - q(x) f(x) m(x) + \sum_{e \in \mathscr{O}_x} f(t(e)) w(e)$$

into (2.1), we obtain

(2.2)
$$\langle \Delta_{\rho}(fs), fs \rangle = \sum_{x \in \mathscr{G}_{V}} \langle \sum_{e \in \mathscr{G}_{X}} f(\mathfrak{t}(e))(s(\mathfrak{t}(e)) - s(x))w(e), f(x)s(x) \rangle \\ - \lambda_{0}(H_{1}) \langle fs, fs \rangle + \langle qfs, fs \rangle .$$

We now set $\mathscr{D} = \{e \in \tilde{E}^{\text{or}}; e \in \mathcal{O}_x \text{ for some } x \in \mathscr{D}_v\}$. It is easy to check that \mathscr{D} and $\overline{\mathscr{D}} = \{\bar{e}; e \in \mathscr{D}\}$ are fundamental sets in \tilde{E}^{or} for the natural Γ -action.

Note that, if $g_i(\sigma e) = \rho(\sigma)g_i(e)$, i = 1, 2, for every $\sigma \in \Gamma$ and $e \in \tilde{E}^{\circ r}$, then the summation

$$\sum\limits_{e\in\mathscr{D}}\left\langle g_{1}(e),\,g_{2}(e)
ight
angle$$

does not depend on the choice of a fundamental set \mathcal{D} . Therefore we find

$$\begin{split} \sum_{x \in \mathscr{B}_{\mathbf{Y}}} & \langle \sum_{e \in \mathscr{G}_{x}} f(t(e))(s(t(e)) - s(x))w(e), f(x)s(x) \rangle \\ &= \sum_{e \in \mathscr{G}_{x}} \langle f(t(e))(s(t(e)) - s(\mathfrak{o}(e)))w(e), f(\mathfrak{o}(e))s(\mathfrak{o}(e)) \rangle \\ &= \sum_{\bar{e} \in \bar{\mathscr{G}}} \langle f(t(\bar{e}))(s(t(\bar{e})) - s(\mathfrak{o}(\bar{e})))w(\bar{e}), f(\mathfrak{o}(\bar{e}))s(\mathfrak{o}(\bar{e})) \rangle \\ &= \sum_{e \in \mathscr{G}} \langle f(\mathfrak{o}(e))(s(\mathfrak{o}(e)) - s(t(e)))w(e), f(t(e))s(t(e)) \rangle \\ &= \sum_{x \in \mathfrak{G}_{y}} \langle \sum_{e \in \mathscr{G}_{x}} f(x)(s(x) - s(t(e)))w(e), f(t(e))s(t(e)) \rangle , \end{split}$$

so that

$$\begin{split} \sum_{x \in \mathscr{G}_{Y}} \sum_{e \in \mathscr{G}_{x}} f(\mathsf{t}(e)) f(x) \| s(\mathsf{t}(e)) - s(x) \|_{W}^{2} w(e) \\ &= \sum_{x \in \mathscr{G}_{Y}} \sum_{e \in \mathscr{G}_{x}} \left\{ \langle f(x) (s(\mathsf{t}(e)) - s(x)) w(e), f(\mathsf{t}(e)) s(\mathsf{t}(e)) \rangle \right. \\ &- \left. \langle f(x) (s(\mathsf{t}(e)) - s(x)) w(e), f(\mathsf{t}(e)) s(x) \rangle \right\} \\ &= - 2 \sum_{x \in \mathscr{G}_{Y}} \left\langle \sum_{e \in \mathscr{G}_{x}} f(\mathsf{t}(e)) (s(\mathsf{t}(e)) - s(x)) w(e), f(x) s(x) \rangle \right\rangle. \end{split}$$

Combining this with (2.2), we deduce

$$rac{\langle -arphi_{
ho} fs, fs
angle + \langle q(fs), fs
angle}{\|fs\|^2} = \lambda_0(H_1) + rac{1}{2}P\,,$$

where

$$P = \frac{\sum_{x \in \mathscr{G}_{Y}} \sum_{e \in \mathscr{G}_{X}} f(\mathsf{t}(e)) f(x) \| d_{\rho} s(e) \|_{W}^{2} w(e)}{\sum_{x \in \mathscr{G}_{Y}} f(x)^{2} \| s(x) \|_{W}^{2} m(x)}$$

There are positive constants k_1 , k_2 such that

$$k_{\scriptscriptstyle 1}P' \leq \inf_{_{fs\in L^2_
ho(V)}}P \leq k_{\scriptscriptstyle 2}P'$$
 ,

where

$$P' = \frac{\sum_{x \in \mathscr{D}_{V}} \sum_{e \in \mathscr{D}_{x}} \|d_{\rho}s(e)\|_{W}^{2} w(e)}{\sum_{x \in \mathscr{D}_{V}} \|s(x)\|_{W}^{2} m(x)} .$$

Thus, it is enough to show that

$$c_1\delta(
ho,\mathbf{1})^2\leq \inf P'\leq c_2\delta(
ho,\mathbf{1})^2$$
 .

