## H. Yokoi

Nagoya Math. J.
Vol. 124 (1991), 181-197

# THE FUNDAMENTAL UNIT AND BOUNDS FOR CLASS NUMBERS OF REAL QUADRATIC FIELDS 

HIDEO YOKOI

## Introduction

Although class number one problem for imaginary quadratic fields was solved in 1966 by A. Baker [3] and by H. M. Stark [25] independently, the problem for real quadratic fields remains still unsettled. However, since papers by Ankeny-Chowla-Hasse [2] and H. Hasse [9], many papers concerning this problem or giving estimate for class numbers of real quadratic fields from below have appeared. There are three methods used there, namely the first is related with quadratic diophantine equations ([2], [9], [27, 28, 29, 31], [17]), and the second is related with continued fraction expantions ([8], [4], [16], [14], [18]). The third is related with Dirichlet's classical class number formula

$$
h_{D}=\left(2 \log \varepsilon_{D}\right)^{-1} \sqrt{D} L\left(1, \chi_{D}\right),
$$

where $L\left(1, \chi_{D}\right)$ is the value at $s=1$ of the $L$-function

$$
L\left(s, \chi_{D}\right)=\sum_{n=1}^{\infty} \chi_{D}(n) n^{-s}
$$

with Kronecker character $\chi_{D}$ belonging to the real quadraric field $\mathbf{Q}(\sqrt{D})$ ([12], [30], [20]). There, T. Tatuzawa's lower bound for $L\left(1, \chi_{D}\right)$ :

$$
L\left(1, \chi_{D}\right)>0.655\left(c / D^{c}\right) \quad \text { (with one possible exception of } D \text { ) }
$$

plays very important role (cf. [26], [10]).
On the other hand, regarding estimate for the class number of real quadratic fields from above, there are two methods. One of them uses L. K. Hua's upper bound (cf. [11]) for $L\left(1, \chi_{D}\right)$ :

$$
L\left(1, \chi_{D}\right)<2^{-1} \log D+1
$$

Received February 27, 1991.
in Dirichlet's formula ([23], [33]). Another uses D. A. Burgess' upper bound (cf. [5]) for $L\left(1, \chi_{p}\right)$ :

$$
L\left(1, \chi_{p}\right)<0.2456 \log p \quad\left(p>p_{0}\right)
$$

([15], [6], [33]).
Among all real quadratic fields, especially real quadratic fields of R-D type whose fundamental unit was well-known by Richaud [24] and Degert [7] were first studied ([2], [9], [28, 29], [17, 19], [14]), and later by H. Yokoi [27], T. Nakahara [22] and R. A. Mollin [20] real quadratic fields of non R-D type were studied.

In recent papers [31, 32, 33, 34], we defined some new $p$-invariants for any rational prime $p$ congruent to $1 \bmod 4$, and studied relationships among these new invariants and already known invariants. Above all, the new $p$-invariant $n_{p}$ defined by

$$
\left|t_{p}\right| u_{p}^{2}-n_{p} \mid<1 / 2
$$

through the fundamental unit

$$
\varepsilon_{p}=\left(t_{p}+u_{p} \sqrt{p}\right) / 2 \quad(>1)
$$

of real quadratic field $\mathbf{Q}(\sqrt{p})$ with prime discriminant was fundamental as far as $n_{p} \neq 0$ (i.e. $t_{p} / u_{p}^{2}>1 / 2$ ). On the other hand, it became clear that the case $n_{p}=0$ (i.e. $0<t_{p} / u_{p}^{2}<1 / 2$ ) is more important than the case $n_{p} \neq 0$ for the purpose of solving the class number one problem or Artin's conjecture for real quadratic fields (cf. [1], [32], [34]).

Therefore, one of our purposes in this paper is to define and to study similarly new invariants valuable in case of $n_{p}=0$, and another is to generalize $p$-invariants to $D$-invariants for any positive square-free integer D.

All results obtained in this paper are valid for any positive squarefree integer $D$ provided we add a few unessential modifications, but for the sake of simplicity, we shall restrict integer $D$ to a positive square-free integer satisfying $N \varepsilon_{D}=-1$ i.e. $t_{D}^{2}-D u_{D}^{2}=-4$.

In order to deal with the case $n_{D}=0$ in the same way as the case $n_{D} \neq 0$, in $\S 1$ we shall slightly reform the definition of $n_{D}$. Namely, we shall newly define $n_{D}$ by $n_{D}=\left[t_{D} / u_{D}^{2}\right]$ (or $n_{D}=\left[D / t_{D}\right]$ if $u_{D}>2$ ), and first express uniquely $D$ (resp. $t_{D}$ ) as a quadratic (resp. linear) polynomial of $n_{D}$ with $D$-invariant coefficients, where $[x]$ means the greatest integer less than or equal to $x$. Using the Dirichlet's class number formula, we shall
next provide bounds for the class number $h_{D}$ of real quadratic field $\mathbf{Q}(\sqrt{ } \bar{D})$ in terms of $D$ and $n_{D}$.

In $\S 2$, we shall first define a new invariant $m_{D}$ by $m_{D}=\left[t_{D} / D\right]$ (or $m_{D}=\left[u_{D}^{2} / t_{D}\right]$ if $D>5$ ), and express uniquely $u_{D}^{2}$ (resp. $t_{D}$ ) as a quadratic (resp. linear) polynomial of $m_{D}$ with $D$-invariant coefficients. Next, in terms of new $D$-invariants, we shall give a necessary and sufficient condition for Artin's conjecture on the fundamental unit of real quadratic fields with prime discriminant to be true. Finally, using Dirichlet's formula, we shall estimate the class number $h_{D}$ of $\mathbf{Q}(\sqrt{D})$ in terms of $D$ and $m_{D}$.

