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ON THE LEAST DEGREE OF POLYNOMIALS BOUNDING

ABOVE THE DIFFERENCES BETWEEN LENGTHS AND

MULTIPLICITIES OF CERTAIN SYSTEMS OF

PARAMETERS IN LOCAL RINGS

NGUYEN TU CUONG

§ 1. Introduction

Let A be a commutative local Noetherian ring with the maximal ideal

m and M a finitely generated A-module, d = dim M. It is well-known

that the difference between the length and the multiplicity of a parameter

ideal q of M

Ix(q) = KM/qM) - e(q; M)

gives a lot of informations on the structure of the module M. For instance,

M i s a Cohen-Macaulay (CM for short) module if and only if IM(q) = 0

for some parameter ideal q or M is Buchsbaum module (see [S-V]) if and

only if IM(q) is a constant for all parameter ideals q of M. In this note

we shall investigate this difference, but in a more general situation as

follows: Let x = {xu , xd} be a system of parameters (s.o.p. for short)

on M and n = (nu , nd) a d-tuple of positive integers. We consider the

difference

IM(n; x) = l(M/(xr, , xld)M) - nr - nde(x; M)

as a function in n. In general, this function is not a polynomial in n,

even in the case nγ = n2 = = nd = t (see [G-K]). The necessary and

sufficient conditions in term of x, for this function to be a polynomial,

have been examined in [CJ. Here we shall show that the least degree of

all polynomials in n bounding above IM(n; x) is independent of the choice

of x (Theorem 2.3). This numerical invariant of M will be called the

polynomial type of M. The aim of this note is to study the polynomial

type of a module over a local ring. In Section 2 we define the polynomial
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type of a module and give some properties of this invariant. Using the
local cohomology modules of M and the notion of reducing sequence
[A-B], we give in Section 3 upper and under bounds for the polynomial
type of M. In Section 4 we improve these bounds in the case that A is
a factor ring of a CM ring. In particular, if M is equidimensional we
can show that the polynomial type of M is just the dimension of the non-
Cohen-Macaulay locus of M in Supp M. In the last section we examine
the behaviour of the polynomial types by a flat extension.

§ 2. The polynomial type of a module

Throughout this note we denote by A a commutative local Noetherian
ring with the maximal ideal nt and by M a finitely generated A-module
with dim M = d.

We begin with the following lemma.

LEMMA 2.1. Let x = {xί9 , xd} be an s.o.p. on M and n = (nu , nd)

a d-tuple of positive integers. Then

Z(Af/(*?s . .., xn/)M) < n, nd l(MI(xu , xa)M).

Proof. The lemma is proved in [G] for the case d = 1. Put

E - M/(xr)M and F = M(x2, . . ., xd)M.

Then by induction on d we get

s , xT)M) = /(£/(*- .. ., xT)E)

*ζτh" ndl(EI(x2, -,xd)E) = n2-

< nx ndl(MI(xl9 , xd)M) as required .

From now on, for an s.o.p. x = {xl9 , xd} of M we set

IM(n; x) - Z(M/(*?s , x2ώ)M) - TV nde(x\ M).

In particular, we also set IM{x) = /^(ft; x) if ^ = = nd = 1.

COROLLARY 2.2. I^Oi; x) < nx- ndIM(x).

The corollary 2.2 shows that if we consider IM(n; x) as a function in

n then this function is bounded above by the polynomial n{ -ndIM(x).

In general we can show the following theorem.

THEOREM 2.3. Let x = {xu , xd} be an s.o.p. on M. Then the least
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degree of all polynomials in n bounding above IM(n; x) is independent of the

choice of x.

Proof (see [C2], Proposition 2.5). Let t = (t, ,1) be a d-tuple of the

same integers t. Then by [G], Theorem 6, the least degree of all poly-

nomials in t bounding above IM(t; x) is independent of the choice of x.

