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ON F-INTEGRABLE ACTIONS OF THE RESTRICTED

LIE ALGEBRA OF A FORMAL GROUP F

IN CHARACTERISTIC p > 0

ANDRZEJ TYC

§ 1. Introduction

Let k be an integral domain, let F= (FX(X, Y), ,Fn(X, Y)), X =
(Xί9 - - , Xn), Y = (Yj, . . ., Yn), be an n-dimensional formal group over k,
and let L(F) be the Lie algebra of all F-invariant ^-derivations of the
ring of formal power series k^XJ (cf. § 2). If A is a (commutative) k-
algebra and Derfc (A) denotes the Lie algebra of all ^-derivations d: A —> A,
then by an action of L(F) on A we mean a morphism of Lie algebras
φ\ L(F) -> Derfc (A) such that φ(dp) = φ(d)p, provided char (k) = p > 0.
An action of the formal group F on A is a morphism of ^-algebras
D: A->A[Z] such that D(a)=a mod (X) for a e A, and ί > D = Dγ o D,
where j ^ : A[X]-+A[X, Y], BF: A[Z]-> A[X, Y] are morphisms of
^-algebras given by FΛ(g(X)) = g(F), Dγ(Σa a«Xa) = Σa D(aa)Y\ for a
motivation of this notion, see [15]. Let D: A -» A[X] be such an action.
Then, similarly as in the case of an algebraic group action, one proves
that the map φD: L(F) -> Derfc (A) with φD(d)(ά) = 2 α ααd(Xα)|z=0 for
deL(F), aeA, and D(α) = 2]« ααX

a, is an action of L(F) on A.

DEFINITION. An action φ: L(F) —• Derfc (A) of the Lie algebra
on a &-alegbra A is said to be F-integrable if there exists an action
D: A -> A[X] of the formal group F on A such that φ = φD.

Observe that if n - 1, Fa = X + Y, and Fm = X + Y + XY, then an
action of L(Fa) (resp. L(Fm)) on a β-algebra A is nothing else than a
^-derivation d: A-> A with <ip = 0 (resp. cίp = d) whenever char (k) =
p > 0. Moreover, one readily checks that such d is Fα-integrable (resp.
Fm-integrable) if there exists a differentiation (= higher derivation) D =
{D,: A -* A, ί = 0,1, •} such that A = d and A ° A = ihJ)Di+j (resp.
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, where ( j j ) = O for υ < 0 or υ > u) for

all i, j . Thus we see that Fa-integrability amounts to strong integrability
in the sense of [10].

If k is a field of characteristic 0, then from [15, Lemma 2.13] it fol-
lows that each action φ: L(F) —• Derfc (A) of F on an arbitrary ^-algebra
A is F-integrable. If k is not a field (being still of characteristic 0),
then the above assertion is not true. For instance, if Z is the ring of
rational integers and A = Z[X], then the action of L(Fa) on A given by
the derivation X dldX is clearly not Fα-integrable. Nevertheless, also in
this case there are some positive results, see [1, 12]. Now suppose that
k is a field of characteristic p > 0. Then the situation is worse then
that in characteristic 0. Namely, if A = k[t]/(tp) and d:A-+A is the
/^-derivation induced by 3/dt, then according to [10, Ex. 1] d is not in-
tegrable i.e., there does not exist a morphism of ^-algebras J: A —> A[X]
(X = Xj) such that J(ά) = a + d(a)X mod (X2) for all ae A (the existence
of such J would imply: 0 = J(tp + (tp)) = J(t + (tp))p = X21 mod (X*+1)).
Hence the action of L(Fa) on A defined by d is not i^-integrable. How-
ever, Matsumura proved [10, Th. 7] that if A is a separable field exten-
sion of k, then every action of L(Fa) on A is Fα-integrable. The goal of
this paper is to extend Matsumura's result to a wider class of formal
groups and to more general ^-algebras. In particular, from our main
result (cf. § 2) one derives the following.