Throughout this paper, we denote by $\mathbf{N}_{0}=\{0,1,2, \cdots\}$ the set of all non-negative rational integers and by $[x]$ the greatest integer less than or equal to $x$. Moreover, for any positive square-free integer $D$, we denote by $h_{D}$ and $\varepsilon_{D}=\left(t_{D}+u_{D} \sqrt{D}\right) / 2(>1)$ the class number and the fundamental unit of the real quadratic field $\mathbf{Q}(\sqrt{ } \bar{D})$ respectively. Furthermore, we denote by $D_{-}$the set of all positive square free integers such that the norm of the fundamental unit $\left(t_{D}+u_{D} \sqrt{\bar{D}}\right) / 2$ of $\mathbf{Q}(\sqrt{D})$ is equal to -1 .
§ 1.
For any $D$ in $\mathbf{D}_{-}$, set

$$
\mathbf{A}_{D}=\left\{a: 0 \leqq a<u_{D}^{2}, a^{2} \equiv-4 \bmod u_{D}^{2}\right\}
$$

and

$$
(A, B)_{D}=\left\{(a, b): a \in \mathbf{A}_{D}, a^{2}+4=b u_{D}^{2}\right\} .
$$

Then, we can first prove the following theorem:
Theorem 1.1. For any $D$ in $\mathbf{D}_{-}$, there are an uniquely determined integer $n_{D}$ in $\mathbf{N}_{0}$ and an element $\left(a_{D}, b_{D}\right)$ in $(A, B)_{D}$ such that

$$
\left\{\begin{array}{l}
t_{D}=u_{D}^{2} \cdot n_{D}+a_{D}, \\
D=u_{D}^{2} \cdot n_{D}^{2}+2 a_{D} \cdot n_{D}+b_{D} .
\end{array}\right.
$$

Additionally, if $u_{D}>2$, then $0<b_{D}<a_{D}<u_{D}^{2}$ and $\left[D / t_{D}\right]=n_{D}$.
Proof. For any $D$ in $\mathbf{D}_{-}$, put

$$
\left[t_{D} / u_{D}^{2}\right]=n_{D} \quad \text { and } \quad t_{D}=u_{D}^{2} \cdot n_{D}+a_{D},
$$

then $n_{D}\left(\in \mathbf{N}_{0}\right)$ and $a_{D}(\geqq 0)$ are uniquely determined and

$$
0 \leqq a_{D}<u_{D}^{2}
$$

holds. Moreover, since

$$
D u_{D}^{2}=t_{D}^{2}+4=u_{D}^{4} \cdot n_{D}^{2}+2 a_{D} \cdot u_{D}^{2} \cdot n_{D}+\left(a_{D}^{2}+4\right)
$$

we obtain

$$
a_{D}^{2}+4 \equiv 0 \quad\left(\bmod u_{D}^{2}\right)
$$

and so $a_{D}$ is in $\mathbf{A}_{D}$.
Now, put

$$
a_{D}^{2}+4=b_{D} \cdot u_{D}^{2}
$$

then $b_{D}(>0)$ is also uniquely determined and $\left(a_{D}, b_{D}\right)$ is in $(A, B)_{D}$, and moreover

$$
D=u_{D}^{2} \cdot n_{D}^{2}+2 a_{D} \cdot n_{D}+b_{D}
$$

holds.
Especially, in the case $u_{D}>2$, it follows from $0 \leqq a_{D}<u_{D}^{2}$ that

$$
b_{D} \cdot u_{D}^{2}=a_{D}^{2}+4<u_{D}^{4}+4,
$$

and so $b_{D} \leqq u_{D}^{2}$. Here, if we assume $b_{D}=u_{D}^{2}$, then $a_{D}^{2}+4=u_{D}^{4}$ implies $\left(u_{D}^{2}-a_{D}\right)\left(u_{D}^{2}+a_{D}\right)=4$, which contradicts $u_{D}>2$. Hence, we have first $0<b_{D}<u_{D}^{2}$.

Next, if we put

$$
g(x)=-x^{2}+u_{D}^{2} x-4
$$

then $g(1)=g\left(u_{D}^{2}-1\right)=u_{D}^{2}-5>0$, and so $g\left(b_{D}\right)=a_{D}^{2}-b_{D}^{2}>0$. Therefore, we obtain

$$
0<b_{D}<a_{D}<u_{D}^{2}
$$

Finally, in the expression

$$
D=n_{D} \cdot t_{D}+\left(a_{D} \cdot n_{D}+b_{D}\right)
$$

we have $a_{D} \cdot n_{D}+b_{D}>0$ and

$$
t_{D}-\left(a_{D} \cdot n_{D}+b_{D}\right)=\left(u_{D}^{2}-a_{D}\right) n_{D}+\left(a_{D}-b_{D}\right)>0
$$

Hence we obtain $\left[D / t_{D}\right]=n_{D}$.
Corollary 1.1. For any $D(>2)$ in $\mathbf{D}_{-}$,
(1) The following are equivalent:
(i) $n_{D}=0$, (ii) $D<t_{D}$, (iii) $t_{D}<u_{D}^{2} \quad$ (in this case $u_{D}>2$ holds).
(2) $a_{D}=0$ holds only if $u_{D}=1$ or 2 .

