
H. Yokoi
Nagoya Math. J.
Vol. 124 (1991), 181-197

THE FUNDAMENTAL UNIT AND BOUNDS FOR CLASS

NUMBERS OF REAL QUADRATIC FIELDS
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Introduction

Although class number one problem for imaginary quadratic fields

was solved in 1966 by A. Baker [3] and by H. M. Stark [25] independently,

the problem for real quadratic fields remains still unsettled. However,

since papers by Ankeny-Chowla-Hasse [2] and H. Hasse [9], many papers

concerning this problem or giving estimate for class numbers of real

quadratic fields from below have appeared. There are three methods used

there, namely the first is related with quadratic diophantine equations ([2],

[9], [27, 28, 29, 31], [17]), and the second is related with continued fraction

expantions ([8], [4], [16], [14], [18]). The third is related with Dirichlet's

classical class number formula

hD = (2 log εD)

where L(l, XD) is the value at s = 1 of the L-function

L(s, XD) = 2 XD(ή)n~s

with Kronecker character %# belonging to the real quadraric field

([12], [30], [20]). There, T. Tatuzawa's lower bound for L(1,XD):

L(l,XD) > 0.655(c/Dc) (with one possible exception of D)

plays very important role (cf. [26], [10]).

On the other hand, regarding estimate for the class number of real

quadratic fields from above, there are two methods. One of them uses

L. K. Hua's upper bound (cf. [11]) for L(l,XD):

L(l,XD)<2-nogD+l
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in Dirichlet's formula ([23], [33]). Another uses D. A. Burgess' upper bound

(cf. [5]) for m,X,):

L(1,XP)< 0.2456logp (p >pt)

([15], [6], [33]).

Among all real quadratic fields, especially real quadratic fields of

R-D type whose fundamental unit was well-known by Richaud [24] and

Degert [7] were first studied ([2], [9], [28, 29], [17, 19], [14]), and later by

H. Yokoi [27], T. Nakahara [22] and R. A. Mollin [20] real quadratic fields

of non R-D type were studied.

In recent papers [31, 32, 33, 34], we defined some new p-invariants

for any rational prime p congruent to 1 mod 4, and studied relationships

among these new invariants and already known invariants. Above all,

the new p-invariant np defined by

\tp/ul-np\<ll2

through the fundamental unit

eP = (tp +

of real quadratic field QίVT^) with prime discriminant was fundamental

as far as np Φ 0 (i.e. tjuv > 1/2). On the other hand, it became clear

that the case np = 0 (i.e. 0 < tp\u\ < 1/2) is more important than the case

npφ0 for the purpose of solving the class number one problem or Artin's

conjecture for real quadratic fields (cf. [1], [32], [34]).

Therefore, one of our purposes in this paper is to define and to study

similarly new invariants valuable in case of np = 0, and another is to

generalize p-invariants to D-invariants for any positive square-free integer

D.

All results obtained in this paper are valid for any positive square-

free integer D provided we add a few unessential modifications, but for

the sake of simplicity, we shall restrict integer D to a positive square-free

integer satisfying NεD = — 1 i.e. t2

D — Du2

D = — 4.

In order to deal with the case nD = 0 in the same way as the case

nD Φ 0, in § 1 we shall slightly reform the definition of nD. Namely, we

shall newly define nD by nD = [tDlu2

D] (or nD = [D/tD] if uD > 2), and first

express uniquely D (resp. tD) as a quadratic (resp. linear) polynomial of

nD with D-invariant coefficients, where [x] means the greatest integer less

than or equal to x. Using the Dirichlet's class number formula, we shall
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next provide bounds for the class number hD of real quadratic field Q(V D)

in terms of D and nD.

In §2, we shall first define a new invariant mD by mD = [tD/D] (or

WD = [u2

D/tD] if D > 5), and express uniquely u2

D (resp. £#) as a quadratic

(resp. linear) polynomial of mD with ^-invariant coefficients. Next, in

terms of new D-invariants, we shall give a necessary and sufficient con-

dition for Artin's conjecture on the fundamental unit of real quadratic

fields with prime discriminant to be true. Finally, using Dirichlet's for-

mula, we shall estimate the class number hD of Q(V D) in terms of D and

mD.