THEOREM. Let F be a one dimensional formal group over k, let A —

k\T19 , T J , m > 1, and let φ: L(F) -* Derfc (A) be an action of L(F) on

A with φ{y)(Tτ) & ( JΓJ, , Tm) for some y e L(F) and some ί. Then φ is

F-ίntegrable, provided F ~ Fa or F ~ Fm. Moreover, if the field k is alge-

braically closed, then ψ is F4ntegrable for any F.

Remark. If the field k is algebraically closed, then an action of Fa

(resp, Fm) on a given ^-algebra B is a differentiation {Dj: B —> B, j =

0,1, •} such that (Dpiy = 0, Dm = (Dp0Y°o . . . o(Dpt)
mtl(m0\ . mtϊ) (resp.

(Dpί)
p = Dpt, Dm = (DpO)mo o o (Dpt)TOt), i, HI = 0,1, , where m = mop° +

• + m P* is the p-adic expansion of m and (f)ά = /o (/ — 1) o . . .

°(f — j + l)//! The remark is well known for .Fα (and is true for any

field k of characteristic p > 0). As for the case of Fm, it may be deduced

from [2, p. 127/128].
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All rings in this paper are assumed to be commutative. A local

ring is assumed to be Noetherian. A ring R is called reduced if it has

no non-zero nilpotent elements.

§ 2. Preliminaries and formulation of the main result

Throughout this paper k denotes a fixed field of characteristic p > 0

and N stands for the set of non-negative rational integers.

Let S' be a subalgebra of a ^-algebra S. A subset Γ of S is called

a p-basis of S over S' if S is a free S'[S*]-module (Sp = {sp, s e S}) and

the set of all monomials y\x yy, where y19 , yt are distinct elements

in Γ and 0 < ir < p, r = 1, , t, is a basis of S over S'[SP]. As usual,

ΩS,(S) will denote the S-module of Kahler differentials over S' and

δ: S->ΩS,(S) will denote the canonical S'-derivation. It is not difficult to

verify that if Γ is a p-basis of S over S', then ΩS>(S) is a free A-module

with {δy, y e Γ} as a basis. Given a ^-algebra A, Derfc (A) will denote

the restricted Lie algebra over k of all /^-derivations d: A —> A with

[d, df] = do df - df o d and d™ = dp. If d e Derfc (A) and a e A, then ad

is the A-derivation x -> ad (x), xe A.

By a formal group over a ring i? we shall mean a one dimensional

commutative formal group over R i.e., a formal power series F(X, Y) e

JS[X, Y] such that ί\X, 0) - X, F(09 Y) = Y, F(F(X, Y), Z) - F(X, F( Y, Z)\

F(X, Y) = F(Y, X), see [6]. Two important examples are the additive

formal group Fa = X + Y and the multiplicative one Fm = X + Y + XY.

If F and G are formal groups over 1?, then a homomorphism f:F->G

is a power series /(X) e i?[X] such that /(0) = 0 and f(F(X, Y)) =

G(/(X), /(Y)). A homomorphism / is said to be an isomorphism if /^O)

is an invertible element in Ώ (/'(X) = 3//3X). Let F = F(X, Y) be a

formal group over the field k and let d :̂ £[X] —> ^[X], ίeiV, be the

maps given by the equality

( 1 ) g(F(X, Y)) = Σ dt(g(X)) Ψ, gek{XJ.

We say that a function t: fe[X] ~> fe[X] is F-invariant if t o d̂  = d^o ί for

all jeΛΓ. It is clear that if α, bek and ί, ί': fe[X] -> A[X] are F-

invariant functions, then at + &£' and totf are also F-invariant functions.

Hence it follows that the set of all F-invariant /^-derivations d: £[X] ->

&[X] is a restricted Lie subalgebra of the restricted Lie algebra

Derfc (k[XJ). This subalgebra is called the restricted Lie algebra of the



128 ANDRZEJ TYC

formal group F and it is denoted by L(F). Let dF: k\XJ -> k\XJ denote
the ^-derivation determined by dF(X) = dF(0, X)jdZ (= dF(Z, X)dZ\Zss0).
Then, similarly as in the case of algebraic groups, we have the following.

