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DISCRETE SCHRODINGER OPERATORS ON A GRAPH
POLLY WEE SY* anp TOSHIKAZU SUNADA

In this paper, we study some spectral properties of the discrete
Schrodinger operator — 4 4 g defined on a locally finite connected graph
with an automorphism group whose orbit space is a finite graph.

The discrete Laplacian and its generalization have been explored from
many different viewpoints (for instance, see [2] [4]). Our paper discusses
the discrete analogue of the results on the bottom of the spectrum estab-
lished by T. Kobayashi, K. Ono and T. Sunada [3] in the Riemannian-
manifold-setting.

§1. Discrete Laplacians

Let X = (V, E) be a locally finite connected graph without loops and
multiple edges. Here V and E are, respectively, the set of vertices and
the set of unoriented edges of X. In a natural manner, X is regarded as
a one-dimensional CW complex. We assign a positive weight to each
vertex and also to each edge by giving mappings m: V—-R, and w: E
—R,. Let C(V) and C,(E) be the space of all complex-valued functions
on V and E with finite support, respectively. Define inner products on
Cy(V) and C(E) by

1) 48> = 5 fE@me)
(1.2) lo, ) = S w(e)ple)wle).

eer

The completions of Cy(V) and C(E) with respect to those inner products
will be denoted by L% V) and L*E), respectively.

Each edge has two orientations. We use the symbol E° to represent
the set of all oriented edges, so that forgetting orientation yields a two-
to-one map p: E* — E. Reversing orientation gives rise to an involution
on E°, which we denote by e—e.We shall use the same symbol w for
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the composition wop, which is a function on E®. For an oriented edge
e, o(e) and t(e) denote the origin and terminus point of e, respectively.
Let 0, = {ee E°"; 0(e) = «}.

We fix an orientation on each edge by giving a subset E, of E° such
that E° = E,UE, (disjoint) and we identify E, with E by the map p.
Define the operator d: C(V)— C|(E) by
(1.3) df(e) = f(t(e)) — f(o(e)),
which is a natural analogue of the exterior derivation on a manifold.

A simple calculation gives the following formula for the formal ad-
joint d* of d:

d*w(x) = m(x)~{ ; w(e)w(e) — eé‘ w(e)wle).
tey=x o(e) =2

The discrete Laplacian 4= 4, is now defined by
(1.4) 4f(x) = — d*df(x) = m(X)“{GeZg ft(@)wle) — (e:/; w(e)f(x)} .

Note that 4 is independent of the choice of orientation on edges.

Remark 1. Let h:V—R be a function defined by
h(x) = (1m(x)) 3 wie).

eE€oy
Then the operator 4 is bounded as an operator acting in L V) if and
only if A is bounded. For the sake of completeness, we shall give a proof.
Suppose that A is bounded. Then for any fe Cy(V),

lafiF <2 2 AfEE@)F + [f(e(e)P)w(e)
=2{2, 2 Ift@)Fwe) + 3, 3 (flele)fw(e}

t(e)=x o(e)=x

= 2{ L If@F( 2w}
< c|fiF,

where ¢ = 2 sup, ., {(1/m(x)) > ,c,, w(e)}. Thus 4 is bounded. Conversely,
assume that 4 is bounded. If % is unbounded, then for every positive
real number K, there is an xe V such that (1/m(x)) > .., w(e) > K. We
see that ||dd, | = > .c., w(e) > Km(x) = K||4,|*, where 5,(¥) equals 1 when
y = x and zero elsewhere. It follows that || 446, |6, > |(d*dé,, 8,)| = ||dd, |
> K||6,|F. Thus 4 is unbounded. This contradicts our hypothesis that
4 is bounded.

Remark 2. The discrete Laplacian defined above is a bit generalized
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one of [2].

§2. Bottom of the spectrum

Let M = (V, E) be a finite connected graph, and let z: X -—> M be a
normal covering map as CW complexes with the covering transformation
group I'. The covering space X has a graph structure ( V, E) such that z
is a morphism of graphs. Then I acts freely on E and V and I'\E ~ E,
I'\V~V. We assume that M has weights on vertices and edges. The
weights on vertices and edges of X are naturally assigned by using the
map n so that they are left invariant under the I'-action. If we fix
orientation on edges of M, then the induced one on E is preserved by
the I'-action. Take any real-valued function g, e C(V). We see that
g=q, o« is invariant under the I"-action. Since M is finite, H,=—4,+q,
is identified with a hermitian matrix of finite size and its spectrum con-
sists of real eigenvalues.