Throughout this paper, we denote by No = {0,1, 2, •} the set of all

non-negative rational integers and by [x] the greatest integer less than or

equal to x. Moreover, for any positive square-free integer D, we denote

by hD and εD = (tD + uD\l Ώ)\2 ( > 1) the class number and the fundamental

unit of the real quadratic field Q(Vΰ) respectively. Furthermore, we

denote by D_ the set of all positive square free integers such that the

norm of the fundamental unit (tD + UDΛ/ D)/2 of Q(VZ)) is equal to — 1.

For any D in D_, set

AD = {a: 0 <̂  a < u2

D, a2 = —4 mod u2

D)

and

(A, B)D = {(α, b)\ a e AD, a2 + 4 = bu\,}.

Then, we can first prove the following theorem:

THEOREM 1.1. For any D in D_, there are an uniquely determined in-

teger nD in No and an element (aD, bD) in (A, B)D such that

tD = u2

D nD + aD,

D = u2

D n2

D + 2a D >nD + bD.

Additionally, if uD > 2, then 0 < bD< aD< u2

D and [D/tD] = nD.

Proof. For any D in D_, put

[tD/u2

D] = nD a n d tD = u2

D nD + aD9

then τi2> ( e No) and aD ( ^ 0) are uniquely determined and
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0£aD< u%

holds. Moreover, since

Du2

D = t2

D + 4 = u4

D τίD + 2aD-u2

D.nD + (a2

D + 4 ) ,

we obtain

a% + 4 = 0 (mod u2

D)

and so aD is in A^.

Now, put

a2

D + 4 = bD'U2

D

then bD ( > 0) is also uniquely determined and (aDy bD) is in (A, 23)̂ , and

moreover

D = wj, ni + 2αβ Mz> + 6z,

holds.

Especially, in the case zẑ  > 2, it follows from 0 5g α^ < w|, that

bD'U% = αi + 4 < wi + 4,

and so 6^ ^ w .̂ Here, if we assume bD = u2

D, then a2

D + 4 — u4

D implies

(u2

D — aD)(u2

D + aD) = 4, which contradicts uD > 2. Hence, we have first

0 < bD < u2

D.

Next, if we put

g(x)= -x2+ ulx-4,

then g(ί) = ^(M|, - 1) = u2

D - 5 > 0, and so g(bD) = a2

D - b2

D > 0. There-

fore, we obtain

0 < bD < aD < u2

D .

Finally, in the expression

D = nD-tD + (aD-nD + 6^),

we have aD-nD + &# > 0 and

tD — (flD - nD + bD) = (wj, — α̂ yijD + (αz, — bD) > 0.

Hence we obtain [D/ίfl] = nD.

COROLLARY 1.1. For any D ( > 2) m D_,

(1) The following are equivalent:
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(i) nD = 0, (ii) D < tD, (iii) tD < u% (in this case uD > 2 holds).

(2) aD = 0 /ιo/ds only if uD — 1 or 2.

Ira ί/ie special case where D Ξ£ 2 (mod 4) i.e. D = 1 (mod 4),

aD — 0 i/ ami oraZ y £/ uD = 1 or 2.

Proof. (1) It is clear from [̂ /u/,] = JI^ that

nD — 0 if and only if 0 < ^ < w|,.

Suppose nD = 0. Then the above implies z^ > 1, and if uD = 2, then ^ =

ŵ  (mod 2) yields

tD = 2 i.e. D = 2.

Therefore, ^ = 0 implies uD > 2 and by the theorem D < tD. Finally

D < tD implies

tD — D = (u2

DnD + aD)(l — nD) — aDnD — bD > 0

and hence nD = 0 holds except for Z) = 2.

(2) It is clear from Theorem 1.1 that

aD = 0 if and only if tD = 0 (mod w5))»

which implies easily ^ = 1 or uD = 2.

On the other hand, in the case uD — 1, we have nD — tD, aD = 0,

bD = 4, and in the case uD = 2, we have

aD = 0, bD = 1, D = 4 . 4 + 1 Ξ 1 (mod 4)

or

α^ = 2, bD = 2, D = 4 ni, + ±nD + 2 = 2 (mod 4).

Hence, in the special case D Ξ 2 (mod4) or D = 1 (mod4),

α^ = 0 if and only if i^ = 1 or 2.

Next, we provide upper bounds for the class number hD of Q(V-D).

THEOREM 1.2. For any D in D_,

(1) eD>(D-4)i(nD+l),

(2) hD < {(l/4)Vfl (2 + log JD)}/{log(φ - 4)/(nΛ + 1))}.