2.1 LEMMA. Let f: F —> G be an isomorphism of formal groups over
k and let f: k\XJ -» k\_XJ be the isomorphism of k-algebras induced by
f (i.e., f(g(X)) = g(f(X))). Then L(f): L(F) - L(G) with L(f)(d) = f-Όdof,
is an isomorphism of restricted Lie algebras. Moreover, L(F) is a one
dimensional vector space over k spanned by dF.

Proof. Given an H(X, Y) e k{X, YJ with ίf(0, 0) = 0 we denote by
H: k[X\ -• k[X, YJ the homomorphism of ^-algebras given by H(g(X)) =
g(H(X, Y)). If u, v: k{XJ -+k{X] are ̂ -linear maps, then u®v: klX, YJ
->fe[X, Y] will denote the map taking Σa^Y* into Σ ^ M ^ M ^ ) .
It is easy to see that if d e Derfc {k[XJ\ then d® id 6 Derfc (k{X, YJ).
Moreover, a ^-derivation d of k[XJ is in L(F) if and only if F o d =
(d® id)op. Observe also that (f&f)oG = Pof, because f(F(X, Y)) =
G(f(X\ f(Y)). Similarly, (/-1 ® f-1)op=Gof-\ because f~' = f~\ where
f(f'\X)) = X

Now we may prove that L(f) is an isomorphism of restricted Lie
algebras. First notice that if deL(F), then L(f)(d) = /^o d°fe L(G).
Indeed, Gof-Όdof=:(f"'®f-')oFodof=,(f^®f-')(d®id)oFof=(f^o
d ® f'1) o (f ® f) o G - (Γ 1 o d o f ® id) o G, which implies L(/)(d) e L(G).
Further, for d, teL(F) we have:

and

f ~ 1 o ( d o t - t o d ) o f

Since clearly L(f~ι) — L(f)'1 we are done. It remains to verify that
L(F) = MF. Let g(X) be in fe[Z]. Then

F°dF(g(X)) = F(g'(X) dF(0, X)ldZ))

= g'(F(X, Y))-dF(0, F(X, Y))ldZ

= g'(F(X, Y))(d/dZ(F(F(Z, X),

= g\F(X, Y))((dF(T,
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= g\F(X, Y))dF(X, Y)/dX)(dF(0, X)ldZ)

= (dr&iά)F(g(X)),

whence dFeL(F). Further, if deL(F) and h(X) = d(X), then h(F(X, Y))
= F o d(X) = (d® id) o F(X) = (3F(X, Y)/dX)h(X). Hence, putting X = 0,

Y = X, we get d(Jf) = h(X) = (&F(0, X)ldZ)h(0) = /*(0)dF(X), which means

that d = h(0)dF. Consequently L(F) = kdF) and the lemma is proved.

Remark. The equality L(F) = kdF may be deduced from Proposition

1 in [T. Honda, Formal Groups and Zeta Functions, Osaka J. Math. v. 5

(1968)].

From the above lemma it follows that dF = cF-dF for some uniquely

determined constant cF e k. Notice that cF = 0 for F = Fa and cF = 1

for F — Fm. By an action of L(F) on a ^-algebra A we mean a mor-

phism of restricted Lie algebras φ: L(F) -> Derfc (A). It is obvious that

such an action is nothing else than a ^-derivation d of A with dp = c F d

Now recall [15] that an action of the formal group F on a β-algebra

A is a morphism of β-algebras D: A-*A\X\ such that if D(a) =

Σ* A W , α 6 A, then A = i ^ and Σ*,, A ° A ( « ) ^ ^ = Σ . D,(a)F(X, Y)s

for all aeA. If D: A - > A [ X ] is such an action and t: k{XJ -> k{XJ

is any Minear map, then we define the ^-linear map φD(t): A -> A by

formula φD(t)(a) — Σ« A(̂ )̂ (-XΌU=o A straightforward calculation proves

that pjr,(cί) 6 Derfc (A) and φD(dod') = φD(d)oφD(d') for deL(F) and d r e

Derfc (A[X]|). Hence it results that p^: L(F) —> Derfc (A) is an action of

L(F) on the ^-algebra A. Since ψD(dF) = D n this means that Df = cFA

DEFINITION. An action 9 of the restricted Lie algebra L(F) on a

^-algebra A is called F-integrable if there exists an action D of the

formal group F on A such that φD = φ.