In the special case where $D \not \equiv 2(\bmod 4)$ i.e. $D \equiv 1(\bmod 4)$,

$$
a_{p}=0 \text { if and only if } u_{D}=1 \text { or } 2 .
$$

Proof. (1) It is clear from $\left[t_{D} / u_{D}^{2}\right]=n_{D}$ that

$$
n_{D}=0 \text { if and only if } 0<t_{D}<u_{D}^{2}
$$

Suppose $n_{D}=0$. Then the above implies $u_{D}>1$, and if $u_{D}=2$, then $t_{D} \equiv$ $u_{D}(\bmod 2)$ yields

$$
t_{D}=2 \quad \text { i.e. } \quad D=2
$$

Therefore, $n_{D}=0$ implies $u_{D}>2$ and by the theorem $D<t_{D}$. Finally $D<t_{D}$ implies

$$
t_{D}-D=\left(u_{D}^{2} n_{D}+a_{D}\right)\left(1-n_{D}\right)-a_{D} n_{D}-b_{D}>0
$$

and hence $n_{D}=0$ holds except for $D=2$.
(2) It is clear from Theorem 1.1 that

$$
a_{D}=0 \quad \text { if and only if } t_{D} \equiv 0\left(\bmod u_{D}^{2}\right)
$$

which implies easily $u_{D}=1$ or $u_{D}=2$.
On the other hand, in the case $u_{D}=1$, we have $n_{D}=t_{D}, a_{D}=0$, $b_{D}=4$, and in the case $u_{D}=2$, we have

$$
a_{D}=0, \quad b_{D}=1, \quad D=4 \cdot n_{D}^{2}+1 \equiv 1 \quad(\bmod 4)
$$

or

$$
a_{D}=2, \quad b_{D}=2, \quad D=4 \cdot n_{D}^{2}+4 n_{D}+2 \equiv 2 \quad(\bmod 4)
$$

Hence, in the special case $D \equiv 2(\bmod 4)$ or $D \equiv 1(\bmod 4)$,

$$
a_{D}=0 \text { if and only if } u_{D}=1 \text { or } 2 .
$$

Next, we provide upper bounds for the class number $h_{D}$ of $\mathbf{Q}(\sqrt{D})$.
Theorem 1.2. For any $D$ in $\mathbf{D}_{-}$,
(1) $\varepsilon_{D}>(D-4) /\left(n_{D}+1\right)$,
(2) $h_{D}<\{(1 / 4) \sqrt{D} \cdot(2+\log D)\} /\left\{\log \left((D-4) /\left(n_{D}+1\right)\right)\right\}$.

Additionally, in the special case where $D=p$ is prime, there exists a constant $p_{0}$ such that if a prime $p$ in $\mathbf{D}_{-}$satisfies $p>p_{0}$, then
(3) $h_{p}<\{(1 / 8) \sqrt{p} \cdot \log p\} /\left\{\log \left((p-4) /\left(n_{p}+1\right)\right)\right\}$.

In order to prove this theorem, we need the following two lemmas:
Lemma 1.1 (L.K. Hau [11]). For the value $L\left(1, \chi_{d}\right)$ at $s=1$ of L-function $L\left(s, \chi_{d}\right)$ belonging to the real quadratic field $\mathbf{Q}(\sqrt{d})$,

$$
L\left(1, \chi_{d}\right)<(1 / 2) \log d+1
$$

holds.
Lemma 1.2 (D.A. Burgess [5]). For any prime $p$ in $\mathrm{D}_{-}$, let $L\left(1, \chi_{p}\right)$ be the value at $s=1$ of L-function $L\left(s, \chi_{p}\right)$ belonging to $\mathbf{Q}(\sqrt{p})$. Then there exists a prime constant $p_{0}$ such that

$$
L\left(1, \chi_{p}\right)<0.2456 \log p
$$

holds provided $p>p_{0}$.
Proof of Theorem 1.2. (1) It follows from $\left[t_{D} / u_{D}^{2}\right]=n_{D}$ that

$$
D-4 u_{D}^{-2}=t_{D}^{2} \cdot u_{D}^{-2}<t_{D}\left(n_{D}+1\right)
$$

and so

$$
t_{D}>\left(D-4 u_{D}^{-2}\right) /\left(n_{D}+1\right) \geqq(D-4) /\left(n_{D}+1\right)
$$

Hence, we get

$$
-4=t_{D}^{2}-D u_{D}^{2}>\left((D-4) /\left(n_{D}+1\right)\right)^{2}-D u_{D}^{2}
$$

and so

$$
u_{D}^{2}>D^{-1}\left((D-4) /\left(n_{D}+1\right)\right)^{2}+4 / D>D^{-1}\left((D-4) /\left(n_{D}+1\right)\right)^{2}
$$

which implies

$$
u_{D}>\left((D-4) /\left(n_{D}+1\right)\right) \cdot(1 / \sqrt{D}) .
$$

Therefore, we obtain first

$$
\varepsilon_{D}=\left(t_{D}+u_{D} \sqrt{D}\right) / 2>(D-4) /\left(n_{D}+1\right)
$$

(2) By applying the above assertion (1) and Lemma 1.1 to the Dirichlet's class number formula, we can get immediately the upper bound for $h_{p}$ in the Theorem.
(3) Using Lemma 1.2 instead of Lemma 1.1, we can prove assertion (3) by the same way as assertion (2).

Corollary 1.2. For any positive $\varepsilon$ and for an arbitrarily fixed invariant $n=n_{D}(\geqq 0)$, there is an effectively determined constant $D_{0}=D_{0}(\varepsilon, n)$, depending on both $\varepsilon$ and $n$, such that if $D$ in $\mathbf{D}_{-}$satisfies $D>D_{0}$ and $n_{D}=n$, then

$$
h_{D}<((1+\varepsilon) / 4) \sqrt{D} .
$$

Proof. For any given and fixed $n=n_{D}(\geqq 0)$, it holds

$$
\lim _{D \rightarrow \infty}(2+\log D) /\{\log ((D-4) /(n+1))\}=1
$$

Hence, we can get Corollary 1.2 by Theorem 1.2, (2).
Corollary 1.3. For an arbitrarily fixed $n=n_{p}(\geqq 0)$, there is a constant $p_{0}=p_{0}(n)$ depending only on $n$, such that if a prime $p$ in $\mathbf{D}_{\text {_ }}$ satisfies $p>p_{0}$, then for the class number $h_{p}$ of $\mathbf{Q}(\sqrt{p})$

$$
h_{p}<(1 / 8) \sqrt{p}
$$

holds.
Proof. For an arbitrarily fixed $n=n_{p}(\geqq 0)$, we get

$$
\lim _{p \rightarrow \infty}(\log p) /\{\log ((p-4) /(n+1))\}=1
$$

On the other hand, since $(1 / 8)-(0.2456 / 2)>0$, we can choose a positive number $\varepsilon$ satisfying $0.2456 / 2=(1 / 8)(1-\varepsilon)$. Hence, for this $\varepsilon$, we can choose a prime number $p_{0}^{\prime}(n)$ such that