Denote this invariant by pr{M) and by p(x) the least degree of all poly-

nomials in n bounding above IM(n; x). It is clear that pf(M) <p(x). On

the other hand, we can easily verify that IM(t; x) > IM(n\ χ) if t > nt, i = 1,

• , d. It follows that p'(Af) > p(x). Thus p(x) = p'(M) is independent

of the choice of x.

DEFINITION 2.4. The numerical invariant of M given in Theorem 2.3

is called the polynomial type of M and we denote it by p(M).

Remark 2.5. ( i ) If we stipulate that the degree of the zero-poly-

nomial is equal — 1. Then M i s a CM module if and only if p(M) — — 1.

(ii) If IM(n; x) is a constant for some s.o.p. x on M and for nl9 , nd

sufficiently large then M is called a generalized CM module (see [C-S-T]).

Therefore M is a generalized CM module if and only if p(M) < 0.

(iii) From the limit formula of Lech

lim (TV nd)-H(MI(x^\ . . ., nn/)M) = e(xu , xd M),
m'ιn{ni)->oo

we easily deduce that p(M) < dimM — 1.

LEMMA 2.6. Let M be the m-adίc completion of M then p(M) = p(M).

Proof. If x = {xu , xd} is an s.o.p. on M then x is also an s.o.p.

on M. The lemma follows from the fact that

l(M/(xu . . ., xd)Af) - l(MI(xu , *Λ)M) and e(x; M) = e(x; M ) .

§3. Bounds of p(M)

First of all we need some notations as follows.

We denote by at the annihilator of the ί-th local cohomology module

Hι

m(M) of M with respect to the maximal ideal m, and we set

A subset of an s.o.p. xu , x3- of M is called a reducing sequence if

the following condition holds: x ^ P for all P e Ass(M/(xl5 , x^^M) with

dim(A/P) > d — i, ί = 1, ,y\ Note that if x = {x̂  , xd} is an s.o.p.
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on M and xu , xd_x form a reducing sequence, then x is just a reducing

s.o.p. which has been introduced in [A-B]. We set

r(M) = inf{A/every subset of an s.o.p. of M having (d — k — 1)-

elements is a reducing sequence of M).

Finally, we denote by NC(M) the non-Cohen-Macaulay locus of M, i.e.

NC(M) = {Pe Supp M\ MP is not a CM module}. The following theorem,

which will be often used in this paper, is one of the main results of

[CJ.

THEOREM 3.1. Suppose that A has a dualizing complex. Then

( i ) p(M) - r(M) = dim(A/α(M));

(ii) if M is equidimensional then p(M) = dim(iVC(M)).

Example 3.2. Ferrand and Raynaud [F-R] have constructed a two-

dimensional local integral domain (R, m) such that the m-adic completion

R has a one-dimensional associated prime ideal. Thus R is not a gener-

alized CM module; it follows that p(R) — 1. But, it is easy to see that

NC(R) = {in}, r(R) = 0 and dim(i?/α(jR)) = 2. So we get inequalities

dim(B/α(B)) > p(R) > άim(NC(R)) = r(fi).

Thus, in the general case, Theorem 3.1 does not hold without the as-

sumption that A has a dualizing complex. However, we have the following

theorem.

THEOREM 3.3. With the previous notations it holds

( i ) άim(A/a(M)) > p(M) > r(M);

(ii) If NC(M) is closed then p(M) > r(M) > άim(NC(M)).

Proof. ( i ) We denote by A and M the m-adic completion of A and

M, respectively. Then it is obvious that a(M)A c: a(M). Therefore by

Theorem 3.1 and Lemma 2.6.

dim(A/α(Λf)) = dim(^/α(M)A) > dim(iC/α(M)) = p(M) = p(M).