The main result of this paper is the following.

THEOREM. Let F be a formal group over k and let ψ\ L(F) -> Derfc (A)

be an action of L(F) on a local k-algebra A with the unique maximal

ideal m satisfying the conditions (i) and (ii) below:

( i ) the ring A^k^'1 is reduced,

(ii) if m Φ 0, then Ωk(A) is a free A-module of finite rank and

ψ(dF)(m) ς£ m.



130 ANDRZEJ TYC

Then φ is F-integrable in each of the following two cases.

Case 1) F is isomorphic to Fa or to Fm,

Case 2) the field k is separably closed and A is a complete local ring

with m Φ 0.

The idea of the proof of this theorem comes in part from [10, proof

of Theorem 7] and relies on the construction of a special p-basis Γ of A

over k and an element xeΓ such that xem (if m Φ 0), d(Γ — {x}) = 0,

and d(x) = dF(x, 0)/9 Y, where d = <p(dF). Having such a pair (Γ, x), one

shows that the function D: Γ -> A[X] given by D(x) = F(x, X), D(y) = y,

y Φ x, extends to an action D: A -» A[X] of the formal group F on A

with ^2, == 9. We start with

§3. Auxiliary Lemmas

In what follows, given a /^-algebra A, a subset Γ C A, and a func-

tion /: Γ - ^ A P Ί , . ,XTO], fa: Γ -> A, aβNm, will denote the functions

determined by the equality J ] β /α(;y)Xα = /O), y € Γ, where Xa = X?1

XS* for α = (al9 , αm). If a = («!, , αrm) 6 7VW, then |α | and pa stand

for OLX + + orw and (pαu ,pam), respectively. Note that if D: A —•

A[X1? •• ,Xm] is a morphism of ^-algebras with Do = idA9 then Z)α:

A -> A is a ^-derivation for any aeNm with |α | = 1.

3.1 LEMMA. Lei A 6β a k-algebra such that the ring A (x)fc k
v~y is

reduced and let Γ be a p-basίs of A over k. Then for any m > 1 and

any function s: Γ -> A{XJ = A\XU , Z w ] w iίΛ so(y) = y for yeΓ there

exists a unique morphism of k-algebras D: A-+A\_X~\ such that Do = id4

and D\Γ = s.

The lemma is a simple generalization of Heerema's Theorem 1 in [7]

(see also, [δ, Theorem 3]), where the case m = 1, k = F p , and A being a

field was considered. For the sake of completeness we sketch its proof.

By induction on \a\ we define ^-linear maps Da: A -> A, aeNm, in

such a way that D: A -> A[X] with D(α) = Σ« Da(a)Xa, aeA, will be

the desired morphism of ^-algebras. If or = 0, one has to put Da = id^.

Suppose that D/s have been already defined for all TeNm with \ϊ\<r,

and take aβNm with |α| = r. In order to define Da we first define its

restriction to k[Ap]. Let y = J]< ^αf, where ^efe and α̂  6 A. Then by

definition
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D (γ) = ( Σ ^DridiY, when a = pϊ for some ϊ
I 0 , otherwise.