$$
(\log p) /\{\log ((p-4) /(n+1))\}<1+\varepsilon
$$

holds provided $p>p_{0}^{\prime}(n)$.
Therefore, using Lemma 1.2 for any prime $p$ in $D_{\text {- satisfying } p>}$ $p_{0}(n):=\max \left(p_{0}^{\prime}(n), p_{0}\right)$ for $p_{0}$ in Lemma 1.2, we have

$$
\begin{aligned}
h_{p} & <\{(0.2456 / 2) \sqrt{p} \log p\} /\{\log ((p-4) /(n+1))\} \\
& <(1 / 8)(1-\varepsilon) \sqrt{p}(1+\varepsilon) \\
& <(1 / 8) \sqrt{p} .
\end{aligned}
$$

Finally, we provide lower bounds for the class number $h_{D}$ of $\mathbf{Q}(\sqrt{D})$.
Theorem 1.3. For any $D$ in $\mathbf{D}_{-}, n_{D} \neq 0$ implies the following:
(1) $\varepsilon_{D}<\left(D / n_{D}\right)+1$,
(2) $h_{D}>(0.3275 / s) \cdot D^{(s-2) / 2 s} /\left\{\log \left(\left(D / n_{D}\right)+1\right)\right\}$
for any $s \geqq 11.2$ with one exception of $D$, and without any exception under the Generalized Riemann Hypothesis.

In order to prove this theorem, we need the following lemma:
Lemma 1.3 (T. Tatuzawa [26], cf. [10]). For any positive c satisfying $1 / 2>c>0$, let $d$ be any positive integer such that $d \geqq \max \left(e^{1 / c}, e^{11.2}\right)$, and let $\chi_{d}$ be any non-principal primitive character with modulus $d$.

Then, it holds with one possible exception of $d$

$$
L\left(1, \chi_{d}\right)>0.655\left(c / d^{c}\right),
$$

where $L\left(1, \chi_{d}\right)$ is the value at $s=1$ of the L-function $L\left(s, \chi_{d}\right)$ corresponding to $\chi_{d}$.

Proof of Theorem 1.3. (1) In the case $n_{D} \neq 0$, it follows from Theorem 1.1 that

$$
D>t_{D} \cdot n_{D} \quad \text { i.e. } \quad t_{D}<D / n_{D}
$$

Hence we get

$$
-4=t_{D}^{2}-D u_{D}^{2}<\left(D / n_{D}\right)^{2}-D u_{D}^{2},
$$

and so

$$
u_{D}^{2}<D^{-1}\left(\left(D / n_{D}\right)^{2}+4\right)=D n_{D}^{-2}+4 D^{-1}
$$

which implies

$$
u_{D}<\left(\sqrt{D} / n_{D}\right)+(2 / \sqrt{D}) .
$$

Therefore, we obtain first

$$
\varepsilon_{D}=\left(t_{D}+u_{D} \sqrt{D}\right) / 2<\left(D / n_{D}\right)+1
$$

(2) Putting $s=1 / c$ in Lemma 1.3 , for any $s \geqq 11.2$ we have

$$
L\left(1, \chi_{D}\right)>(0.655 / s) D^{-1 / s} .
$$

On the other hand, since under the Generalized Riemann Hypothesis Lemma 1.3 is true without any exception (cf. Kim [13]), we can prove Theorem 1.3, (2) by applying the above assertion (1) to the Dirichlet's class number formula.

From Theorem 1.3, we can obtain the following corollary:
Corollary 1.4. There is an effectively determined $D_{0}$ such that if $D$ in $D_{ـ}$ satisfies both $D>D_{0}$ and $n_{D} \neq 0$, then $h_{D}>1$ holds with one more
possible exception of $D$.
In other words, there exist only finitely many $D$ in $\mathbf{D}_{\text {_ }}$ satisfying both $h_{D}=1$ and $n_{D} \neq 0$.

Proof. If $n_{D} \neq 0$, then $\log \left(\left(D / n_{D}\right)+1\right)<\log 2 D$ holds, and Theorem 1.3 yields

$$
h_{D}>0.3275 \cdot s^{-1} \cdot D^{(s-2) / 2 s} / \log 2 D
$$

for any fixed $s \geqq 11.2$ with one possible exception of $D$.
On the other hand,

$$
f_{s}(x)=x^{(s-2) / 2 s} / \log 2 x
$$

is monotone increasing on $[6, \infty)$, and $\lim _{x \rightarrow \infty} f_{s}(x)=\infty$ holds. Hence we can determine $D_{0}$ effectively such that

$$
0.3275 \cdot s^{-1} \cdot D^{(s-2) / 2 s} / \log 2 D>1
$$

holds for any $D \geqq D_{0}$.
In fact, it is known that there are exactly $54 D$ 's satisfying both $h_{D}$ $=1$ and $n_{D} \neq 0$ (cf. Yokoi [34], Mollin and Williams [21]).

