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THE TOPOLOGICAL STABILITY OF DIFFEOMORPHISMS
KAZUMINE MORIYASU

§1. Introduction

The present paper is concerned with the stability of diffeomorphisms
of C> closed manifolds. Let M be a C~ closed manifold and Diff’(M) be
the space of C” diffeomorphisms of M endowed with the C” topology (in
this paper we deal with only the case r = 0 or 1). Let us define

f such that all periodic points of every

there exists a C! neighborhood #(f) of
F(M) = {f e Diffy(M) .
g € %(f) are hyperbolic

Then every C! structurally stable and £2-stable diffeomorphism belongs to
F (M) (see [3]). In light of this result Mafié solved in [5] the C* Structural
Stability Conjecture by Palis and Smale. After that Palis [9] obtained,
in proving that every diffeomorphism belonging to # (M) is approximated
by Axiom A diffeomorphisms with no cycle, the C' 2-Stability Conjecture.
Recently Aoki [2] proved that every diffeomorphism belonging to (M)
is Axiom A diffeomorphisms with no cycle (a conjecture by Palis and
Maiié). For the topological stability Walters [14] proved that every Anosov
diffeomorphism is topologically stable. In [7] Nitecki showed that every
Axiom A diffeomorphism having strong transversality is topologically
stable, and that every Axiom A diffeomorphism having no cycle is 2-
topologically stable.

Thus it will be natural to ask whether topologically stable diffeo-
morphisms belonging to Diff'(M) satisfy Axiom A and strong transversality.

Let fe Diff'(M). Then f: M — M is topologically stable if and only
if given ¢>0 there exists 6 >0 such that for any ge Diff'(M) with
d(f, 8) < 4 there exists a continuous map A : M — M satisfying hog = fo h
and d(h,id) < e (where id is the identity). Note that if ¢ is sufficiently
small then the above continuous map A is surjective since A is homotopic
to id. We denote by Q(f) the set of nonwandering points of f. A diffeo-
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morphism f is 2-topologically stable if and only if given ¢ > 0 there exists
6 > 0 such that for any g e Diff%(M) with d(f, g) < 6 such that there exists
a continuous map A : 2(g) — 2(f) (h(2(g)) C Q(f)) satisfying hog = foh on
2(g) and d(h(x), x) < e for all x e 2(g).

A sequence {x,|ic(a, b)} (— o0 < a< b< o) of points is called a J-
pseudo orbit for f if d(f(x,), x,,,) <& for ie(a,b —1). Given ¢>0 a
pseudo orbit {x;} is said to be etraced by a point xe M if d(fi(x), x) <«
for ie(a, b). We say that f has the pseudo orbit tracing property (abbrev.
POTP) if for ¢ > 0 there is § > 0 such that every §-pseudo orbit for f can
be e-traced by some point of M.

For compact spaces the notions stated above are independent of the
compatible metric used. It is known that if f: M — M is topologically
stable then f has POTP and all the periodic points of f are dense in
Q(f) (see [6], [15]), and that if f: M — M has POTP then so is fo, : 2(f)
— Q(f) (see [1]).

To mention precisely our aim let us define the subsets of Diff'(M) as

AxS(M) = {f|f satisfies Axiom A and strong transversality},
AXN(M) = {f|f satisfies Axiom A and no cycle},
POTP(M) = int{f|f has POTP},
Q2-POTP(M) = int{f|f o, has POTP},
TS(M) = int{f|f is topologically stable},
0-TS(M) = int{f|f is £-topologically stable}.
Here int E denotes the interior of E. Among these sets exist the following
POTP(M) c Q-POTP(M) ([1]), TS(M) < 2-TS(M),
TS(M) < POTP(M) ([6] or [15]), AxS(M) c TS(M) ([7] or [12]),
AxNM) < -TS(M) ([7D) , AxN(M) = F (M) ([2]).

For the question mentioned above we shall show the following

THEOREM 1. Under the above notations, the following holds.

(1) Q-TS(M)=FM),
(2) TS(M) = AxS(M).

By Theorem 1 the following is concluded.
R-TS(M) = AXN(M) = F(M) C TS(M) = AxS(M) .