Since A (x)fc k
v~x is a reduced ring, one easily verifies that Da: k[Ap] ~> A

is a well-defined ^-linear map. If yu , yq are distinct elements in Γ,

μ19 - —9μqeN are smaller than p, and y = yfi . . . yj«, then Dα(y) is de-

fined to be the coefficient at Xa in SOΊ)^ s(yq)
μ*e A [ Z ] . Finally, for

2 e A[AP] and y as above we set

( 2 ) Da(zyμ) = 2 J Dω(z)Dϊ(yμ)

Since Γ is a p-basis of A over &, formula (2) determines a ^-linear map

Da: A-+ A. Thus the inductive procedure gives us a set of /^-linear maps

Da: A ~> A, a e iVw, such that Do = id^ and J5β|Γ = 5α: Γ -> A. This means

that Z): A~^A|[X] with 2)(α) = Σ« Da(a)Xa, aeA, is a Minear map

with Do = id̂ L and Z)]Γ = 8. The fact that D preserves multiplication

may be shown similarly as in [7]. As for the uniqueness of D, if D ; :

A -> A[X] is another morphism of ^-algebras such that DO = id^ and

Df\Γ = s, then one easily proves, using induction on \a\, that D^ = Dα

for all a e Nm. Hence Df = D, and consequently the lemma follows.

3.2 COROLLARY. Under the assumptions of the lemma we have:

1) if D\ D: A —> A[X] are morphisms of k-algebras with D'o = Z)o

= id^ and Df\Γ = D\Γ, then Df = D,

2) for any k-derivations du •• , d m : A—> A ί/zerβ is a morphism of

k-algehras D: A —> A [ X ] swc/i that DQ = id^ α/2cί D(ί) = du i = 1, *, m,

(i) = (0, , 0,1, 0, , 0) e Nm with 1 on the ί-th positions.

Proof Part 1) results immediately by Lemma 3.1 (to s = D'\Γ =

D|Γ). To prove part 2) let us define the function s: Γ -> A[X] by s(y) =

3̂  + ΣΓ=o di(y)Xι, y e Γ. Then according to Lemma 3.1 there exists a

morphism of ^-algebras D: A-+AIXJ such that -Do = idA and D|Γ = s.

Hence D{i)(y) = d^y) for y e Γ, which clearly implies that D(ί) = dt, ί =

1, , m. The corollary is proved.

3.3 LEMMA. Let A be a local algebra with the unique maximal ideal

m such that Ωk(A) is a free A-module of finite rank, and let Γ be a subset

of A such that {δy ® 1, y e Γ} is a basis of the Ajm-υector space Ωk(A)

®A A/m. Then Γ is a p-basis of A over k. In particular, A possesses a

P'basis over k.
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Proof. Since Ωk(A) is a finite A-module, A is a finite £[Ap]-module,

by [3, Proposition 1], Moreover, it is easy to see that {δy, y e Γ} is a basis

of Ωk(A) over A. The conclusion now follows from [9, Proposition 38. G],

3.4 LEMMA (Hoehschild Lemma, [14, § 6, Lemma 1]). If R is any ring

of characteristic p and d: R •-> R is a derivation, then

= - d(u)p + up~ιdp(ύ)

for all ue R.

Below, for a given ring R, U(R) denotes the set of all units in R.

Moreover, for any derivation d: R —> R, Rd stands for the subring

{a e R, d(ά) = 0} c R.

3.5 LEMMA. Let A be a k-algebra and let d: A-> A be a non-zero

k-derivation such that dv — ad for some aeA. Then we have:

1) if d(z) e U(A) for some ze A, then A is a free Aά -module with

l,z, - - -,zp~x as a basis,

2) if ceAd is such that cp~ι — a and A is an integral domain, then

there is a y e A — {0} with d(y) = cy,

3) if d(z) e U(A) and cp~x — a for some ze A and c e Ad, then there

is an xe Az such that d(x) = ex + 1.

Proof. Suppose that d(z) e U(A) and set u = d(z)~\ Thanks to [8,

Lemma 1] we know that (ud)p = cxd for some cγ e A. Since ci = ucxd(z) =

u(ud)p(z) = u(ud)p-ι(ΐ) = 0, we see that (ud)p = 0. Applying now Lemma

4 in [10] to the derivation ud: A -> A and ze A, one gets part 1) of the

lemma. To prove 2) assume that cp~ι = a for some ceAd and denote by

Lc: A -->. A the map taking b into c6 for b e A. Then d o Lc = Lc o d and

0 = d^ - ad = d^ - c*-^ - d25 - Lf-^d - (d23-1 - Lξ-^od - (d - L >

F(d), where F(Z) is a polynomial of degree p — 1 from the ring Ad[Z].