From Corollary 1.4, we can easily derive the following corollary closely related to Gauss' conjecture on class numbers of real quadratic fields:

Corollary 1.5. There exist infinitely many primes $p$ in $\mathbf{D}$ _ satisfying $h_{p}=1$ if and only if there exist infinitely many primes $p$ in $\mathbf{D}_{\text {_ }}$ satisfying both $h_{p}=1$ and $n_{p}=0$.
§ 2.
For any $D$ in $\mathbf{D}_{-}$, set

$$
\widetilde{\mathbf{A}}_{D}=\left\{a: 0 \leqq a<D, a^{2} \equiv-4 \bmod D\right\}
$$

and

$$
(\tilde{A}, \tilde{B})_{D}=\left\{(a, b): a \in \tilde{\mathbf{A}}_{D}, a^{2}+4=b D\right\} .
$$

Then, we can first prove the following theorem:
Theorem 2.1. For any $D$ in $\mathbf{D}_{-}$, there are uniquely determined $m_{D}$ in $\mathbf{N}_{0}$ and $\left(a_{D}, b_{D}\right)$ in $(\tilde{A}, \tilde{B})_{D}$ such that

$$
\left\{\begin{array}{l}
t_{D}=D \cdot m_{D}+a_{D}, \\
u_{D}^{2}=D \cdot m_{D}^{2}+2 a_{D} \cdot m_{D}+b_{D}
\end{array}\right.
$$

Additionally, if $D>5$, then

$$
0<b_{D}<a_{D}<D \quad \text { and } \quad\left[u_{D}^{2} / t_{D}\right]=m_{D} .
$$

Proof. For any $D$ in $\mathbf{D}_{-}$, put

$$
\left[t_{D} \mid D\right]=m_{D} \quad \text { and } \quad t_{D}=D \cdot m_{D}+a_{D}
$$

then $m_{D}\left(\in \mathbf{N}_{0}\right)$ and $a_{D}$ are uniquely determined and

$$
0 \leqq a_{D}<D
$$

Moreover, since

$$
D u_{D}^{2}=t_{D}^{2}+4=D^{2} \cdot m_{D}^{2}+2 a_{D} \cdot D m_{D}+\left(a_{D}^{2}+4\right),
$$

we obtain

$$
a_{D}^{2}+4 \equiv 0 \quad(\bmod D)
$$

and so $a_{D}$ is in $\widetilde{\mathbf{A}}_{D}$.
Now, put

$$
a_{D}^{2}+4=D \cdot b_{D},
$$

then $b_{D}(>0)$ is also uniquely determined and $\left(a_{D}, b_{D}\right)$ is in $(\tilde{A}, \tilde{B})_{D}$, and moreover

$$
u_{D}^{2}=D \cdot m_{D}^{2}+2 a_{D} \cdot m_{D}+b_{D}
$$

holds.
Suppose $D>5$. If we assume $b_{D} \geqq D$, then

$$
a_{D}^{2}+4=D \cdot b_{D} \geqq D^{2},
$$

and so

$$
4 \geqq D^{2}-a_{D}^{2}=\left(D-a_{D}\right)\left(D+a_{D}\right) \geqq D+a_{D} \geqq D,
$$

which contradicts with $D>5$. Hence we have first $0<b_{D}<D$.
Next, if we put

$$
g(x)=-x^{2}+D x-4
$$

then $g(1)=g(D-1)=D-5>0$, and so $g\left(b_{D}\right)=a_{D}^{2}-b_{D}^{2}>0$. Therefore we obtain

$$
0<b_{D}<a_{D}<D
$$

Finally, in the expression

$$
u_{D}^{2}=t_{D} \cdot m_{D}+\left(a_{D} \cdot m_{D}+b_{D}\right),
$$

we have $a_{D} \cdot m_{D}+b_{D}>0$ and

$$
t_{D}-\left(a_{D} \cdot m_{D}+b_{D}\right)=\left(D-a_{D}\right) \cdot m_{D}+\left(a_{D}-b_{D}\right)>0 .
$$

Hence, we have $\left[u_{D}^{2} / t_{D}\right]=m_{D}$.
Corollary 2.1. For any $D$ in D.,
(1) if $D>5$, then the following are equivalent:
(i) $m_{D}=0$
(ii) $t_{D}<D$
(iii) $u_{D}^{2}<t_{D}$
(iv) $a_{D}=t_{D}, b_{D}=u_{D}^{2}$,
(2) $a_{D}=0$ if and only if $D=2$

$$
\text { (in this case } t_{D}=u_{D}=b_{D}=2, m_{D}=1 \text { ). }
$$

Proof. (1) In the case $D>5$, it is clear from $\left[u_{D}^{2} / t_{D}\right]=m_{D}$ that

$$
m_{D}=0 \text { if and only if } 0<u_{D}^{2}<t_{D} .
$$

Moreover, it is also clear from $\left[t_{D} \mid D\right]=m_{D}$ that

$$
m_{D}=0 \text { if and only if } 0<t_{D}<D
$$

On the other hand, if $m_{D}=0$, then by Theorem 2.1 we have

$$
t_{D}=a_{D} \quad \text { and } \quad u_{D}^{2}=b_{D} .
$$

Conversely, if $t_{D}=a_{D}$, then $0<a_{D}<D$ implies $0<t_{D}<D$, i.e.

$$
m_{D}=\left[t_{D} / D\right]=0
$$

(2) If we assume $a_{D}=0$, then by Theorem 2.1 we have $D \leqq 5$. On the other hand, in the case $D=5$, we know $t_{5}=u_{5}=1, m_{5}=0, a_{5}=b_{5}$ $=1$. In the case $D=2$, we know also $t_{2}=u_{2}=2, m_{2}=1, a_{2}=0, b_{2}=2$.

Hence $a_{D}=0$ if and only if $D=2$.
In the case where $D=p$ is prime congruent to $1 \bmod 4$, the following conjecture is well-known as Artin's conjecture (cf. [1]):

Conjecture (Artin). For the fundamental unit

$$
\varepsilon_{p}=\left(t_{p}+u_{p} \sqrt{p}\right) / 2>1
$$

of the quadratic field $\mathbf{Q}(\sqrt{p})$,

$$
u_{p} \not \equiv 0 \quad(\bmod p)
$$

holds.