We have the following theorem as an easy conclusion of Theorem 1.
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TrEOREM 2. Let fe POTP(M). If dim W¥(x, f) = 0 or dim M or dim M
— 1 for xe M, then f belongs to AxS(M).

The proof of Theorem 2 will be given in § 5.
The conclusions of Theorem 1 will be obtained in proving the following
three propositions.

ProposiTioN 1. Q-POTP(M) C &#(M).

The proof will be based on the techniques of the proof of Theorem 1
of Franks [3].

If we establish Proposition 1, then we have that 2-POTP(M) = # (M)
by the fact mentioned above.

ProposiTiON 2. Q-TS(M) C F(M).

For the proof we need the methods in [6] or [15], in which it is proved
that topological stability implies POTP, and the facts used in the proof
of Proposition 1.

Since Proposition 2 shows Q2-TS(M) = F(M), (1) of Theorem 1 is
concluded.

ProrosiTioN 3. TS(M) ¢ AxS(M).

A result that Axiom A diffeomorphisms satisfying structural stability
have strong tansversality was proved in Robinson [11]. However every
diffeomorphism dealt with in Proposition 3 is Axiom A and topologically
stable. Thus it does not follow from Robinson’s result that the diffeo-
morphism satisfies strong transversality.

Proposition 3 ensures that TS(M) = AxS(M) and therefore (2) of
Theorem 1 is concluded.

§2. Proof of Proposition 1

Let P(f) denote the set of periodic points of fe Q-POTP(M). If
pe P(f) with the prime period %, then T,M splits into the direct sum
T,M = E“p)® E*(p) ® E°(p) where E“(p), E‘(p) and E<(p) are D,f*
invariant subspaces corresponding to the absolute values of the eigenvalues
of D,f* with greater than one, less than one and equal to one.

To obtain Proposition 1 it suffices to prove that each pe P(f) is
hyperbolic: i.e. E¢(p) = {0}. On the contrary suppose that pe P(f) is
non-hyperbolic and let 2> 0 be the prime period of p. Then, for every
¢ > 0 there exists a linear automorphism ¢:T,M — T,M such that
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(1) o] <e,
2.1) <@{i1) 0E(p) = E(p) fore=s, u, c,
(iii) all eigenvalues of 0o D,f*|E(p) are of a root of unity.

Making use of the following Franks’s lemma, we can find 6, >0 and a
diffeomorphism g e 2-POTP(M) such that

(i) Buf(P)NBufi(p)=02 for 0<i+j<k—1,
. k-1
(i) g(x) = f(x) for xe{p,f(p), -+, [ (p)} U{M — U B (f{(p)}
(22) (i) g(x) = expirip © Dynf o €Xpriy(%)
for X € B”o(fi(p))(o S i S k- 2) ’
(iv) g(x) = exp,o 0o Dy foexprii, for xe B,(f*(p)).
Franks’s LEMMA. For fe Diff'(M) let F be a finite set of distinct points
in M. If e > 0 is sufficiently small and G,: T,M— T, ., M is an isomorphism
such that |G, — D.f|| < ¢/10 (xe F), then there exist § >0 and a diffeo-
morphism g: M — M, ¢ close to f in the C' topology, such that B, (x)N B(y)
= @ for x,ye F with x +y and g(2) = exp,, o G, exp;(2) if ze By(x) and
8(2) = f(2) if z¢ By(x) (xe F).
Define G = 0o D,f*. Then there exists m > 0 such that Gy, is the
identity by (2.1), and §, > 0 such that

(23) g1nk|expprM(51) = expp ° Gm ° exp;l (by (22))

where T,M(5,) = {ve T,M|||v|| < 4}. Put E«(p,s) = E(p)NT,M(5,), then
it is clear that

(24) g7nklz>xppEc(p,51) = id|0XDpE”(p,51) .
Since ge 2-POTP(M), we see that g7y, has POTP. Then, for 0 <e<4,/4
there exists 0 < § < ¢ such that every d-pseudo orbit is e-traced by some

point in 2(g). Now take and fix y € exp,E*(p, 6,) with d(p, y) = 44,. From
(2.4) we can construct a cyclic d-pseudo orbit {x;} of g™* satisfying

(1) {x;} Cexp,E(p,d),
(2.5) (ii) x,=p and x, = y for some s >0,
(i) B.(x,) C exp,T,M(5,) for ie Z.
For the pseudo orbit {x;} there is ze 2(g) such that d(g™*(2), x,) < ¢ for

i € Z as explained above. By (2.5) (iii) we have exp,'og™*(2)e T,M(s,)
and letting u = exp;'z, ||G™(w)| = |lexp,*cg™*(2)|| < 8, for ieZ. Thus
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ue E°(p) and so z € exp,E°(p, 6,). From (2.4) we have that d(p, 2) > d(p, x,)
— d(x,, 2) = d(p, y) — d(x,, g™*(2)) > 25, — ¢ > $0, > ¢, which shows a con-
tradiction.