What we must show is that Ker(d — Lc) Φ 0. But the equality

Ker (d — Lc) = 0 would imply F(d) = 0, which is impossible by [11,

Theorem 3.1]. So, it remains to prove part 3). Suppose zeA, ceAd are

such that d(z)eU(A), cp~x = α, and set xx = zv~ιd(z). Then from the

Hoehschild Lemma and the equality dp = αd it follows that dp~\x?) =

axx — d(z)p. Hence if we put
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then x e Az and

d(χ) - ex = - d(z)~λ(d - Lc) o Σ ^ ? - 2 - i f e ) 1 = -d(z)-Kd*-χ - LΓ'Xxd
L «=o J

- - dφ-'ίd*-1^) - c*"1*,) = - dφ-'ίd*-1^) - ax,) = 1.

This means that d(x) = ex + 1, as was to be shown. The lemma is
proved.

3.6 COROLLARY. Let (A, m) be a local k-algebra and let d: A -> A
be a k-derivation with dp = ed for some e e {0,1} and with d(m) ςzt m,
whenever m Φ 0. Then there exists an xe A such that d(x) = ex + 1 e
U(A) and A is a free Ad-module with 1, x, , xp~1 as a basis. Moreover,
if m Φ 0, then one may assume that xem.

Proof. Let m Φ 0. Then from the assumption we know that d(z) e
U(A) for some zem. Hence, by Lemma 3.5, 3), there exists an xe Az
with d(x) = ex + 1. Since ex + 1 e U(A), by applying Lemma 3.5, 1), one
gets that A is a free Ad-module with 1, x, , xv~x as a basis. Now
suppose that m = 0, that is, A is a field. If e = 0, then again by Lemma
3.5, 3) there is an x e A with d(x) = 1. If e — 1, then in view of Lemma
3.5, 2) we may find OφyeA such that d(y) = y. Set x = y — 1. Then
d(x) = d(y) = j> — x + 1 and x + 1 e Z7(A), because y Φ 0. In both cases
(e = 0 or e = 1) A is a free Ad-module, by part 1) of the above lemma.
The corollary follows.

Now, for later use, let us recall the notion of height of a formal
group. Let G(X, Y) be a formal group over a ring R. As G(X, Y) =
G(Y, X), the induction formula: [1]G(X) = X, [m]β(Z) = Gflro - l]β(X), X),
meN, determine a sequence of endomorphisms of the group G. If pR = 0,
then according to [4, Chap. Ill, § 3, Theorem 2] each homomorphism /: G ->
G' of formal groups over R can be uniquely written in the form f(X) =
ttX*%\ where /•(*) e B[X], /ί(0) =£ 0, and A e N U {oo} (A = oo, if / = 0).
The number h is called the height of/. Now the height Ht(F) of a formal
group F over the field k is defined to be the height of the endomorphism
[p]F(X). It is easily seen that Ht(F) > 1 for any F and that Ht(Fα) = oo,
Ht(Fm) = 1. Observe also that Ht(F) = Ht(F'), provided F~ Fr.

3.7 LEMMA. Lβί F be a formal group over k and let as before cFek
be the constant determined by the equality dF = cFdF. Then cF = 0 if and
only if Ή.t(F) Φ 1.
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Proof. Thanks to [4, Chap. Ill, § 1,. Theorem 2] we know that F ~ Fa

if and only if Ht(F) = oo. So, let Ht(F) < oo, and let D: A -> A[Y] be
an action of F on a ^-algebra A For the proof of the lemma it suffices
to show that Df = 0, when Ht(F) > 2, and that Df = cDί for some ce
k - {0}, when Ht(F) = 1. Indeed, for A = A[X] and Z> given by DfeCX))
= g(F(X, Y)) we have A = dF, whence (under the above assumption)
cF = 0 if and only if Ht(F) > 2. From the definition of an action of F
on A it follows that A o Z^ = J ] w CίjmDm, ί, j e N, where C^m's are con-
stants in k determined by the equality F(X, Y)m = X)i,j,CtjmXi Yj. In
view of Lemma 2 in [4, Chap. Ill, § 2] we may assume that