Concerning this conjecture, we are able to prove the following:
Theorem 2.2. Artin's conjecture is true if and only if

$$
a_{p} \cdot b_{p} \not \equiv 8 m_{p} \quad(\bmod p) .
$$

In particular, if $m_{p} \equiv 0(\bmod p)$, Artin's conjecture is true.
Proof. In the special case $p=5,\left(t_{5}=u_{5}=1\right)$ ), we get $m_{5}=0, a_{5}=$ $b_{5}=1$, and hence both $u_{5} \not \equiv 0(\bmod 5)$ and $a_{5} \cdot b_{5} \not \equiv 8 m_{5}(\bmod 5)$ simultaneously hold. Therefore without loss of generality, we may assume $p>5$, and so ( $a_{p}, p$ ) $=1$ by Theorem 2.1.

Moreover, it follows immediately from $u_{p}^{2}=p \cdot m_{p}^{2}+2 a_{p} \cdot m_{p}+b_{p}$ that

$$
u_{p} \equiv 0(\bmod p) \quad \text { if and only if } 2 a_{p}^{2} \cdot m_{p}+a_{p} b_{p} \equiv 0(\bmod p)
$$

On the other hand, $a_{p}^{2}+4=p \cdot b_{p}$ implies

$$
2 a_{p}^{2} \cdot m_{p}+a_{p} b_{p} \equiv a_{p} b_{p}-8 m_{p}(\bmod p)
$$

Hence, it is clear that

$$
u_{p} \not \equiv 0(\bmod p) \text { if and only if } a_{p} b_{p} \not \equiv 8 m_{p}(\bmod p)
$$

Especially, in the case $p>5$, we get $a_{p} b_{p} \not \equiv 0(\bmod p)$ by Theorem 2.1, and hence if $m_{p} \equiv 0(\bmod p)$, then $a_{p} b_{p} \not \equiv m_{p}(\bmod p)$ i.e. Artin's conjecture is true.

Finally, we provide a lower bound and an upper bound for the class number $h_{D}$ of $\mathbf{Q}(\sqrt{D})$.

Theorem 2.3. For any $D>5$ in $\mathbf{D}_{-}$,
(1) $\left[\varepsilon_{D} / D\right]=m_{D}$,
(2) For any $s \geqq 11.2$ and $D \geqq e^{s}$,

$$
h_{D}>0.3275 \cdot s^{-1} \cdot D^{(s-2) / 2 s} /\left\{\log \left(\left(m_{D}+1\right) D\right)\right\}
$$

holds with one possible exception of $D$,
(3) $h_{D}<\{(1 / 4) \sqrt{D} \cdot(2+\log D)\} /\left\{\log \left(D \cdot m_{D}\right)\right\}$.

Especially, if $m_{D}>e^{2}$, then

$$
h_{D}<(1 / 4) \sqrt{D} .
$$

Proof. (1) By Theorem 2.1, we have first $D m_{D} \leqq t_{D}<D\left(m_{D}+1\right)$. Hence we get also

$$
D^{2} m_{D}^{2} \leqq t_{D}^{2}=D u_{D}^{2}-4<D^{2}\left(m_{D}+1\right)^{2}
$$

i.e.

$$
D m_{D}^{2}+(4 / D) \leqq u_{D}^{2}<D\left(m_{D}+1\right)^{2}+(4 / D),
$$

which implies easily

$$
m_{D} \sqrt{D}<u_{D} \leqq\left(m_{D}+1\right) \sqrt{D}
$$

because of $D>5$. Therefore we get

$$
D m_{D}<\varepsilon_{D}=\left(t_{D}+u_{D} \sqrt{D}\right) / 2<D\left(m_{D}+1\right)
$$

from which implies $\left[\varepsilon_{D} / D\right]=m_{D}$.
Remark. We can prove also $\left[u_{D} / D\right]=m_{D}$.
(2) Since $\varepsilon_{D}<D\left(m_{D}+1\right)$, we can prove assertion (2) by applying Lemma 1.3 to the Dirichlet's class number formula.
(3) Since $D m_{D}<\varepsilon_{D}$, we can also obtain

$$
h_{D}<\{(1 / 4) \sqrt{D} \cdot(2+\log D)\} / \log \left(D \cdot m_{D}\right)
$$

by applying Lemma 1.1 to the Dirichlet's class number formula.
Moreover, in the special case $m_{D}>e^{2}$,

$$
0<(2+\log D) / \log \left(D \cdot m_{D}\right)<1
$$

yields immediately $h_{D}<(1 / 4) \sqrt{D}$.
Corollary 2.2. In the special case where $D=p$ is prime, if $m_{D}>e^{2}$ then

$$
h_{p}<(1 / 8) \sqrt{p}
$$

holds except for at most finite number of $p$.
Proof. Using Lemma 1.2 instead of Lemma 1.1, we can prove Corollary 2.2 in the same way as the proof of Theorem 2.3, (2).

$$
\begin{array}{ll}
t_{D}=D m_{D}+a_{D} & \cdot t_{D}=u_{D}^{2} n_{D}+a_{D} \\
a_{D}^{2}+4=b_{D} D & \cdot \\
a_{D}^{2}+4=b_{D} u_{D}^{2} \\
c_{D}=a_{D} m_{D}+b_{D} & \cdot \\
c_{D}=a_{D} n_{D}+b_{D} \\
u_{D}^{2}=m_{D} t_{D}+c_{D} & \cdot \\
D=n_{D} t_{D}+c_{D}
\end{array}
$$