Let p(M) = k and x = {xu - -, xd} be an arbitrary s.o.p. on M. By [A-B],

Corollary 4.3, we have

IM(n; x) = /((*?*, , xn

dtγ)M
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Since IM(n; x) is bounded above by a polynomial in n of degree k, there-

fore

e(*J<r, •, xy; (x?\ , x?ir)M: xΠ(xΐ\ , x^)M) = 0

for i = 1, , d — k — 1. Thus by virtue of [A-B], Proposition 4.7 xί9 ,

xd_fc_! is a reducing sequence; so p{M) > r(M). For the proof of (ii) we

need two auxiliary lemmas as follows. Note that these lemmas have been

proved in [C2] with the assumption that A has a dualizing complex.

LEMMA 3.4. Let xl9 , xs 0 > l ) be an unconditioned reducing sequence

of M {i.e. from any permutation of the sequence xu , xj we still get a

reducing sequence). Then for every prime ideal P contained in A&&(MI(xl9

• , xή)M) with dim (A/P) = d — j we have

dim(MP) + dim(A/P) = d .

Proof. Suppose that dim(ΛfP) = k<Cj. We can choose the order of

the sequence xu , Xj such that xu , xk form an s.o.p. on MP. Since

(xu , xk)MP c: (χ1? . . ., χj_ί)MP c: PMP, it follows that (x1? , x3_^)MP is

PAp-primary. Hence by [M], 7.C, PeAss(MI(xl9 ••-,xJ_ί)M). This con-

tradicts the assumption that x1? , xό is a reducing sequence of M. Thus

= j as required.

LEMMA 3.5. Let P e S u p p M with dim (A/P) > r(M). Then MP is a

CM module and dim(MP) + dim (A/P) = d.

Proof. Let P e S u p p M with dim (A/P) > r(M) = k. Choose a subset

of an s.o.p. x19 , Xj of M contained in P so that j is maximal. It is

easy to verify that dim (A/P) = d — j . Therefore d — k — 1 ̂  j so xx, - -, Xj

is an unconditional reducing sequence of M. Hence dim(Mp) + dim (A/P)

= d by Lemma 3.4. On the other hand, xu - -, Xj is also a reducing

sequence on MP. Thus by [A-B], Corollary 4.8,

l(MPl(xu '9Xj)MP) - e((xu , Xj)AP; MP)

= l((xl9 , Xj-JMp : XjUxu - -yXj-JMp).

Since xl9 , x ; is a reducing sequence of M we get PAF g Ass(MP/(xί9 ,

x^JMp). Therefore (x^ , x5_ )MP : x̂  = (xl5 , ̂ .JJIίp. It follows that

l(MPl(xu , Xj)MP) = e((xl9 , ̂ )A P ; MP), in other words, MP is a CM

module. The lemma is proved.

Proof of (ii). By part (i) of Theorem we only need to show that
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r(M) > dim(iVC(.M)). This inequality immediately follows from Lemma 3.5.

The proof of Theorem 3.3 is now complete.

COROLLARY 3.6. Let P e S u p p M with dim(A/P) > p(M). Then MP is

a CM module and dim(MP) + dim(A/P) = d.

§ 4. The case A is the homomorphic image of a CM ring

In this section we shall improve our previous inequalities in the case

that A is the homomorphic image of a CM ring. We begin with the

following theorem.

THEOREM 4.1. Let A be the homomorphic image of a CM ring and k

a positive integer. Then the following conditions are equivalent:

( i ) p(M)^k.

(ii) Any subset of an s.o.p. of M having (d — k — l)-elements is a

reducing sequence.

(iii) For any P e S u p p M with άim(A/P)> k, MP is a CM modnle

and dim(Mp) + dim(A/P) = d.

(iv) For any P e SuppM with dim (A/P) = k + 1, MP is a CM module

and άim(MP) + dim(A/P) = d.

Proof. By the proof of Theorem 3.3 we already get the following

implications (i) => (ii) => (iii) => (iv). Since the CM property is stable under

generalization, (iii) is equivalent to (iv). Thus we have only to show

that (iii) =̂> (i). As above, we denote by A and M the m-adic completion

of A and M, respectively. Put dim(AlaM)) = k' and suppose that h! > k.