F(X, Y) = X + Y+ α ^

for h — Ht(F) and some 0 Φ w ek. Hence

A o Dj = (i, j)Dph + ™(Pi)/p' A for i+j=p\

and

Ao£>, = (i,j)Di+J for ί + J<Ph

The first equality implies that DίoDp_ί = wDλ if & = 1, while the second
one that A o Z)p_! = pDp = 0 for Λ > 2 and thatD, = JDί/i! for 0 < i < p and
any h. Therefore, if h = 1, then A = w'D^Dp^ = w'D^ Df-'Kp - 1)!
= AV^O - 1)!, i.e., 2^ = cA with c = w(p - 1)! lfc ^ 0.

In the case where ft>2we have 0 = D1oDp_ί = Df/(p — 1)!, whence
Df = 0. Thus the lemma is established.

§ 4. Proof of the theorem

Below, Z and Q denote the ring of rational integers and the field
of rationale, respectively. Moreover, N+ denotes the set N — {0}. It is
easy to see that if F and G are isomorphic formal groups over k and
the theorem is true for G, then it is also true for F. Therefore, in case
1) of the theorem we may (and will) assume that F = X + Y + eXY,
e e {0, 1}. In case 2) of the theorem we replace quite general F by a
certain (isomorphic to F) formal group Fh> which is much easier to deal
with. To this end set h — Ht(F) and consider the following formal
power series from Q\X, Y]
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fh(X) x+Σ

Thanks to [6, Chap. I, § 3.2] one knows that Fh = Fh(X, Y) is a formal

group over Z and that [p]Fh(X) = Xph modpZ[X] (Xp°° = 0). Now Fh is

defined to be the formal group over k ZD ZjpZ obtained by reducing all

the coefficients of Fh modulo p. Certainly, Ht(FΛ) = h = Ht(F). It results

that F CΞ Fh, because by [4, Chap. Ill, § 2, Theorem 2] the height classifies

(up to isomorphism) formal groups over a separably closed field. In the

sequel, when dealing with case 2) we will assume that F — Fh, where

h = Ht(F). Moreover, it will be assumed that h > 2, since otherwise, i.e.,

when h = 1, F is isomorphic to Fm (by the already mentioned Theorem 2

in [4, Chap. Ill, § 2]), and case 1) can be applied.

Now let d = φ(dF). Then d: A -> A is a ^-derivation with dp — cFd

and with d(m) gt m, if m Φ 0. The second important ingredient of the

proof is the construction of a special p-basis Γ of A over k and an

element xeΓ satisfying the following conditions

a) x e m, whenever m Φ 0,

b) d(x) = dF(x,0)/dY,

c) d(y) = 0 for y e Γ, y Φ x.

First we show such a pair (Γ, x) exists in case 1) of the theorem i.e.,

when F = X + Y+ eXY, e e {0,1}. Then cF = e, and therefore dp = βd.

If A is a field, then by Corollary 3.6, there is an x e A such that d(x) =

ex + 1 and 1, x, , xp~ι is a basis of A as an Ad-module. Since, by the

assumption (i) of the theorem, A is a separable field extension of k, the

latter permits to find a p-basis Γ of A over k with xeΓ and Γ — {x} c

Atf, see [10, proof of Theorem 7]. It is clear that the pair (Γ, x) has

properties a)-c) above. Now suppose that A is not a field, that is, m Φ 0.