§3. Proof of Proposition 2

Let fe Q-TS(M). For ¢ > 0 there exists 6 > 0 such that for g e Diff'(M),
d(f(x), g(x,)) < 6 (x € M) implies that there exists a continuous map 4 : 2(g)
— 2(f) satisfying hog = foh and d(h(x), x) < ¢ for xe 2(g).  Note that g
does not belong to 2-TS(M).

The proof is divided into two the cases dimM =1 and dim M > 2.
For the case dim M = 1 we know that the set of all Morse-Smale diffeo-
morphisms is open dense in Diff'(M). Choose a Morse-Smale diffeo-
morphism as the diffeomorphism g. Then, it is easily checked that
h(P(g)) = P(f). Thus #P(f) < #P(g) < oo, which implies that f, has
POTP. Therefore fe # (M) by the same proof as Proposition 1.

For the case dim M > 2, we prove directly that fe #(M). To do this
it suffices to show that every x e P(f) is hyperbolic. Suppose that p € P(f)
is non-hyperbolic and let £ > 0 be a prime period of p. As in the proof
of Proposition 1, for ¢ >0 take a linear automorphism ¢:7T,M— T,M
satisfying (2.1) and after that take §, > 0 and ge Q-TS(M) satisfying (2.2).
Moreover let m > 0 be a minimal integer such that GT%.., is the identity
map on E¢(p).” We put I, = E°(p) when m = 1. If m > 2 then we take
ve E¢(p) with ||v|| =1 such that, letting I, = {tv|t >0} and I, = G'(I)
0<i<m-—-1

(3.1) {(” INL={0) O<l#l<m—1),

(i) G"I)=1 O<I<m-—1).

Let 6, > 0 be as in (2.3) and take y e exp,(I,N T,M(5,)) with d(p,y) = 24,.
Since gl zena 18 the identity on exp,E*(p, d,) by (2.4), for 0<e< 14,
and every § > 0 we can find a finite sequence {x,}?*, of M such that

(1) {xliso C exp (T, N T,M(5)) — {0},
(ii) d(x,p) <e,

(i) x5, =2x, and x, =y,

(iv) x,#x for 0<i+j<25—1,
(v) d(x,%,)<d for0<i<2s—1,
(vi) B.x,) € exp,T,M(@®,) for 0 <i<2s.

(3.2)
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Now define p,., =%, and Q. = %Xi;1 aNd Dupis; = Quiieg = g(x,,,) for
0<i<2—1and 1<j<mk—1 Then we have that d(p,, q.) <39,
P, #+ D, and q, # q, for 0 < n %= n’ < 2smk — 1. Thus, by Lemma 13 of
Nitecki and Shub [8] we have that there exists ¢ e Diff'(M) such that
d(p(x), x) < 275 for xe M and ¢(p,) = q, for 0 < n < 2smk — 1. Define
g = gop. Since § is arbitrary, we can take g such that g is small C°
near to g Thus there exists a continuous map & : 2(g) — 2(g) satisfying
hog = goh and d(h(x), x) < ¢ for x € 2(g). Moreover g*™*(x,) = x,. Thus
d(p, h(x)) < d(p, x0) + d(%, h(x,)) < 2¢ and

d(y, " (h(xy)) = d(y, h(g"™"(x)))
= d(y, h(x,) < d(¥, x,) + d(x,, h(x,)) <.

Therefore we have £4, = d(p, y) < d(p, h(xy) + d(g* ™ (h(x,), y) < 8¢ < $4,,
since g™*(h(x,)) = h(x,). We arrived at a contradiction.