Additionally, in the special case where D = p is prime, there exists a

constant p0 such that if a prime p in D_ satisfies p > po> then
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(3) hp < {(1/8VP log p}/{log ((p - 4)l(np + 1))}.

In order to prove this theorem, we need the following two lemmas:

LEMMA 1.1 (L.K. Hau [11]). For the value L(l,Xd) at s = 1 of L-fun-

ction L(s, Xd) belonging to the real quadratic field Q(V d),

holds.

LEMMA 1.2 (D.A. Burgess [5]). For any prime p in D_, let L(l,Xp) be

the value at s = 1 of L-function L(s, Xp) belonging to Q(V/O Then there

exists a prime constant pt such that

L ( M P ) < 0.2456logp

holds provided p > po

Proof of Theorem 1.2. (1) It follows from [tD/u2

D] = nD that

D - 4Z/B2 = ft WB2 < *z,(nx, + 1),

and so

tD>(D- Au-^Knn + 1) ^ (D - 4)/(^ + 1).

Hence, we get

- 4 = ft - Dul > ((D - 4)l(nD + I))2 - Όu% ,

and so

Mi > D~\{D - 4)l(nD + I))2 + AID > D'\(D - 4)l(nD + I))2,

which implies

Therefore, we obtain first

εD = fe + i

(2) By applying the above assertion (1) and Lemma 1.1 to the Diri-

chlet's class number formula, we can get immediately the upper bound

for hp in the Theorem.

(3) Using Lemma 1.2 instead of Lemma 1.1, we can prove assertion

(3) by the same way as assertion (2).
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COROLLARY 1.2. For any positive ε and for an arbitrarily fixed in-

variant n = nD (^0), there is an effectively determined constant Do = D0(ε, ή),

depending on both ε and n, such that if D in D_ satisfies D > Do and

nD = n, then

Proof For any given and fixed n = nD ( ^ 0), it holds

lim (2 + log D)/{log ( φ - 4)/(n + 1))} = 1.
Z>->oo

Hence, we can get Corollary 1.2 by Theorem 1.2, (2).

COROLLARY 1.3. For an arbitrarily fixed n = np (^0), ί/iβre is α

sίαnί Po = A W depending only on n, such that if a prime p in D_ satisfies

p > p0, Λ̂era /or jite c/αss number hp of

Λp < (1/8V P"

/ιo/c?s.

Proof For an arbitrarily fixed n — np (^0) , we get

lim (logp)/{log ((p - 4)/(n + 1))} = 1.

On the other hand, since (1/8) — (0.2456/2) > 0, we can choose a positive

number ε satisfying 0.2456/2 = (1/8)(1 — ε). Hence, for this ε, we can

choose a prime number p'0(ή) such that

(logp)/{log((p - 4)/(n + 1))} < 1 + ε

holds provided p > p'0(ή).

Therefore, using Lemma 1.2 for any prime p in D_ satisfying p >

Po(ft):— max (po(λi), Po) for p0 in Lemma 1.2, we have

hp < {(0.2456/2)VpΊogp}/{log((p - 4)/(n + 1))}

Finally, we provide lower bounds for the class number hD of Q(V D).

THEOREM 1.3. For any D in D_, nD Φ 0 implies the following:

(1) eD < (DlnD) + 1,

(2) hD > (0.3275/s) D^2^sl{log ((DlnD) + 1)}
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for any s ^ 11.2 with one exception of D, and without any exception under

the Generalized Rίemann Hypothesis.

In order to prove this theorem, we need the following lemma:

LEMMA 1.3 (T. Tatuzawa [26], cf. [10]). For any positive c satisfying

1/2 > c > 0, let d be any positive integer such that d ^ max (eι/\ e" 2), and

let Xd be any non-principal primitive character with modulus d.

Then, it holds with one possible exception of d

where L(l, Xd) is the value at s = 1 of the L-function L(s, Xd) corresponding

to XΛ.

Proof of Theorem 1.3. (1) In the case nD Φ 0, it follows from Theo-

rem 1.1 that

D> tD>nD i.e. tD < DjnD .

Hence we get

- 4 = ft - Du% < (D/nDy - Ώu\,

and so

ift < D-ι((DlnDγ + 4) = Dn~D

2 + 4JD"1,

which implies

uD < WDI?ιD) + (2/V # ) .