The operator Hy = — 4y + ¢ is just the lift of the operator H, on
M by the map = and is therefore bounded (see Remark 1) and self-adjoint.
We denote by A,(H) the greatest lower bound of the spectrum of a self-
adjoint operator H. Note that A,(H,) is just the minimal eigenvalue of H,,.

Lemma 1. A(H,) is simple and has a positive eigenfunction.

Proof. Let V=1{1,.--,n}. For 1<i<n, set
() = — = if x=1

=0 otherwise .

Then {¢;} is an orthonormal basis of L(V). Let A = (a;;) be the matrix
of 4, with respect to this basis. If (i,j) is an edge of M with i # j, then
a; = (dye;, 0) = AVm@m()w(, j). Hence the off-diagonal entries of
the matrix A are nonnegative real numbers. Let A’ = (a,) be the matrix
with af, = a,; for i #+j and @}, = 0. Since M is connected, the matrix A’
is irreducible. Thus the operator 4, — q, has the form A’ + D, where
D is a diagonal matrix with entries d,; € R. The facts that the maximal
eigenvalue — A(A’ + D)(= — A(H,)) is simple and there exists a positive
eigenfunction associated with it, follow readily by applying the Perron-
Frobenius Theorem (5] to the matrix A’ + D -+ xI for large enough xe R.

THEOREM 1. A(H,) < A(Hy). The equality holds if and only if the
covering transformation group I' is amenable.
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To prove this, we will employ a representation-theoretic technique.
We fix orientation E, on E induced from an orientation of edges of M.
We also identify E, with E.

Let p be a unitary representation of I" on a Hilbert space W and
LA(V)={s: Vs W; s(ox) = p(o)s(x) for all x e Vandgel } with the natural
inner product

{8y, 8y :xez‘;y <31(x)’ Sz(x»n'm(x) s

where 2, is a finite fundamental subset in V for the I-action; i.e., 9,
is a subset of V such that for every xe V, there exists a unique pair
(0, x)e ' X 9, satisfying ox = x’. Note that V = MNyer 72y and 792,N 9,
= ¢ for ¥ # id. One can easily check that the inner product is independent
of the choice of @,. Let LXE) = {p: E —W; ¢(ce) = p(c)p(e) for all ec E
and ¢ e I'} with the following inner product

(P o) = GZQ (pi(e), pyle)dy wle),

where 2, is a finite fundamental subset in E for the I'-action. This
definition also does not depend on the choice of 2.
The bounded operator d, : L}(V) — Li(E) is defined by

d,s(e) = s(t(e)) — s(o(e)) .
LemMma 2. The adjoint operator of d, is given by

(dFp)(x) = m(x)7'( 3 p(aw(e) — 2 ole)w(e).

ec By ecky
te)=x o(e)=0

Proof. First note that the correspondences
diis—> ¢ ole) = s(t(e)
dy:S—> ¢, @y(e) = s(o(e))

give rise to operators of L:(V) into LXE), and d, =d, — d,. Let 2, be
a fundamental set in V, and put

Dy = lee 1730; t(e) e 9,}.
Then 2, is a fundamental set in E = E,, and
(dis, o) = 3 (s(t(e)), p(e)yww(e)
= 3 2 s8(x), pe)ywle).

z€ay ecEy
t(e)=x
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Thus we have

difp(x) = m(x)™ 3 p(e)w(e).

eckEy
tle)=x

Similarly, we obtain

dfp(x) = m(x)™" 3. ple)w(e).

ecEo
o(e)=x

This completes the proof.
The Laplacian 4, acting on LX(V) is now defined by — d¥d, which
is equal to

ecoy

d,5(x) = m(x)7{ 3 s(t(e))w(e) — (eé w(e))s(x)} .

The twisted discrete Schrédinger operator is then defined as the self-
adjoint operator H, = — 4, + q.