§4. Proof of Proposition 3

Since TS(M) C #(M) by Propositions 1 and 2, it is clear that fe
TS(M) satisfies Axiom A and no cycle. Thus f is 2-stable. On the other
hand, since f is topologically stable, for ¢ > 0 small enough we can find
a small neighborhood #(f) of f in Diff'(M) such that for ge #(f) there
exists a continuous surjection h: M — M such that hog(x) = fo h(x) and
d(h(x), x) < ¢ for all xe M and moreover A ,,, : 2(g) — Q(f) is bijective.

Thus we have that for xe M

4.1) h'We(h(x), f) = Wex,g) (¢ =5, u)
where

Wi(x, g) = {ye M|d(g"(x), g"(y)) > 0 as n — oo},
WXx, g) = {ye M|d(g"(x),g™(¥)) > 0 as n — oo}.

Indeed, (4.1) is checked as follows. Since fe # (M) and %(f) is a sufficiently
small neighborhood, we can take it as #(f) ¢ #(M). Thus
(4.2) M= U Wi, g) for ge %(f) (¢ = s, u).

ze2(g)

Since hW<(x, g) C We(h(x),[) for x e M, we have W(x, g) C h-'e hRW*(x, g)
C h-'We(h(x),f). To obtain (4.1) suppose that We(x, g) = h-'W(h(x), f).
Then y ¢ We(x, g) and A(y) e W°(h(x), f) for some y e M. By (4.2) there exist
%', y' e 2(g) such that Wi(x', g) = W(x, g) and W(¥, g) = W(y,g). Then
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we have
h(y) e We(h(x), ) N W (h(y), f) = W (h(x)), ) N W(h(y), )

and so W(h(x'),f) = W(h(y),f). For ¢ = s we have d(hog™(x'), hog™(¥))
=d(f*o h(x),f"oh(y)) - 0 as n — oo. Since h,, is a homeomorphism, it
follows d(g™(x’), g(y")) -0 as n— oo and hence ¥ ¢ Wi(x', g) = Wi(x, g).
Therefore y e We(x, g) which is a contradiction. Similarly we can derive
a contradiction for ¢ = wu.

Next we check that for xe M

(4.3) dimWe(x, ) + dimW(x, f) > dim M .

Since h,,, is bijective, for p, g € P(f) with W*(p, /)N W*(q,f) + @ there
exist p/, ¢’ € P(g) satisfying A(p’) = p and h(q¢)) = q. From (4.1) we have

W(p', &) NWHq', g) = ' [W(h(D), /) N W*(h(q), /)]
=R W(p, ) NWq, N+ D .

Use here the fact that the set of all Kupka-Smale diffeomorphisms is
residual in Diff'(). Then we can take a Kupka-Smale diffeomorphism as
the diffeomorphism g. Thus dimW*(p’, g) + dimW¥(q¢’, g) > dim M. Since
g is C! near to f, we have that dimW(x, g) = dimW*(h(x), ) for xec 2(g)
(¢ = s, u). Therefore (4.3) was obtained for this case.

Since [ satisfies Axiom A, there exists ¢ > 0 such that M,z f(U.(4,))
= /A, for each basic set 4, of 2(f). Since topological stability derives
POTP, for the number ¢ >0 let § > 0 be a number satisfying properties
in the definition of POTP. Since M = J,con W(y,f) for ¢ = s, u, for
xe M there exist y,e A, and y,e 4, such that xe W'(y../) N Wy, /).
Take m >0 so large that d(f™(x),f™(y))<é and d(f™x), [ ™) <.
Since 4, N P(f) is dense in A, for each basic set 4,, we can choose periodic
points p, e 4, and p,e A, satisfying d(f"(x),p;) <6 and d(f~™(x),p;) <a.
Then a 3-pseudo orbit @ = {- -, f~(p,), Dy, f™(), -+, %, - -+, [*~(x), P,
f(p:), -+ -} is etraced by a point z in M. Obviously ze W(f~"(p,), )N
W(f™(p;),f), and hence dimW:(f~"(p,),[) + dimW*(f"(p,), ) > dim M as
above. Therefore we have

dimWe(x, f) + dimW(x, f) = dimW(p,, f) + dimW*(p,, f)
= dimW*(f~"(p), f) + dimW*(f"(p,), f)
> dim M.