Therefore, we obtain first

eD = (tD + uD<J~D),l2 < (DlnD) + 1 .

(2) Putting s = lie in Lemma 1.3, for any s JΞ> 11.2 we have

On the other hand, since under the Generalized Riemann Hypothesis

Lemma 1.3 is true without any exception (cf. Kim [13]), we can prove

Theorem 1.3, (2) by applying the above assertion (1) to the Dirichlet's

class number formula.

From Theorem 1.3, we can obtain the following corollary:

COROLLARY 1.4. There is an effectively determined £)0 such that if D

in D_ satisfies both D> Do and nD Φ 0, then hD > 1 holds with one more
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possible exception of D.

In other words, there exist only finitely many D in D_ satisfying both

hD = 1 and nD Φ 0.

Proof. If nD Φ 0, then log ((DjnD) + 1) < log 2D holds, and Theorem

1.3 yields

hD > 0.3275-s-ί'D^-^

for any fixed s ^ 11.2 with one possible exception of D.

On the other hand,

is monotone increasing on [6, oo), and Km^^ fs(x) = oo holds. Hence we

can determine Do effectively such that

holds for any D I> DQ.

In fact, it is known that there are exactly 54 D's satisfying both hD

= 1 and nD Φ 0 (cf. Yokoi [34], Mollin and Williams [21]).

From Corollary 1.4, we can easily derive the following corollary

closely related to Gauss' conjecture on class numbers of real quadratic

fields:

COROLLARY 1.5. There exist infinitely many primes p in D_ satisfying

hv = 1 if and only if there exist infinitely many primes p in D_ satisfying

both hv = 1 and np = 0.

§2.

For any D in D. 5 set

AD = {a: 0 ^ a < D, a2 ΞΞ - 4 m o d D}

and

(A, B)D = {(α, b): α e A ΰ , α 2 + 4 = bD}.

Then, we can first prove the following theorem:

THEOREM 2.1. For any D in D_. there are uniquely determined mD

in No ami (a^, 6 )̂ in (A, B)^ swcΛ ί/ιa^

tD = D-mD + aD,

u2

D = D>m% + 2aD-mD + bD .
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Additionally, if D > 5, then

0 < bD < aD < D and [u2

D/tD] = /n^.

Proof. For any D in D_, put

fo/D] = m^ and ^ = D m^ + aD,

then mD (e No) and αz, are uniquely determined and

0<LaD<D.

Moreover, since

Dul = ft + 4 = D^m2^ + 2a,,.DmD + (a2

D + 4),

we obtain

eft + 4 ΞΞ 0 (mod D),

and so aD is in A^.

Now, put

a% + 4 = D.bD,

then bD ( > 0) is also uniquely determined and (aD) bD) is in (A, B)D, and

moreover

u% = D mi + 2aD mD + bD

holds.

Suppose Z) > 5. If we assume bD ^ D, then

a2

D + 4 = D'bD^D\

and so

4 ^ D2 - oi - (D - aD)(D + aD) ̂  D + aD^ D,

which contradicts with D > 5. Hence we have first 0 < bD < D.

Next, if we put

-x2 + Dx-49

then #(1) = g(D - 1) = D - 5 > 0, and so (̂6z>) = (ft - % > 0. Therefore

we obtain

0 < bD < aD < D.

Finally, in the expression



FUNDAMENTAL UNIT AND CLASS NUMBERS 191

u*D = tD-mD + (aD-mD + bD),

we have aD mD + bD > 0 and

tΰ — (aD'mD + bD) = (D — α ^ ) - ^ -f (α^ — bD) > 0.

Hence, we have [wi/ίj = mD.

COROLLARY 2.1. For αλiy D in D_,

(1) £/ D > 5, ί/ien ί/ie following are equivalent:

(i) m^ = 0 (ii) tD< D (iii) ι4 < ^ (iv) αp = tD, bD = α2 ,̂

(2) aD = 0 if and only if D = 2
(m ίΛis case tD = uD ~ bD — 2, m ΰ = 1).

Proof. (1) In the case D > 5, it is clear from [w^/^] = m^ that

m^ = 0 if and only if 0 < u% < tD .

Moreover, it is also clear from [tD/D] = mΰ that

mfl = 0 if and only if 0 < tD < Z) .

On the other hand, if mD = 0, then by Theorem 2.1 we have

tD = αD and ^ = bD .