LemMmA 3. If o is the right regular representation of I', then (H,, L:(V))
is unitarily equivalent to (Hy, LXV)); and if o is the trivial representation
1, then (H,, L}(V)) is unitarily equivalent to (H,, L*(V)).

»

Proof. Let W=ILXI)={p: "> C|>,erlp(@f < o} and p be the
right regular representation p, of I" on W. From now on, we simply
write p for p,. To prove that H, and H, are unitarily equivalent to each
other, we have to show that there exists a unitary map @ : L V) — LX(V)
such that H,0 @ = @0 Hy.

Define the map @ : Cy(V) — LX(V) by

Q(f):s’

where the function s is defined to be s(x)(¢) = f(sx) for xe V, e I. One
can check that s(ux) = p(p)s(x) for any pel’, x¢ V. By the definition
of fundamental set, we have

sl = xé‘;VIIS(x)H%Vm(x)
= 2, 2 [flex)Pm(x)

€y a€T"

= |IfIf

for any fe C(V). Thus se L:(V). Hence the map @ is extended uniquely
to an isometry of LA V) into LX(V).
Next, we claim that @ is onto. Take any se L}(V), define f: V-C
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by f(x) = s(x)1, where 1 is the identity element of I". Since
Z?If(x)lzm(x) = > [s(x)1Pm(x)
x€

zeV

= 2. 2, lpl0)s(x)1fm(x)

x€9y oD

=2, 2, |s@)afm(x)

2E€Iy o€

= 2 Is@[Fm@),

therefore fe LA V). Put & =0(f). Then s/(x)(0) =f(ox)=5(0x)1=[p(c)s(x)]1
— 5(x)(0) for every xe V and ge . Hence O(f) =& = s.
For any fe LY V), we have

({H, » 0} (@)(0) = ({H, > (1)} (0))
=~ L5 ste)ew — (3 we)s@e} + q@)sx)o
m(x) eEos é€os

~ - —L{ 3 flot@w(o) — (3 w(e)f(ox)} + a@f(ox)

= - T{CZ ft@)wle) — (Z w(e)f(ox)} + q(ox)f(ox)

= Hyf(ox)
= ({9 Hx(H}(x)o .

This proves the first part of the theorem.
The second part of the theorem is easy to prove.
The Kazhdan distance §(p, 1) (or §,(p, 1)) between p and 1 is defined by

3(p, 1) = inf Supllp(a)v -,
where A is a fixed finite set of generators of I'. The following lemma
shows that the distance does not depend essentially on the choice of A.

LemMA 4. Suppose that A and B are any finite sets of generators of
I'. Then there exist positive constants k, and k, such that

k15B(P7 1) < BA(P, 1) < k25B(p’ 1) .

Proof. lLet C = AUB. Choose an integer IV large enough such that
every g€ C can be expressed as

T = Uiy Uy,
where p, € A and n < N. Then
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lp@)v — vl < llpe)- - () v — o) - - - p(pta-) V|
+ lo() - - - p(en_v — V||

< ||P(/«‘n)v - v” + “P(/Jl)' : 'P(,Un—l)v - UH

< 2 llo(p)v — v

< NS‘;? (v — vif.
It follows that §, > c,6, for some constant ¢,. Similarly, one can also
show that 6, > ¢,5, for some constant ¢,, On the other hand, since
A, B c C, we have §, > d,, 6, These inequalities together prove the result.

To prove Theorem 1, it suffices to establish the following Theorem (cf.

[4] [7]). For, in the next theorem, when p is the right regular represen-

tation p,, Theorem 1 follows from the fact that 4(p,, 1) = 0 if and only if
I" is amenable.

TueorREM 2. There exist positive constants ¢, and ¢, such that
¢ 6(p, 1)* < (H,) — 2(Hy) < ¢:6(p, 1)
for all p. In particular, 3(H,) = 2(H,) if and only if 5(p,1) = 0.
Proof. Note that

WH) = inf SHeS8

SGL%,(V) HSHZ

By Lemma 1, we may take a positive solution fe L*(V) to the equation
H,f = i»(H)f. We have

(2.1) A,fs), fs) = PILG3 f(t(@)s(i(e)wle)
— (2 we)f(x)s(x), f(x)s(x)) .