Let P e Ass(i£/α(M)) so that dim (A/PA) = k' and P Π A = p. Then there

exists a QeAss(A/pA) such that Q cz P. Therefore Qf]A = p. Since

Alp A is unmixed by [N], 34.9, we get

άim(Alp) = άim(AlpA) = dim(A/Q) < dim(A/PA) = k'.

Note that A is catenery, so we deduce from 3.5 and the assumption that

d = dim(Mp) + dim(A/p) = dim(ikQ + dim(A/Q)

= άim(Mp) + dim(A/P) + dim(AP/QAP)

= dim(Mp) + dim(A/P) + dim(APlpAP)

- dim(MF) + dim(A/P).

On the other hand, since dim(A/p) > k' > k, Mp is a CM module. So MP

is CM because any fiber of the canonical homomorphism A -> A is CM.
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Therefore

d - dim(MP) + dim(A/P) = depth(MP) + dim(A/P).

Applying [S], Satz 2.4.6 it follows that a(M) gL P which is a contradiction.

Thus k > k'. By virtue of Lemma 2.6 and Theorem 3.1 we deduce that

p(M) = p(M) = kf < k as required.

It is well-known that if A is the homomorphic image of a CM ring

then NC(M) is closed in Spec A. Then we get the following corollary.

COROLLARY 4.2. Suppose that A is the homomorphic image of a CM

ring and M is equidimensional. Then it holds

p(M) = r(M) = dim(NC(M)).

Proof. Note that if A is catenary and M is equidimensional then for

all Pe Supp M we have dim(ΛfP) + dim (AjP) = d. Therefore by Theorem

4.1 it follows that p(M) - dim(iVC(M)). Hence p(M) = r(M) = dim(iVC(M))

by Theorem 3.3.

The following corollary is one of the main results in [C-S-T].

COROLLARY 4.3. Suppose that A is the homomorphic image of a CM

ring then following conditions are equivalent:

( i ) M is a generalized CM module.

(ii) p(M)<0.
(iii) Every s.o.p. on M is reducing.

(iv) dim(iVC(M)) = 0 and dim(MP) + dim(A/P) = d for all P e Supp M.

Proof. The corollary immediately follows from Theorem 4.1 and the

definition of a generalized CM module.

§ 5. Flat extensions

Let (A, m) -> (J3, n) be a flat, local homomorphism. We denote by F

the fiber Ajxa®AB. In this section we examine the relationship between

polynomial types p(A), p(B) and dimί 7 by such a flat homomorphism.

THEOREM 5.1. Let f: (A, in) —> (B, n) be a local, flat extension. Then:

( i ) If p(B) > dim F then p(B) > p(A) + dimF. Moreover, the equality

holds if a(A)B c a(B).

(ii) If p(B) < d imF then A is a CM ring.

Proof. Denote A and B the m-adic (the n-adic) completion of A(B),
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respectively. Let f : A-+B be the induced flat homomorphism. Consider
the commutative diagram

A-UB

A

Then by Lemma 2.6 we have p(A) — p(A), p(B) = p(B). It is also easily
to see that B ®i A/xh = F9 F is the n-adic completion of F. Hence, without
loss of the generality we can suppose that A and B are complete. There-
fore they are homomorphic images of regular rings.

(i ) Let p e Spec A such that dim(A/p) > p(B) — dimF. Since the
going down Theorem holds between A and B we can choose a P e Spec B
such that dim(5/P) = dim(BlpB) and Pf]A = p. Therefore we get

dim(B/P) = άim(BlpB) = dim(A/p) + dimF>p(B).

By virtue of Theorem 4.1, BP is CM and d i m ^ ) + dim(β/P) = dimJB; it
follows that

dimfi = dim(Bp) + dim(B/P) = dim(Ap) + άim(A/p) + dimF

= dim A + dim F.