Then again making use of Corollary 3.6 one may find a n x e / n such that

d(x) = ex + le U(A) and A = 2<>o A^x*. Hence £(x) g m βfc(A), because

d = qod for some homomorphism of A-modules g: βfcίA)-^^. In view

of Lemma 3.3 this implies that there exists a p-basis Γ' of A over k

containing x. We "improve Γm. Since A = 2] Adx% each y e Γf can be

written in the form y' = y -\- sy,x, for suitable y e Ad and sy, e A. Let

Γ = {y, y'eΓ' - {x}} U {x}. Then from the equalities <5(/) = δ(y) + sv,δ(x)

+ xδ(sy,), yf 6 Γ — {x}, and Lemma 3.3 it follows that Γ is a p-basis of A

over k (xe ml). Thep-basis Γ and xeΓ satisfy conditions a)-c), and thus
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the existence of the required pair (Γ, x) has been shown in case 1). In

case 2) of the theorem we have dp = 0, by Lemma 3.7, and d(m) ς£ m.

Hence, again by Corollary 3.6, there is an x e m with d(x) = 1 and A =
yΣa>oAdxi. Similarly as above this makes it possible to find a p-basis Γ

such that x e Γ and Γ — {x} c Ad. It remains to verify that d(x) = 1 =

dFh(x90)ldY. From the equality fh(Fh(X9 Y)) = fh{X)_ + fh(Y) (see (3)) it

results that f'h(X)dFh(X, 0)/9Y = 1. This implies J'h(X)dFh(X, 0)/9Y = 1,

where ]'h(X) is obtained by reducing all the coefficients of f'h(X) modulo p.

But f'h(X) = 1 + Σ7=ιPm-χ)XpJh-1 (see (3)), whence f'h(X) = 1, as h > 2.

Consequently dFh(x,0)/dY = 1 (^d(x)), which means that also in case 2)

there exist a p-basis Γ and an element xeΓ satisfying conditions a)-c).

We are now in position to prove the theorem. Choose a p-basis Γ

of A over k and an x e f satisfying the conditions a)-c), and then define

the function s: Γ —• -A[X] by the formula: s(x) = F(x, X), s( y) = y, 3/ e

Γ — {x}. In view of Lemma 3.1 the function s (uniquely) extends to a

morphism of ^-algebras D: A -> A[XJ with Do = id^. We show that D

is an action of the formal group F on the ^-algebra A such that φD = φ.

The latter amounts to Dί = d and it is a consequence of the fact that

the /^-derivations Dt and d coincide on the p-basis Γ of A over k. So,

all that remains to be proved is that FAoD = Dγ oD, where as before

FA: A{XJ ->A[X, Y], £>F: A [ Z ] -> A[Z, Y] are the morphisms of ^-alge-

bras defined as follows: FA(g(X)) = g(F(X, Y)), DY(Σ ^X1) - ZD(a,)Y\

By Corollary 3.2, it suffices to check that FA o D(y) = D r o D(y) for all 3/ e Γ.

If y ψ x, then both sides are equal to y. Write F(X, Y) = ΣjFj(χ)Yj>

where F ^ e ^ X ] . Then

F^ o D(x) = F(x, F(X, Y)) - F(F(x, Z), Y) = Σ F,(F(x, X))Y>.

On the other hand

DY o D(X) = D F ( Σ F/x) Y0 - Σ rKFjW - Σ ί 1 / ^ , ^ ) ) y j .

Hence FA o D(x) = DF o D(x), and thus the theorem has been established.

4.1 COROLLARY (from the proof). Under the assumptions of the the-

orem there exist a p-basίs Γ of the k-algebra A over k and an element

xeΓ such that d{x) = dF(x, 0)/3Y, Γ - {x} c Ad, and xem, if m Φ 0.

4.2 Remark. Let (A, m) be a local ^-algebra satisfying the conditions

(i), (ii) of the theorem. Then A turns out to be a regular local ring.
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This is a consequence of [16, Lemma 1].

4.3 Remark, If the field k is algebraically closed, F = Fa, and A is

the completion of the local ring of a regular point on some algebraic

variety over k, then Corollary 4.1 may be easily deduced from [13, proof

of Theorem 1].
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