| D | $t_{D}$ | $u_{D}$ | $h_{D}$ | $m_{\text {b }}$ | $n_{D}$ | $a_{D}$ | $b_{D}$ | $c_{D}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| * 2 | 2 | 2 | 1 | 1 |  | 0 | 2 | 2 |
| * 5 | 1 | 1 | 1 |  | 1 | 0 | 4 | 4 |
| 10 | 6 | 2 | 2 |  | 1 | 2 | 2 | 4 |
| * 13 | 3 | 1 | 1 |  | 3 | 0 | 4 | 4 |
| * 17 | 8 | 2 | 1 |  | 2 | 0 | 1 | 1 |
| 26 | 10 | 2 | 2 |  | 2 | 2 | 2 | 6 |
| * 29 | 5 | 1 | 1 |  | 5 | 0 | 4 | 4 |
| * 37 | 12 | 2 | 1 |  | 3 | 0 | 1 | 1 |
| * 41 | 64 | 10 | 1 | 1 |  | 23 | 13 | 36 |
| - 53 | 7 | 1 | 1 |  | 7 | 0 | 4 | 4 |
| 58 | 198 | 26 | 2 | 3 |  | 24 | 10 | 82 |
| * 61 | 39 | 5 | 1 |  | 1 | 14 | 8 | 22 |
| 65 | 16 | 2 | 2 |  | 4 | 0 | 1 | 1 |
| * 73 | 2136 | 250 | 1 | 29 |  | 19 | 5 | 556 |
| 74 | 86 | 10 | 2 | 1 |  | 12 | 2 | 14 |
| 82 | 18 | 2 | 4 |  | 4 | 2 | 2 | 10 |
| 85 | 9 | 1 | 2 |  | 9 | 0 | 4 | 4 |
| * 89 | 1000 | 106 | 1 | 11 |  | 21 | 5 | 236 |
| * 97 | 11208 | 1138 | 1 | 115 |  | 53 | 29 | 6124 |
| * 101 | 20 | 2 | 1 |  | 5 | 0 | 1 | 1 |
| 106 | 8010 | 778 | 2 | 75 |  | 60 | 34 | 4534 |
| * 109 | 261 | 25 | 1 | 2 |  | 43 | 17 | 103 |
| * 113 | 1552 | 146 | 1 | 13 |  | 83 | 61 | 1140 |
| 122 | 22 | 2 | 2 |  | 5 | 2 | 2 | 12 |
| 130 | 114 | 10 | 4 |  | 1 | 14 | 2 | 16 |
| * 137 | 3488 | 298 | 1 | 25 |  | 63 | 29 | 1604 |
| 145 | 24 | 2 | 4 |  | 6 | 0 | 1 | 1 |
| * 149 | 61 | 5 | 1 |  | 2 | 11 | 5 | 27 |
| * 157 | 213 | 17 | 1 | 1 |  | 56 | 20 | 76 |
| 170 | 26 | 2 | 4 |  | 6 | 2 | 2 | 14 |
| * 173 | 13 | 1 | 1 |  | 13 | 0 | 4 | 4 |
| * 181 | 1305 | 97 | 1 | 7 |  | 38 | 8 | 274 |


| D | $t_{D}$ | $u_{\text {d }}$ | $h_{D}$ | $m_{\text {D }}$ | $n_{D}$ | $a_{\text {D }}$ | $b_{D}$ | $c_{D}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 185 | 136 | 10 | 2 |  | 1 | 36 | 13 | 49 |
| * 193 | 3528264 | 253970 | 1 | 18281 |  | 31 | 5 | 566716 |
| * 197 | 28 | 2 | 1 |  | 7 | 0 | 1 | 1 |
| 202 | 6282 | 442 | 2 | 31 |  | 20 | 2 | 622 |
| 218 | 502 | 34 | 2 | 2 |  | 66 | 20 | 152 |
| 226 | 30 | 2 | 8 |  | 7 | 2 | 2 | 16 |
| * 229 | 15 | 1 | 3 |  | 15 | 0 | 4 | 4 |
| * 233 | 46312 | 3034 | 1 | 198 |  | 178 | 136 | 35380 |
| * 241 | 142022136 | 9148450 | 1 | 589303 |  | 113 | 53 | 66591292 |
| * 257 | 32 | 2 | 3 |  | 8 | 0 | 1 | 1 |
| 265 | 12144 | 746 | 2 | 45 |  | 219 | 181 | 10036 |
| * 269 | 164 | 10 | 1 |  | 1 | 64 | 41 | 105 |
| 274 | 2814 | 170 | 4 | 10 |  | 74 | 20 | 760 |
| * 277 | 2613 | 157 | 1 | 9 |  | 120 | 52 | 1132 |
| * 281 | 2127064 | 126890 | 1 | 7569 |  | 175 | 109 | 1324684 |
| 290 | 34 | 2 | 4 |  | 8 | 2 | 2 | 18 |
| * 293 | 17 | 1 | 1 |  | 17 | 0 | 4 | 4 |
| 298 | 819114 | 47450 | 2 | 2748 |  | 210 | 148 | 577228 |
| * 313 | 253724736 | 14341370 | 1 | 810622 |  | 50 | 8 | 40531108 |
| 314 | 886 | 50 | 2 | 2 |  | 258 | 212 | 728 |
| * 317 | 89 | 5 | 1 |  | 3 | 14 | 8 | 50 |
| * 337 |  |  | 1 |  |  |  |  |  |
| 346 | 186 | 10 | 6 |  | 1 | 86 | 74 | 160 |
| * 349 | 18420 | 986 | 1 | 52 |  | 272 | 212 | 14356 |
| * 353 | 142528 | 7586 | 1 | 403 |  | 269 | 205 | 108612 |
| 362 | 38 | 2 | 2 |  | 9 | 2 | 2 | 20 |
| 365 | 19 | 1 | 2 |  | 19 | 0 | 4 | 4 |
| 370 | 654 | 34 | 4 | 1 |  | 284 | 218 | 502 |
| * 373 | 10236 | 530 | 1 | 27 |  | 165 | 73 | 4528 |
| * 389 | 2564 | 130 | 1 | 6 |  | 230 | 136 | 1516 |
| 394 | 790046070 | 39801946 | 2 |  |  |  |  |  |
| * 397 | 3447 | 173 | 1 | 8 |  | 271 | 185 | 2353 |


| $D$ | $t_{D}$ | $u_{D}$ | $h_{D}$ | $m_{D}$ | $n_{D}$ | $a_{D}$ | $b_{D}$ | $c_{D}$ |
| :---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| $* 401$ | 40 | 2 | 5 |  | 10 | 0 | 1 | 1 |
| $* 409$ |  |  | 1 |  |  |  |  |  |
| $* 421$ | 444939 | 21685 | 1 | 1056 |  | 363 | 313 | 383641 |
| $* 433$ |  |  | 1 |  |  |  |  |  |
| 442 | 42 | 2 | 8 |  | 10 | 2 | 2 | 22 |
| 445 | 21 | 1 | 4 |  | 21 | 0 | 4 | 4 |
| $* 449$ | 378942664 | 17883410 | 1 | 843970 |  | 134 | 40 | 113092020 |