Therefore dim(Ati) + aim(A/p) = dim A. Hence p(A) <p(β) — dimF by
Theorem 4.1. Suppose now that a(A)B c= a(B). Let P e Spec B such that
α(B)£P and dim(B/P) = p(B). Note that A and 5 are catenary; we
have for p = Pf]A

dim(J5/P) < dim(B/pB) - dimίΰp/^βp)

- dim(Alp) + dimF - dim(BPlpBP).

Therefore

dim(A/ί>) > dim(B/P) - dim F + dim(SP/t)J5p)

= p(B) - dim F + dim(Bp/i»SP) > p(5) - dim F .

Since α(A)S c a(B) it follows that α(A) c PΠ A = p. Thus

- dim(A/α(A)) > dim(A/p) >p(S) - dimF
by Theorem 3.1. So we get p(A) = p(B) — dim F as required.

(ii) Let P e Spec B such that dim(S/P) = dim F and Pf] A = m. As
dim(B/P) >p(J3), S P is CM. Therefore A is CM by [M], 21. C. The proof
of Theorem 5.1 is complete.
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COROLLARY 5.2. With the same A, JB, F as in Theorem 5.1, if dim F

= 0 then p(A) =

Proof. Since dimF = 0 we can easily show that a(A)B cz α(B). There-

fore p(Λ) = p(B) by Theorem 5.1, (i).

COROLLARY 5.3. Let p e Spec A with άim(A/p) <p(A) then

Proof. Let A be the m-adic completion of A. Choose a PeSpec A

such that dim (A/P) = dim(A/pA) = άim(A/p) and consider the local flat

homomorphism AP->AP. Since dim(AP/^AP) = 0 it follows by Corollary

5.2 that p(Ap) = p(AP). Hence we can assume that A is a complete ring.

Let now q c: p a prime ideal such that dim(Ap/qAp) >p(A) — dim(A/^ι).

Then we have

dim(A/q) > dim(A/p) + dim(AJqAp) >p(A).

Thus Aq is CM by Corollary 3.6. Furthermore, since A is complete A is

catenary; therefore dim(Ap) = dim(Aq) + dim(AJqAp). Hence, applying

Theorem 4.1 for Ap, we deduce that p(Ap) <p(A) — άim(Ajp) as required.

Theorem 5.1 has some interesting consequences. First, the following

two corollaries say about the relationship between the polynomial types.

Their proofs are trivial therefore we omit it.

COROLLARY 5.4. With the same A, B as in Theorem 5.1 then p(A) <

p(B).

COROLLARY 5.5. With the same A, B, F as in Theorem 5.1, assume

that A is not a CM ring then p(A) = p(B) if and only if d imF = 0.

The following corollary is a generalization of Theorem 1, (b) in [D-E],

COROLLARY 5.6. With the same notations as above then A is a gener-

alized CM ring if p(B) < dimF.

Proof. If p(B)<dimF then A is CM by Theorem 5.1, (ii). If p(B)

= d imF then by Theorem 5.1, (i)

dimF = p(B) > p(A) + dim F .

It follows that p(A) < 0; so A is generalized CM by Remark 2.5.

EXAMPLE 5.7. Let (A, ni) be a local ring of dimension d > 0 and let
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X a transcendental over A. We define B = A[X](mfX)Aίxl then A->B is a
local, flat homomorphism. It is easy to see that the fiber F = B®AA/m
is regular and of dimension 1. If A is CM, since F is regular, then B
is also CM. Therefore the equality p(B) = p(A) + άimF does not hold
in this case. If A is not CM then by Theorem 5.1, (i), p{B) > p(A) + dimF
= p(A) + 1. Especially, if A is generalized CM, i.e. p(A) = 0 then p(B) > 1;
so B is not a generalized CM ring.
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