Conversely, if tD = αΰ, then 0 < αβ < D implies 0 < ^ < D9 i.e.

/nΰ - [ίD/Z)] = 0.

(2) If we assume aD = 0, then by Theorem 2.1 we have D <£ 5. On

the other hand, in the case D = 5, we know ί5 = w5 = 1, m5 = 0, α5 = 65

= 1. In the case D = 2, we know also ί2 = w2 = 2, π?2 = 1, α2 = 0, b2 = 2.

Hence αz, = 0 if and only if D = 2.

In the case where Z) — p is prime congruent to 1 mod 4, the following

conjecture is well-known as Artin's conjecture (cf. [1]):

CONJECTURE (Artin). For the fundamental unit

eP = (tp + up</T)l2 > 1

of the quadratic field Q(o/~p~),

UPΈ£0 (modp)

holds.
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Concerning this conjecture, we are able to prove the following:

THEOREM 2.2. Artin's conjecture is true if and only if

ap-bpΞ£8mp (modp).

In particular, if mp = 0 (modp), Artin's conjecture is true.

Proof In the special case p = 5, (t5 = u5 = 1)), we get ra5 = 0, α5 =

65 = 1, and hence both w5 ^ 0 (mod 5) and α5 6 5 ^ 8 m 5 (mod 5) simul-

taneously hold. Therefore without loss of generality, we may assume

p > 5, and so (αp,p) = 1 by Theorem 2.1.

Moreover, it follows immediately from up — p mp + 2ap -mp+ bp that

up = 0 (modp) if and only if 2αρ τnp + αp6p = 0 (modp).

On the other hand, av + 4 == p 6P implies

2α* mp + αp6p = αp6p - 8mp (modp).

Hence, it is clear that

up^0 (modp) if and only if αp6p ^ 8mp (modp).

Especially, in the case p > 5, we get αp6p ^ 0 (modp) by Theorem

2.1, and hence if mp = 0 (modp), then αp6p ^ mp (modp) i.e. Artin's

conjecture is true.

Finally, we provide a lower bound and an upper bound for the class

number hD of

THEOREM 2.3. For any D > 5 in D_,

(1) [εDID] = mD,

(2) For any s ^ 11.2 and D ^ e\

hD > 0.3275-s-^Dis-2

holds with one possible exception of D,

(3) hD < {(l/4)v/ΰ (2 + logD)}/{log(D.mD)}.

Especially, if mD > e2, then

Proof (1) By Theorem 2.1, we have first DmD ^tD< D(mD + 1).

Hence we get also

D2m% £ t\ = Dul - 4 < D\mD + I) 2 ,
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i.e.

Dm% + (41D) ̂  u\ < D(mD + I)2 + (4/D),

which implies easily

mΏ\l~Ώ < uD <; (mD + 1)V^D

because of D > 5. Therefore we get

DmD <εD = (tD + UDΛ/~D)/2 < D(mD + 1),

from which implies [εD/D] = mD.

Remark. We can prove also [uJD] = mD.

(2) Since εD < D(mD + 1), we can prove assertion (2) by applying

Lemma 1.3 to the Dirichlet's class number formula.

(3) Since DmD < εD, we can also obtain

hD < {(1/4) V~D (2 + log D)}/log (D mD)

by applying Lemma 1.1 to the Dirichlet's class number formula.

Moreover, in the special case mD > e\

0 < (2 + logD)/log(D.mD) < 1,

yields immediately hD < (1/4) <J D.

COROLLARY 2.2. In the special case where D = p is prime, if mD > e2

then

holds except for at most finite number of p.

Proof. Using Lemma 1.2 instead of Lemma 1.1, we can prove Corol-

lary 2.2 in the same way as the proof of Theorem 2.3, (2).