We now are ready to prove Proposition 3.
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For xe M — Q(f) it suffices to prove that W:(x,f) and W*(x, f) meet
transversally. Since M = (,con, W?(y,f) for ¢ = s, u, there exist y, y, €
Q(f) such that

Wix, f) = Wiy, f) and W*x,f) = Wy, ).

We know (cf. see [4]) that there is ¢ > 0 with B, (x) N B.,(2(f)) = @ such
that for 0 <e<e¢ and ye 2(f)

(i) Wiy, f) is a C'-disk for ¢ = s, u,
(4.4) i) W p = U Wi,

(i) Wy, f) = U WL ) -
Thus, for 0 <e, <g¢ there exist nl_, n, > 0 satisfying

{( 1) f(x) e intWi,(f(»), 1),
(i) f"(x) € intWi(f"(yy), f)

where intW;,(y, f) denotes the interior of Wi(y,f) in Wi(y,f), and &, > 0
satisfying

(4.5)

(i) By(f"(®) N By(f(x)) =@ for —m<n+m< —n,,
(4.6) (i) By N By (f*(x)) = @ for —n, <n<ny,
(i) " [Bi(f" ()] N By (f*(x)) = @ for —nm,<n<n, and m+0.

Denote by Ci(y,f) the connected component of ¥ in By(y) N W°(y, f) for
o =38, u. From (4.4) and (4.5) it follows that there is 0 < §, < §, such that
for 0< <4,

intWe(f(y), /) N BLf™(x)) = Wi(f* (), f) N Bo(f*(x))
= Gi(f"(x), 1),
It Wi (F"(3.), /) N Bi(f~"(x)) = Wif~(y), /) N Bo(f~"(x))
= C3(f~™(x), /).

Let %(f) be a small neighborhood of f in TS(M). Given a sufficiently small
0< §,< 8, we can construct diffeomorphisms ¢, (i = 1,2), C*' near to the
identity, such that

eu(f™(x)) = f(x),

o(C3,(F™(x), ) N Byy(f**(x)) = €XPyayoy(DfE)(52) ,
¢, =1id on M — B, (f"(x)),

fooit € «(f)



STABILITY OF DIFFEOMORPHISMS 99

where E, denotes the tangent space at x of W*(x,f), and

o f"(x)) = f~"(x) ,

o Co(f~"(%), [) N By (f~"(%)) = €XP;ny(ry(Df™E;)(3,) .
¢, =1d on M — B, (f"(x)),

psof € Uf)

where E, = T ,W*(x,f). In general ¢, and ¢, can be constructed as follows.
For ye 2(f) let F, = T,W*(y,f) and write F, = Fi. Since there exists a
C! map 7: F,(6) — F, such that graph(r) = exp,(Ci(y,f)), we can define a
C' embedding Q: T\,M(3) — T, M satisfying Q(2) = Q(z,, ) = (2, 2, + 7(2)
for z = (2, 2) e (F,® F))NT,M(5). Clearly D,@ = id and so @ is C' near
to id,z,xs when § is small enough. As usual define a C~ bump function
a:R—[0,1] such that () =0 if [t| <1, a(®) =1 if || > 2 and |«/(8)]| < 2.
Then, for a sufficiently small § with 0 < 2§’ < § we set

z if z ¢ By(y)
exp,{k-exp;'z + (1 — k) Q '(exp,'2)} if z € By(y)

where &k = a(@é}ilz—”) .

o(2) =

Then ¢:M— M is a diffeomorphism C! near to id such that o(y) =y
and ¢(Ci(y, f)) = Fi(®).

As the finite set F and the isomorphism G, of Franks’s lemma
(mentioned above), we set F = {f~"(x), f~"* x), - - -, [ (%)} and G,y =
Dnif (— ny<n<n —1). Then we see that for 0 < 4, < §, small enough
there is g; € %(f) satisfying

&(f"(x)) = an(x) for —n,<n<n -1,
n1—1
g=f on M— n}_}ﬂ Bﬁl(f"(x)) ’
8s = €XPyari) © Dynoy [0 €XPri
on B;(f*(x)) for —n,<n<n, —1.

Thus by (4.6) we can define a diffeomorphism g belonging to #(f) by

fopi(y) if y € By(f*(x))
g(y) = 30.0f(y) if y e fU(B,(f~"(x)))
() otherwise .