* indicates prime number


## References

[1] N. C. Ankeny, E. Artin and S. Chowla, The class-number of real quadratic number fields, Annals of Math., 56 (1952), 479-493.
[2] N. C. Ankeny, S. Chowla and H. Hasse, On the class number of the real subfield of a cyclotomic field, J. Reine Angew. Math., 217 (1965), 217-220.
[3] A. Baker, Linear forms in the logarithms of algebraic numbers, I, Mathematika, 13 (1966), 204-216.
[4] T. Azuhata, On the fundamental units and the class numbers of real quadratic fields, II, Tokyo J. Math., 10-2 (1987), 259-270.
[5] D. A. Burgess, Estimating $L_{x}(1)$, Det Kongelige Norske Videnskabers selskabs Forhandlinger, 39 (1966), 101-108.
[6] S. Chowla, Leopoldt's criterion for real quadratic fields with class number 1, Abh. Math. Sem. Univ. Hamburg, 35 (1970), 32.
[7] G. Degert, Über die Bestimmung der Grundeinheit gewisser reell-quadratischer Zahlkörper, Abh. Math. Sem. Univ. Hamburg, 22 (1958), 92-97.
[8] M. D. Hendy, Applications of a continued fraction algorithm to some class number problems, Math. Comp., 28 (1974), 267-277.
[ 9 ] H. Hasse, Über mehrklassige, aber eingeschlechtige reell-quadratische Zahlkörper, Elemente der Mathematik, 20 (1965), 49-59.
[10] J. Hoffstein, On the Siegel-Tatuzawa theorem, Acta Arith., 38 (1980), 167-174.
[11] L.-K. Hua, On the least solution of Pell's equation, Bull. Amer. Math. Soc., 48 (1942), 731-735.
[12] H. K. Kim, M.-G. Leu and T. Ono, On two conjectures on real quadratic fields, Proc. Japan Acad., 63 (1987), 222-224.
[13] H. K. Kim, A conjecture of S. Chowla and related topics in analytic number theory, Thesis, Johns Hopkins University (1988).
[14] F. H.-Koch, Quadratische Ordnungen mit grossen Klassenzahl, J. Number Theory, 34 (1990), 82-94.
[15] H. W. Leopoldt, Über Klassenzahl primteiler reeller abelscher Zahlkörper als Primteiler verallgemeinerter Bernoullische Zahlen, Abh. Math. Sem. Univ. Hamburg, 23 (1959), 36-47.
[16] S. Louboutin, Continued fractions and real quadratic fields, J. Number Theory, 30 (1988), 167-176.
[17] R. A. Mollin, Lower bounds for class numbers of real quadratic fields, Proc. A. M. S., 6 (1986), 545-550.
[18] --, Class numbers bounded below by the divisor function, C. R. Math. Rep. Acad. Sci. Canada, 12 (1990), 119-124.
[19] R. A. Mollin and H. C. Williams, A conjecture of S. Chowla via the generalized Riemann hypothesis, Proc. A. M. S., 102 (1988), 794-796.
[20] -- Solution of the class number one problem for real quadratic fields of extended Richaud-Degert type (with one possible exception), Proc. 1st Conf. Canadian Number Theory Assoc., April 18-27, 1988, Banff, Canada (1990), 417-425.
[21] ——, Solution of a problem of Yokoi, Proc. Japan Acad., 66 (1990), 141-145.
[22] T. Nakahara, On the fundamental units and an estimate of the class number of real quadratic fields, Rep. Saga Univ. Math., 2 (1974), 1-13.
[23] M. Newman, Bounds for class numbers, Proc. Sympo. pure Math., VIII (1965), 70-77.
[24] C. Richaud, Sur la resolution des equations $x^{2}-A y^{2}= \pm 1$, Atti Accad. Pontif. Nuovi Lincei (1866), 177-182.
[25] H. M. Stark, A complete determination of the complex quadratic fields of class number one, Michigan Math. J., 14 (1967), 1-27.
[26] T. Tatuzawa, On a theorem of Siegal, Japan J. Math., 21 (1951), 163-178.
[27] H. Yokoi, On real quadratic fields containing units with norm -1, Nagoya Math. J., 33 (1968), 139-152.
[28] - On the diophantine equation $x^{2}-p y^{2}= \pm 4 q$ and the class number of real subfields of a cyclotomic field, Nagoya Math. J., 91 (1983), 151-161.
[29] -, Class-number one problem for certain kind of real quadratic fields, Proc. Int. Conf. on Class Numbers and Fundamental Units of Algebraic Number Fields, June 24-28, 1986, Katata Japan, 125-137.
[30] - Class number one problem for real quadratic fields (The conjecture of Gauss), Proc. Japan Acad., 64-2 (1988), 53-55.
[31] -, Some relations among new invariants of prime number $p$ congruent to 1 mod 4, Advances in pure Math., 13 (1988), 493-501.
[32] ——, New invariants of real quadratic fields, Proc. 1st Conf. Canadian Number Theory Assoc., April 18-27, 1988, Banff, Canada (1990), 635-639.
[33] - Bounds for fundamental units and class numbers of real quadratic fields with prime discriminant, Dept. of Math., Coll. Gen. Educ., Nagoya Univ., Prep. ser., 1989, No. 2.
[34] - , The fundamental unit and class number one problem of real quadratic fields with prime discriminant, Nagoya Math. J., 120 (1990), 51-59.

Department of Mathematics
College of General Education
Nagoya University
Chikusa-ku, Nagoya 464-01
Japan