U
al

cD

ul

= DmDΛ

+ 4 = 6,

= aDmD -

= mDtD -

- aD

oD

\- bD

f cD

tD =

• al +

• cD =

. D =

u2

DnD

4 =

aDnD

nDtD

bDu2

D

+ bD

+ cD
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D

* 2

* 5

10
* 13

* 17

26
* 29

* 37

* 41

* 53

58
* 61

65

* 73

74
82

85
* 89

* 97
* 101
106

* 109

* 113
122

130

* 137
145

* 149

* 157
170

* 173

* 181

tn

2
1

6
3

8
10

5

12

64

7

198
39

16
2136

86
18

9
1000

11208
20

8010

261
1552

22

114

3488
24

61

213

26
13

1305

2
1

2
1

2

2
1

2

10
1

26

5
2

250

10
2
1

106
1138

2

778
25

146
2

10

298
2

5

17
2
1

97

K

1

1

2
1
1

2
1

1

1

1

2
1

2
1

2

4
2
1

1
1

2
1

1

2

4
1

4

1
1

4
1

1

mD

1

1

3

29
1

11

115

75
2

13

25

1

7

nD

1

1

3
2
2

5

3

7

1

4

4

9

5

5
1

6
2

6

13

0
0
2

0

0
2

0

0

23

0

24

14

0

19
12
2

0
21

53
0

60
43

83
2

14

63

0
11

56

2
0

38

bo

2

4

2
4

1

2

4
1

13

4

10

8
1

5
2

2
4

5

29
1

34

17
61

2

2

29
1

5
20

2
4

8

Co

2
4

4

4
1

6
4
1

36
4

82

22
1

556
14

10
4

236
6124

1

4534

103

1140

12

16
1604

1

27

76
14

4
274
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D

185

* 193

* 197

202

218

226

* 229

* 233

* 241

* 257

265

* 269

274

* 277

* 281

290

* 293

298

* 313

314

* 317

* 337

346

* 349

* 353

362

365

370
* 373

* 389

394

* 397

136

3528264

28

6282

502

30

15

46312

142022136

32

12144

164

2814

2613

2127064

34

17

819114

253724736

886

89

186

18420

142528

38

19

654

10236

2564

790046070

3447

10

253970

2

442

34

2

1

3034

9148450

2

746

10

170

157

126890

2

1

47450

14341370

50

5

10

986

7586

2

1

34

530

130

39801946

173

2

1

1

2

2

8

3

1

1

3

2

1

4

1

1

4

1

2

1

2

1

1

6

1

1

2

2

4

1

1

2

1

18281

31

2

198

589303

45

10

9

7569

2748

810622

2

52

403

1

27

6

8

1

7

7
15

8

1

8

17

3

1

9

19

36

31

0

20

66

2

0

178

113

0

219

64

74

120

175

2

0

210

50

258

14

86

272

269

2

0

284

165

230

271

bD

13

5
1

2

20

2

4

136

53

1

181

41

20

52

109

2

4

148

8

212

8

74

212

205

2

4

218

73

136

185

CD

49

566716

1

622

152

16

4

35380

66591292

1

10036

105

760

1132

1324684

18

4

577228

40531108

728

50

160

14356

108612

20

4
502

4528

1516

2353
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D

* 401

* 409

* 421

* 433

442

445

* 449

40

444939

42

21

378942664

u
D

2

21685

2

1

17883410

h
D

5

1

1

1

8

4

1

m
D

1056

843970

n
D

10

10

21

a
D

0

363

2

0

134

b
D

1

313

2

4

40

1

383641

22

4

113092020

* indicates prime number

REFERENCES

[ 1 ] N. C. Ankeny, E. Artin and S. Chowla, The class-number of real quadratic number
fields, Annals of Math., 56 (1952), 479-493.

[ 2 ] N. C. Ankeny, S. Chowla and H. Hasse, On the class number of the real subίield
of a cyclotomic field, J. Reine Angew. Math., 217 (1965), 217-220.

[ 3 ] A. Baker, Linear forms in the logarithms of algebraic numbers, I, Mathematika,
13 (1966), 204-216.

[ 4 ] T. Azuhata, On the fundamental units and the class numbers of real quadratic
fields, II, Tokyo J. Math., 10-2 (1987), 259-270.

[ 5 ] D. A. Burgess, Estimating L χ ( l) , Det Kongelige Norske Videnskabers selskabs
Forhandlinger, 39 (1966), 101-108.

[ 6 ] S. Chowla, Leopoldt's criterion for real quadratic fields with class number 1, Abh.
Math. Sem. Univ. Hamburg, 35 (1970), 32.

[ 7 ] G. Degert, ϋber die Bestimmung der Grundeinheit gewisser reell-quadratischer
Zahlkorper, Abh. Math. Sem. Univ. Hamburg, 22 (1958), 92-97.

[ 8 ] M. D. Hendy, Applications of a continued fraction algorithm to some class number
problems, Math. Comp., 28 (1974), 267-277.