Then it is easily checked that for §, > 0 small enough
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(1) g ™(intWi(g™ (), 8) N Bi(x) = g~ (Wi(g"(51), 8)) N Biy(xx)
= exp,(E(3,) ,

(i) g"(ntWi(g "(y:), 8) N Bi(x) = g™ (Wi(g "(¥2), ) N Biy()
= exp,(Ex(0)) -

To obtain the conclusion suppose that W<(x,f) is not transversal to
W(x,f). Then E = E, N\ E, is non trivial (£ = {0}) by (4.3). Since ge %(f)
(< TS(M)), take ¢ > 0 smaller than min{e — &, d,/4}, and let § >0 be a
number satisfying the definition of the topological stability i.e. for ge
Diff%(M) with d(g, §) < §, there exists a continuous surjection A: M— M
satisfying ho g = goh and d(h(y),y) <efor all ye M. For & > 0 sufficiently
small we can find a homeomorphism ¢: 7T ,M— T ,M with 0(0) = 0 such
that
(1) max{|o'w) — ul: u e T.MG)} < 7,
(i1) letting E’ = O(E) N E,,
(a) E’ is a non trivial linear subspace, or E’ = {0},
(b)) E'CE,
(¢) dim E’ < dim E.
Put g=g on M — B;(x) and § = goexp,o 0 'oexp;' on B, ,(x). Then
g e Diff’(M) and d(g, g) <4. Thus we have

g (Wi (g™(y1), 8) N Bs,n(x) = O(E,)(3:/2)

“.7)

and by (4.7)

(4.8) g(Wi(g" (), 8) N g(Wi(g ™(x2), 8) N Bsyu(x) = exp,(E'(3,/2)) -

Since dim E’ < dim E by (ii) (c), if ¢ > 0 is sufficiently small, then we can
take 2’ € exp,(E(5,) satisfying 2’ ¢ B.(exp,E’(5,/2)) and d(2/, x) < 5,/4. Let
h:M— M be a semi-conjugacy found as above for g. Then h(z) = 2z’ for
some ze M. Since d(z, 2’) = d(z, h(2)) < e, we have that z ¢ exp, (E’(5,/2))
and d(z, x) < d(z, 2') + d(2/, x) < e + 5,/4 < &/2. Thus, by (4.8).

z e g (Wi(g"(3), 8) N &™(Wi(g (¥, 8)) -

If z does not belong to the left hand set of the above relation, then
d(g™(2), g"(y) = d(g"(2), g"(y)) > ¢ for a certain n larger than n, and by
4.7).

h(2) € exp,(E(3,)) C exp,(E(5,) = g (int W5 (g™ (), £) N By(x) .
Thus d(g"(y)), g"(h(2))) < & and so
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d(h(g"(2)), §"(2)) = d(g"(h(2)), 8"(2))
> d(g"(2), g"(0) — d(g"(y), 8" h(2) > & — & > &

This is inconsistent with the property of A. For the case

z & gn(Wi(g (v, 8))

we obtain a contradiction by the same way. Therefore W¥(x, f) is trans-
versal to W*(x, f) for all xe M. The proof of Proposition 3 is complete.

§5. Proof of Theorem 2

As in the proof of Proposition 3, we can construct ge POTP(M)
satisfying (4.7). Now assume that dimW®(x,f) = dim M — 1 and W*(x, f)
is not transversal to W*(x,f). Then T . Wi(x, f) D T,W*(x,f) and so E =
TWx, )N T WHx,f) = T,W«x, f). Take §; > 0 small enough, then there
exist ¢ >0 and 0<e<¢ such that W¥x, g) C exp(E(5;) C Wi(x, g) and
Ws.(x, g) € Wi(x, g). Since g has POTP, there exists § >0 such that if
d(y,2) <5 (y,ze M) then Wiy, 8) N WXz, g) + @. Thus we have Wiy, g)
N W¥(x, g) #+ @ for all y e By(x), and so Wy, g) N Wi(x, g) = . Therefore
ye Wi A(x,8) C Wi.(x, g) c Wi(x, g), and so By(x) C Wi(x, g). This contra-
dicts dimW+(x, ) = dimW?(x, g) = dim M — 1.
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