148

We now let $\mathscr{U}(\mathscr{D})$ be the set of vertices $x \in \tilde{V}$ such that there exists $e \in \mathscr{D}$ with $\mathfrak{t}(e) = x$. It follows from the definition of fundamental set that for every $y \in \mathscr{U}(\mathscr{D})$, there is a unique $\sigma_y \in \Gamma$ with $y \in \sigma_y \mathscr{D}_v$. Consider B = $\{\sigma_y; y \in \mathscr{U}(\mathscr{D})\} \cup A$, another finite set of generators of Γ . From the definition of $\delta_B(\rho, 1)$, it follows that for every $\varepsilon > 0$, there exists a $v \in W$ with $\|v\| = 1$ such that $\|\rho(\sigma)v - v\| \leq \delta_B(\rho, 1) + \varepsilon$ for all $\sigma \in B$. For this fixed v, we define a function $s: V \to W$ by setting s(x) = v for all $x \in \mathscr{D}_v$ and $s(\sigma x) = \rho(\sigma)v$ for every $\sigma x \in \sigma \mathscr{D}_v$. It is clear that $s \in L^2_{\rho}(V)$. Thus

$$\sum_{x\in\mathscr{D}_V}\|s(x)\|^2 m(x) = \sum_{x\in\mathscr{D}_V}m(x)$$

and

$$\sum_{x\in\mathscr{B}_{V}}\sum_{e\in\mathscr{O}_{x}}\|d_{\rho}s(e)\|^{2}w(e)\leq \{\max_{e\in E}w(e)\}\sum_{\sigma\in B}\|\rho(\sigma)v-v\|^{2}\leq C\{\delta_{B}(\rho,1)+\varepsilon\}^{2}$$

Since ε is arbitrary, we obtain

$$\inf P' \leq c_2 \delta(\rho, \mathbf{1})^2$$

for some positive constant c_2 .

We next show the inequality $c_1 \delta(\rho, 1)^2 \leq \inf P'$ for some positive constant c_1 . Since for a unit vector v,

$$\delta(
ho, 1)^2 \leq \sum_{\sigma \in A} \|
ho(\sigma)v - v\|^2$$
,

by substituting v = s(x)/||s(x)||, we have

(2.3)
$$\delta(\rho, \mathbf{1})^2 \sum_{x \in \mathscr{D}_V} \|s(x)\|^2 m(x) \leq \sum_{x \in \mathscr{D}_V} \sum_{\sigma \in A} \|s(\sigma x) - s(x)\|^2 m(x)$$

for every $s \in L^2_{\rho}(V)$. For each $x \in \mathscr{D}_V$ and $\sigma \in \Gamma$, we choose a path $C(x, \sigma x)$ in X joining x and σx . Let $|C(x, \sigma x)| = \#$ [edges in the path $C(x, \sigma x)$] and $K = \max_{x \in \mathscr{B}_V} \max_{\sigma \in \mathcal{A}} |C(x, \sigma x)|$. The inequality (2.3) and

$$\|s(\sigma x) - s(x)\|^2 \leq K \sum_{e \in C(x, \sigma x)} \|s(t(e)) - s(\mathfrak{o}(e))\|^2$$

imply

$$\delta(\rho, \mathbf{1})^2 \sum_{x \in \mathscr{D}_{\boldsymbol{Y}}} \|s(x)\|^2 m(x) \leq c(\sharp \mathscr{D}) K^2 \sum_{x \in \mathscr{D}_{\boldsymbol{Y}}} \sum_{e \in \mathscr{D}_{\boldsymbol{X}}} \|d_\rho s(e)\|^2 w(e) ,$$

where $c = \max_{x \in V} m(x) \times (\min_{e \in E} w(e))^{-1} \times (\sharp A)$. Thus the proof of the theorem is complete.

References

- R. Brooks, Combinatorial problems in spectral geometry, in the Proc. of Taniguchi Sympo. "Curvature and topology of Riemannian manifolds" 1985, Lecture Notes in Math., 1201, 14-32, Springer, Berlin 1986.
- [2] J. Dodziuk and Leon Karp, Spectral and function theory for combinatorial Laplacians, Contemporary Math., 73 (1988), 25-40.
- [3] T. Kobayashi, K. Ono, and T. Sunada, Periodic Schrödinger operators on a manifold, Forum Math., 1 (1989), 69-79.
- [4] B. Mohar and W. Woess, A survey on spectra of infinite graphs, Bull. London Math. Soc., 21 (1989), 209-234.
- [5] J. Ortega, Matrix theory a second course, Plenum Press, New York, 1987.
- [6] T. Sunada, Fundamental groups and Laplacians, In: Proc. of Taniguchi Symposium on Geometry and Analysis on Manifolds 1987, Lect. Notes in Math., 1339, 248–277, Springer, Berlin 1988.
- [7] ——, Unitary representations of fundamental groups and the spectrum of twisted Laplacians, Topology, 28 (1989), 125-132.

Polly Wee Sy Department of Mathematics University of the Philippines Diliman, Quezon City Philippines

T. Sunada Department of Mathematics University of Tokyo Tokyo 113 Japan