Substituting the following equality
2 w(e)f(x) = a(H)f(x)m(x) — g(x)f(x)m(x) +GGZQ ft(@)w(e)

ecoy

into (2.1), we obtain

(2.2) Afs) fsy = 2 L k(@) (s(t(e) — s(x)wle), f(x)s(x))

ZEDY e€og

— A(H){fs, fs) + <qfs,fs) .

We now set 2 = {ee Er;ec 0, for some x e 2,}. It is easy to check that
2 and 9 = {&; e € 9} are fundamental sets in E* for the natural I'-action.
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Note that, if g,(ce) = o(0)g,(e), i = 1,2, for every ge ' and ec E°, then
the summation

2, <&ie), ge))

does not depend on the choice of a fundamental set 9. Therefore we find

22 £ 2 [t (s(t(e) — s()w(e), f(x)s(x))

EPy eEozx

= 2, {f(e)(s(t(e)) — s(o(@))w(e), fa(e)s(o(e)))
= 2, K@) (st@) — se@)w(@), f(o(e)s(o(@))

= 2, {fo(e)(s(0(e)) — st w(e), ft(eNs(t(e))
=2 <2 F(x)(s(x) — st wle), f(t(e)s(t(e)) ,

zEIY €€

80 that
Y, 2 ftE@)f(x)]s(te)) — s(x) |k w(e)

rEQy eCoOy

=22 {Kf(0)(s(t(e) — s(x)w(e), f(t(e)s(t(e))

XE9Y e€

— «(f (x)(S(t(e)) — s(x)w(e), f(t(e)s(x))}
= — 27 L 2 () (s(t(e) — s(x)w(e), f(x)s(x)) .

x€ay eCoz

Combining this with (2.2), we deduce

{— 4, fs,fsy + La(fs), [s) _ A(Hy) + lP
\fslP ° 2

where

P = Zuseay 2ueco, [H)f(2)(|d,s(e) iy wle)
2iaear ()| 8(2) [ m(x)

There are positive constants k,, k, such that

kP < inf P< kP,

rserlony

where

P/ — ergv Zeeaz ”dps(e)”%V w(e) .
Y izesy |8(%) | m(x)

Thus, it is enough to show that

015(‘0, 1)2 S ian/ é 025([), 1)2 .
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We now let #(2) be the set of vertices x ¢ V such that there exists ec @
with t(e) = x. It follows from the definition of fundamental set that for
every ye %(2), there is a unique ¢,eI" with ye¢,2,. Consider B =
{o,;y€ #(2)} UA, another finite set of generators of I". From the defini-
tion of 65(p, 1), it follows that for every ¢ > 0, there exists a ve W with
flul = 1 such that [|p(e)v — v|| < ds(p, 1) + ¢ for all s B. For this fixed
v, we define a function s: V- W by setting s(x) = v for all xe 2, and
s(ox) = p(o)v for every sxeo2,. It is clear that se L}(V). Thus

Tls@IFm) = 3 m)
and

2, Zld,s@f wle) < {max w(e)} 2 lle(@v — vl < Cioslp, ) + ¢

TEDY €€ Oy ee

Since ¢ is arbitrary, we obtain
inf P’ < ¢,8(p, 1)?

for some positive constant c,.
We next show the inequality c¢,6(p, 1) < inf P’ for some positive con-
stant ¢,. Since for a unit vector v,

a(p, 1)° éa?;l!p(a)v —vlf,
by substituting v = s(x)/||s(x)|, we have

@3 01 D@ < 3 3 lsw) — s@Fm()

for every se L:(V). For each xe 2, and geI', we choose a path C(x, gx)
in X joining x and ¢x. Let |C(x, 0x)| = # {edges in the path C(x, ¢x)} and
K = max,,,, max,.,|C(x, ¢x)|. The inequality (2.3) and

s(ax) — s(0)|* < Keec%‘;lm)HS(f(e)) — s(o(e)|}
imply

3o, 17 T s Fmx) < e DK 3 3 l1d,s@)Fwie).

where ¢ = max,., m(x) X (min,., w(e))* X (}A). Thus the proof of the
theorem is complete.
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