[ 9 ] H. Hasse, ϋber mehrklassige, aber eingeschlechtige reell-quadratische Zahlkorper,
Elemente der Mathematik, 20 (1965), 49-59.

[10] J. Hoffstein, On the Siegel-Tatuzawa theorem, Acta Arith., 38 (1980), 167-174.
[11] L.-K. Hua, On the least solution of Pell's equation, Bull. Amer. Math. Soc, 48

(1942), 731-735.
[12] H. K. Kim, M.-G. Leu and T. Ono, On two conjectures on real quadratic fields,

Proc. Japan Acad., 63 (1987), 222-224.
[13] H. K. Kim, A conjecture of S. Chowla and related topics in analytic number theory,

Thesis, Johns Hopkins University (1988).
[14] F. H.-Koch, Quadratische Ordnungen mit grossen Klassenzahl, J. Number Theory,

34 (1990), 82-94.
[15] H. W. Leopoldt, ϋber Klassenzahl primteiler reeller abelscher Zahlkorper als

Primteiler verallgemeinerter Bernoullische Zahlen, Abh. Math. Sem. Univ. Ham-
burg, 23 (1959), 36-47.

[16] S. Louboutin, Continued fractions and real quadratic fields, J. Number Theory, 30
(1988), 167-176.



FUNDAMENTAL UNIT AND CLASS NUMBERS 197

[17] R. A. Mollin, Lower bounds for class numbers of real quadratic fields, Proc. A. M.
S., 6 (1986), 545-550.

[18] , Class numbers bounded below by the divisor function, C. R. Math. Rep.
Acad. Sci. Canada, 12 (1990), 119-124.

[19] R. A. Mollin and H. C. Williams, A conjecture of S. Chowla via the generalized
Riemann hypothesis, Proc. A. M. S., 102 (1988), 794-796.

[20] , Solution of the class number one problem for real quadratic fields of ex-
tended Richaud-Degert type (with one possible exception), Proc. 1st Conf. Cana-
dian Number Theory Assoc, April 18-27, 1988, Banff, Canada (1990), 417-425.

[21] , Solution of a problem of Yokoi, Proc. Japan Acad., 66 (1990), 141-145.
[22] T. Nakahara, On the fundamental units and an estimate of the class number of

real quadratic fields, Rep. Saga Univ. Math., 2 (1974), 1-13.
[23] M. Newman, Bounds for class numbers, Proc. Sympo. pure Math., VIII (1965),

70-77.
[24] C. Richaud, Sur la resolution des equations x2 — Ay2 = ±1, Atti Accad. Pontif.

Nuovi Lincei (1866), 177-182.
[25] H. M. Stark, A complete determination of the complex quadratic fields of class

number one, Michigan Math. J., 14 (1967), 1-27.
[26] T. Tatuzawa, On a theorem of Siegal, Japan J. Math., 21 (1951), 163-178.
[27] H. Yokoi, On real quadratic fields containing units with norm —1, Nagoya Math.

J., 33 (1968), 139-152.
[28] , On the diophantine equation x2 — py2 = ± Aq and the class number of real

subfields of a cyclotomic field, Nagoya Math. J., 91 (1983), 151-161.
[29] , Class-number one problem for certain kind of real quadratic fields, Proc.

Int. Conf. on Class Numbers and Fundamental Units of Algebraic Number Fields,
June 24-28, 1986, Katata Japan, 125-137.

[30] , Class number one problem for real quadratic fields (The conjecture of Gauss),
Proc. Japan Acad., 64-2 (1988), 53-55.

[31] , Some relations among new invariants of prime number p congruent to 1
mod 4, Advances in pure Math., 13 (1988), 493-501.

[32] , New invariants of real quadratic fields, Proc. 1st Conf. Canadian Number
Theory Assoc, April 18-27, 1988, Banff, Canada (1990), 635-639.

[33] , Bounds for fundamental units and class numbers of real quadratic fields
with prime discriminant, Dept. of Math., Coll. Gen. Educ, Nagoya Univ., Prep.
ser., 1989, No. 2.

[34] , The fundamental unit and class number one problem of real quadratic fields
with prime discriminant, Nagoya Math. J., 120 (1990), 51-59.

Department of Matheynatics
College of General Education
Nagoya University
Chikusa-ku, Nagoya U6h-01
Japan




